
HAL Id: hal-02393467
https://hal.science/hal-02393467

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modified marginal expected shortfall under asymptotic
dependence

Juan-Juan Cai, Valérie Chavez-Demoulin, Armelle Guillou

To cite this version:
Juan-Juan Cai, Valérie Chavez-Demoulin, Armelle Guillou. Modified marginal expected shortfall
under asymptotic dependence. Biometrika, 2017, 104, pp.243 - 249. �10.1093/biomet/asx005�. �hal-
02393467�

https://hal.science/hal-02393467
https://hal.archives-ouvertes.fr


HAL Id: hal-02393467
https://hal.archives-ouvertes.fr/hal-02393467

Submitted on 6 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modified marginal expected shortfall under asymptotic
dependence

Juan-Juan Cai, Valérie Chavez-Demoulin, Armelle Guillou

To cite this version:
Juan-Juan Cai, Valérie Chavez-Demoulin, Armelle Guillou. Modified marginal expected shortfall
under asymptotic dependence. Biometrika, Oxford University Press (OUP), 2017, 104, pp.243 - 249.
�10.1093/biomet/asx005�. �hal-02393467�

https://hal.archives-ouvertes.fr/hal-02393467
https://hal.archives-ouvertes.fr


5

10

15

20

Modified marginal expected shortfall under asymptotic
dependence

BY J.-J. CAI
Department of Applied Mathematics, Delft University of Technology, Mekelweg 4, 2628 CD, 

Delft, The Netherlands
J.J.Cai@tudelft.nl

V. CHAVEZ-DEMOULIN
Faculty of Business and Economics, University of Lausanne, Bâtiment Anthropole,

1015 Lausanne
Valerie.Chavez@unil.ch

AND A. GUILLOU
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SUMMARY

We propose an estimator of the marginal expected shortfall by considering a log transformation of a 
variable which has an infinite expectation. We establish the asymptotic normality of our estimator under 
general assumptions. A simulation study suggests that the estimation procedure is robust with respect to 
the choice of tuning parameters. Our estimator has lower bias and mean squared error than the empirical 
estimator when the latter is applicable. We illustrate our methodology on a tsunami dataset.

Some key words: Asymptotic dependence; Asymptotic normality; Infinite mean model; Marginal expected shortfall; 
Tsunami data.

1. INTRODUCTION

Let Z be a random variable belonging to the Fréchet domain of attraction with an extreme value index γ 
> 0, i.e.,

25

lim
t→∞

pr(Z > tx)

pr(Z > t)
= x−1/γ · (1)

30

35

Statistical inference sometimes leads to an estimated extreme value index γ̂ ≥ 1, giving a fitted model 
whose mean is infinite. This can arise in the context of operational risk (Chavez-Demoulin et al., 2016), 
of nuclear power accidents (Hofert & Wuethrich, 2013; Wheatley et al., 2016) and of teletraffic data 
(Resnick, 1997), for instance. One way to approach this problem is to consider transformations of the 
form W = Za, with aγ < 1, so that W is in the Fréchet domain of attraction, i.e., its extreme value 
index is below 1. In this context, the method presented in Cai et al. (2015) can be used when one is 
interested in the conditional expectation E {W | Y > UY (1/p)}, where p is typically small and Y is a 
random variable with tail quantile function UY (t) = inf{y : FY (y) ≥ 1 − 1/t}, which is assumed to be 
asymptotically dependent on W . In practice the power transformation sometimes does not make sense 
or is difficult to interpret. In this paper, we consider the log transformation, which is commonly used in
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finance and for environmental scales such as Richter magnitudes. Define X = logZ with tail quantile
function UX . As shown by Proposition A1 in the Supplementary Material, X now lies in the Gumbel
domain of attraction, i.e.,

lim
t→∞

UX(tx)− UX(t)

γ
= log x·

On the basis of a random sample of size n, {(Z1, Y1), . . . , (Zn, Yn)}, our aim in this paper is to estimate

θp = E

{
logZ | Y > UY

(
1

p

)}
(2)

where p = pn → 0 as n→∞. This quantity is known in the literature as the marginal expected shortfall;40

see, for instance, Caporin & Santucci de Magistris (2012). The Supplementary Material contains the
proofs of the main results together with some additional simulations and a second application.

2. ESTIMATOR AND ASYMPTOTIC PROPERTIES

To construct an estimator of θp, we need some conditions on the dependence structure of the pair (Z, Y )
and on their marginal distributions. Often, we expect to see simultaneously high values of Z and Y , so45

a particular assumption must be imposed on the upper-tail dependence of (Z, Y ). More precisely, we
assume that the following limit exists for all (x, y) ∈ [0,∞]2\{(∞,∞)}:

Rt(x, y) = t pr
{

1− FZ(Z) ≤ x

t
, 1− FY (Y ) ≤ y

t

}
−→ R(x, y), t→∞, (3)

where FZ and FY denote the continuous marginal distribution functions of Z and Y .
Concerning the marginal distributions, we assume that Z is in the Fréchet domain of attraction, i.e., its

distribution satisfies (1), but we impose no conditions on the marginal distribution of Y except continuity;50

therefore, applying any continuous increasing transformation to Y will not change the marginal expected
shortfall. Since we take the log transformation on Z, X = logZ is in the Gumbel domain of attraction
and the copula of (X,Y ) is the same as that of (Z, Y ); hence the tail dependence structure of (X,Y ) also
remains the same. Our results are valid for any positive γ, although our primary concern is the case γ ≥ 1.

Throughout the paper, we assume positiveX . From a practical point of view, the data are generally pos-55

itive or can always be made positive; in the risk management context, for instance, one typically considers
negative returns so that losses are on the positive side of the profit-and-loss distribution. However, values
of Z may sometimes be below 1, leading to negative X . This is the case for the tsunami data in Section 4,
where Z corresponds to the water height in meters. One way to avoid negative X is by changing units of
Z, for example by converting the water height to centimeters before taking the logarithm. Theoretically,60

if Z > 0 is in the maximum domain of attraction of a Fréchet distribution with an extreme value index γ,
then this is also the case of the transformed variable W = aZ for any a > 0 with the same γ.

All the results in this paper will be derived under the second-order condition:

Condition 1. there exist β > 0 and τ < 0 such that, as t→∞,

sup
0<x≤∞,1/2≤y≤2

| Rt(x, y)−R(x, y) |
xβ ∧ 1

= O(tτ )·

This condition is very general and is satisfied for instance by the two distributions considered in Section65

3. It is the same condition as that of Cai et al. (2015), but with no constraint on β other than positivity,
and allows us to specify the rate of convergence in (3). The uniformity requirement in Condition 1 implies
that if t is large enough, R(t, 1) is close to 1, so it excludes asymptotic independence. Also, the fact that
y lies in [1/2, 2] is only a technical requirement for the proof and can be replaced by any interval of the
form [1− c, 1 + d], for positive c and d.70

THEOREM 1. Under Condition 1 and (1), we have θp/UX(1/p) −→ 1 as p→ 0·
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In view of Theorem 1, the first idea for estimating θp is to use an extreme quantile estimator ofUX(1/p).
Let Xi = logZi (i = 1, . . . , n). We propose to use the maximum likelihood estimator,

ÛX

(
1

p

)
= Xn−k1,n + γ̂(k1) log

k1

np
, (4)

where γ̂(k1) = k−1
1

∑k1
i=1 (Xn−i+1,n −Xn−k1,n), with Xn−i+1,n the ith largest observation among the

X-sample and k1 an intermediate sequence, i.e., a sequence satisfying k1 →∞ and k1/n→ 0 as n→∞. 75

However, one cannot get the desired asymptotic normality using ÛX(1/p) as an estimator of θp, because
the convergence rate of ÛX(1/p) to its true value is k1/2

1 / log{k1/(np)}, whereas the convergence rate in
Theorem 1 is typically only of the order log(1/p). To solve this, we must estimate θp more precisely. To
understand the construction of our estimator heuristically, define s1/p(x) = [1− FX{xUX(1/p)}]/p and
write 80

θp = UX

(
1

p

)
+ UX

(
1

p

)∫ an

0

[
R1/p{s1/p(x), 1} − 1

]
dx (5)

−UX
(

1

p

)∫ 1

an

[
1−R1/p{s1/p(x), 1}

]
dx︸ ︷︷ ︸

Θ1

+UX

(
1

p

)∫ ∞
1

R1/p{s1/p(x), 1}dx︸ ︷︷ ︸
Θ2

,

where an is a sequence such that an ∈ (0, 1) and an → 1 as n→∞. The first term in (5) can be estimated
by (4). By a suitable choice of an, the second term in (5) can be made negligible. Hence the task consists
of estimating Θ1 and Θ2. Using a non-parametric estimator of R(x, 1), we can justify the approximations

Θ1 ≈ −
1

k2

n∑
i=1

1l(RX
i <n−k2+1,RY

i ≥n−k2+1)

[{
(1− an)UX

(
1

p

)}
∧
{
γ log

(
n−RXi
k2

)}]
, (6)

Θ2 ≈
γ

k1

n∑
i=1

1l(RX
i >n−k1+1,RY

i >n−k1+1) log

(
k1

n−RXi + 1

)
, (7)

where RXi and RYi denote the ranks of Xi and Yi in their respective samples, and k2 is an intermediate
sequence, i.e., k2 →∞ and k2/n→ 0 as n→∞, possibly different from k1. Plugging ÛX(1/p) and 85

γ̂(k1) into (6) and (7), we obtain our final estimator,

θ̂p = ÛX

(
1

p

)
− 1

k2

n∑
i=1

1l(RX
i <n−k2+1,RY

i ≥n−k2+1)

[{
(1− an)ÛX

(
1

p

)}
∧
{
γ̂(k1) log

(
n−RXi
k2

)}]

+
γ̂(k1)

k1

n∑
i=1

1l(RX
i >n−k1+1,RY

i >n−k1+1) log

(
k1

n−RXi + 1

)
,

where 1lA denotes the indicator function of a subset A and ∧ the minimum function. For asymptotic
normality of θ̂p, we also need a second-order condition on the marginal distribution of Z or equivalently
on X . Specifically, we assume that Z has a Hall-type distribution, meaning that, with C > 0, D ∈ R,
ρ < 0, 90

1− FZ(t) = Ct−1/γ
[
1 +D tρ/γ {1 + o(1)}

]
= t−1/γ`Z(t), t→∞, (8)

where the function `Z is slowly varying at infinity; see Hall (1982). Model (8) is satisfied by most distri-
butions in the Fréchet domain of attraction; see for instance, Table 2.1 in Beirlant et al. (2004).

THEOREM 2. Assume Condition 1 and the Hall model (8) with γ > 0. Suppose also that (3) holds and
that the partial derivatives ∂R(x, y)/∂x and ∂R(x, y)/∂y are continuous. Let an ∈ (0, 1) be a sequence
tending to one such that s1/p(an) ≤ (n/k2){n/(n+ 1)}. Consider two intermediate sequences k1 and 95

k2 such that k1 = o(k2), np = o(k1) , log(np) = o(k
1/2
1 ), k1 = o

{
n2τ/(2τ−1)

}
, k1 = o

{
n2ρ/(2ρ−1)

}
,
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UX(1/p)(1− an)/ log{k1/(np)} → 0, k1/2
1 UX(1/p)(1− an)/ log{k1/(np)} → ∞ and

k
1/2
1 UX(1/p)

log{k1/(np)}
max

[
pτ(an−1),

(
n

k2

)τ
(1− an),

n1/2

k2
(1− an),

{k2/(np)}ρ

UX(1/p)

]
−→ 0·

Then k1/2
1 (θ̂p − θp)/ log{k1/(np)} converges in distribution to a centered normal distribution with vari-

ance γ2.

Remark 1. In practice, the value of p is typically determined by the application. Thus, when applying100

the estimation method, one only needs to choose k1, k2 and an. Below, we explain the implication of
our conditions for these three sequences from a practical point of view. First of all, under the Hall model
(8), we have UX(1/p) = −γ log p{1 + o(1)}. Hence the factor UX(1/p)/ log{k1/(np)}, which appears
several times in the conditions of Theorem 2, does not play a role, compared to other terms when we
assume, as usual, that k1 = bnac and k2 =

⌊
nb
⌋

for positive a and b, where b·c denotes the integer part.105

The conditions for the sequences in Theorem 2 can then be implied by

a ∈
(

0,min

{
−2τ

1− 2τ
,
−2ρ

1− 2ρ
b,−2τ(1− b), 2b− 1

})
,

np = o(k1), log(np) = o(k
1/2
1 ), (9)

pan−1 = O
(
n1−b) , na/2pτ(an−1) = o(1),

an → 1, k
1/2
1 (1− an)→∞·

The first condition in (9) is similar to Condition (d) in Cai et al. (2015). The second line of (9) represents
the usual constraints on p due to the asymptotic normality of the quantile estimator, see Proposition A2
in the Supplementary Material. The third line of (9) links a and b to p and an and the last implies that an
should tend to unity, but not too quickly. Our simulation study suggests that our estimator is insensitive to110

the choice of an.

3. SIMULATION STUDY

To assess the performance of our estimator in practice, we simulated B = 500 samples from the fol-
lowing two examples.

Example 1. The absolute value of a standard bivariate Cauchy distribution.115

Example 2. The absolute value of a standard bivariate Student(1·1) distribution, with the first compo-
nent raised to the power 1·1 to ensure that its extreme value index γ exceeds unity.

These distributions satisfy all the assumptions of Theorem 2 with (γ1, τ, β, ρ) = (1,−1, 2,−2) and
R(x, y) = x+ y − (x2 + y2)1/2 (x, y ≥ 0) for the Cauchy example, and for the Student(1·1) distribu-
tion, (γ1, τ, β, ρ) = (1,−10/11, 21/11,−20/11) and120

R(x, y) =
(1·1)2Γ(0·55)

π1/2Γ(1·05)

∫ ∞
x−10/11

∫ ∞
y−10/11

(v2 + w2)−3·1/2dvdw,

where Γ is the gamma function. Before applying our methodology, the first component is transformed
using the logarithm.

To compute our estimator, we need to choose k1, k2 and an. We take k1 = bnac and k2 =
⌊
nb
⌋

for
a ∈ (0, b) and b > 0. From an extensive simulation study, only partly presented in the Supplementary
Material, we observe that our estimation procedure is not overly sensitive to the values of (b, an) pro-125

vided b ∈ [0·75, 0·85] and an ∈ [0·80, 0·85]. According to the conditions of Theorem 2, in particular
a < min{−2τ(1− b), 2b− 1}, b cannot be too large. We finally chose the values (b, an) = (0·75, 0·85)

and focus only on the choice of a below. Table 1 gives the absolute value of the empirical bias of θ̂p/θp
together with its empirical mean squared error based on B = 500 samples with different pairs (n, p) in
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Table 1: Absolute value of the empirical bias (empirical mean squared error) of θ̂p/θp, multiplied by 100

(n, p) (50, 0·05) (50, 0·01) (50, 0·001) (1000, 0·001) (1000, 0·0005)

a = 0·1 Cauchy 35 (20) 2 (13) 11 (30) 2 (3) 1 (6)
Student 30 (16) 1 (15) 10 (29) 1 (3) 5 (7)

a = 0·2 Cauchy 19 (8) 1 (12) 10 (23) 2 (3) 4 (5)
Student 15 (7) 2 (11) 10 (22) 5 (4) 6 (5)

a = 0·3 Cauchy 6 (6) 4 (12) 10 (19) 4 (3) 4 (4)
Student 4 (7) 5 (13) 8 (17) 5 (3) 5 (4)

a = 0·4 Cauchy 7 (9) 10 (12) 14 (20) 3 (2) 3 (2)
Student 10 (9) 11 (14) 13 (19) 5 (2) 3 (2)

Table 2: Absolute value of the empirical bias (empirical mean squared error) of θ̂emp
p /θp, multiplied by

100

(n, p) (50, 0·05) (1000, 0·001)
Cauchy 14 (16) 7 (7)
Student 15 (18) 7 (8)

case (b, an) = (0·75, 0·85). The size n = 50 is relatively small, but it illustrates the performance of our 130

estimator in a situation similar to that considered in Section 4. We take p = 0·001 and 0·0005 as typical
values for applications in the financial risk context, but also values such as p = 0·01 and 0·05, which are
often used in the environmental framework. From Table 1, we can observe that a should not be too small,
since it leads to a larger bias and mean squared error, in particular for small n. The mean squared error
increases when p decreases for a fixed sample size. The choice a = 0·3 seems to be suitable, whatever the 135

pair (n, p) or the strength of dependence between Z and Y .
If (n, p) = (50, 0·05) and (1000, 0·001), we have np = 2·5 and 1 respectively, allowing us to compare

the absolute value of the empirical bias and the empirical mean squared error yielded by our estimator
θ̂p to those obtained with the empirical estimator θ̂emp

p = bnpc−1
∑n

1 log(Zi)1l(Yi>Yn−bnpc,n). Table 2
shows the absolute value of the empirical bias of θ̂emp

p /θp together with the mean squared error, based 140

on B = 500 samples, which have to be compared with the same quantities computed for our estimator in
Table 1. The superiority of our estimator is clear, with a bias and mean squared error around 2.5 times
smaller than those obtained with the empirical estimator. The relevance of the normal approximation
provided by Theorem 2 has been assessed by QQ-plots, which allow us to conclude that Theorem 2
provides an adequate approximation for finite sample sizes. 145

4. APPLICATION: TSUNAMI DATA

We analyze data from the US National Oceanic and Atmospheric Administration on Japanese tsunamis
from 1400 to 2011 (http://www.ngdc.noaa.gov/); this dataset is described and studied in Chavez-Demoulin
& Davison (2012). We consider the maximum water height above sea level Z, in cm and the magnitude
Y , in Richter scale of the earthquake preceding the tsunami. The two variables are upper-tail depen- 150

dent according to Fig. 7 of Chavez-Demoulin & Davison (2012). The magnitude of an earthquake being
determined from the logarithm of the amplitude of waves recorded by seismographs, working with the
logarithm of the maximum water height makes sense. Because the data show trend, we consider a moving
window approach with a window size of 50. We use our methodology to estimate the marginal expected
shortfall θp with (a, b, an) = (0·3, 0·75, 0·85) on each window and for which we get γ̂ ≥ 1 when fitting 155
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a generalized Pareto distribution model on the 50 largest water heights. Figure 1 shows the estimates θ̂p,
which suggest that severe earthquakes with a magnitude above the 95% quantile, in the most recent pe-
riod, have a smaller impact on the maximum water height, compared to the impact in the oldest period,
whereas extremely severe earthquakes with a magnitude above the 99% quantile have a slightly larger
impact in the most recent period. This is due to the fact that, in our dataset, the maximum water height160

has a decreasing trend, whereas the level of the earthquake magnitude changes less. Furthermore, recent
extreme events, such as the 2011 event in Honshu, affect the data, leading to larger confidence intervals.
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Fig. 1: Tsunami data: estimated values for θp and 95% confidence intervals in moving window with
p = 0·05 (left panel) and p = 0·01 (right panel).
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes the proofs of Theorems 1 and 2, ad-
ditional simulations where we investigate the choice of the tuning parameters involved in the estimation
procedure, and an application in the operational risk context.170
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