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Modelling the damping at the junction between two structures by non-linear models: improving the model and the resolution

We are interested in the modelling of the damping at the junction between two substructures. We model the connection by a meta-model which takes into account both dissipative and non-linear aspects of the connection. In this work we use a Iwan-Jenkins model, inserted in a finite element system, and we solve the time-domain system with an algorithm using the notion of sub-differential. This algorithm is compared with other more usual time-domain solvers.

In structural dynamics, vibratory levels depend directly on damping. So it is necessary to have at its disposal, tolls and models allowing to correctly represent the damping from the design phase.

The origin of energy dissipation in structures is double: on one hand, materials intrinsic damping, and on the other hand, dissipation generated by the friction phenomena at the interfaces between the sub-structures. We are interested here in the modelling of this second source of dissipation. For the metallic structures, the dissipation generated at the interfaces is the main damping source.

Modelling friction and interface contact has been the subject of numerous studies. Most finite element softwares contains contact modules (Nastran, Abaqus, Aster). However, these approaches, used for the calculation of dynamic answers, lead to prohibitive calculation times. Our objective is to develop a relatively simplified model (called meta-model) of the junction between two sub-structures, which allows to correctly represent dissipative and non-linear aspects, without leading to excessively long time in the calculations of dynamic answer.

Previous work 1.2

In previous studies [START_REF] Kehr-Candille | Modelling the Damping at the Junction between Two Substructures[END_REF], we have developed such a meta-model: an equivalent Bouc-Wen model or Dahl model is inserted between two degrees of freedom, in a linear finite element system. The final system is nonlinear and is solved with classical Runge-Kutta algorithms, with the help of Craig-Bampton reduction methods. In parallel, methods for identifying Bouc-Wen or Dahl model parameters from the hysteresis curve have been developed [START_REF] Kehr-Candille | Identification of hysteretic systems for damping modelling[END_REF].

We have shown that this approach allowed to correctly representing both the non-linear and dissipative behaviors of the junction, without leading to excessively long computational times.

Current work 1.3

The results obtained in the previous studies were not completely satisfactory. Indeed, in many experimental investigations (cf. figure 1, extracted from [START_REF] Kehr-Candille | Modelling the Damping at the Junction between Two Substructures[END_REF]), we observe on the frequency response curves the following non-linear trend : when the amplitude of the excitation increases, the resonance frequency decreases (the curved is shifted on the left) and damping increases (the resonance peak is lower). With the Bouc-Wen or Dahl models, the second trend (damping increases with amplitude) could have been reproduced, but the first trend (resonance frequency decreases with amplitude) could not be simulated (in numerical simulations, on the opposite, sometimes resonance frequency increases with amplitude). Moreover, it has been shown [START_REF] Lamarque | Non-smooth Deterministic or Stochastic Discrete Dynamical Systems[END_REF][START_REF] Bastien | An analysis of the modified Dahl and Masing models : Application to a belt tensioner[END_REF] that the equations obtained with the Iwan-Jenkins model can be solved with an original and promising algorithm, developed for non-smooth model.

Resolution of non-smooth models 2

Differential inclusion 2.1

The concept of differential inclusion (maximal monotone operator), the definition of the resolvent function and the corresponding computational algorithm are extensively described in [START_REF] Lamarque | Non-smooth Deterministic or Stochastic Discrete Dynamical Systems[END_REF], with rigorous mathematical demonstrations. We present here a brief survey of these notions, and a description of the algorithm.

A differential inclusion is a multi-valued operator whose graph is maximal monotone. For instance, the operator 𝜎 defined by equation ( 1) is a differential inclusion (cf. figure 2 left).

(1)

An other example is the 𝛽 operator, defined by equation ( 2), which can be considered as the inverse of operator 𝜎 (cf. figure 2 right).

(2)

Figure 2 -Multi valued operators

Classical algorithms used for solving non linear models (Runge-Kutta, Newmark, …) rely on the concept of Taylor expansion, and therefore must be used only for at least 𝐶 1 operators. Strictly speaking, for nonsmooth operators like 𝜎 and 𝛽, these numerical schemes cannot be used.

Reference [START_REF] Lamarque | Non-smooth Deterministic or Stochastic Discrete Dynamical Systems[END_REF] presents a method for solving these non-smooth operators, if they can be expressed as maximal monotone operators.

For a differential inclusion 𝐴, the function 𝐽 𝜆 = (𝐼𝑑 + 𝜆 𝐴) -1 is called the resolvent function. Now, we consider the differential system:

𝑈 ̇= 𝑓(𝑡, 𝑈) where 𝑓(𝑡, 𝑈) corresponds to a differential inclusion. This system can be solved in the time domain by the Euler implicit scheme: [START_REF] Lamarque | Non-smooth Deterministic or Stochastic Discrete Dynamical Systems[END_REF] where 𝐽 ℎ is the resolvent function and ℎ is the time interval.

It is shown in [START_REF] Lamarque | Non-smooth Deterministic or Stochastic Discrete Dynamical Systems[END_REF] that the numerical solution obtained with this algorithm exists and is unique.

Iwan-Jenkins model 2.2

The Jenkins model, also called Masing model or Prandlt model, is the association in sequence of a spring (stiffness 𝑘) and a dry friction element (threshold 𝐴). The Iwan model is the association in parallel of several Jenkins models. With the addition of a spring (stiffness 𝑘 0 ) in parallel, we obtain the generalized Iwan model (cf. figure 3). For the elementary Iwan model, the differential system is written :

(4)
denoting 𝑓 the restoring force (other quantities are defined in figure 3). For the dry friction element, the Coulomb friction is written using the differential inclusion 𝜎 defined by equation (1). This system can be set under the form 𝑈 ̇= 𝑓(𝑡, 𝑈) with [START_REF] Lacayo | Nonlinear modeling of structures with bolted joints: A comparison of two approaches based on a time-domain and frequency-domain solver[END_REF] In the same way, the differential system for the generalized Iwan model is: [START_REF] Festjens | A numerical toll for the design of assembled structures under dynamic loads[END_REF] This model has been widely studied in literature. We show in figure 4 the hysteresis cycles (nonlinear force versus displacement) obtained for a Jenkins model and for an Iwan model with two elementary models. With an increasing number of elementary models in parallel, a lot of hysteresis cycles can be reproduced with the generalized Iwan model. Reference [START_REF] Bastien | An analysis of the modified Dahl and Masing models : Application to a belt tensioner[END_REF] presents a method for the identification of the generalized Masing model from experimental hysteresis curve. Our purpose is to represent the junction by a simple non linear model (meta model) inserted between two degrees of freedom of an initial linear finite elements system (see figure 5). The method is the same as the method used in [START_REF] Kehr-Candille | Modelling the Damping at the Junction between Two Substructures[END_REF].

(7)

In [START_REF] Kehr-Candille | Modelling the Damping at the Junction between Two Substructures[END_REF], we used a Bouc-Wen model, and here we use an Iwan model instead. So, the differential system is written as follows:

(8)

The Iwan model introduces as many additional degrees of freedom as elementary Jenkins models. Algorithms 2.4

Differential inclusion

The operator corresponding to the elementary Iwan model is maximal monotone, and therefore the numerical described in 2.1 can be used.

Moreover, in this case the resolvent function is explicit (resolvent function associated to operator 𝜷).

According to [START_REF] Lamarque | Non-smooth Deterministic or Stochastic Discrete Dynamical Systems[END_REF], we have:

(9)
So, for a one degree of freedom system, we have:

(10)
And for a multiple degree of freedom system (finite element system as in 2.3), we have:

(11)
In reference [START_REF] Lamarque | Non-smooth Deterministic or Stochastic Discrete Dynamical Systems[END_REF], it is shown that the solution to the problem with differential inclusion exists and is unique for a one degree of freedom system. We have shown (demonstration not detailed here) that this result of existence and unicity could be generalized to our case.

Runge-Kutta

The multi values operator 𝜎 can be regularized using the following approximation:

(12) with coefficient 𝐾 having a sufficient "high" value (cf. figure 6). And for a multiple degrees of freedom system, the system (7) became: (14) These systems involve now continuous functions, and can be solved using classical non-linear algorithms like Runge-Kutta schemes.

Applications 3

One degree of freedom 3.1

The algorithm using differential inclusions has been applied first to a one degree of freedom system of mass 𝑚 = 1 kg.

First we use an elementary Jenkins model with stiffness 𝑘 = 10 N.m, and different values for threshold 𝐴. The excitation force is a swept sine of amplitude 𝐹 0 and speed 0.2 octave/minute, between 0.3 Hz and 0.6 Hz. Figure 7 on the left shows the time response curve for different values of threshold 𝐴 : a decreasing value of 𝐴 leads to an increasing damping. Figure 7 on the right shows normalized frequency responses for 𝐴 = 50 and this highlights the non-linear behaviour of the Jenkins model (damping increases with amplitude).

Hysteresis curves are plotted for a sinusoidal excitation (frequency closed to the eigen frequency). For comparison, we also used a more classical algorithm to solve the regularized system with the help of equation ( 12). We use a Runge-Kutta-Fehlberg method (order 4, error estimator of order 5) referenced in the following RKF45. The two algorithms (resolvent method with differential inclusion and RKF45) are compared in terms of results in figure 9 and in terms of computation times in table 1, for an elementary Jenkins model (𝑘 = 10 𝑁. 𝑚, 𝐴 = 2) with a swept sine excitation. The time step is 10 -3 s. Concerning computation times, it is clear that the resolvent method is much faster than the RKF45 algorithm. Concerning the accuracy of the results obtained by the RKF45 method, the choice of the value of the regularization parameter 𝐾 is crucial, but this choice is not at all obvious.

However, the explicit Euler scheme used with the resolvent method needs small or even very small time steps (this is a well known drawback). On the other hand, the Runge-Kutta method doesn't require so small time step and moreover, the time step can be adjusted automatically. So, in some cases, the advantage of the resolvent method in terms of computation time is not so obvious. But its advantage in terms of accuracy of the results remains (the unicity has been proved mathematically).

Multiple degrees of freedom 3.2

The method has been applied to a multiple degrees of freedom system : the assembly of two tension bars by an Iwan-Jenkins model (see figure 10). The system is equivalent to the assembly of springs (stiffness 𝑘 = 4. 10 4 N. m) and masses ( 𝑚 = 10 kg). The normalized frequency response (FRF) at the end point is plotted figure 11. The non-linear behavior of the Iwan model is highlighted: with increasing excitation amplitude, the resonance frequency decreases, and the damping increases. This simulation result is consistent with usual experimental results.

The results plotted figure 11 has been obtained for a small value of time step: 5. 10 -6 s, needed for convergence of Euler explicit scheme. We tried to solve with the RKF45 algorithm with an adaptive time step for various values of coefficient 𝐾 (cf. equation ( 12)), but we failed to reproduce the results obtained with the resolvent method (cf. figure 12). We have improved the previous works concerning the modelling of the damping at the junction by a meta-model. We used an Iwan-Jenkins model which allows reproducing non-linear behaviours observed in experimental tests. The numerical computation has been improved by an algorithm using differential inclusions.

This method has been applied to an academic example. The results are encouraging to apply it to an industrial structure. However, the Euler scheme used by the computation method needs small time steps, and this is an important drawback of the method. This point must be investigated in the future.
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  Figure 8 shows two curves: one for an elementary Jenkins model referenced 𝑁 = 1 (𝑘 = 10 𝑁. 𝑚, 𝐴 = 5), and the other one for an Iwan model with five elementary models referenced 𝑁 = 5 (𝑘 1 = ⋯ = 𝑘 5 = 𝑘 5 ⁄ = 2 𝑁. 𝑚 and [𝐴 𝑖 ] = [1,2,3,5,7]).
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Table 1 :

 1 Computation times

	computation	resolvent algo.	RKF45	
	time (s)	0.06	K=20 K=200	0.22 0.42