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Abstract. The well-known “y/z-law” — one of the few exact
analytical results in the theory of radiative transfer — is gener-
alized to the case of an isothermal, plane-parallel atmosphere
in the presence of a magnetic field vector of arbitrary intensity
and direction and in the presence of depolarizing collisions.
A compact expression is found, relating the squares of the
surface value of the upper level components of the atomic
density matrix in the representation of the irreducible spher-
ical tensors to the value of the constant Planck function. By
taking the appropriate limits, the usual y/e-law for unpolar-
ized radiation, and its generalization to resonance scattering
polarization in a non-magnetic atmosphere (Ivanov 1990), are
recovered as particular cases.

Key words: lines: formation — magnetic field — polarization
— radiative transfer — Sun: magnetic fields

1. Introduction

In the previous papers of this series, we have tackled the
problem of resonance polarization for a two-level atom in
a three-dimensional medium embedded in a magnetic field
of arbitrary strength and direction and irradiated by an ar-
bitrary radiation field. In a first paper (Landi Degl’Innocenti
et al. 1991a, hereafter referred to as Paper I), we presented
the general physical background and established the relevant
equations, while in a second paper (Landi Degl’Innocenti
et al. 1991b, hereafter referred to as Paper II) we applied
the formalism previously developed to the case of a plane-
parallel atmosphere, neglecting however Zeeman coherences
betweeen different magnetic sublevels.

In the present paper, we will first generalize the results of
Paper 11, taking properly into account the influence of Zeeman
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coherences. This will lead to a set of equations capable of de-
scribing the physics of resonance scattering polarization in a
plane-parallel atmosphere embedded in an arbitrary (even if
constant) magnetic field. The results thus obtained will fill the
gap within those obtained in Paper II (valid for the so-called
strong field regime of the Hanle effect, where Zeeman coher-
ences can be neglected), and those obtained in two previous
papers (Landi Degl’Innocenti et al. 1990; Bommier et al.
1991), valid for the so-called Hanle effect regime, where the
splitting induced by the magnetic field has negligible effect on
the line profile. In terms of physical quantities, in the present
paper, the Larmor frequency 14, is no longer restrained to the
condition 11 > A (strong field regime of the Hanle effect — 4
is the Einstein coefficient for spontaneous de-excitation), nor
to the condition 1, < Avp (Hanle effect regime — Avyp is the
Doppler broadening in frequency units), so that also the in-
termediate regime between Hanle and Zeeman effects can be
considered.

Analogously to what was done in the papers previously
quoted, we will show how the physics of resonance scatter-
ing polarization in a magnetic atmosphere reduces to a set of
coupled integral equations connecting, through suitable ker-
nels, each statistical tensor of the atomic upper level at optical
depth T, pg (7), with the statistical tensors at different optical
depths 7’. The situation here is quite similar to the standard
two-level atom radiative transfer problem, with the difference
that the scalar source function is substituted by a set of source
functions — the statistical tensors p§ (7).

Although suitable numerical methods can be devised to
solve the system of coupled integral equations, we will de-
rive in this paper an exact analytical result concerning the
values of the surface statistical tensors (in other words of
the surface source functions) for an isothermal atmosphere.
For the case of a scalar source function it is known since
a long time that in an isothermal atmosphere with con-
stant parameters (rate of photon destruction, absorption pro-
file), the source function at the surface is simply related to
the source function at infinity. This is the so-called *“/e-
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law”, that is discussed in classical papers or textbooks (see
for instance Avrett & Hummer 1965; Mihalas 1970), and
that can be proved by means of several different methods
(Chandrasekhar 1947; Ivanov 1973; Frisch & Frisch 1975;
Rybicki 1977; Landi Degl’Innocenti 1979).

Ivanov (1990) has recently generalized the /z-law to the
basic problem in the theory of transfer for polarized radiation,
namely to the case of resonance scattering in a non-magnetic,
plane-parallel atmosphere. The aim of the present paper is to
provide a further generalization to the magnetic case.

Obviously, the results of the present paper can be very
useful as a test for polarized radiative transfer numerical
codes.

2. Coupled integral equations for the statistical
tensors in a plane-parallel atmosphere

In Paper I, we have obtained a general equation describing
the coupling of the statistical tensor pg () at point « with the

statistical tensors pg,/ (z') at a different point =’ in a medium
of arbitrary shape [see Eq. (55 I)]. By particularizing this
equation to the case of a plane-parallel atmosphere, and fol-
lowing the same procedure as in Paper II, one is led to the
following system of Wiener—Hopf type equations:

(1+ e+ 65 +irQ)pf (1)

-3 / Rrcq g (r, 7)ol (') dr’

KIQI

+£606K,000Q,0 - (D

1. pg (7) is the statistical tensor relative to the upper level
involved in the atomic transition at optical depth 7. It has
to be remarked here that, for Eq. (1) to hold, the statistical
tensor has to be defined in a reference system having its z-
axis directed along the magnetic field. The definition of pg
is given in Eq. (31 I).

2. e =Cy /A is the ratio of the collisional de-excita-
tion rate to the Einstein coefficient. Often, in the specialized
literature concerning radiative transfer, the same symbol is
employed to denote a different quantity, that we will rather
call ¢/, and that is defined by

i _Cry
Cypy+A°
Obviously € and ¢’ are related through the equations:
- ¢
1+¢’ 1—¢’

and, in terms of &/, Eq. (1) will read:

[1+ (%0 + T Q)1 — N1 (7)
—(1-¢) Z/ Rucq.u0q/(r, 70K () dr’
K/Q/

+ €'Bobx 0600 - @
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3. §) = D& /A is the ratio of the relaxation rate of
the statistical tensors of rank K to the Einstein coefficient.
Through the quantities 6%, it is possible to account for
depolarizing elastic collisions. In particular, one always has
8@ =0, as depolarizing collisions cannot act as sources or
sinks on the total population of the upper level (proportional
to pf).

4. T' = 2mg v /A is proportional to the ratio of the Zee-
man splitting — induced by the magnetic field in the upper
level — to the Einstein coefficient. In this formula g is the
Landé factor of the upper level, while vy is the Larmor fre-
quency:

eoB
4me’

Numerically one has I' = 0.88¢,;: B/A, with B measured in
Gauss and 4 in units of 107 s~1,

5. (o is the source term that is related to the local temper-
ature of the medium. Due to the definition of the statistical
tensors [see Eq. (31 I)] and to the fact that the density matrix
is normalized to the overall population of the ground level
[see Eq. (15 I)], one has:

2J" +1

2J+1
where J and J' are the angular momentum quantum numbers
of the lower and upper level, respectively, and where v is the
frequency of the line. It is noteworthy that, in the standard
scalar case, the source term (3, is generally written as the
local Planck function. It is possible to cast Eq. (1) in a form
that bears more similarity to that of the scalar case, by simply
multiplying it by the factor:
2h3 2+ 1

V27 +1
Defining then the source function tensors through the equa-
tion:

K 2h1/0 2J+1 DK

e—hwo/kT

Bo =

, 3
@="a e ®
Eq. (1) is cast in the form:
(1+¢+ 65 +iTQ)SE (1)
/ Kxqxq (1,7
KIQI
X SQ/ (7”) dr’ + EBO(SK’O(SQ’O s )

where

3
2hyy e~ /kT
2
c

By =

is the Planck function in the Wien limit (consistently with
the fact that stimulated emission has been neglected in our
derivation). The tensorial source function defined in Eq. (3) is
the direct generalization of the scalar source function to po-
larized radiative transfer. In particular, for the source function
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tensor of rank 0, one obtains, with easy transformations:

SO _ 2hl/8 NJ//(ZJ/ + 1)
7 e Nj/RI+1)

where N and N; are the overall atomic populations in the
upper and lower level, respectively. This formula shows that,
in the Wien limit, the source function tensor of rank 0 coin-
cides with the scalar source function.

6. Finally, the kernels Kk, kxq/(T, 7") appearing in Egs.
(1), (2) and (4) are given by an involved expression that can
be found in the Appendix, where the main properties of the
same kernels are also proved. Among these properties, it is
relevant here to stress the following ones:

(a) the kernels are invariant under the interchange of the
two arguments 7 and 7/, depending only on |7 — 7'

I?KQJ{/QI(T, TI) = I?KQ,K/QI(T/, T)
(5)

(b) for some of the kernels, an integral property can be
proved:

= Kkq,xq (T —7']);

® 1
/ Koo, kxrq(t) dt = §6K’,06Q’,0»
0

o0
| Rom®at = J6xabao: ©
(c) all the kernels connecting statistical tensors of differ-
ent parity are identically zero. This property is particularly
important because it allows to decouple the system of equa-
tions (1) into two different systems, one for the statistical
tensors of even rank, and another for the statistical tensors

Atmosphere

Fig. 1. The reference system ¥ = (z, y, z) is defined in the follow-
ing way: the z-axis is aligned along the magnetic field vector, while
the x-axis is contained in the plane defined by the magnetic field vec-
tor and the vertical to the atmosphere. The y-axis is defined accord-
ingly. The figure also shows the reference system ¥ = (X, Y, Z)
introduced in Sect. 5, and which is defined in the following way:
the Z-axis is the vertical to the atmosphere, while the X-axis lays
along the projection of the magnetic field vector onto the surface.
The Y-axis is defined accordingly

867

of odd rank. Since in this second set of equations there is
no source term, all the pg statistical tensors with K odd are
identically zero.

(d) for a particular choice of the reference system where
the statistical tensors are defined, namely in a reference sys-
tem having the z-axis along the magnetic field vector and
the x-axis in the plane defined by the magnetic field vector
and the vertical to the atmosphere, the kernels are symmetric
relatively to the interchange of their arguments:

Kkqxqt) = Krq ko). (7

This particular reference system, ¥, is shown in Fig. 1.

3. The generalization of the |/z-law

Starting from Eq. (4), we introduce more shorthand notations
by arranging all the elements of even rank of the source func-
tion tensor in a formal vector S;(i = 1, ..., N), starting with
S (apart from this restriction, the ordering is irrelevant). N,
the total number of such elements, is given by:

(J'+1)QJ'+1) for J' integer,
J'QJ +1)

for J' half-integer .

Accordingly, we arrange all the kernels K KQ,Kk'q in the
matrix K;;(¢, 7 =1, ..., N) and all the quantities (1 + & +
%) +iTQ) in the vector a; (i =1, ..., N).

With these notations, Eq. (4) takes the form:

w5 =Y [ Kir =i ar
J

+eBobiy (i=1,..., N), (®)
where, due to the properties of the kernels K KQK'Q' :
Ki;(t) = Kj:(@) - &)
[e o} o0 1
| Kawat= [ Kutyar= 3o, (10)
) 0 2
where
ap=1+c¢. an
We then suppose that in Eq. (8) the quantities £, By and
a; (=1, ..., N) are constant with 7 (which implies that

8% and T are also constant). With these notations and as-
sumptions, the \/z-law is easily generalized.

We start by considering the limiting value of S;(7) for
T — oo. Taking into account that all the kernels are inte-
grable functions of their argument, the source functions S;(7)
converge towards a fixed limit, S;(c0), for 7 — oo. This limit
is found through the set of equations:

a;Si(00) = Y [
J

+ By,

+00Kij(t) dt:| SJ(OO)

—00

G=1,..., N),
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which, taking into account Egs. (10) and (11), decouples into
(1 +¢)Si(o0) = Si(c0) +€By,

N +o00o

azSz(oo) = Z [ Kij(t) dt:l SJ(OO) (l = 2, ey N) .
j=2 W

This brings to the obvious solution:

Si(00) = By ,

Sy(00) = -+ = Sn(o0) = (12)

Taking the 7-derivative of Eq. (8), one gets
dSi() _ d / Oo - IING (A ’
ai—g- _Xj:dT [ | Kij(|T —1')S;(rhdr’| .

The r.h.s. can be evaluated by means of the derivative of the
Wiener—Hopf A-operator (see e.g. Kourganoff 1963). This
leads to

0, 20 ZK”ms ©)

+ Z / Ki(|

Following Frisch and Frisch (1975), we now multiply this
equation by S;(7), integrate in d= and sum over i to obtain

Z a; /0 (M= (g) dr = Z S;(0) /0 Kij(1)Si(r) dr

D3 / drS(r)/ Kiy(r - D3 7

For the first term in the r.h.s., we observe that, due to Egs.
(9) and (8), one has

Z /0 OoKij(T)Si(T) dr = Z /0 ooni(T)Si(T) dr

= aij(O) —

dS’ (7" )

(13)

€B()5j71 y (14)

while for the second term, interchanging the integrations we
obtain, again through Egs. (9) and (8)

Z /0 arsir) /0 Kl 7 I)dS ) o
_Z/ dr ,dS(r) 0
_Z/ d’

Substituting Egs. (14) and (15) into Eq. (13), we obtain,
through easy transformations:

3" ;8500 = eBoSi(00),
J

Kji(l =71 )Si(r)dr

— eBobj1]. (15)
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or, by means of Eq. (12):
> " a;[S;(0) =eB}.
J

Remembering the notations introduced at the beginning of
this section, these equations can also be written in the form:

D (1 +e+ 85 +irQ)SK () = eBySY(c0) = £B3,

KQ
(16)

or, in terms of the statistical tensors:

> (1 +e+6% LTS OF = ebopi(o0) = e} (17)
KQ

Note that the left-hand-sides of these equations are real quan-
tities, as it can be easily verified from the conjugation prop-
erty of the statistical tensors:
(P51 = (=1

It has to be remarked that the results contained in Egs.
(16) and (17) are totally independent of the detailed form of
the kernels. The only constraints that are imposed to the ker-
nels for Egs. (16) and (17) to hold are those expressed by Egs.
(9)—(11). In particular, these results are valid for any transi-
tion, irrespectively of the J-values and Landé factors of the
upper and lower levels and, consequently, irrespectively of
the Zeeman pattern of the transition (the Landé factor of the
upper level, g;/, enters however the definition of I'). More-
over, the same results are valid for any type of absorption
profile (Lorentzian, Gaussian, Voigt, etc.).

4. Discussion and particular cases

The equations now derived are very general and they encom-
pass, as limiting cases, both the y/z-law and its extension to
resonance polarization. By particularizing Eq. (16) to differ-
ent physical regimes, we are led to the following considera-
tions:

4.1. Scalar case

The scalar case can be recovered in our formalism by simply
taking the limit:

8 00 for K#0.

Under this limit, all the components of the source function
tensor are identically zero, except for SO, and a direct appli-
cation of Eq. (16) gives:

= Ve By,

50(0) = (18)
which is the classical \/z-law (obviously, in our formalism,
it would be more convenient to call it the v/&'-law). Note
that this equation is valid also in magnetic atmospheres and
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for any value of the magnetic field vector provided that de-
polarizing collisions are capable of destroying any atomic
polarization that might be induced by the anisotropy of the
radiation field. Note also that Eq. (18) is valid in any refer-
ence system (and not only in the reference system ¥, defined
in Fig. 1), because S is an invariant. It has finally to be re-
marked that, if the angular momentum J’ of the upper level
is either 0 or 1/2, the only component Sg different from 0
is just S9, and the scalar case is recovered. The following
cases, 4.2—4.4, refer only to J' > 1.

4.2. Resonance polarization, non-magnetic case

If the magnetic field is zero, Eq. (16) is valid in any reference
system (provided, however, that the x-axis is contained in the
plane defined by the arbitrarily chosen z-axis and the vertical
to the atmosphere). If we consider in particular the reference
system having its z-axis aligned with the vertical, the expres-
sion for the source function tensor becomes simpler because,
for evident symmetry reasons, the only non-vanishing com-
ponents are S and Sg (cf. Landi Degl’Innocenti et al. 1990).
Equation (16) then becomes:

(1 +O[SYO)) + (1 + & + D[S0 =B, (19)
or, for a non-depolarizing atmosphere (6 = 0):
VISSO) + [S30)F = VE'By . (20)

This is the result obtained by Ivanov (1990), who employs
the notations S = S; and —S} = S,.

4.3. Resonance polarization, Hanle effect regime

In the Hanle effect regime (v, ~ A < Avp), the only non-
vanishing components of S5 are S and S (see Landi
Degl’Innocenti et al. 1990). We then have, in the reference
system Y:

1+ oSO + > (1 +¢ + 6@ +iTQ)SHO)* = B3 .

Q
@D

4.4. Resonance polarization, strong field regime of the
Hanle effect

In the strong field regime of the Hanle effect (1 > A), the
only non-vanishing components of the source function ten-
sor are those of the form S{(K =0, 2, 4, ..., Kpax; with
Kyax = 2J' for J' integer or 2J’ — 1 for J' half-integer).
Equation (16) now becomes (in Xo):

> (1 + e+ 65 )SE ) =B, (22)
K

or, for non-depolarizing media:

VISYOR + [SBOF + - + [SE=(O)F = V&'By.  (23)
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5. The generalized \/c-law in a different reference system

Equations (16) and (17) are not invariant. Indeed, they are
valid only in the reference system X, defined in Fig. 1,
and, changing the reference system, they generally acquire
a more complicated expression. A plane-parallel magnetic
atmosphere defines however, in a quite natural way, another
reference system, namely the system ¥ = (X, Y, Z), whose
Z-axis coincides with the vertical to the atmosphere and X-
axis lays along the projection of the magnetic field vector onto
the surface (see also Fig. 1). Since, in some cases, it may be
more advantageous to carry out detailed calculations in ¥;
(instead of Xy) it is worth obtaining the relevant equations
for the surface source function tensor in this system too. To
avoid confusion, we denote by Rg the source function ten-
sors in 3. Given our definition of the statistical tensors, we
have the following relationship between the source function
tensors in the two systems (cf. Landi Degl’Innocenti 1984):

K _ K K *
S&§ =Y REIDE RN,
QI
where R is the rotation that brings the reference system X;

into 3y, and where D are the ordinary rotation matrices. On
the other hand, we have

RE(OawBaO)a

where ¢¥p (0 < 1p < ) is the angle between the magnetic
field and the vertical, and we can write

S =Y REdSo(Ws),
Q/

where d are the reduced rotation matrices. In the reference
system Xy, Eq. (16) can then be written in the form

D (1 +e+6% +irQ)
KQ
x Y RE(ORE.(0)do(¥B)deo(s) =By . (24)
QIQII
Through the properties of the reduced rotation matrices, one
can easily prove that

3 a8 W) We) = bgrqr

Q
> QdS. o). (Wn)
Q

=(-DXQ" /KK + DK + 1)

K K 1
X ( Q/ _Q// P) d;o(d)B) B
so that one has, in 3;:

Y +e+8FNREOP + i Y (~1K-@

KQ KQ'Q"
x/E(K + 2K + 1) (g, —Ic{g" 113)

xdpo(B)RE (0)RE(0) = eBj . (25)
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For the particular case of Kpax = 2, this formula yields, in
terms of real and imaginary parts:

(1+)[RYOP + (1 + € + ) {[RI0)]* + 2[RR}(0))*
— 2ASRO)F + 2[RRAO) — 2[SRO)]*}
— 4T cos Y {[RR2(0)][SR3(0)]
+ 2[RR3(0)P[SR3(0)]}
— 2T sin 9 {2[RR2(0)][SR3(0)]

+ 2[RR3(0)I[SRI(0)] + VO[RI(O)I[SR0)]} = eB2.
(26)

6. Connection of the surface tensorial source functions
with the Stokes parameters of the radiation emitted
tangentially to the surface

Through this connection (that is particularly simple only in
the weak field limit of the Hanle effect), the \/c-law can be
expressed in terms of Stokes parameters rather than in terms
of the tensorial source functions.

From Eq. (30) of Paper II, generalized to the “intermedi-
ate” regime, where all the coherences are accounted for, the
Stokes parameters I; (i =0 , 3) of the radiation emitted
at frequency v in the direction 2; are given by

3
L) = Va1 Y S IPEO,

KK'Q j=0

< TX (G, @8 ™ (7, 1;v),

where
-7 H}] dr ‘
4 €08 U

@7

pEI, = [ osmlen] 2

Introducing the source function tensors Sg in place of the
P&, we have, from Eq. (3) and being:

A _2m @J+1)

B~ & QJ+1)
I'(l/ Ql)
T dr
K;Q;{/ SQ(T)[eXP{ OS¢1H}choswl}

< I (G, @™ (1, T v). (28)

If we consider a line-of-sight parallel to the surface of the
atmosphere (vo; — 7/2), we have (such a direction is denoted
as ).

3
L, = > > SEOH™);
KK'Q j=0
x T5(, @8 (J, s v)

This equation gives, in general, a v-dependent profile.

29
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An important simplification occurs in the case of the
Hanle effect regime (11, & A < Avp), where we have:

@5”“(@ T'sv) = bk gy d(vo — v),
H;; = ¢(vo — v)by5,

where wf,l/(]) is a symbol that has been defined in Eq. (38) of
Landi Degl’Innocenti (1984), and that only depends on X and
on the quantum numbers J’ and J of upper and lower levels
respectively (one has wﬁo) =1 for K =2 and for a normal
Zeeman triplet line, namely J' =1 and J = 0; a series of
values for K =2 and for other J’ and J quantum numbers
can be found in Table 1 of Landi Degl’Innocenti (1984)), and
@(vy — v) is the absorption profile. Then one has:

L, Q) =) SEOTE 6, Q)
KQ

(K)

x wy,; (v — independent). 30)

When the tensorial source functions Sg are defined in the
reference system ¥; (see Fig. 1 for its definition), where they
are denoted as Rg according to the particular case studied in
Sect. 5, and for a line-of-sight specified by the angle 4 (see
Fig. 2), we have:

I,(0) = R5(0) + v}, [ - %Rﬁ(O) + \/Tg(cos 20 RR2(0)
— sin26 SRZ(O))] ,

Quo) = i, | - . f —_R3(0) - \/_(cos 20 RR2(0)
— sin20 ng(O))] ,

Uy(0) = w$),v/3[sin  RR3(0) + cos § SR2(0)], (31)

Fig. 2. In addition to the reference system %) = (X, Y, Z) defined
in Fig. 1, the figure shows the reference direction for the definition of
the Stokes parameters — namely the direction of linear polarization
for the positive Q and zero U — for a ray propagating along the
surface of the atmosphere in the direction ; referred by the angle 6.
This reference direction coincides with the vertical to the atmosphere
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where the index ¢ reminds that we are considering a ray prop-
agating along the surface of the atmosphere. Figure 2 shows
the definition of the reference direction for the Stokes pa-
rameters — namely the direction of linear polarization for
positive O and zero U — that coincides with the vertical
to the atmosphere. These formulae — that incidentally show
that the quantity [I:(6) + Q+()] is f-independent — allow
to connect the various components of the source function
tensor to the Stokes parameters propagating along differ-
ent f-directions. In terms of the Stokes parameters relative
0 = 0°, 45°, 90°, and 135°, we have:

RY(O) = £BL(0°) +31,00°) — Qu(0°) - Qu90°)],

w§), R3(0) = - ?[th +Qu(90°)],
w$) RR2(0) = %Ut(90°),
w§) SR3(0) = %Ut(w),
WS RAB0) = —=I10°) = [(90°)

= — 5100~ Qo)
w$) ,SR(0) = \%[It(45°) — I,(135%)]

R
V3

In the particular case of resonance polarization in a non-
magnetic atmosphere, Ivanov (1990) provides analogous for-
mulae (with, in his notations: R} =S; and —R3 = S,),
which can be recovered by the previous ones by noting that,
in zero magnetic field, the Stokes parameters of a ray propa-
gating along the surface are -independent, for evident sym-
metry reasons.

In the Hanle effect regime (1, = A < Aup), the \/e-law,
expressed in terms of some of the Stokes parameters of the
radiation propagating along the surface, can be derived by
combining Egs. (32) and (26).

[Q¢(45°) — Q:(135°)]. (32)

7. Conclusions

In this paper, we have generalized the well known /e-law
to the case of an isothermal, plane-parallel atmosphere in the
presence of a (constant) magnetic field vector having arbitrary
intensity and direction, and in the presence of depolarizing
collisions. The final formula that we have derived [Eq. (16)
or (17)] relates the value of the components of the statis-
tical tensor (or, equivalently, of the source function tensor)
at the surface of the atmosphere to the value of the Planck
function. By taking the appropriate limits, Eq. (16) yields to
well-known results in the theory of radiative transfer, includ-
ing the \/e-law for unpolarized radiation, and its generaliza-
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tion to resonance scattering polarization in a non-magnetic
atmosphere (Ivanov 1990). Such formulae, as Egs. (16) and
(17), and their expressions in the particular cases given in
Sect. 4, can be used as a test for polarized radiative transfer
numerical codes.

The particular simplicity of the equation derived gives
a clear demonstration of the power of the formalism of
the irreducible spherical tensors for dealing with the phys-
ical phenomena involved in radiative transfer for polarized
radiation.

Appendix: properties of the kernels K kQ,k'qQ (L, t)

The expression of the kernels can be obtained through a pro-
cedure that has been outlined in Paper II and need not to be
repeated here. The result is the following [cf. Eq. (19 ID)];
(see also Fig. 1 of Paper II for the definition of the angles 1)
and 6):

~ 1 )
Riquoqtt) = /w d |tan 1 |
1

2m

x | d6Gkqrq(@,), (A1)
0
where
Y1 =0 Y =m/2
if t<t; { if t>t,
Y2 =m/2 Y =0

and where the multipole coupling coefficients éKQ,K 1Qr X
(z, 2

3 oo
Gkq,xq(x,x') = (—I)QZ Z/ dwbg’L(J, J'v)
0

ij=0 LL’
x ®8 L (7, 7Ty, Q)

x Oyj(z, 2'; VT (5, Q) . (A2)

All the quantities entering this expression have been de-
fined in the previous papers of this series; the properties of the
generalized profiles &' (J, J';v) and those of the multi-

pole coupling coefficients G KQ,Kk'Q, (¢, x') are summarized
in Appendices A and B of Paper I, respectively.

The kernels satisfy the properties given in the follow-
ing. These properties generalize (to values Q, Q' # 0) sim-
ilar properties obtained in Paper II for Ky, Ko(t,t), see
Appendix A of Paper II:

(a) Inversion of the arguments T and T' [see Eq. (5)]

I?KQ,K’Q'(T, T’) = KKQ’K/Ql(T/, T)

=Kroxo(T—7). (A3)
(b) Conjugation property
[KxqxoWI* =(-D? ?Kx_gx-g®). (A4)
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(c) Vanishing values

I?KQ,K’Q’(Z/) = (_1)K+KII?KQ,K’Q'(y) ;

which implies that

(AS)

Krqxiqy) =0
if K and K’ are of different parity.

(d) Integral properties

0o _ oo _ 1
| Rurowds= [ Rram)dy = 35x0ta0- (46
0 0

Properties (a), (b) and (c), descend from analogous proper-
ties of the multipole coupling coefficients that are given in
Appendix B of Paper L. In particular, (a) descends from Eq.
(B18 ), (b) from Eq. (B11 I), and (c) from Eq. (B17 I). The
proof of property (d) is similar to the one given in Paper II for
the special case @ = 0 (see Eq. (A5 II)) and is not repeated
here. A further property is the following:

(e) Symmetry about the indices (valid only in the reference
system %)

Kroro® = Krq ko). (A7)

To prove this property, we write down the expression of the
kernel by combining Egs. (A1) and (A2); recalling that

Y
Oyj(x,x';v) = [CXP {‘mH}] )
where H is the absorption matrix defined in Paper I [see Egs.
(19 1) and (46 1)], one has

. 1 7|'/2 2T
Ricqra® =7 [ dvuny [ a-12

3 0
X ZZ/O du@g’L(J, J';v)

ij=0 LL'

x @K (1, I )T, )

x [exp{—conH}]”Téﬁl(j,Q). (A8)

f,

(A9)

We next consider the inner quantity:

3
Crowe@ =12 Y T5HGQ) [e"p{'c-fi—wH

ij=0
x T (G, ),

and observe that both the tensor Té“ and the attenuation op-
erator O;; depend on the particular choice of the reference
direction €,(2) that defines the Stokes parameters relatively
to the direction 2. However, it can be directly proved that this
quantity is invariant relatively to the choice of the reference
direction, a result that is also physically intuitive because the
kernel cannot depend on the (arbitrary) definition of the linear
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polarization Stokes parameters. Given this invariance prop-
erty, we can choose a particular reference direction to define
the Stokes parameters relative to the direction €2, in such a
way to obtain the maximum simplification. This is done by
aligning e,(2) in the plane containing the direction {2 and
the magnetic field vector (see Fig. 3). With this choice, the
absorption matrix Hacquires the simplified form

h I hQ 0 hV
H = hOQ —h:f‘IV :l‘; ’I’OQ ’
hV 0 —TQ h I
so that one can write
Hij =TiTjHji, (AIO)
where 7; (1 = 0,...,3) is the formal vector defined by 7; =

(1,1, —1, 1). On the other hand, as property (A10) is conserved
for any power of the matrix H, one also has
SR
ji

l:exp {_cozﬂﬁH}] ij R [exp {—COZ'IZJ

or
Oij = T,;T]‘Oji .

Substituting this result in Eq. (A9), and recalling the defini-
tion of the irreducible tensor 7%, one gets:

3
CLou@ (@ =D > th(ODp_o(RITT;05
ij=0 PP’
x t5,(/)DE o/ (R),
where R is the rotation bringing the reference system
(eq(£2), ep(£2), ) into the reference system where the den-

sity matrix is defined. When this is the system ¥y defined in
Fig. 1, one has

R=(0,0,0),

where o and ( are the angles defined in Fig. 3.
We now take into account a property of the symbol t}L;(i),
namely:

Titp () = tE p(d),

and we write down explicitly the expressions for the rota-
tion matrices in terms of reduced rotation matrices. We get,
changing also P in —P and P’ in —P":

3
Cro.rg@ =(=D?> D th@)
ij=0 PP
x d-p_o(0)e' 2P 0;itp()dY prgr(a)e ™.

We take into account a property of the reduced rotation ma-
trices, namely:

d- p_ga) = (=1)"*9dpg(a),

and observe that the symbole t5(3) is different from zero only

© European Southern Observatory ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1994A%26A...284..865L

rTO0AAGA T 7837 Tg65L !

E. Landi Degl’Innocenti & V. Bommier: Resonance line polarization. IIl. A generalization of the /e-law

Az

Atmosphere

if Pis 0, 2, or —2. We obtain:

3
Crou@ (@ =D D> th(i)dbo(a)e'**0;

ij=0 PP’
X tILpl,(j)d}L;,_Q,(a)e_inﬂ .

On the other hand, defining R’ as the rotation:

R =(0,0,-0),

We have:

dpo(e)e'? = Dpy(R),

dk_o(@)e 9P = DK _ (R,

and we can write, rearranging the order of the various terms:

3
CLo.ug(@ = (=)%Y T5,3,2)
ij=0

Y Le:
X exp{——HH 75 @,w),
[ cosy ji Q"
where Q' is the mirror image of € with respect to the plane
containing the vertical and the magnetic field vector (see Fig.
3). Taking into account that, to the direction €', it corre-

sponds a matrix H' identical to H, and an angle with the
verticdl ¢’ = 1, one obtains:

Cro,rq () = CL,Q,’LQ(Q’),

Substituting this result ino Eq. (A8), and taking into account
that an integration has to be performed to all directions, Eq.
(A7) is finally obtained.
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Fig. 3. The two directions 2 and Q' are
symmetric relatively to the plane defined by
the magnetic field vector and the vertical.
The reference direction e,(?) is contained
in the plane defined by the magnetic field
vector and the direction 2. Similarly for the
reference direction €,(Q)'). « is the angle
between the vectors B and (B and Q')
while (3 is the angle between the plane (B,
) and the plane (B, 2Z) (or (B, ') and
(B'Z)).(x, y, z) is the reference system %o
defined in Fig. 1
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