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Abstract—Vision-based motion segmentation provides key
information for dynamic scene understanding and decision
making in autonomous navigation. In this paper, we propose
an enhanced initialization strategy which is tightly coupled
to a multibody Structure from Motion (SfM) segmentation
employing a monocular camera. The method relies on epipolar
geometry, RANSAC formulation and motion estimation for seg-
menting ego-motion and eoru-motions. The proposed strategy
is intended to enhance the initialization procedure employed
in [1] obtaining a 50 times speed-up factor. This result is used
as input for the Track before Detection (TbD) methodology
which efficiently simplifies the existing multibody Structure
from Motion implementation approaches. An evaluation using
images from a publicly available dataset with dynamic traffic
scenarios and large camera motions confirms the effectiveness
of the method.

I. INTRODUCTION

Scene understanding is an essential topic in the devel-
opment of fully Autonomous Vehicles (SAE Level 5). In
this context, multiple sensors systems as radar, LiDAR and
cameras are used to provide redundant and reliable informa-
tion of the scene [2]. Vision sensor approaches are intended
to retrieve dynamic information of the vehicle surroundings
[3], [4], [5].

Image motion segmentation has been widely studied be-
cause of the complexity of uncontrolled conditions in real
scenes, due to illumination and planar ground changes.
Multiple motion segmentation methods have been studied as
it is surveyed in [6]. The first methods that introduced motion
factorization were [7], [8]. These methods were founded on
algebraic and geometric formulations, however, they are
sensitive to noise. Motion clustering methods in [9], [10], [11]
can achieve precise results but they were tested in dataset
scenes including tracked image features. Such kind of tests
neglects the impact of feature tracking errors. Multibody
Structure from Motion (SfM ) formulation was used in
[12] for segmenting scene motions, computing 3D structures
of objects and inferring camera motion. In [13], a rough
segmentation of moving objects is improved by means of
a bi-linear optimization procedure which takes advantage of
their 3D shape and metric constraints. In [14], the authors

propose a multibody segmentation by introducing hypotheses
generation with precise results, however, this approach entails
a high computational cost. This study was enhanced in [15]
by coupling the kinematic constraints of ground vehicles to
improve overall performance.

Multibody Visual Simultaneous Localization and Mapping
(VSLAM) also addresses multiple dynamic objects segmen-
tation. In [16] was introduced the Bearing only Tracking
(BOT) to segment moving objects as a complement of the
VSLAM approach. In [17] the authors present a stereo-
vision based multibody visual SLAM to segment objects by
estimating their relative distances to the camera.

This work presents an enhanced variant of the Track-
before-Detect-SfM (TbD-SfM) method introduced in [1]. It
is worth noting that the approach introduced in [14] was
employed in [1] for initializing motion segmentation. This
paper outlines a closed-form approach to segment six degree
of freedom (6DoF) simultaneous motion based on geometric
constraints and RANSAC formulation. The contribution of
this paper is a new initialization approach for TbD-SfM
method intended to reduce computational complexity. The
proposed initialization begins with the ego-motion segmen-
tation. Epipolar geometry is applied between the first and
last image of a temporal sliding window to estimate static
feature points. Next, bucketing technique is implemented
over these features to select k points and compute the motion
between the consecutive image pair of a sliding window.
The estimated motion is applied to all feature points and
ego-motion points are segmented. Then, a 6DoF motion
estimation method that uses the hypotheses generation is
used to find eoru-motions in the remaining features set.
Results of the initial segmentation are employed as the
input of the TbD-SfM approach. TbD-SfM implements a
Bayesian estimation of the dynamic object area position and
then a motion estimation by using feature points of the
area. Our method was tested on KITTI dataset [18] and the
results are evaluated following three criteria: execution time,
segmentation statistics and reprojection errors as proposed in
[9], [14].

This paper is structured as follows: Sec. II introduces the
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fundamentals of single and multiple motions analysis in the
SfM formulation, motion and structure recovery, and motion
hypotheses generation. Sec. III details the initialization step
and the TbD-SfM methodology for multibody motion seg-
mentation. Sec. IV presents an application under full scale
dynamic scenes and the corresponding motion segmentation
results. Finally, the paper is concluded and perspectives are
outlined in Sec. V .

II. STRUCTURE FROM MOTION FACTORIZATION
FUNDAMENTALS

A. Structure from Motion Factorization Fundamentals

A scene composed of static and dynamic rigid objects
is analyzed by means of image features points. Such a
set of 2D feature points are tracked and matched over a
sequence composed of f consecutive images. The 2D feature
points set cardinality is denoted by p. Considering these
assumptions, the factorization approach in [7] addresses two
problems: (i) recovering the 3D structure of the scene (up to
a scale factor) and (ii) estimating inter-frame camera motion
(namely ego-motion). The trajectory matrix represented by
W ∈ R3f×p is composed of feature coordinates on the
images along the sequence. Feature coordinates are defined as
wp = [up, vp, 1]T ∈ R3f×1 and tracked features coordinates
along a frame sequence are arranged in a column vector of W
as wp = [w1p, w2p, ..., wfp]T . Inter-frame camera motion is
represented as a 6DoF 3D rigid transformation, M = [R | t]
with M ∈ R3f×4. Rotation is denoted as R ∈ R3×3 and
translation by t ∈ R3×1 . Finally, the recovered structure,
S ∈ R4×p, is defined as a set 3D homogeneous coordinates
vectors sp = [sx, sy, sz, 1]T as stated in Eq. (1):

W =


w11 w12 · · · w1p

w21 w22 · · · w2p

...
...

...
...

wf1 wf2 · · · wfp

 , M =


M1

M2

...
Mf


S =

[
s1 s2 · · · sp

]
(1)

Thus, single motion general formulation of SfM is as
follows:

W3f×p = M3f×4 · S4×p (2)

The factorization of trajectory matrix W provides a direct
estimation of motion M and structure S. As a solution,
Eq. (3) states W̃ representing a rank-4 trajectory matrix
estimation obtained from camera motion, M̃ , and structure,
S̃, estimates:

W̃3f×p ≈ M̃3f×4S̃4×p (3)

B. Structure from Motion Factorization for Multiple motions

Multibody motion segmentation approach in [8] simplifies
the camera motion and structure estimation of multiple
dynamic objects as is formulated in Eq. (4). The trajectory
matrix of each n independent body motion is represented by

Wn ∈ R3f×p, and the trajectories matrices union constitute
the multibody trajectory matrix W . The motion of the n
independent dynamic objects are denoted as Mn ∈ R3f×4,
and their union defines the multibody camera motion de-
scribed by M ∈ R3f×4n. Finally, multibody 3D structure,
S ∈ R4n×p, encloses in a sparse form the structure of each
body, Sn ∈ R4×p, in a diagonal matrix. Eq. (4) is solved by
factorizing Wn of each trajectory matrix.

[W1|...|Wn] = [M1|...|Mn] ·

 S1 0 0
...

. . .
...

0 0 Sn

 (4)

C. Motion and Structure Recovering

W represents the trajectory matrix normalized byusing
the 8-point algorithm. Then,k points are sampled from W
in a pair of consecutive frames. The sampled points are
represented in the first and second frame respectively by
wf = [w1, w2, ..., wk]T and w′f = [w

′

1, w
′

2, ..., w
′

k]T . A first
feature point wi is randomly selected and more features,
w′i, are assigned to it using a nearest neighbor criterion [19]
weighted by the probability distribution of Eq. (5). ζ and ρ
values are heuristically selected according to the probability
scale.

Pr(wi|w′i) =


1

ζ
exp− ‖wi − w′i‖2

ρ2
if wi 6= w′i

0 if wi = w′i

(5)

Then, essential matrix, E, is computed in a least square
form, A · x = 0, where A includes the set of points wf and
w′f to enforce the epipolar constraints over matrix E as is
detailed in Eq. (6).

w′Tf · E · wf = 0 (6)

The inter-frame camera motion, M̃ = [R|t], is computed
from the singular-value decomposition (SVD) of E as fol-
lows:

UDV T = SV D (E) (7)

where four possible solutions
[
UQV T ± U3c

]
and[

UQTV T ± U3c

]
are tested so as to find the correct com-

bination in order to rebuild the scene in front of the camera.
Finally, the structure S̃k ∈ R4×k is calculated by the SVD
of the camera projection matrix between an image pair.

D. Generation of motion hypotheses

In order to segment the scene, motion M̃h and structure
S̃h hypotheses are generated along the sliding window as
explained in Sec. II-C. The hypotheses are evaluated by
considering the features reprojection error and the number of
inliers associated. Reprojection error is defined as the average
difference between the trajectory matrix W and its estimation
W̃ according to Eq. (8). Inliers are defined as features points
with a reprojection error lower than the maximum error
allowed εpto. The hypothesis obtaining the highest number
of inliers is selected as the best one to describe the observed
motion.
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∑Γ
f=1

1
Γ

∥∥∥W − (M̃h · S̃h
)∥∥∥ ≤ εpto (8)

III. TRACK-BEFORE-DETECT FRAMEWORK

The multibody SfM based approach introduced in [14] pro-
vides a suitable solution for scene motion segmentation.
However, its computational cost increases exponentially with
the amount of dynamic objects in the scene. The authors pro-
posed an accelerated variant in [15] by constraining observed
motions to evolve over a ground plane. The variant limits the
motion model estimation from 6-DOF to 2-DOF. TbD-SfM
was proposed as 6-DOF scene motion segmentation tightly
coupling motion detection and temporal filtering of multiple
dynamic image regions. Dynamic regions are tracked to
restrict the searching area, to preserve a high feature points
density in the regions, and to reduce the computational cost
without kinematics constraint in the motion estimation.

A. Track-before-Detection Initialization

In order to implement the TbD-SfM approach, it is nec-
essary an initial segmentation of the dynamic objects of the
scene. The observed motions in the scene are the ego-motion
(set of static feature points) and the eoru-motions (groups of
dynamic feature points). The ego-motion is represented by
the set with the largest amount of feature points (dominant
motion assumption). The eoru-motions are dynamic objects
and they will be assigned to the inputted dynamic regions.
This stage outputs a first estimation of the size, location, and
number of dynamic objects in the scene. At the end of this
section, the initialization procedure is summarized in Alg. 1.

1) Ego-motion segmentation: The proposed method to
segment the ego-motion feature points relies on epipolar
geometry of two subsequent views. Epipolar geometry is
independent of scene structure, only depends on the intrinsic
camera parameters and the relative camera pose [20]. Let
consider a uncalibrated monocular moving camera whose
center is denoted Ct at time t and its next position at time
t+ 1, Ct+1, as show in Fig. 1.

Fig. 1. Two views Epipolar Geometry representation

X is a 3D point projected onto image 1 and image 2, and
its homogeneous image coordinates are represented by x1 =
[u, v, 1]T and x2 = [u′, v′, 1]T in both views respectively.
In order to infer which feature points lie onto static objects,
the fundamental matrix, F , is robustly estimated. F is the

algebraic representation of the epipolar geometry and satisfies
epipolar constraints presented in Eq. (9).

xT2 · F · x1 = 0 (9)

Fundamental matrix is computed using the RANSAC
(RANdom SAmple Consensus) strategy between the first
frame and the last frame of the temporal sliding window in
trajectory matrix W . It is necessary a minimum sample set
of k = 8 feature points to estimate F . Feature points with
an error distance to the epipolar line lower than a threshold
are classified as inliers or potential static features. In order
to determine which feature points are static, a stage of
hypotheses generation is implemented using inliers features.

The hypotheses generation begins applying a bucketing
clustering of inliers features. Then, k feature points of each
bucket are sampled along the temporal sliding window. To
this end, the image is divided in 15x10 buckets. The bigger
the amount of features in a bucket, the higher the probability
of sampling features of such a bucket. Giving a set of k
feature points represented by Wk, the motion, M̃h, and
structure, S̃h

k , of the hypothesis are computed between a
consecutive pair of frames along the sliding window as is
presented in Sec. II-C.

Relative motion between frames, M̃h, and trajectory ma-
trix, W , are used to calculate structure, S̃h, of the set of
inliers points. The trajectory matrix is estimated W̃h with
the motion M̃h and structure S̃h hypothesis as Eq. (3).

Hypotheses are evaluated by comparing W and W̃h as
was presented in Sec. II-D.The hypotheses generation is
repeated until finding a hypothesis with a percentage of
inliers greater than a established value (e.g. 90 %). In this
case, the hypothesis will become the best estimation and it
will be defined by W̃ , M̃ and S̃. The structure is determined
taking into account that 3D points must be located in front of
the camera, that is deep coordinates (Z) are positive values.
Structure points not satisfying such a constraint are classified
as outliers and are discarded. Later, feature points with a
reprojection error greater than εpto are considered outliers
and removed as shown in Eq. (8), and then, the S̃ is updated.

Up to this point, an initial group of ego-motion feature
points is segmented. This group is used to find the ego-motion
features remaining in the points classified as oultiers by the
epipolar geometry. To this end, a trajectory matrix with these
points is created. Then, a structure is calculated by using
the trajectory matrix and the motion hypothesis M̃ . Next,
the outliers are removed by checking the structure and the
reprojection error as it was described before, and finally the
structure is updated.

2) Eoru-motion segmentation: After the ego-motion seg-
mentation, the remaining feature points can be classified
as dynamics objects or outliers. In order to classify these
points, the generation of motion hypotheses is implemented
to find one or more sets of features that represent the
dynamic objects (see Sec. II-D). In order to avoid false
positive segmentation, the sets of features points considered
as dynamic objects must be observed in previous sliding
windows. An ROI image correlation is carried out between
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frames so as to find previously observed dynamic objects.
Finally image features lying on dynamic objects are enclosed
in dynamic regions.

3) Representation of dynamic regions: Dynamic regions
frame potential moving objects and associate their corre-
sponding features along a temporal sliding window. This
dynamic region model is not suited for ego-motion features
since they are usually spread over a large image area. Thus,
dynamic regions are only employed to frame potential eoru-
motions in the tracking scheme. A dynamic region is modeled
by a bounding box centered at (u, v) with height, h, and
width, w in pixel units.

Algorithm 1 Initialization procedure
1: procedure
2: Input: Trajectory Matrix W
3: Output: W1,...,n,M1,...,n, S1,...,n . n: number of motions
4: Segment ego-motion from W using epipolar geometry
5: while percentage of inliers 6 threshold do
6: Select k features using bucketing technique
7: Compute M̃h between pair of frames with W
8: Compute S̃h with M̃h and W
9: Compute W̃h with S̃h and M̃h

10: Compute the reprojection error
∥∥∥W − W̃h

∥∥∥
end

11: Remove outliers from W̃ , S̃ and Update S̃
12: Compute S̃ with M̃ and W
13: Remove outliers from W̃ , S̃ and Update S̃
14: W = [W1,Woutliers] with W1 as ego-motion
15: Generate motion hyp. from Woutliersas in Sec.III-A2
16: return W1,...,n,M1,...,n, S1,...,n

B. Track-before-Detection for Scene Analysis

In this section TbD approach is introduced for motion seg-
mentation. The method begins by finding ego-motion feature
points, named as W1. Thus, features points inside dynamic
regions (W2, ...,Wn) are removed from the trajectory matrix
as:

W1 = W − [W2|W3|...|Wn] (10)

It is worth noting that the set of ego-motion features
W1 could include outliers or misclassified points. To cope
with this, a robust estimation of the fundamental matrix F
is computed with RANSAC on the trajectory matrix W1.
Then, the motion, M̃1, and structure, S̃1, are computed as
in Sec. III-A1. The set of segmented features must satisfy
the minimum amount of features k required to compute a
motion. This constraint is evaluated by checking the number
of columns of the trajectory matrix Wn as follows: m =
col(Wn)− k.

In case of multiple motion solutions with equal number
of inliers, the hypothesis achieving the smallest mean repro-
jection error is selected. The remaining features represent
outliers or a new observed motion in the scene.

1) Motion Factorization on Dynamic Regions: Motion
estimation of dynamic objects is carried out using features
enclosed in each dynamic region [W2|W3|...|Wn]. The tra-
jectory matrices W̃n are composed of points that follow

the nth dynamic object . Since some features in dynamics
regions might be missed classified, the first step consists in
detecting features belonging to ego-motion group. To this
end, a structure is computed with the dominant motion M̃1

and each dynamic points group Wn. Feature points with a
positive Z-coordinate value and a reprojection error lower
than εpto are re-assigned as ego-motion feature points and the
ego-motion structure S̃1 is updated. Then, remaining feature
points in each group are used to calculate the eoru-motion
M̃n, structure S̃n and the estimated trajectory matrix W̃n as
detailed in Sec. II-D. The eoru-motion estimation is repeated
by using the remaining feature points in order to find a new
motion or classify such points as outliers.

2) Image region tracking: Multiple-Target Tracking
(MTT) strategy is applied by using a set of Kalman filters
(KF). It predicts the location of each dynamic region. This
approach assumes that the dynamic objects perform smooth
motion changes along the sequence. The position of the
dynamic region on the image is tracked by a 8D state
vector. Each region track state is represented by xf as shown
in Eq. (11), and it is composed by the image centroïd
coordinates (xc, yc), in pixel, the width w, the height h and
their first derivatives (vx, vy, δw, δh) respectively:

xf = [xc, yc, w, h, vx, vy, δw, δh]
T (11)

A linear Gaussian model is used to track the regions by
assuming a smooth-linear inter-frame motion as formalized
in Eq. (12):{

xf = A · xf−1 + αf αf ∼ N(αf ; 0,Λf )

yf = C · xf + βf βf ∼ N(βf ; 0,Γf )
(12)

where A and C represent transition and observation mod-
els, respectively. xf−1 is the state vector in a previous sample
frame and yf the multivariate observations. αf and βf are the
state and observation noise following zero-centered normal
distributions with known variances.

3) Track-to-Motion Association: Each dynamic region is
linked to a Kalman filter. The state is predicted by each
filter and its prediction constraints the perimeter of the set of
features points Wn for estimating an eoru-motion. Features
obtained by the factorized motion are employed to update
the position and size of the state vector if the dynamic region
satisfies an association criterion. This criterion correlates the
tracked dynamic region and the factorized one regarding their
appearance and the uncertainty-weighted state given by the
inverse of the mean reprojection error.

4) Track Creation and Deletion: In order to avoid false
detections, a dynamic region must be confirmed along the
temporal sliding window so as to validate the detection of
a new dynamic object. When, the new object is detected,
a filter is initialized to track it. Low-confidence tracks that
are non-updated and non-associated are disposed. It worth
to highlight that new objects can be detected if there are
at least 8 feature points following such a motion and meet
the reprojection error criterion εpto (as stated in Sec. II-D).
Otherwise, such features will be rejected as outliers.
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IV. RESULTS

KITTI dataset [18] was employed to validate our new ini-
tialization approach for TbD-SfM motion segmentation. The
database contains sequences of 1392x512 images sampled
in uncontrolled light conditions from a camera embedded
on a moving car. The dataset does not provide ground truth
features for the scenes, so that there exists the possibility of
feature tracking errors. Feature points are acquired by means
of the Libviso2 extractor [21]. The scenes are processed in
a temporal sliding window of 4 frames. The results obtained
per sliding window are processed and the mean value is
reported as a frame result.

The TbD-SfM method is intended to segment objects in
a dynamic scene. The evaluation of the method is done by
means of the execution time gain, the segmentation error,
reprojection error and the outliers ratio.

The mean reprojection error scores the average difference
between trajectory matrix W and its corresponding estimate
W̃ in the sliding window as was detailed in Sec.II-D.

The execution time gain is the ratio between the time
obtained with the initialization method (A) [14] and the time
obtained with our initialization method (B).

ratio =
TimeMethod (A)

TimeMethod (B)
(13)

Segmentation error [9] quantifies the number of misclassi-
fied points. It is calculated as follows:

Seg.Error = 100
# of misclassified points

Total# of points
(14)

Feature points that are not segmented by a motion are
defined as outliers. These points do not achieve a reprojection
error lower than the established threshold (εp). It is calculated
as:

OutliersRatio = 100
# of unclassified points

Total# of points
(15)

In the considered scene, there are two simultaneous motion
until frame 18, the moving camera (ego-motion) and a car
passing from the back to the front with high speed. Then, a
third car appears in the same direction from frame 19 until
frame 43 (ego-motion and 2 eoru-motions), and ends, with
two motions from frame 44 until frame 100 (ego-motion and
eoru-motion). This scene is challenging because the three
vehicles drive in the same direction.

We have processed a total of 100 frames obtaining a
segmentation error of 0.25% in the scene. This error was
obtained with Eq. (14) and the average number of 1600
feature points per frame.

Fig. 2 shows the TbD-SfM results obtained in each step of
the process. Fig. 2(a) presents the ego-motion features points
(red markers) and their outlier points. In Fig. 2(b) the box
indicates the tracking area where the dynamic objects must be
segmented and the features points in the area (blue markers).
Feature points belonging to the ego-motion are removed
by comparing their structure with the ego-motion structure.
Finally, Fig. 2(c) shows the final motion segmentation of

the frame. The cyan markers represent outliers of the scene
segmentation.

Fig. 2. Motion segmentation results in frame 37 with TbD-SfM: (a) Top
figure shows segmented ego-motion features in red markers and outliers
features in cyan. (b) Tracked regions in each dynamic object are illustrated.
(c) Figure presents the motion segmented in each tracked area. Feature points
of moving objects are detailed in blue and green color.

Fig. 3 presents the mean reprojection error of segmented
motions in the temporal window. The ego-motion reprojec-
tion error is less than 1.9 pixels along the sequence (red
color). The first dynamic object (green color) was segmented
from the frame 1 until the frame 40 with a reprojection error
less than 2 pixels. The second dynamic object was segmented
from frame 21 until the last frame with a reprojection
error less than 2.7 pixels. However, the eoru-motions are
segmented as one dynamic object in the frame 41 because
they are close.

In Fig. 3(b), zero values with a red cross mark represent
frames where it was not possible to estimate the reprojection
error because it is necessary at least 8 points to estimate the
motion and the segmented group has less than this amount.

Fig. 3. Mean reprojection error in estimated motions: (a) Ego-motion, (b)
Dynamic objects

Fig. 4 shows the outliers percentage along the sequence
with a highest value of 14% in frame 90. The mean value
of outliers was 2.88%, this proves that TbD-SfM method
can estimate multiple motions with a low reprojection error,
preserving the quantity of features points as is shown in Fig.
4. The oultiers percentage could increase the computational
costs when a group of point are close enough. In this case
the group is considered as a new possible object and it is
analyzed with the method presented in Sec. II-D.
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Fig. 4. Outliers percentage along the sequence.

Fig. 5 shows the execution time results for an initialization
every 10 frames and 20 frames. It details the execution time
per frame along the sequence. Other initializations are carried
out in frames where the TbD-SfM method does not find any
dynamic object as shown frames 71, 80 and from frame
92 until frame 95. The red dashed lines show frames in
which initializations were executed. The results show that
the initialization step does not have any influence over the
execution time of the TbD-SfM motion segmentation method.
The highest value obtained was 96 s in the frame 51 because
after ego-motion computation , motion estimation method
(Sec. II-D) is performed over the remaining features points
so as to find a new motion.

Fig. 5. Execution time along the sequence with initialization: (a) each 10
frames, (b) each 20 frames

Table I presents the execution time obtained every 20
frames with two different initializations.

The method proposed in [14] (Method A) with 300 hy-
potheses to segment the motions and our proposed approach
(Method B). Our approach obtained a speed gain between 50
and 800 times.

V. CONCLUSIONS

In this paper, we have presented an enhanced initialization
process integrated to a TbD-SfM method in order to segment
motions from a moving monocular camera. Experiments
show that the initialization proposed speeds up segmentation
of dynamic objects without affecting the TbD-SfM segmenta-
tion process and any performance loss. Our method achieved
a low segmentation error with a high amount of feature points
segmented as shown by the outliers percentage. The closed-
form approach preserves the density of feature points reduc-
ing the probability of losing dynamic objects. The enhanced

execution time allows this method be a scalable when the
number of simultaneous motions is increased. Future works
will be devoted to 3D representation and reconstruction of the
dynamic object trajectories. In addition, semantic information
can be used to improve motion model of the tracked moving
objects in a monocular system.

TABLE I
EXECUTION TIME COMPARISON EACH 20 FRAMES

Frame Method (A)
presented in (min)

(B) Ours
Method (s) Ratio A/B

1 40 17 141
21 44 3.2 825
41 53 55 57
61 50 5 600
81 38 23.4 99
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