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Applying map-masks to Trajectory Prediction for Interacting
Traffic-Agents

Vyshakh Palli-Thazha, David Filliat and Javier Ibañez-Guzmán

Abstract— Autonomous vehicles perceive their surroundings
and foresee the future behaviour of all other relevant interacting
traffic-agents in order to navigate safely and to operate in
the public road networks. Trajectory prediction is difficult
due to the stochastic manner these different types of traffic-
agents interact with each other and the changing navigation
context. In this work, we propose a recurrent artificial neural
network LSTM encoder-decoder based architecture to predict
the movement of traffic agents. It uses map-masks of the
area surrounding the ego vehicle and previous trajectory
information to predict the trajectory of interacting traffic
agents. This paper compares the proposed approach with
LSTM baselines,using the NuScenes dataset which includes
LiDAR point-cloud ground-truth data for traffic agents plus
map information. Experimental results show that the proposed
method outperforms the baselines based on the prediction
accuracy.

I. INTRODUCTION

Sequence prediction problems have been an important
area of research with multiple applications like Natural
Language Processing, Weather Forecast, Economics and
Intelligent Systems. Autonomous vehicle systems come
across this problem when trying to understand the behaviour
of all other traffic-agents that it interacts with. This could
be a pedestrian, car, bike or any object that appear in its
navigation space. Predicting the trajectory of the involved
agents allow the autonomous vehicle to prepare itself for
future decisions and manoeuvres, after assessing the risk
involved in the current scenario. The goal is to try and make
the vehicle understand the environment like humans do. The
high level of interactions, occlusions and changing context
makes it hard to solve this prediction problem with high
accuracy. Therefore multiple inputs, patterns and behaviours
must be studied to come to an operational and acceptable
accurate prediction.
Researchers have addressed the problem focusing on
different aspects. Sequence predictions for single-agent
behaviours have been solved using classical techniques but
in real life this is unusually the case. There are multiple
agents and their behaviour changes according to the class
of the agent - whether it is a car, a pedestrian or a bike.
Our research takes the class of the agent into account in
the problem statement and tries to predict their different
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behaviours. Another factor that plays an important role
in real life traffic scenarios are the interactions between
different classes of agents. Our current research also gives
importance to this and has incorporated an interaction-
aware model. Thirdly, our model takes into account, the
surroundings of the ego-motion car, by using a map-mask
that provides information on the driveable and non-driveable
areas for different classes of agents. These map-masks also
provide information on the path that could be taken by
different agents.
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Fig. 1: System Architecture: The prediction module has two
inputs: sequential historical trajectories of all traffic-agents
and the associated map-mask patches of each agent for the
observed time instances

In the recent years, the boom in high-computational-power
processors and GPUs has lead to faster research and develop-
ment cycles. More and more data-sets are being released for
different applications - KITTI, Apolloscape, NuScenes and
NGSIM. This has lead to a focus on deep learning algorithms
which solve classical problems with extremely high rate of
success and accuracy. This success of Learning Algorithms
have attracted research on several methods like Convolutional
Neural Networks(CNN), Recurrent Neural Networks(RNN),
Long Short-Term Memory(LSTM) and Generative Adver-
sarial Networks(GANs). RNNs and LSTMs have shown
promising results with solving sequence prediction problems.
We use one such LSTM encoder-decoder architecture (see
Figure 3 for an overview) as the baseline for our study and
use the NuScenes dataset [1] which provides 3D bounding-



boxes in LiDAR point-clouds for different traffic agents,
object/agent IDs and do a preliminary study for improving
trajectory prediction using map-masks (binary maps) for the
environment which we use in our experiments.

In this work, the use of map-mask patches to improve the
prediction of trajectories for different classes of interacting
traffic-agents is proposed. Specifically, our contributions in-
clude:

• A new LSTM encoder-decoder architecture that uses
Map-Mask patches to make trajectory predictions for
different classes of traffic agents in drivable and non-
drivable areas

• We evaluate the proposed model in comparison with
LSTM baselines and is found to be superior in perfor-
mance both in single-agent and multi-agent interaction
scenarios.

The remainder of the paper is organised as follows:
Section II mentions relevant research papers and results
that we have taken inspiration from or has guided our
research. Research related to single-agent predictions, multi-
agent predictions, interaction-aware models, context-aware
models are discussed in this section. Section III describes our
map-mask based LSTM encoder-decoder architecture and
the working of our complete trajectory prediction approach.
Section IV discusses the results and the performance of
our model and finally section V concludes the paper and
mentions the future work.

II. RELATED WORKS

A. Classical Methods

Trajectory prediction for pedestrians, vehicles and other
traffic agents has been studied using classical techniques
such as Constant Velocity, Constant Acceleration, Linear
Regressions, Kalman Filters [2], Monte Carlo Simulation [3],
Time-series methods and Hidden Markov Models [4]. Most
of these predictions are limited to short term predictions
and even if these are long-term, their accuracy is affected
because of the lack of context information and from ignoring
the interaction between different classes of traffic-agents.
A survey on motion prediction can be found in [5] where
Lefèfre et. al. have analysed different trajectory prediction
methods based on model completeness and risk assessment.

B. Learning based Models

Trajectory prediction methods have been applied to differ-
ent sensor outputs, some solely with vision based detection
outputs, others with 3D bounding-boxes obtained from Li-
DAR point-clouds. We base our work with the detections on
3D point-cloud data. Much research has gone into developing
deep learning algorithms to infer such predictions. Altché
et. al. [6] uses LSTMs to predict the future trajectory of a
single target vehicle. It predicts the longitudinal and lateral
trajectories of vehicles on a highway. In [7] A. Milan et.
al. proposed an end-to-end learning approach for online
multi-target tracking which uses RNNs to predict the state
of each target step by step and uses LSTMs to achieve
data association. They work on vision data obtained from

the 3D MOTChallenge dataset. Nikhil et. al. [8] uses a
Convolutional Neural Network based approach to predict
trajectories of surrounding vehicles. This model utilises
highly parallelisable convolutional layers to handle temporal
dependencies. The trajectory histories are embedded to a
fixed size tensor and stacked convolutional layers are used
to ensure temporal consistency. Jawed et. al. [9] also uses a
similar architecture based on convolutional layers.

C. Interaction and/or Context Aware Models

There are several examples in the literature that tries to
solve the prediction problem which involves interactions
between traffic agents. Some of them focus on pedestrians
alone or vehicles alone while others try to solve cases with
interaction between multiple classes of agents.

Several models study interaction between vehicles: In [10]
Hu et. al. uses a generative model to jointly predict the
sequential motions of each pair of interacting vehicles and it
uses as input past trajectories and environment information.
Kim et. al. [11] uses occupancy grid and RNNs to predict
the trajectory of vehicles on highways. In [12] Deo et. al.
uses an an LSTM encoder-decoder architecture that uses
convolutional social pooling for learning inter-dependencies
between vehicles. Here the spatial configuration of the agents
in a scene is embedded into a spatial grid around the ego-
motion vehicle and this grid is passed into convolutional and
pooling layers to obtain the social context encoding. This
along with an LSTM encoding of the agents’ trajectory are
concatenated and passed through a decoder to obtain the final
predicted trajectory. A similar architecture is used by Park
et. al. [13] with the decoder producing K likely trajectories
over an occupancy grid using the beam search technique.

Some models study pedestrian interactions: Kooij et. al.
[14] proposes a Dynamic Bayesian Network which uses the
situational awareness and spatial layout to predict pedestrian
paths. It uses pedestrian head orientation, distance between
vehicles and pedestrians at expected point of closest ap-
proach and distance of pedestrian to curbside as latent states
on a Switching Linear Dynamical System (SLDS) to predict
changes in pedestrian dynamics. In [15] Alahi et. al. tries
to learn general human movement and predicts their future
trajectories. They model pedestrian motion by a pooling
based LSTM architecture and jointly predicts the trajectories
of all the people in a scene.

Models also use various context information to improve
trajectory prediction: Lee et. al. [16] applies a Condi-
tional Variational AutoEncoder (CVAE) based RNN encoder-
decoder to make prediction for interacting agents. They
use past trajectories as input along with a feature map,
generated from scene elements like roads and sidewalks,
that provides context information to the prediction model.
Habibi et. al. [17] uses relative distance to curbside and
status of pedestrian traffic lights as additional information to
provide context to predict the pedestrian path. Ridel et. al.
[18] implicitly models pedestrian interactions with vehicles
to predict pedestrian behaviour. They use pedestrian head
orientation as an input along with past trajectories. Another



interesting study is done by Ma et. al. [19] which uses 4D
graphs to model interactions and classes of the interacting
agents.

Our approach addresses the problem by using map-masks
to facilitate the understanding of the scene environment.
This study is a first step towards using semantic information
in the form of maps for improving trajectory prediction.
The trend is to add more information to maps. Works like
OpenStreetMaps and NuScenes are releasing maps with
information other than road geometry. Details such as cross-
walk, sidewalk, traffic lights, stop lines, lanes are being added
to maps. These semantics could be used to improve the
perception of the environment.

III. PROBLEM FORMULATION AND METHOD

In a driving scenario, several objects might be present,
sharing the same ego-vehicle work-space it navigates. These
include pedestrians, other vehicles or cyclists. State-of-the-art
perception algorithms provide bounding boxes/segmentation
for each class of objects. There are algorithms which can
perceive the said objects from camera images or from LiDAR
point-cloud data. In our case, we use LiDAR point-cloud
data and off-the-shelf detection algorithms to extract the
features of all the traffic-agents within the field of view of
the sensor used. For experimental purposes, the PointPillars
object-detection network by Lang et. al. [20] is adopted.
This network is chosen as it shows superior performances
over other relevant frameworks and they have released their
code on GitHub. The observed trajectory is taken from the
output of the object detection framework. For training the
prediction network, the ground truth trajectory available for
the situation from the NuScenes dataset is used.

The feature set of each traffic agent k at time t can be
defined by fkt = (pkt , c

k
t ,M

k
t ) where pkt = [xkt , y

k
t ], x and y

are the spatial coordinates of the detected traffic-agent and
c is the class of the traffic agent, ci ∈ (1, 2, 3) where 1 is
for pedestrians, 2 is for cars and 3 is for cyclists and Mk

t is
a 128*128 pixels binary map patch of the area surrounding
each detected object. The task is to observe the features of
all traffic-agents in the interval [1 : Tobs] and predict their
positions in [Tobs+1 : Tpred].

A. Trajectory Prediction using LSTMs

The prediction framework developed by T. Fernando et. al.
[21] that applies LSTMs for predicting trajectories is applied,
along with the training methods adopted by Bahdanau et.
al. in their Neural Machine Translation work [22]. For
each time-step, an object-pool is created, associated with
a trajectory prediction module. It regresses short term and
long-term trajectories for each traffic-agent in the object-
pool. This is based on the historic trajectory of that agent
and neighbouring trajectories. Therefore, each traffic-agent
that resides in the pool is associated with a probable short
term and long-term trajectory. This approach is advantageous
because raw detection outputs can be noisy due to occlusions,
false alarms, inaccurate bounding boxes, and missing detec-

tions. Studies show that occlusions last around 3-10 frames
[23].

(a) Binary map-mask of a scene

(b) Examples of patches centred around the agent

Fig. 2: Binary map-mask and map patches: A trajectory and
the map-patches surrounding the agent are marked by blue
squares, centred around the traffic agent marked in green

Trajectory prediction:
Let the historical trajectory of a traffic-agent k, from time-
step 1 to time-step Tobs be given by,

pk = [p1, ..., pTobs
],

where,
pi = [xi, yi]

for each time-step i. pi composes of points in a Cartesian
grid obtained from the top-down view of the LiDAR point-
cloud detections. These historical trajectories are passed
through the LSTM encoder of each respective traffic-agent
to generate its historical embeddings as follows,

hkt = LSTM(pkt , h
k
t−1),

generating a sequence of historical embeddings.
A historical context vector CH,k

t is defined to encode the
trajectory information from the traffic-agent of interest (k),
which can be computed as a weighted sum of hidden states
from t = [1 : Tobs],

CH,k
t =

Tobs∑
j=1

αtjh
k
j



and the weight αtj as shown in [22] can be computed by,

αtj =
exp(etj)∑T
l=1 exp(etl)

etj = a(hkt−1, h
k
j )

where the function a is a feed forward neural network
which is trained jointly with the whole network.

The spatial context vector CS,k is used for embedding the
neighbouring trajectories.
The spatial weights, denoted by wn

j , can be computed as,

wn
j =

1

dist(n, j)

where dist(n, j) is the Euclidean distance between the
nth neighbour and the traffic-agent of interest at the jth

time-step, and wn
j is the generated spatial attention weight.

When there are N neighbouring trajectories in the local
neighbourhood, and hnj is the encoded hidden state of the
nth neighbour at the jth time-step, then the context vector
for the spatial model is defined as,

CS,k =

N∑
n=1

Tobs∑
j=1

wn
j h

n
j

The merged context vector, C∗,k
t , computed by,

C∗,k = tanh([CH,k;CS,k])

is then passed through the LSTM decoder to predict the
future trajectory for the traffic-agent of interest. This is
explained in Section III-C.

It is by modifying the context vector that the information
from the binary map-masks is input to the prediction model.
This is explained in the next sub-section.

B. Map Input for Trajectory Prediction
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Fig. 3: Passing the map-patches through a CNN AutoEncoder
generates the latent vector that stores information about the
drivable area and this vector is passed on to the LSTM
encoder architecture

For understanding the behaviour of different classes of
traffic-agents in drivable and non-drivable spaces, the input of
map information in the form of binary patches is studied. We
take square patches of the size 128*128 pixels (see Figure
2) around each detected traffic-agent in the perception space

(see Figure 2a) of the ego-motion vehicle and for each time-
step in the observed time interval. Each of these patches
are passed through a Convolutional AutoEncoder producing
a latent vector CC

t which holds the information about the
drivable space associated with the respective traffic-agent
(see Figure 3).

This vector is then concatenated with the merged context
vector C∗

t from the LSTM Model to obtain the new latent
vector CM,k

t .

C. LSTM Decoder

Now, the final predicted trajectory qt is obtained by
passing the context vector CM,k

t in the case of map input
or C∗,k

t in the case of only LSTMs, through the LSTM
decoder and two fully connected layers. The overall system
architecture is illustrated in Figure 1.

qt = LSTMc(h
k
t−1, qt−1, C

M/∗,k
t )

qkt is composed of points in a Cartesian grid. The decoder
used for each traffic-agent class is different. Hence, based
on c, we choose the LSTM to be used to decode. We let
Tobs = 3 for short term predictions and Tobs = 10 for long
term trajectory predictions.

qt = [xObs+1, yObs+1, ..., xObs+N , yObs+N ]

where N is the prediction horizon.
The CNN AutoEncoder is tested both with and without

pre-training and no significant difference has been found.
Therefore, this model is attached to the LSTM encoder-
decoder and trained end-to-end with Adam optimiser and
a learning rate of 1 × e−4 for 100 epochs and fine-tuned
with a learning rate of 1× e−5.

IV. RESULTS AND EVALUATION

The prediction accuracy is measured based on two criteria
as described in [24], [25]: Average Displacement Error
(ADE) and Final Displacement Error (FDE) in pixels with
respect to each time step t within the prediction horizon:

1) Average Displacement Error (ADE): Average distance
between ground truth and our prediction over all pre-
dicted time-steps for the traffic agent.

ADE(i) =
1

T

∑
j=1,2...T

√
(x̂ji − x

j
i )

2 − (ŷji − y
j
i )

2

ADE =
1

n

∑
i=1,2,...n

ADE(i)

2) Final Displacement Error (FDE): The distance between
the predicted final destination and the true final posi-
tion of the agent.

FDE(i) =
1

n

√
(x̂Ti − xTi )2 − (ŷTi − yTi )2

FDE =
1

n

∑
i=1,2,...n

FDE(i)

where n is the total number of interacting agents in the test
set, xij and yij denote the coordinates of the ith agent in



the predicted time-step j and T denotes the final predicted
time-step.

As training data, the NuScenes dataset is used. From this
we obtain 3200 different trajectories with enough length (at
least 30 time frames) for the experiments. These trajectories
are obtained from 850 scenes of 20s recordings from the
NuScenes data-collection car setup. These are split into train,
validation and test sets of size 2100, 550 and 550 tra-
jectories respectively. For single-agent trajectory prediction,
these sequences are considered separately, and for the multi-
agent trajectory predictions, the information of all interacting
agents are taken into account. Each trajectory sequence is
associated with the relevant interacting agent information
also.

In order to illustrate the interest of using drivable/non-
drivable map information, four variants of our approach are
implemented.

• Method 1: Single Agent LSTM Model for all traffic
agents: Separate LSTM models are used to predict
the motion of single traffic agents. No interaction is
involved.

• Method 2: Single Agent with LSTM Model and Map-
Mask input: Map-mask is taken as input to predict the
trajectories of single agents, not considering interac-
tions.

• Method 3: Multi-Agent interactions and Model with
LSTM only: Interactions are taken into consideration
and only LSTM encoder-decoder architecture is used.
This is similar to the method in [26].

• Method 4: Multi-Agent interactions and Model with
LSTM and Map-Mask input: Multi-agent interactions
are taken into account in the LSTM encoder-decoder
architecture and map-masks are used to improve the pre-
dictions of traffic-agents involved in such interactions.

Method ADE(Meters) FDE(Meters)
1. Single Agent LSTM only 5.31 6.2
2. Single Agent LSTM + Map-Input 1.67 1.95
3. Multi-Agent LSTM only 4.34 5.21
4. Multi-Agent LSTM + Map-Input 1.45 2.2

TABLE I: Comparison of Prediction Accuracy for different
models

The performance of the model in different scenarios is
shown in Figure 4. Figure 4a shows an example of straight
trajectories and the prediction giving results in the non-
drivable area when only LSTMs are used and better predic-
tions confined to the drivable area when map-mask is added
as input. Also the fitting of the trajectory prediction to road
curves is better predicted when map-masks are introduced
as can be seen in 4b. Another example of prediction being
made in the drivable area is seen in Figure 4c.

The comparison of the ADE/FDE values for the LSTM
baselines and the models with map-mask input is presented
in Table I.

As can be seen in each case, single agent and multi-
agent predictions, the addition of the map-mask patches

(a) Straight path trajectory predictions

(b) Trajectory prediction at a turnings

(c) Better behaviour in non-drivable areas

Fig. 4: Behaviour of Trajectory Prediction Models with-
out(Left) and with Map-mask(Right) input. The green arrows
in the images show the direction of prediction. The green
path is the Ground truth and the blue path is the predicted
trajectory

help the system make more accurate predictions. This gives
us confidence to study the use of a map with much more
information in the future to improve the predictions even
more.

V. CONCLUSION AND FUTURE WORK

The proposed approach discusses and experimentally ver-
ifies the idea of using binary map-masks to improve the pre-
diction of trajectories for different traffic agents. It compares
single-agent and multi-agent trajectory prediction models and
asserts the overall improvement of the prediction when map-
masks are given as input. This study serves as a preliminary



step in the direction of using more environmental context
information for improving prediction accuracy. As a future
work, we plan to study OpenStreetMaps and use the mul-
titude of information that can be obtained from their wide
network of mapped areas.
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