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The bacterial flagellar motor (BFM) is the rotary motor that rotates
each bacterial flagellum, powering the swimming and swarming
of many motile bacteria. The torque is provided by stator units,
ion motive force-powered ion channels known to assemble and
disassemble dynamically in the BFM. This turnover is mechanosen-
sitive, with the number of engaged units dependent on the vis-
cous load experienced by the motor through the flagellum. How-
ever, the molecular mechanism driving BFM mechanosensitivity is
unknown. Here, we directly measure the kinetics of arrival and
departure of the stator units in individual motors via analysis
of high-resolution recordings of motor speed, while dynamically
varying the load on the motor via external magnetic torque. The
kinetic rates obtained, robust with respect to the details of the
applied adsorption model, indicate that the lifetime of an assem-
bled stator unit increases when a higher force is applied to its
anchoring point in the cell wall. This provides strong evidence
that a catch bond (a bond strengthened instead of weakened by
force) drives mechanosensitivity of the flagellar motor complex.
These results add the BFM to a short, but growing, list of sys-
tems demonstrating catch bonds, suggesting that this “molecu-
lar strategy” is a widespread mechanism to sense and respond to
mechanical stress. We propose that force-enhanced stator adhe-
sion allows the cell to adapt to a heterogeneous environmental
viscosity and may ultimately play a role in surface-sensing during
swarming and biofilm formation.

bacterial flagellar motor | molecular motor | mechanosensitivity |
catch bond | Escherichia coli

The bacterial flagellar motor (BFM) is a large molecular com-
plex found in many species of motile bacteria which actively

rotates each flagellum of the cell, enabling swimming, chemo-
taxis, and swarming (1, 2). The rotor of the BFM is embedded
within and spans the cellular membranes, coupling rotation to
the extracellular hook and flagellar filament. Multiple transmem-
brane complexes, called stator units, are anchored around the
perimeter of the rotor and bound to the rigid peptidoglycan (PG)
layer (3–5). By harnessing the ion motive force, the stator units
are responsible for torque generation, acting upon the common
ring formed by FliG proteins on the cytosolic side of the rotor
(Fig. 1A) (6, 7).

Several studies have revealed the continuous exchange of var-
ious BFM molecular constituents (8–10), demonstrating that a
static model for the BFM structure is not adequate. A prime
example, and in contrast to macroscopic rotary motors, the stator
of the BFM is dynamic; while each bound stator unit acts upon
the rotor independently (11, 12), their stoichiometry in the motor
varies. Once anchored around the rotor, stator units dynamically
turn over, eventually diffusing away in the inner membrane (10).
Each additional recruited stator unit increases the total torque
and thus the measured rotational speed of the motor (11, 13),
and up to 11 units have been observed to engage in an individual
motor in Escherichia coli (10, 14–16).

Recently, novel observations revealed that the stator units
are also mechanosensors (17–19). A variety of mechanosensitive
membrane protein complexes exist in all three kingdoms of life
(20). Although these complexes vary widely in their structure,

function, and sensitivity, they share one key feature: The confor-
mational state, and thus the function, of the protein is directly
dependent upon mechanical stress, mediated by the surrounding
cell membrane. Two recent works have shown that stator recruit-
ment in the BFM depends on the viscous load placed upon the
motor (17, 18). The property of mechanosensing (likely relevant
for the cell to overcome local inhomogeneities and obstacles)
has important consequences for the interpretation of previous
data and ultimately for successfully modeling the torque gener-
ation of the BFM. It implies, in fact, that previously measured
torque–speed relationships (11, 21–23) are likely composed of
motors with a dynamically changing number of stator units. The-
oretical models must now take this novel fact into consider-
ation (12).

Here, to better elucidate the molecular mechanism responsi-
ble for the mechanosensitivity of the BFM, we investigate sin-
gle motors and quantify stator stoichiometry. Using an exter-
nal magnetic field and magnetic microbeads of different sizes
bound to the hook of individual E. coli motors, we rapidly manip-
ulate the load experienced by the motor by reversibly stalling
its rotation. The external load manipulation directly probes the
mechanosensitivity of the BFM: We stimulate stator binding
during the period of stall and observe and quantify stator unbind-
ing after release. We perform these experiments for various
viscous loads, each of which imposes a different initial stator
occupancy. This allows us to statistically characterize the kinetics
of stator stoichiometry both in steady-state conditions and fol-
lowing a rapid change in external load. Our analysis suggests that
a catch-bond mechanism (a bond counterintuitively strength-
ened, instead of weakened, by force) (24–26) is at the heart of
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Fig. 1. The experimental assay. (A) Schematic of the BFM showing rotor
and stator protein complexes. Stator units bind to the PG at the periph-
ery of the rotor, providing torque via an interaction with FliG. IM, inner
membrane; OM, outer membrane. (B) Experimental setup. Bacterial cells
are immobilized onto a coverslip, and a rotating superparamagnetic bead
attached to the hook of a BFM is imaged and tracked. Two permanent mag-
nets (mounted on a vertical translation stage) create a magnetic field, capa-
ble of generating sufficient torque τB on the bead to stall the motor. Ref.,
reference. (B, Inset) Tracked positions of a 1µm bead rotating one turn.
(Scale bar: 100 nm.) (C) One experimental trace. Motor torque (C, Upper;
gray points) is measured before stall (t< 0), then again immediately upon
release (t> 0). The output of the step detection algorithm (black line) is
used to determine stator stoichiometry (C, Lower). N., number. (D) The
experimental assay shown in the torque speed plane, where stators may
associate during 5-min motor stall, subsequently dissociating back to steady-
state occupancy after stall (points in red not directly observed).

BFM mechanosensitity, dynamically remodeling stator stoi-
chiometry against changes in external resistance to rotation.

Results
Torque Measurement and Load Manipulation. A nonswitching
strain of E. coli lacking flagellar filaments and containing an
endogenously biotinylated hook (27) is used for all experiments.
Streptavidin-coated superparamagnetic beads are attached to
the hook of cells immobilized on a coverslip, and the rotation
of the beads is observed via wide-field holographic microscopy
(28) (Fig. 1B). Tracking the position of the bead in time, we
calculate the velocity and torque, as described in Materials and
Methods. Data are acquired for motors driving five different vis-
cous loads, which are obtained by using beads of three different
diameters and two buffer solutions of different viscosity, as indi-
cated in Table S1 (see SI Materials and Methods for details). Two
permanent magnets are mounted, as shown in Fig. 1B. The mag-
nets are attached to a motorized vertical translation stage which
controls the distance between the magnets and the sample, and
thus the magnitude of the magnetic field at the sample plane.
Both the BFM and the magnetic field exert a torque on the mag-
netic bead. For sufficiently large magnetic fields, the bead, and
thus the motor, remain stalled in an equilibrium angular position,
where the magnetic torque and the motor torque cancel (29).

For a given bead size, the steady-state rotation of individual
motors is measured under a negligible magnetic field for 50–
300 s before manipulation. The magnets are then lowered until
the magnetic torque stalls the motor rotation, and the motor is

held at stall for 300 s. The magnets are then raised to the original
height; the load is returned to that supplied by the bead in its vis-
cous environment; and the rotation of the motor is recorded for
at least another 5 min. Each movement of the magnets occurs
within 3 s. The load felt by the BFM is therefore quickly and
dynamically manipulated twice during the measurement of an
individual motor; an exemplification of this procedure is shown
in the torque–speed plane in Fig. 1D. The torque of individual
motors is measured first at steady state before stall and then
again immediately after stall. An example torque trace for the
viscous load γ500 is shown in Fig. 1 C, Upper (see also Fig. S1
for a collection of individual traces at different viscous loads).
An increase in torque during stall is evident, followed by a step-
wise relaxation to a torque value close to the original steady-
state value.

Viscous Load Dependency of Stator Assembly Dynamics. Under the
assumption that torque traces represent noisy constant signals
demarcated by discrete discontinuities due to stator association
or dissociation, we use a recently developed step-detection algo-
rithm (30, 31) to fit the individual torque traces. By using this fit,
a developed algorithm (Materials and Methods and SI Materials
and Methods) is used to calculate stator stoichiometry, extracting
stator number as a function of time, N (t), for each individual
trace. Contrary to previous works, this algorithm determines sta-
tor stoichiometry based upon the discrete discontinuities of the
torque traces, not upon the absolute value of the torque; given
the broad distributions of single-stator torque values (Fig. 2A),
this approach greatly reduces the error in stator stoichiometry
estimation. Simulations (Fig. S2) suggest that, given the aver-
age noise in our torque measurements, the algorithms used here
reconstructs the stator stoichiometry with an accuracy of 1.6 sta-
tor units and that the shortest states in stator stoichiometry,
which can be reliably resolved, last 3.5 s.

In Fig. 2, we show distributions and average time courses of
the number of stator units N (t) in multiple repeats of the proce-
dure illustrated in Fig. 1. From the change in torque produced by
stator association and dissociation events, we quantify the distri-
bution of torque produced by a single-stator unit (Fig. 2A). This
analysis shows that the torque generated by a single-stator unit
increases with increasing viscous load (and decreasing speed),
matching theoretical models of stator behavior (12, 32). This
finding is in agreement with previous results based on sodium-
driven PomAB stator units (33), confirming that MotAB stator
units behave in a similar manner. Additionally, at steady state, we
observe that the average stator occupancy increases with increas-
ing applied viscous load (Fig. 2B and Fig. S3); this dependency is
the fingerprint of stator mechanosensitivity.

In Fig. 2C, we show for each viscous load the average (col-
ored line) and SD (shaded region) of the number of stator units
N (t) obtained from different motors, before and after stall. For
all of the viscous loads except for the highest (γ1300), the aver-
age stator number increases during stall. This is quantified in
Fig. 2D: Stalling a viscous load γ1300 for 300 s does not yield
a relevant change in stator number (−0.3 ± 1.1), while for the
other viscous loads, mechanosensing causes the recruitment of
additional stator units during stall (1.0± 1.3 for γ500g , 1.7± 1.1
for γ500, 2.0 ± 1.4 for γ300g , and 2.3 ± 1.8 for γ300). After stall,
as visible in Fig. 2C, N (t) decays back to the prestall, steady-
state value within ∼ 200− 300 s. This implies that, on average,
for all of the viscous loads except for the largest, additional
stator units bind and engage with the BFM during the 300 s
the motor is stalled. Within minutes after the magnetic field is
removed and rotation resumed under the original viscous load,
stator units dissociate, and their average number returns to the
previous steady-state value, which depends on the viscous load
experienced during rotation. This behavior is not observed at the
highest viscous load γ1300, which shows, on average, the same
torque after stall as before, indicating that no statistically rele-
vant change in stator number occurs during stall for this high
viscous load.
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Fig. 2. Stator stoichiometry before and after stall. (A and B) Kernel density estimates (KDEs) of the single-stator torque contribution and the steady-state
stoichiometry, respectively, as a function of external viscous load. (C) Temporal evolution of stator stoichiometry of motors driving the different viscous
loads (color-coded as in A, B, D, and E). Steady-state rotation of the viscous load corresponds to time t< 0. The motor is then stalled by the magnetic field
for a period of 300 s (indicated by a break in the x axis). At t = 0, the motor is released from stall. The thick color-coded line and the colored region are
the average and SD of multiple motors. The horizontal gray dashed line indicates the average number of stator units measured for t< 0 at steady state.
The dark dashed line is the fit obtained from Eq. 3 for t> 0. NSS and tc in the bottom image indicate the parameters extracted by the exponential fit using
Eq. 3. (D) KDE of the number of stator units recruited during stall as a function of external viscous load. (E) Steady-state stoichiometry, Nss, as a function of
the characteristic relaxation time, tc. For comparison, gray lines show the predictions of models, where the variation in KD is due entirely to kon (dashed),
entirely to koff (solid), or split equally between kon and koff (dotted). Number of motors analyzed was 24 for γ300, 28 for γ300g, 40 for γ500, 30 for γ500g, and
20 for γ1300.

Modeling Stator Assembly Dynamics. To determine the stator
binding and unbinding rates, a model of stator assembly is
required. The simplest model of stator assembly kinetics, pre-
viously used implicitly (10, 34), could be written as a Hill–
Langmuir adsorption model (35). This model describes the rotor
as surrounded by Nmax independent and noninteracting binding
sites. A diffusing stator unit can bind to an empty site with a rate
constant kon , while a bound stator unit can disengage with a rate
constant koff . The resulting average stator occupancy N (t) fol-
lows the dynamics

dN

dt
= kon(Nmax −N )− koff N . [1]

Here, the concentration of unbound stator units is considered
constant and unaffected by the binding and unbinding events. At
steady state, dN /dt = 0, and the steady-state stator occupancy,
Nss , is determined by

Nss =
Nmax

1 +KD
. [2]

where KD = koff /kon is the dissociation constant. Under steady-
state conditions, previous observations of stator turnover (10)
can be explained by the reestablishment of the steady-state num-
ber of stator units against fluctuations. This model is analogous
to reversible random sequential adsorption (RSA) models (36,
37); in this case, the discrete lattice takes the form of a circle at
the periphery of the rotor, and each unit occupies one lattice site.

In line with published experiments demonstrating stator
mechanosensing (17, 18), the viscous load-dependent distribu-
tions of N (t) that we measure under steady-state conditions, Nss ,
shown in Fig. 2B, show that KD decreases with increasing vis-
cous load. Rapidly stalling a motor is equivalent to switching its
viscous load to infinite (γ → ∞) and has the effect of increas-
ing Nss . Accordingly, in our experiments, except for the viscous
load γ1300, we observe a clear increase in the number of stator
units after stall, indicating stator assembly upon an increase in

12954 | www.pnas.org/cgi/doi/10.1073/pnas.1716002114 Nord et al.
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applied load. A load-dependent KD indicates a load dependence
in either or both of kon and koff .

To investigate this further, we analyze the relaxation traces
by comparing them with the analytical solution of Eq. 1, which
predicts an exponential decay toward the steady-state occu-
pancy Nss ,

N (t) = Nss + (No −Nss)e
−(kon+koff )t , [3]

where No is the observed stator occupancy after the stall (t =
0). The experimental mean traces for N (t) after stall, shown in
Fig. 2C, are well fit by a single exponential (dashed lines); this
simple model of stator binding kinetics is thus compelling, and
it allows the estimation of the binding and unbinding rates from
the experimental traces using Eq. 1. Defining tc = 1/(kon + koff )
as the fitted decay time in figure Fig. 2C, in combination with Eq.
2, we find

kon =
Nss

tcNmax
, [4]

koff =
Nmax −Nss

tcNmax
. [5]

Fig. 2E plots experimental fits for Nss and tc against each other
(circles) and compares predictions of models where the variation
in KD is due entirely to kon (dashed line), entirely to koff (solid
line), or split equally between kon and koff (dotted line). Fig. 3A
shows kon and koff from Eqs. 4 and 5 vs. viscous load. It is evi-
dent that the differences in relaxation after stall are mainly due
to a change in koff with viscous load, while kon is relatively inde-
pendent of load. For the highest viscous load γ1300, we find that
N does not change during stall and the exponential relaxation is
absent (Fig. 2C), so the rates cannot be extracted. This suggests
that KD(γ1300) ∼ KD(γ = ∞), i.e., that the BFM mechanosen-
sitivity saturates for high loads γ ≥ γ1300, and that there is no
dynamical difference between rotating such a high viscous load
and being stalled. To quantify the rates at γ1300, given the rel-
atively constant value of kon for the smaller viscous loads, we
make the assumption that kon(γ1300) is equal to the average of
kon for the smaller loads. From the value of Nss(γ1300), we can
then obtain koff (γ1300) from Eq. 2.

While the proposed Hill–Langmuir adsorption model is suf-
ficient to explain and fit our experimental data, we note that
there is no evidence for fixed binding sites at the periphery of
the rotor in E. coli. Therefore, we also explore a more general-
ized reversible RSA model which resembles the classic “car park-
ing problem” (36, 37), where the stator binding is not restricted
to a discrete number of binding sites, but can occur continu-
ously at any angular position on the ring (Fig. S4 A and B). In
this model, a new stator unit cannot bind unless enough contigu-
ous space is available in the ring (overlap is not allowed), which
depends on the positions of the units currently bound. Hence,
memory effects due to excluded volume arise, affecting the sta-
tor occupancy dynamics, N (t). The details of this model are fur-
ther discussed in SI Materials and Methods. Numerical simula-
tions of the model (Materials and Methods and SI Materials and
Methods) exhibit similar relaxation dynamics to the experiments
and the Hill–Langmuir model, and we conclude that both mod-
els can adequately fit our experimental observations. Strikingly,
the extracted rates from fits of the experimental data are very
similar to those of the Hill–Langmuir model (Fig. S4C), confirm-
ing the viscous load-independent binding probability combined
with an unbinding probability that decreases for increasing vis-
cous loads.

Discussion
In this study, we directly probe BFM mechanosensing behavior,
providing an extensive quantification of stator stoichiometry as a
function of external viscous load, both at steady state and imme-
diately after a controlled change of load. By fitting measured sta-
tor kinetics to a reversible RSA model, we provide a measure-

Fig. 3. Stator kinetics. (A and B) The binding and unbinding rates of the
stator units as a function of external viscous load on the motor (A) and
single-stator force (B). All rates are calculated by fitting Eq. 3 to traces in Fig.
2C, with the exception of points outlined in cyan (SI Materials and Methods).
(C and D) Dissociation constant, KD, and lifetime of an individual stator in
the motor complex, respectively, as a function of the average local force
applied by a single stator to the rotor (and by symmetry to the PG layer).
Points and error bars give averages and standard deviations, respectively.

ment of stator association and dissociation rates as a function of
external viscous load.

Stator unit mechanosensitivity must arise from a load depen-
dence in one or both of the stator association and dissociation
rates. It has been suggested that force upon the PG may cause
structural changes in stator binding sites which may affect sta-
tor unit association rate (17). Additionally, crystal structures
of MotBC of Salmonella and PomBC of Vibrio suggest that
a drastic conformational change in the N-terminal portion of
MotBC /PomBC is required for the stator to bind to the PG
(38, 39). Mutational studies suggest that this conformational
change may be triggered by an interaction between the cytoplas-
mic domain of MotA and FliG (40), a process potentially com-
plicated by the rotation of the rotor. Thus, one might imagine
that the rate of stator unit association could be dependent upon
the speed of the motor. However, we find that the rate of stator
association is independent of viscous load, while the rate of sta-
tor dissociation is load-dependent, and it is in fact this property
that begets mechanosensitivity in the BFM.

Fig. 2B shows our measurements of Nss as a function of viscous
load, confirming previous results (17, 18) that steady-state stator
number is proportional to viscous load. The saturation curve of
this relationship (Fig. S3) is consistent with previous measure-
ments of motor fluorescence as a function of viscous load (where
the signal of fluorescent fusion stator units was a proxy for sta-
tor number) (18). While this work provides evidence for a load-
dependent KD , it is unable to determine whether this depen-
dence is governed by kon , koff , or both. A previous measurement
of koff (10), performed on immobilized cells where motors were

Nord et al. PNAS | December 5, 2017 | vol. 114 | no. 49 | 12955
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presumably stalled via the attachment of flagella to the cover-
slip, reported a value two orders of magnitude faster than our
measured koff (γ1300). However, this study was performed with
stator units fused to a fluorescent protein, which can cause dif-
ferent behaviors from their wild-type counterparts (10, 41). The
present study reports on the dynamics of wild-type stator units in
otherwise unperturbed motors.

Interestingly, our quantification of the viscous load depen-
dence of stator association and dissociation rates has an impor-
tant consequence for the molecular mechanism responsible for
stator mechanosensitivity in the BFM. We see that an increase in
external viscous load translates into a higher torque exerted by
each stator unit on the rotor (Fig. 2A). Considering the average
single-unit torque and the radius of the rotor [23 nm (42)], we
quantify the mean local force applied by each single unit onto
the rotor (found in the range of few piconewtons; Fig. 3B). We
note that, by reaction, this is also the force with which the unit
simultaneously pulls upon and stretches its connection to the
PG. In Fig. 3 C and D, we show the measured dissociation con-
stant KD and lifetime (1/koff ) of the stator units as a function
of this force. This counterintuitive relationship is the canonical
fingerprint of catch-bond behavior (24–26). While the lifetime of
a conventional slip bond decreases if tension is applied across it,
a catch bond produces a maximum of the lifetime at a nonzero
force. A hook under tension and a children’s finger trap are two
macroscopic analogies of this nontrivial molecular mechanism.
We therefore conclude that the kinetic rates we measure suggest
the existence of a catch bond in the anchoring region of the stator
on the PG. We predict that if a force greater than the maximum
force generated by a single unit could be applied to the anchor of
the stator unit to the PG, the catch-bond behavior will eventually
transform into slip-bond behavior, as observed in other biologi-
cal catch bonds (25, 43).

The interface between the PG and the MotB PG-binding
(PGB) domain, located at the C-terminal of MotB (MotBC ),
is where the force can have an impact on the bonds relevant
for the lifetime of the stator unit around the rotor. While our
data indicate a catch-bond mechanism, they cannot discrimi-
nate any structural detail. However, interestingly, it has been
reported that the putative key PGB residues in the structure of
the PGB dimer of MotB are buried and not readily accessible
(44) and that a substantial structural flexibility of the domain
is considered necessary to mask and unmask them (45). The N-
terminal portion of MotB must perform a large conformational
extension to reach the PG (38, 39). Recently, a conformational
change upon binding has also been hypothesized in the PG-
associated C-terminal of the closely related Outer Membrane
protein OmpA (46). These facts suggest a possible catch-bond
mechanism in which tension across the PG–MotBC interface can
promote either conformational rearrangements or a positional
shift of the PGB within the PGB pocket which lead to further
exposure of binding residues to the PG, increasing the strength of
the bond and the lifetime of the stator unit within the BFM com-
plex (as sketched in Fig. 4). While multiple multidimensional and
one-dimensional phenomenological models exist to explain catch
bonds, further knowledge of the structure or multidimensional
energy landscape of the unbinding pathway will be required to
extract physically relevant parameters describing the MotBC –PG
interaction (47).

As single-molecule spectroscopy techniques continue to
develop, the prevalence of experimental data demonstrating bio-
logical catch bonds grows. Catch bonds have already been shown
to play an important role for two other molecular motors, myosin
(48) and dynein (49, 50). Here, we suggest that the mechanosen-
sitivity of the BFM may also be explained by a catch-bond mech-
anism within the stator. This feature potentially allows the cell
to replace damaged stator units, adapt to the prevailing envi-
ronmental viscosity, and avoid wasting energy during flagellar
growth, and may also play a role in behaviors which require
surface-sensing, such as swarming motility and biofilm forma-
tion. The wild-type E. coli motor is bidirectional, and previous

Fig. 4. Cartoon of a proposed catch-bond mechanism. The average force
produced by the stator upon the rotor (blue arrow) stretches the stator
anchoring point at the PG, inducing either conformational changes or a
positional shift of the PGB within the PGB pocket that increase the bond
strength and lifetime. The average force is higher for a larger viscous load
(Right), with respect to a low viscous load (Left), as shown in Fig. 2A,
and consistent with previously published torque–speed curves. IM, inner
membrane.

results show that stator assembly is dependent upon load for
both counterclockwise- and clockwise-locked motors (17, 18).
While catch bonds are often directional or asymmetrically direc-
tional (51), the catch-bond behavior of the stator may prove to
be symmetrically bidirectional. Finally, FliL is a membrane pro-
tein which associates with the stator and rotor, although its exact
function is still poorly defined (17, 52–54). The potential role of
FliL with respect to the stator’s mechanosensitivity remains to be
discovered.

Materials and Methods
Extended materials and methods are included in SI Materials and Methods.

Bacteria and Experimental Configuration. We use E. coli strain MTB32, which
has a biotinylated hook (27), and we additionally genetically delete CheY.
Frozen aliquots of cells are grown in Terrific Broth at 33 ◦C for 5 h, shaking
at 200 rpm, to a final OD600 of 0.5–0.6. Cells are immobilized to a poly-L-
lysine–coated coverslip in custom-made flow slides. Streptavidin superpara-
magnetic beads are allowed to spontaneously attach to the biotinylated
hooks. Experiments are performed in motility buffer at 22 ◦C.

Rotating beads are imaged onto a CMOS camera at 1,000 Hz and localized
by using cross-correlation analysis (28, 55). An ellipse is fit to the bead posi-
tions to yield the angular positions. An example trajectory is shown in Fig.
1 B, Inset. Speed traces are median-filtered by using a window of 0.5 s. Two
magnets are mounted onto a linear motor above the sample plane (56).

Motor Torque Calculation and Fitting. The torque of the BFM is calculated as
τmotor = γω, where γ is the rotational viscous drag coefficient of the bead
(57), and ω is the measured rotational velocity. Torque traces are assumed
to be noisy piecewise constant signals, and a minimization of the L1-Potts
functional is used to fit both the prestall and poststall motor torque traces.
This is done via the PottsLab toolbox (Version 0.42) in Matlab (31, 58). An
example torque trace and its fit is shown in Fig. 1C.

12956 | www.pnas.org/cgi/doi/10.1073/pnas.1716002114 Nord et al.
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Stator Stoichiometry Calculation and Analysis. Stator stoichiometry is deter-
mined by preserving the discrete discontinuities from the step detection
algorithm (see SI Materials and Methods for details and a test of both the
step detection and stator stoichiometry determination algorithms).

Numerical Simulations. In addition to the Hill–Langmuir adsorption model
described by Eq. 3, we also consider a generalized reversible RSA model which
incorporates a continuous binding ring around the rotor. As this model has no
analytical solution, we determine stator binding and unbinding rates using
a genetic algorithm (differential evolution) to match simulated stator stoi-
chiometry time trajectories to the average of the experimental trajectories.
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