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Delsarte's equation is investigated for Caputo's differential operators. Solvability of the resulting fractional hyperbolic Cauchy problem is achieved in the sense of distributions. A regularity result shows that the solution may be a function of time. Rigorous Delsarte's representations are established. The symmetry between the fractional operators acting on space and time, induced by Delsarte's equation, opens the door to new type of fractional PDE's.

Introduction

Let B be a linear operator acting on a space X of complex functions of one independent variable. In [START_REF] Delsarte | Sur une extension de la formule de taylor[END_REF], J. Delsarte introduced an interesting representation of the solution to the Cauchy problem

B t u = B x u, u |t=0 = f ∈ X. (1.1)
Here, u : [0, ∞[×[0, ∞[→ C, (t, x) → u(t, x), and B x denotes the operator acting on a function u(t, •) : x → u(t, x). The equation in (1.1) is called Delsarte's equation for the operator B.

In effect, let us assume that the operator B has a continuous point spectrum, namely that there exists φ : [0, ∞[×C → C such that Bφ(•, λ) = λφ(•, λ), ∀λ ∈ C.

(1.2) Also, assume that φ(0, λ) = 1 for each λ ∈ C and φ(t, •) is analytic on C, for t ≥ 0. Writing the series expansion of φ(t, •) under the form

φ(t, λ) = k≥0 φ k (t)λ k , (1.3) 
J. Delsarte gave the following (formal) representation of the solution u to (1.1)

u(t, x) = k≥0 φ k (t)B k x f (x).
(1.4)

We refer to Subsection 4.3 for more details.

In the particular case where B t = d dt , Delsarte's equation is the transport equation. Moreover

φ(t, λ) = e λt = k≥0 t k k! λ k , φ k (t) = t k k! ,
and Delsarte's representation (1.4) takes the form

u(t, x) = k≥0 t k k! f (k) (x) = f (t + x).
That explain why the operator

T t : f → k≥0 φ k (t)B k x f
is called a generalized translation operator. We have to mention that various operators can play the role of B in the formalism of Delsarte. For instance in [START_REF] Chebli | Opérateurs de translation généralisée et semi-groupes de convolution[END_REF], B is a second order differential operator; and in [START_REF] Levitan | The application of generalized displacement operators to linear differential equations of the second order[END_REF], B is a self-adjoint operator on a Hilbert space. In these studies, the generalized translation operator is said to be continuous. Discrete versions have been developed by Löfström and Peetre [START_REF] Löfström | Approximation theorems connected with generalized translations[END_REF]. There, the operator B have a countable set of eigenmodes.

In this paper, we consider the continuous generalized translation operator where B t := c D α t is the Caputo operator. Then one has φ(t, λ) = E α (λt α ) := k≥0 t αk Γ(αk + 1) λ k , φ k (t) = t αk Γ(αk + 1) , and Delsarte's equation reads c D α t u = c D α x u, u |t=0 = f ∈ X.

(1.5)

The goal of that paper is to give an existence and uniqueness result for (1.5) (Theorem 3.2), and also a precise meaning to the formal represention (1.4) when B = c D α . The latter issue is addressed in Subsection 4.3.

Let us emphasize that we consider Caputo's derivative as an operator acting on functions of the space variable. It seems that this approach is new. The symmetry we introduce between spacial and time fractional derivatives opens the door to new type of fractional PDE's otained by replacing ∂ x j by c D α x j . For instance, the one dimensional heat operator

∂ t -∂ xx is replaced by ∂ α t -∂ α x 2 ,
where ∂ α x := c D α x . That will be the subject of subsequent works. We may find studies where the negative of some fractional derivative is considered as a spatial operator. In [START_REF] Jacob | The Caputo derivative, Feller semigroups, and the fractional power of the first order derivative on C ∞ (R + 0 )[END_REF], spacial Caputo's operator is considered but the minus sign destroys the symmetry between the domain of spacial and time operators. In [START_REF] Bazhlekova | Subordination principle for space-time fractional evolution equations and some applications[END_REF], the symmetry is weaker since the spacial operator is the negative of a Riemann-Liouville derivative and the time operator is a Caputo's operator.

We shall call (1.5) the fractional Delsarte equation. From a spectral point of view, it is an hyperbolic equation. Indeed, let us consider the abstract Cauchy problem

c D α t u = Au, u |t=0 = f ∈ X, (1.6) 
where A : D(A) ⊆ X → X is an unbounded linear operator. In the standard case (i.e. α = 1), the critical angle for the resolvent of A is π 2 . In the fractional case (0 < α < 1), the critical angle for the resolvent is π 2 α. Roughly speaking, if the angle of the resolvent of A is larger than π 2 α, Equation (1.6) is called parabolic. If it is equal to π 2 α then (1.6) is said to be hyperbolic. This is precisely the angle we get in our framework where A := c D α

x . Besides, let us emphasize that, for 0 < α < 1, the angle of the resolvent of A := -i∆ is not critical. Hence, the equation c D α t u = -i∆u is not hyperbolic, but rather parabolic. If X = L 2 (Ω) then it is dissipative and possesses a (limited) smoothing effect: see [START_REF] Emamirad | Time fractional linear problems on L 2 (R d )[END_REF]. Therefore, this equation should not be called a time fractional equation Schrödinger : see [START_REF] Emamirad | Time-fractional schrödinger equation[END_REF].

Therefore, the methods of solving time fractional parabolic problems (resolvent familes, complex contour integrals) do not apply here. Subordination principle is not usefull aswell since c D α seems not to be the α th -power of some operator generating a semi-group.

Our main tool is the Laplace transform of vector valued functions. Besides, due to the hyperbolic type of (1.5) and the "bad" resolvent estimate, we are led to consider time distributional solutions in the sense of Definition 3.1.

The outline is as follows. Caputo's operator is introduced in the forcoming section. The underlying phase space is X = L p (0, T ), where T may be infinite, and p is large enough w.r.t. α. Focusing on the case T = ∞, we compute the resolvent set in Corollary 2.9 and give an optimal resolvent estimate in Proposition 2.7. In Section 3, Theorem 3.2 is devoted to the solvability of the fractional Delsarte equation (1.5). In Corollary 3.3, we give a L p -regularity result in time. Finally, Section 4 is concerned with representations of the solutions, in particular to Delsarte's representation.

2. Caputo's operator on L p spaces 2.1. Definition and basic properties. Let T ∈ (0, ∞], p ∈ [1, ∞), α ∈ (0, 1), β ∈ (0, ∞), and X T := L p (0, T ). Denoting by g β the function of L 1 loc ([0, ∞)) defined for a.e. t > 0 by

g β (t) = 1 Γ(β) t β-1 , (2.1)
the domain of the Caputo operator is a follows.

Definition 2.1. We denote by D(A α,T ) the space of functions u in L p (0, T ) such that (i) there exists u 0 ∈ C such that

d dx g 1-α * (u -u 0 ) ∈ L p (0, T );
(ii) the function g 1-α * (u -u 0 ) evaluated at x = 0 vanishes, i.e.

g 1-α * (u -u 0 ) (0) = 0.
Let us notice that, if T is finite then Young inequality implies that

D(A α,T ) = u ∈ X T | ∃ u 0 ∈ C, g 1-α * (u -u 0 ) ∈ 0 W 1,p (0, T ) , (2.2) 
where 0 W 1,p (0, T ) denotes the subspace of W 1,p (0, T ) whose elements vanish at x = 0. That representation is not true when T = ∞, since g 1-α * (u -u 0 ) does not always belong to L p (0, ∞) when u lies in D(A α,∞ ). However, its restriction for any finite T belongs to

0 W p (0, T ). Proposition 2.1. Let T ∈ (0, ∞], p ∈ [ 1 α , ∞) and u ∈ D(A α,T ). Then there exists a unique u 0 ∈ C such that d dx {g 1-α * (u -u 0 )} ∈ L p (0, T ). Proof. Assume that d dx g 1-α * (u -u 1 ) ∈ L p (0, T ),
for another u 1 ∈ C. Let τ ∈ (0, T ). Then

g 1-α * (u 0 -u 1 ) = g 1-α * (u -u 1 ) -g 1-α * (u -u 0 ) belongs to W 1,p (0, τ ). Thus d dx g 1-α * (u 0 -u 1 ) = (u 0 -u 1 )g 1-α ∈ L p (0, τ ).
However, g 1-α does not belong to L p (0, τ ) since p ≥ 1/α. Hence, u 0 = u 1 .

We are now in position to define Caputo's operators in L p (0, T ).

Definition 2.2. Let T ∈ (0, ∞] and p ∈ [ 1 α , ∞). Then we definie the operator

A α,T : D(A α,T ) ⊂ L p (0, T ) → L p (0, T ), u → d dx g 1-α * (u -u 0 ) , (2.3) 
where u 0 is the unique complex number given by Proposition 2.1. For each u ∈ D(A α,T ), A α,T u is called the fractional Caputo's derivative of u of order α. Also we denote c D α := A α,T , and, for simplicity, we will sometimes write A α instead of A α,T .

Lemma 2.2. Let α ∈ (0, 1) and p ∈ [ 1 α , ∞). Let also T be finite and u ∈ D(A α,T ). Then

u = u 0 + g α * c D α u in L p (0, T ).
(2.4)

Moreover, if in addition, p > α -1 then u is continuous on [0, T ] and u 0 = u(0).

Proof. Starting from the definition

d dx g 1-α * (u -u 0 ) = c D α u in L p (0, T ),
convoluting by g 1 , and using g 1-α * (u -u 0 )(0) = 0, we get

g 1-α * (u -u 0 ) = g 1 * c D α u in W 1,p (0, T ).
(2.5) Hence (2.4) follows. By [HL28, Theorem 12], g α * c D α u is continuous on [0, T ] if p > α -1 ; thus g α * c D α u(0) = 0. Hence (2.4) yields the continuity of u and u 0 = u(0).

In view of Lemma 2.2, we will set u(0) := u 0 for all u ∈ D(A α,T ) and T ∈ (0, ∞]. The following result is a consequence of Lemma 2.2.

Corollary 2.3. Let T ∈ (0, ∞] and p ∈ [ 1 α , ∞).
Then A α is a closed operator on L p (0, T ). Proof. When T is finite, the assertion follows easily from (2.4). On the other hand, for each

T ∈ (0, ∞), the restriction to [0, T ], of any element of D(A α,∞ ) lies in D(A α,T ). Hence, if D(A α,∞ ) u n → u, A α,∞ u n → f in L p (0, ∞), then g 1-α * (u -u 0 )(0) = 0 and A α,T u = f in L p (0, T ). Since f belongs to L p (0, ∞), we infer that u ∈ D(A α,∞ ) and A α,∞ u = f . Proposition 2.4. Let T ∈ (0, ∞] and p ∈ ( 1 α , ∞). Then D(A α ) is dense in L p (0, T ). Proof. It is enough to show that D(0, T ) ⊂ D(A α ). Since that embbeding is clear for finite T , we will assume that T = ∞. Let ϕ ∈ D(0, ∞) and M ∈ R be such that ϕ = 0 on [M, ∞). Since ϕ is smooth, one has g 1-α * ϕ -ϕ(0) (0) = 0 and d dx g 1-α * ϕ -ϕ(0) = g 1-α * ϕ . (2.6)
We claim that g 1-α * ϕ ∈ L p (0, ∞). Indeed, this function lies in L p (0, M + 1). Hence, it remains to prove that g

1-α * ϕ ∈ L p (M + 1, ∞). For each x ≥ M + 1, g 1-α * ϕ (x) = x x-M g 1-α (y)ϕ (x -y) dy. Let g := g 1-α on [1, ∞) 0 on (-∞, 1) . Since x ≥ M + 1, g = g 1-α on [x -M, x]; hence |g 1-α * ϕ (x)| ≤ R g(y)|ϕ (x -y)| dy = g * R |ϕ | (x).
Since αp > 1, g lies in L p (R). Hence, by Young inequality,

g * R |ϕ | L p (R) ≤ g L p (R) ϕ L 1 (R) .
Therefore

g 1-α * ϕ ∈ L p (M + 1, ∞). Hence ϕ ∈ D(A α,∞ ), which completes the proof. Proposition 2.5. Let T be finite, p ∈ [ 1 α , ∞) and f ∈ L p (0, T ). Then g α * f ∈ D(A α,T ), (g α * f )(0) = 0 and c D α (g α * f ) = f in L p (0, T ). Proof. One has g 1-α * g α * f = g 1 * f ∈ 0 W 1,p (0, T ). Hence, in view of (2.2), g α * f lies in D(A α,T ) with u 0 = 0. Also Definition 2.2 yields c D α (g α * f ) = f . 2.2. The resolvent of A α,∞ . Corollary 2.9 states that the resolvante set of A α,∞ is the sector S α := λ ∈ C \ {0} | | arg λ| < πα 2 , (2.7) 
where the argument function is defined on C \ {0} with values in [-π, π). A resolvent estimate is given in Proposition 2.7.

In order to prove this result, we need to consider finite intervalls [0, T ] as well. Let α ∈ (0, 1), p ∈ [ 1 α , ∞) and T ∈ (0, ∞]. For each λ ∈ C and f ∈ X T , we consider the resolvent equation:

Find u ∈ D(A α,T ) such that λu -c D α u = f in L p (0, T ). (2.8) Using the well-known notations, for β ∈ [0, ∞), let E α,β : C → C, z → k≥0 z k Γ(αk + β) ,
be the generalized Mittag-Leffler function and E α := E α,1 . For each λ ∈ C, we define

e α : [0, ∞) → C, x → E α (λx α ).
(2.9)

For λ ∈ C \ {0}, let n : [0, ∞) → C, x → e α (x) λ = k≥1 λ k-1 g αk+1 (x), (2.10)
and denote by n the first order derivative of n.

The following result describes the solution set of the resolvent equation (2.8) for finite T .

Proposition 2.6. Let T be finite, p ∈ [ 1 α , ∞), λ ∈ C, and f ∈ L p (0, T ).

(i) For each u 0 ∈ C, the function u := u 0 e α -f * n lies in D(A α,T ), u(0) = u 0 , and u solves (2.8).

(ii) Conversely, if u ∈ D(A α,T ) solves (2.8) then u = u(0)e α -f * n in L p (0, T ).
The above results are well-known; however we will give simple proofs that do not rely on Laplace transforms nor on Wright functions but rather on basic properties of series. Compare with [Die10, Theorem 7.2] or [Zho14, Lemma 4.21].

Proof of Proposition 2.6. Let us start to show that, for p ≥ α -1 , the function u := f * n belongs to D(A α,T ), satisfies u(0) = 0, and A α,T u = λu + f . In effect, we have

n = k≥1 λ k-1 g αk in L 1 (0, T ). Thus f * N k=1 λ k-1 g αk ---→ N →∞ f * n = u in L 1 (0, T ).
(2.11)

Then, on one hand,

g α * f * N k=1 λ k g αk ---→ N →∞ λg α * u.
On the other hand,

g α * f * N k=1 λ k g αk = f * N k=1 λ k g α(k+1) = f * N +1 k=1 λ k-1 g αk -f * g α ---→ N →∞ u -f * g α , with (2.11). Hence λg α * u = u -f * g α ; that is to say u = g α * (λu + f ).
Using Proposition 2.5 with λu + f instead of f , we derive that the function f * n , denoted by u, lies in D(A α ), satisfies u(0) = 0 and c D α u = λu + f.

(2.12) Then we prove (i) by using (2.12) and c D α e α = λe α . Let us prove (ii). Lemma 2.2 yields that any u ∈ D(A α,T ) satisfying c D α u = λu, is equal to u(0)e α : see for instance [ER17, Prop. 5.1]. Then we conclude in a standard way with (2.12).

Let us notice that if T is finite then e α is in the kernel of λ -A α for every λ ∈ C. Hence the resolvante of A α is empty. This is consistent with the case α = 1 since

D(A 1,T ) = W 1,p (0, T ), A 1,T = d dx .
In fact the domain of A α,T is specially designed for the case T = ∞, that we are in position to consider now.

Proposition 2.7. Let α ∈ (0, 1), p ∈ ( 1 α , ∞), λ ∈ S α , f ∈ L p (0, ∞) and 
u 0 := λ 1 α -1 ∞ 0 f (y) exp -λ 1 α y dy. (2.13)
Then the function u := u 0 e α -f * n belongs to L p (0, ∞) and

u p ≤ C f p |λ| -1 |λ| 1 α Re(λ 1 α ) -1 + |λ| 1 αp Re(λ 1 α ) -1 p + 1 , (2.14)
where the constant C is independent of u, λ and f . Also p denotes the conjugate exponent of p.

Remark 2.1. Under the assumptions and notation of Proposition 2.7, let us assume in addition that λ > 0. Then (2.14) reads

u p ≤ 3C λ f p .
(2.15)

Since our computations lead to 3C > 1, such a resolvent estimate is not enough to obtain an existence result for the following Cauchy problem, for all time T .

       Find u ∈ C 1 (0, T ); L p (0, ∞) ∩ C [0, T ]; D(A α,∞ ) such that d dt u = A α,∞ u on (0, T ) u(0) = u 0 ∈ D(A α,∞ ).
See Proof of Proposition 2.7. Since λ ∈ S α , one has Re(λ 1 α ) > 0, thus u 0 is a well defined complex number, and by Hölder inequality

|u 0 | ≤ C f p |λ| 1 α -1 Re(λ 1 α ) -1 p .
(2.16)

According to [Pod99, Theorem 1.3, p32], we have the following asymptotic expansions for λ, z ∈ S α and |z|, x → ∞.

e α (x) = 1 α exp λ 1 α x + R 0 (λx α ), R 0 (z) = O 1 z (2.17) n (x) = 1 λx E α,0 (λx α ) = 1 α λ 1 α -1 exp λ 1 α x + R 1 (λx α ) λx , R 1 (z) = O 1 z .
(2.18)

Plugging these expansions into u, we get, for all x ∈ (0, ∞),

u(x) = λ 1 α -1 α ∞ x f (y) exp λ 1 α (x -y) dy + u 0 R 0 (λx α ) -f * R 1 (λx α ) λx . (2.19)
Let us estimate the three terms in the right hand side of (2.19), starting with the first one. Extending f by zero on [-∞, 0] and exp by zero on [0, ∞], and denoting these extensions by f and exp, respectively, one gets

∞ x f (y) exp λ 1 α (x -y) dy = R f (y) exp λ 1 α (x -y) dy = f * R exp(λ 1 α x).
Then, by Young inequality,

f * R exp(λ 1 α •) p ≤ f p Re λ 1 α -1 . so what the first term in (2.19) is bounded in L p (0, ∞), by 1 α f p |λ| 1 α -1 Re λ 1 α -1 .
Regarding the second term, for x ∈ (0, |λ| -1 α ), one has, for some constant C independent of x and λ,

|R 0 (λx α )| = E α (λx α ) - 1 α exp λ 1 α x ≤ C.
On the other hand, if x ≥ |λ| -1 α then (2.17) yields

|R 0 (λx α )| ≤ C |λ|x α . Hence, since αp > 1, ∞ 0 R 0 (λx α ) p dx 1 p ≤ C|λ| -1 αp .
(2.20) Thus, using also (2.16), the second term of (2.19) is bounded by

C f p |λ| 1 αp -1 Re λ 1 α -1 p .
We procced in the same way for estimating the third term. Starting from (2.18), we get

|λ| -1 α 0 R 1 (λx α ) λx ≤ |λ| -1 α 0 |n (x)| + |λ| 1 α -1 α exp Re (λ 1 α x) dx.
Moreover, by considering the analytic expansion of E α,0 , we show that |E α,0 (z)| ≤ C|z| for all |z| ≤ 1. Thus, for each x ∈ (0, |λ| -1 α ),

|n (x)| = E α,0 (λx α ) λx ≤ Cx α-1 . Thus |λ| -1 α 0 R 1 (λx α ) λx ≤ C |λ| . (2.21) Moreover, in view of (2.18), ∞ |λ| -1 α R 1 (λx α ) λx ≤ C |λ| .
By Young inequality, we derive that the third term of (2.19) is bounded by C f p /|λ|. We then conclude that u belongs to L p (0, ∞) and satisfies the resolvent estimate (2.14).

Now we can solve the resolvent equation (2.8) for λ ∈ S α and T = ∞.

Theorem 2.8. Let α ∈ (0, 1), p ∈ ( 1 α , ∞), λ ∈ S α and f ∈ L p (0, ∞). Then these propositions are equivalent.

(i) u ∈ D(A α,∞ ) and λu -c D α u = f in L p (0, ∞).

(ii) u = u 0 e α -f * n where u 0 is given by (2.13).

Proof. Let us show that (ii) implies (i). For, we consider ϕ ∈ D(0, ∞) and

M ∈ R such that the support of ϕ is included in [0, M ]. Let u M := u on [0, M ] 0 on (M, ∞) . (2.22) Then d dx g 1-α * (u -u 0 ) , ϕ D (0,∞),D(0,∞) = -g 1-α * (u M -u 0 ), ϕ = M 0 A α,M u M (x)ϕ(x) dx = λu M -f, ϕ (by Prop. 2.6 (i)) = λu -f, ϕ . Hence d dx g 1-α * (u -u 0 ) = λu -f in D (0, ∞).
Moreover, by Proposition 2.7, u lies in L p (0, ∞), and by Proposition 2.6 (i),

g 1-α * (u - u 0 )(0) = 0. Hence u ∈ D(A α,∞ ) and c D α u = λu -f in L p (0, ∞).
Conversely, let u satisfy the assumption (i). For each positive integer m, let us denote by u m the function defined thru (2.22) with M = m. Proposition 2.6 (ii) gives

u m = u m (0)e α -f * n in L p (0, m), (2.23) 
for each m ≥ 1. According to Proposition 2.6 (i), we have (f * n )(0) = 0. Thus u m (0) = u(0), so that the right hand side of (2.23) is independent of m. Since u m → u in L p (0, ∞), we deduce that u = u(0)e α -f * n . Besides, according to Proposition 2.7, the function u 0 e α -f * n lies in L p (0, ∞). Thus by difference, (u(0) -u 0 )e α ∈ L p (0, ∞). Since λ ∈ S α , we must have, in view of (2.17), u(0) = u 0 ; so that u = u 0 e α -f * n . The proof of the theorem is now completed.

Corollary 2.9. Let α ∈ (0, 1) and p ∈ ( 1 α , ∞). Then the resolvent set of A α,∞ , denoted by ρ(A α,∞ ), is equal to the sector S α , that is

ρ(A α,∞ ) = λ ∈ C \ {0} | | arg λ| < πα 2 ,
Proof. Proposition 2.7 and Theorem 2.8 yield that S α ⊆ ρ(A α,∞ ). Moreover, we claim that each λ ∈ C \ S α belongs to the point spectrum of A α,∞ . Indeed, according to [Pod99, Theorem 1.4], e α given by (2.9), lies in L p (0, ∞), since αp > 1. Moreover, c D α e α = λe α . Hence the claim follows. Since the spectrum is closed, we then obtain ρ(A α,∞ ) = S α .

Remark 2.2. Corollary 2.9 yields that A α,∞ does not generate a C 0 -semigroup on L p (0, ∞). Indeed, by [Paz83, Th. 5.3 and Remark 5.4 p 20], the resolvent set of a C 0 -semigroup with exponential growth contains a complex half plane of the form [Re z > ω]. Moreover, [Paz83, Th. 2.2 p4] states that a C 0 -semigroup has always an exponential growth. Hence the subordination principle (which gives an integral representation of the solution operator of fractional problems in terms of the semigroup, see [START_REF] Bazhlekova | Subordination principle for space-time fractional evolution equations and some applications[END_REF]) can not be implemented in our setting.

2.3.

Resolvent estimate for more regular functions. For |λ| large enough, we may improve (2.14) provided f is more regular.

Proposition 2.10. Let α ∈ (0, 1), p ∈ ( 1 α , ∞), T = ∞, and λ ∈ S α with Re(λ

1 α ) ≥ 1. Let us assume in addition that f belongs to W 1,p (0, ∞). Then (λ -c D α ) -1 f L p (0,∞) ≤ C|λ| -1 f W 1,p (0,∞) ,
where the constant C is independent of λ and f . Proof. Since λ ∈ S α and f ∈ L p (0, ∞), Corollary 2.9 tells us that the resolvent equation (2.8) has a unique solution u. Moreover, by Theorem 2.8, u = u 0 e α -f * n where u 0 is given by (2.13). For ease of reference, we recall that (2.19) reads

u(x) = λ 1 α -1 α ∞ x f (y) exp λ 1 α (x -y) dy + u 0 R 0 (λx α ) -f * R 1 (λx α ) λx , (2.24)
with R 0 and R 1 defined by (2.17) and (2.18).

Let us estimate the fisrt term in the right hand side of (2.24). For, integration by part gives

∞ x f (y) exp λ 1 α (x -y) dy = - ∞ x f (y)λ -1 α exp λ 1 α (x -y) dy -λ -1 α f (x).
Using Re(λ 1 α ) ≥ 1, we derive that the first term of (2.24) is bounded in L p (0, ∞), by C|λ| -1 f p + f p .

Regarding the second term, integration by part in (2.13) gives

u 0 = λ -1 ∞ 0 f (y) exp -λ 1 α y dy + λ -1 f (0). Hence, since W 1,p (0, ∞) is continuously embedded into L ∞ (0, ∞), we get |u 0 | ≤ C|λ| -1 f p + f p .
Using also (2.20), the second term of (2.24) is bounded by

C|λ| -1 f p + f p , since Re λ 1 α ≥ 1 yields |λ| ≥ 1.
The third term is estimated as in the proof of Proposition 2.7, so that

u p = (λ -c D α ) -1 f p ≤ C|λ| -1 f p + f p .

Distributional Delsarte's equations

Our main tools is the Laplace transform of vector valued distributions, for which we refer to [DL92, Chap. XVI] and [START_REF] Amann | Vetor-valued distributions and fourier multipliers[END_REF]. A distribution u ∈ D (R, X), with values into a complex Banach space X is said to be Laplace transformable if there exists some ξ 0 ∈ R such that e -ξ• u lies in S (R, X) for all ξ > ξ 0 , where e -ξ• denotes the real function t → e -ξt . For such u, the Fourier transform F(e -ξ• u) of e -ξ• u appears to be a function if ξ > ξ 0 . The Laplace transform of u is then In order to introduce Caputo's derivative of vector valued distributions, let

Lu : [Re s > ξ 0 ] → X, s → F e -Re s• u (Im s),
D +,0 (R, X) = D +,0 (X) := {u ∈ D (R, X) | supp u ⊆ [0, ∞)}, (3.1)
where supp u stands for the support of u. Let H ∈ L ∞ (R) be the Heaviside function, and for each u 0 ∈ X, denote by H ⊗ u 0 the distribution of D +,0 (R, X) defined by

H ⊗ u 0 , ϕ D (R,X),D(R) = H, ϕ D (R),D(R) u 0 = ∞ 0 ϕ(y) dy u 0 . (3.2)
The definition of Caputo's derivative of distributions relies on the following issue: find a convinient and simple transformation of a function u ∈ H 1 (0, ∞; X) into an element of D +,0 (R, X). The basic idea is to set

u := u on [0, ∞) 0 on (-∞, 0) . and ∞ 0 g 1-α * u(y)ϕ (y) dy = R g 1-α * u(y)ϕ (y) dy = g 1-α * u, ϕ D (R,C),D(R) . Thus A α,∞ u, ϕ D (R,C),D(R) = -g 1-α * ( u -H ⊗ u 0 ), ϕ D (R,C),D(R) .
Hence, in view of Definition 3.1, (3.4) follows.

Let α ∈ (0, 1), p ∈ [α -1 , ∞), and u 0 ∈ X. Then the Delsarte equation for Caputo's operator on L p (0, ∞) reads

Find u ∈ D +,0 R, D(A α,∞ ) such that c D α u 0 u = A α,∞ u in D R, L p (0, ∞) . (3.5) According to [DL92, Def. 4, p 220], A α,∞ u is defined thru A α,∞ u, ϕ D (R,X∞),D(R) := A α,∞ u, ϕ D (R,D(Aα,∞)),D(R) .
Problem (3.5) may be rewritten formally in a more Delsarte's fashion as

c D α t u = c D α x u, u |t=0 = u 0 . (3.6)
Remark 3.1. It is easy to check that any Laplace transformable strong solution in the sense of Definition 4.1 below, is a solution to (3.5).

Theorem 3.2. Let α ∈ (0, 1), p ∈ ( 1 α , ∞), and u 0 ∈ L p (0, ∞). Then (3.5) admits a unique solution which is Laplace transformable.

Proof. It relies on the one of [DL92, Theorem 1, p 226], for which we refer for the details. Let us start to show the uniqueness of the solution. For, let u ∈ D +,0 R, D(A α ) be a Laplace transformable solution to (3.5). Then using [Ama03, Theorem 1.10.11] and Lg 1-α (s) = s α-1 for each s ∈ C such that Re s > 0, one has

Lu(s) = s α-1 (s α -A α ) -1 u 0 in L p (0, ∞). (3.7) 
By injectivity of the Laplace transform, we infer that (3.5) has a unique Laplace transformable solution. For the existence, it is enough to show that, for each Re s > 1, the right hand side of (3.7) is the Laplace transform of a distribution with values in D(A α ). For, such a s reads s = λ

1 α
for some λ ∈ S α , where S α is defined by (2.7). Hence λ belongs to the resolvant set of A α (by Corollary 2.9) and

s α-1 (s α -A α ) -1 u 0 D(Aα) = |s| α-1 (λ -A α ) -1 u 0 D(Aα) . Since A α (λ -A α ) -1 = λ(λ -A α ) -1 -1 and Re(λ 1 α ) > 1, we derive from (2.14), that (λ -A α ) -1 u 0 D(Aα) ≤ C u 0 p |λ| 1 α . Thus s α-1 (s α -A α ) -1 u 0 D(Aα) ≤ C u 0 p |s| α .
Whence [DL92, Theorem 1, p 224] yields the existence of some u ∈ D +,0 R, D(A α ) satisfying (3.7). The proof of the theorem is now completed.

Remark 3.2. The proof of Theorem 3.2 still provides an existence and uniqueness result for Find

u ∈ D +,0 R, D(A β,∞ ) such that c D α u 0 u = A β,∞ u in D +,0 R, L p (0, ∞) , (3.8) 
provided β ∈ [α, 1). However when β > α, (3.8) is a parabolic problem tractable by holomorphic integration methods (see for intance [Baz98, Theorem 4.1]), which provide classical solutions.

If the initial condition of (3.5) is more regular, then its solution turns out to be a function of time. More precisely we have this result.

Corollary 3.3. Let α ∈ (0, 1), u 0 ∈ W 1,p (0, ∞), and

1 α < p < ∞, p ≥ 2.
Then the distributional solution u to (3.5) is a causal function and

u ∈ L p loc R; L p (0, ∞) . Proof. Let s ∈ C with Re s > 1.
Then the solution u to (3.5) given by Theorem 3.2 satisfies

Lu(s) p = |s| α-1 (s α -A α ) -1 u 0 p (by (3.7)) ≤ C|s| -1 u 0 W 1,p (0,∞)
(by Prop. 2.10).

Moreover, p > 1 since p is finite. Thus the function

R → L p (0, ∞), η → F e -Re s• u (η)
lies in L p R; L p (0, ∞) . Hence, the Hausdorff-Young Theorem for vector valued functions (see [Pee69, Exemple 2.4]) yields that e -Re s• u ∈ L p R; L p (0, ∞) , since 1 < p ≤ 2 (due to p ≥ 2). Thus u lies in L p loc (R; X ∞ ).

Representation of particular solutions

Let us start by defining a solution to (3.6) in a more usual sense, namely in the sense of semi-group theory. This definition relies on [ER17, Definition 3.

3 & 3.4]. Definition 4.1. Let α ∈ (0, 1), p ∈ [ 1 α , ∞), and u 0 ∈ D(A α,∞ ). A function u in C([0, ∞); D(A α,∞ )) is called a strong solution to (3.6) if (i) u admits a Caputo's derivatives of order α in C([0, ∞); X ∞ ), that is to say, g 1-α * u -u(0) ∈ C 1 [0, ∞); X ∞ ; (ii) u(0) = u 0 in D(A α,∞ ); (iii) c D α t u = A α,∞ u in C([0, ∞); X ∞ ), where c D α t u := d dt g 1-α * (u -u 0 ) .
As already noticed in Remark 3.1, any Laplace transformable strong solution to (3.6) is a solution to (3.5).

The simple structure of the differential operator c D α t -c D α x , allows us to get explicit and integral representations of the solution to (3.6), for a certain class of initial conditions. Delsarte's representation is given in Subsection 4.3. 4.1. explicit solutions. In order to introduce explicit solutions to (3.6) in the sense of Definition 4.1, let α ∈ (0, 1), β ∈ (-2, 2] be such that α < |β|, and λ > 0. Also, let E α := E α,β denote the Mittag-Leffler function . Then the function u(•, •) defined for all t, x ≥ 0, by u(t, x) := E α (i β λt α )E α (i β λx α ), is solution to (3.6) provided p > 1/α and u 0 := u(0, •). Indeed, the only non trivial point to check is that u(t, •) belongs to L p (0, ∞). That follows from [START_REF] Podlubny | Fractional differential equations[END_REF]Theorem 1.4,p33].

Moreover, observe that, for the same reasons, the function v(•, •) defined for all t, x ≥ 0, by v(t, x) := exp(i β λt)E α (i β λx α ), is the strong solution to the standard Cauchy problem (the uniqueness comes from Remark 2.1)

d dt v = A α,∞ v, v(0, •) = u 0 . In addition, if α < β < 1 then v(t, •) L p (0,∞) = exp cos( π 2 β)λt u 0 L p (0,∞) ---→ t→∞ ∞.
That elementary observation shows that A α,∞ does not generate a contraction semi-group on L p (0, ∞). Thus, according to the Hille-Yosida Theorem (see for instance [Jac01, Theorem 4.1.33]), A α,∞ is not dissipative, and, in (2.15), the constant 3C cannot be replaced by 1.

Integral representation.

The following result gives an integral representation of some solutions to Delsarte's equation. 

Then the function u : [0, ∞) × [0, ∞) → C defined by u(t, x) := ∞ 0 E α (-λt α )E α (-λx α )f (λ) dλ
provides a strong solution to the Delsarte equation (3.6), for the initial condition

u 0 (x) := ∞ 0 E α (-λx α )f (λ) dλ.
Proof. Let us start to show that u belongs to C([0, ∞); D(A α )). By the generalized Minkowski inequality, one has, for every t ≥ 0,

∞ 0 |u(t, x)| p dx 1 p ≤ ∞ 0 E α (-λt α )|f (λ)| ∞ 0 E α (-λx α ) p dx 1 p dλ. (4.2)
Using [Pod99, Theorem 1.4] for the decay rate of the Mittag-Leffler function and computing as in (2.20), we get

E α (-λ(•) α ) L p (0,∞) ≤ Cλ -1 αp , ∀λ > 0. (4.3) With 0 < E α (-λt α ) ≤ 1 and (4.3), we get u(t) p ≤ C ∞ 0 λ -1 αp |f (λ)| dλ < ∞,
by (4.1), the boundedness of f near zero, and αp > 1. Hence, u(t) lies in L p (0, ∞) for each t ≥ 0. The continuity is then obtained easily by Lebesgue Theorem and (4.3). Let us show that A α u ∈ C([0, ∞); X ∞ ). For, let us set for simplicity e λ (x) := E α (-λx α ), ∀x ≥ 0. (4.4) Then Fubbini's Theorem leads to

g 1-α * u(t, •) -u(t, 0) (x) = ∞ 0 E α (-λt α )f (λ)g 1-α * (e λ -1)(x) dλ. (4.5)
Moreover, the derivative of the latter integrand w.r.t. x is bounded by λ|f (λ)|. Thus with (4.1) and the Lebesgue differentiation Theorem, we get for each x ≥ 0,

d dx g 1-α * u(t, •) -u(t, 0) (x) = - ∞ 0 λE α (-λt α )E α (-λx α )f (λ) dλ.
For all purposes, let us make precise that the convolution acts on the space variable x. By (4.3), there results that u(t, •) lies in D(A α ). Then the continuity of u is easy to prove, and we have

A α u(t) (x) = - ∞ 0 λE α (-λt α )E α (-λx α )f (λ) dλ. (4.6) 
Arguing as above, we show that u admits a Caputo's derivative of order α in C([0, ∞); X ∞ ), and that For ease of reading, we will write B instead of c D α , so that B x denotes c D α x . Hence the above identity becomes u(t, x) = k≥0 g αk+1 (t)B k x f (x). Hence the right hand side of (4.7) solves Delsarte's equation. Now we would like to justify the above computations and give a precise meaning to (4.7). In the particular case where α = 1, (4. Moreover, (4.9) holds for all x ∈ (0, ∞) and t ≥ 0, close to zero, if and only if f is analytic on (0, ∞).

In the case α ∈ (0, 1), we will begin to show that (4.7) provides a continuous function on [0, ∞) 2 , for every function f : [0, ∞) → C defined by Secondly, arguing in the same way and using (4.8), we show easily that, for each n ∈ N, B n f is well defined and

B n f = k≥0 b k+n g αk+1 in C [0, ∞) .
Thus, with (4.11) again,

B n f C([0,R]) ≤ B 0 λ αn E α (λR) α .
Hence the function u defined by (4.7) lies in C([0, ∞) 2 ). Finally, that estimate allows us to prove that u is a solution to the Delsarte equation in the following sense.

(1) u is continuous function on [0, ∞) 2 ;

(2) for each x ≥ 0, the function u(•, x) has a Caputo derivative in C([0, ∞)) and (t, x) → c D α t u(t, x) is continuous on [0, ∞) 2 ; (3) for each x ≥ 0, u(t, •) has a Caputo derivative in C([0, ∞)) and (t, x) → c D α x u(t, x) is continuous on [0, ∞) 2 ; (4) u satisfies c D α t u = c D α x u in C([0, ∞) 2 ).

  where [Re s > ξ 0 ] := {s ∈ C | Re s > ξ 0 }. It turns out that Lu is an holomorphic function on [Re s > ξ 0 ] with values in X. See the above references for details.

Proposition 4. 1 .

 1 Let us assume that (i) α ∈ (0, 1) and p ∈ ( 1 α , ∞); (ii) f : [0, ∞) → C is a measurable function whose restriction to [0, 1] lies in L ∞ (0, 1), and which satisfies ∞ 0 λ|f (λ)| dλ < ∞. (4.1)

c

  D α u(t, x) = -∞ 0 λE α (-λt α )E α (-λx α )f (λ) dλ.Therefore, in view of (4.6), u solves Delsarte's equation. 4.3. Delsarte's representation. Regarding Caputo's operator c D α , Delsarte's representation (see the introduction) of the solution u to the Cauchy problemc D α t u = c D α x u, u(0, x) = f (x), is u(t, x) = k≥0 g αk+1 (t) c D α x k f (x).

  , α ∈ (0, 1] and f : [0, ∞) → C. Since, for β > 1,Bg β = c D α g β = g β-α , Bg 1 = 0,(4.8)(4.7) can be formally justified as follows.B t u(t, x) = k≥1 g α(k-1)+1 (t)B k x f (x) = k≥0 g αk+1 (t)B k+1 x f (x)=B x u(t, x).

  7) reads u(t, x) = k≥0 D k f (x) k! t k = f (x + t),(4.9)and Delsarte's equation reduces to the usual transport equation D t u = D x u, u(0, x) = f (x).

f

  (x) := k≥0 b k g αk+1 (x), ∀x ≥ 0, (4.10) where (b k ) k≥0 ⊂ C satisfies, for some positive constants B 0 and λ (depending on f ), |b k | ≤ B 0 λ αk , ∀k ∈ N. (4.11) Indeed, firstly, let us notive that f is a well defined continuous function on [0, ∞) since the series (4.10) converges normally on each compact intervall [0, R]. Indeed, |b k g αk+1 (x)| ≤ B 0 g αk+1 (λR), ∀x ∈ [0, R], and k≥0 g αk+1 (λR) = E α (λR) α .

  [Are87, Example 3.2] for a counter example. However, according to [Paz83, Theorem 1.2, Chap 4], it is sufficent for uniqueness. Moreover, in (2.15), the constant 3C cannot be replaced by 1: see Section 4 or Remark 2.2 for details.

 

However, when computing the derivative of u, we find d dt u, ϕ D (R,X),D(R) = ∞ 0 u (y)ϕ(y) dy + ϕ(0)u(0).

In order to get rid of the interfacial singular term ϕ(0)u(0), we notice that, in view of (3.2),

Thus the substitution of u by u -H ⊗ u(0) gives

We choose that substitution in the definition of Caputo's derivatives.

Let us notice that the extension

is simple as well. However, the support of v is not limited to the left. Since that support condition is essential to perform the convolution of distributions, the latter extension is not convinient. For any f ∈ L 1 loc (0, ∞; X), let us set

we are in position to define Caputo's derivatives of distributions.

Definition 3.1. Let α ∈ (0, 1), u 0 ∈ X and u ∈ D +,0 (R, X). Then the Caputo's derivative of u associated with u 0 is the distribution of D +,0 (R, X), denoted by c D α u 0 u, and defined

That definition extends the one of Caputo's derivatives of functions given in Definition 2.2. More precisely, this result holds.

By Definition 2.1 of D(A α,∞ ), we have on the one hand g 1-α * (u -u 0 ) (0) = 0.

On the other hand, ∞ 0 (g 1-α * u 0 )(y)ϕ (y) dy = g 1-α * (H ⊗ u 0 ), ϕ D (R,C),D(R) ,