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ON THE MIXED REGULARITY OF N-BODY COULOMBIC
WAVEFUNCTIONS

LONG MENG

Abstract. In this paper, we prove a new mixed regularity of Coulombic wavefunction taking into
account the Pauli exclusion principle. We also study the hyperbolic cross space approximation of
eigenfunctions associated with this new regularity, and deduce the corresponding error estimates in
L2-norm and H1-semi-norm. The proofs are based on the study of extended Hardy-type inequalities
for Coulomb-type potentials.

1. Introduction

In most applications of molecular simulation, a molecule is described by an assembly of M static
nuclei equipped with N electrons, withM , N in N`. We assume that the nuclei are fixed, according
to the Born-Oppenheimer approximation, while the electrons are modeled quantum mechanically
through a wavefunction and the N -body Hamiltonian operator:

H “ ´1

2

Nÿ

i“1

△i ´ Vne ` Vee (1.1)

with

Vne :“
Nÿ

i“1

Mÿ

ν“1

Zν

|xi ´ aν | ,

and

Vee :“
1

2

Nÿ

i,j“1

i‰j

1

|xi ´ xj|
,

where a1 ¨ ¨ ¨ , aM P R
3 are the positions of nuclei with respective charges Z1, ¨ ¨ ¨ , ZM P N` (in

atomic units), and x1, ¨ ¨ ¨ , xN P R
3 are the coordinates of given N electrons. We denote Z :“řM

ν“1
Zν the total nuclear charge. The right-hand side terms in (1.1) model the kinetic energy, the

Coulomb attraction between nuclei and electrons Vne and the Coulomb repulsion between electrons
Vee, respectively.

Mathematically, the electronic ground - or excited - state problem can be expressed by the
Euler-Lagrange equation of the eigenvalue problem of the operator (1.1):

Hu “ λu, (1.2)

where u P H1ppR3qNq and }u}L2ppR3qN q “ 1.

Remark 1.1. It is shown in [18] that any eigenvalue of (1.2) is negative.

The eigenvalue problem (1.2) is well-explored mathematically (see for example [11], as well as
the regularity properties of eigenfunctions of problem (1.2) [3–5,8–10,12]).

In quantum mechanics, in addition to the spatial coordinates, a particle may have internal
degrees of freedom, the most important one being the spin. Electrons, for example, have two kinds
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2 LONG MENG

of spins rσ with value 1, 2. If a particle has q kinds of spins, we shall say that the particle has q
spin states and we label them by the integer

rσ P t1, ¨ ¨ ¨ , qu.
From the mathematical point of view, it is interesting to consider an arbitrary q spin states in our
system. For this reason, in this article, we will study the wavefunctions of N identical particles
with q spin states instead of the electronic wavefunctions.

A wavefunction Ψ of identical N particles with q spin states can be written as

Ψ : pR3qN ˆ t1, ¨ ¨ ¨ , quN Ñ C, px, σq ÞÑ Ψpx, σq, (1.3)

where x :“ px1, ¨ ¨ ¨ , xNq and σ :“ pσ1, ¨ ¨ ¨ , σNq with xi P R
3 and σi P t1, ¨ ¨ ¨ , qu.

There are two kinds of particles: fermions and bosons. Fermions, among them electrons, satisfy
the Pauli exclusion principle: the sign of the wavefunction Ψ changes sign under an exchange of
the space coordinates xi, xj, and the spins σi, σj of two identical fermions i, j. More precisely, Pauli
exclusion principle writes :

ΨpP pxq
i,j x, P

pσq
i,j σq “ ´Ψpx, σq (1.4)

where P
pxq
i,j and P

pσq
i,j the permutation operators which exchange the space coordinates xi, xj and

the spins σi, σj respectively, i.e.

P
pxq
i,j p¨ ¨ ¨ , xi, ¨ ¨ ¨ , xj , ¨ ¨ ¨ q :“ p¨ ¨ ¨ , xj , ¨ ¨ ¨ , xi, ¨ ¨ ¨ q, (1.5)

and

P
pσq
i,j p¨ ¨ ¨ , σi, ¨ ¨ ¨ , σj , ¨ ¨ ¨ q :“ p¨ ¨ ¨ , σj , ¨ ¨ ¨ , σi, ¨ ¨ ¨ q. (1.6)

On the other hand, bosons satisfy the Bose–Einstein statistics in which the particles occupy
symmetric quantum states. Thus the bosonic wavefunctions Ψ satisfies (1.4) when the sign ´ is
replaced by `.

Now we are going to fix the spin σ, and only consider the antisymmetry of the fermionic wave-
function with respect to x. As the eigenvalue problem (1.2) does not act upon the spin variables,
for every fixed spin σ, the wavefunction Ψpx, σq in (1.3) can be represented by the wavefunction
upxq which is defined by

u : pR3qN Ñ C, x ÞÑ Ψpx, σq. (1.7)

Furthermore, for every fixed spin σ, the particles can be categorized into q subsets according to
their spin states:

Il :“ ti P t1, ¨ ¨ ¨ , Nu; σi “ lu, l “ 1, ¨ ¨ ¨ , q, and Iσ :“ tI1, ¨ ¨ ¨ , Iqu. (1.8)

In particular, if σi ‰ l for any i “ 1, ¨ ¨ ¨ , N , we set Il “ H and |Il| “ 0. If i, j P I with I P Iσ and
|I| ą 1, then σi “ σj. Thus

P
pσq
i,j σ “ σ.

Therefore, the permutation operator P
pσq
i,j keeps the spin σ invariant if the i-th and j-th electrons

have the same spin. Hence for every fixed σ and for any i, j P I with I P Iσ and |I| ą 1, (1.4)
implies the fermionic wavefunction u is antisymmetric with respect to xi, xj, i.e.,

upP pxq
i,j xq “ ´upxq. (1.9)

In particular, if xi “ xj then upxq “ 0: thanks to the antisymmetry, the fermionic wavefunctions
can counterbalance the singularity of the interaction potential 1

|xi´xj | .

Relying on this observation, a new regularity result about eigenfunctions of problem (1.2) has
been proven in [17,18] which can help to break the complexity barriers in computational quantum
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mechanics. More precisely, it is shown in [17,18] that, for every fixed spin σ, any eigenfunction u˚
of problem (1.2) satisfies

ż

pR3qN

˜
1 `

Nÿ

i“1

|2πξi|2
¸ ˜

ÿ

IPIσ

ź

kPI
p1 ` |2πξk|2q

¸
|pu˚pξq|2 dξ ă `8, (1.10)

where pu˚pξq :“ Fx1,¨¨¨ ,xN
pu˚qpξq “

ş
pR3qN u˚pxqe´2πiξ¨xdx is the Fourier transform of u with ξ :“

pξ1, ¨ ¨ ¨ , ξNq and ξi P R
3, i “ 1, ¨ ¨ ¨ , N . The proof is based on a Hardy-type inequality for the

Coulomb system in the scalar product. Then based on this Hardy-type inequality, a hyperbolic
cross space approximation of any eigenfunction of (1.2) has been studied. The convergence of this
approximation is proven in [18]. The hyperbolic cross space approximation is defined by (2.10)
below.

Later, by using r12-methods and interpolation of Sobolev spaces, H.C. Kreusler and H. Yserentant
[13] proved that any eigenfunction u˚ of problem (1.2) satisfies

ż

pR3qN

˜
1 `

Nÿ

i“1

|2πξi|2
¸s ˜

Nź

k“1

p1 ` |2πξk|2q
¸t

|pu˚pξq|2 dξ ă `8, (1.11)

for s “ 0 and t “ 1 or s “ 1 and t ă 3{4. Notice that this regularity is independent of the
choice of σ. It is shown in [13] that the bound 3{4 is the best possible: it can neither be reached
nor surpassed except for the totally antisymmetric eigenfunctions. However, lacking Hardy-type
inequalities associated with the new type of mixed regularity, they could not prove the convergence
of the corresponding hyperbolic cross space approximation of eigenfunctions.

In this article, we are going to improve the results of [13] and [18] in two directions: a) we
prove the convergence of the hyperbolic cross space approximation of eigenfunctions associated
with the regularity (1.11); b) due to the Pauli exclusion principle, taking the antisymmetry of the
wavefunctions into account, we prove a better mixed regularity of eigenfunctions and prove the
convergence of the corresponding hyperbolic cross space approximation.

We generalize the concept of the antisymmetric functions such that, under this new definition,
non-antisymmetric functions can also be regarded as special antisymmetric functions.

Definition 1.2 (Generalized antisymmetric function). Let I Ă t1, ¨ ¨ ¨ , Nu. When |I| ą 1, a
wavefunction u is antisymmetric with respect to I if and only if, for any i, j P I,

upP pxq
i,j xq “ ´upxq,

where P
pxq
i,j is defined by (1.5). When |I| “ 1, every wavefunction u is antisymmetric with respect

to I.

Remark 1.3. According to (1.8), (1.9) and above definition, wavefunction u defined by (1.7) with
q spin states and the fixed spin σ is antisymmetric with respect to I for any I P Iσ.

Let u˚ given by (1.7) with q spin states and the fixed spin σ be an eigenfunction of (1.2). The
main results of this paper (Theorem 2.3 and Corollary 2.4) then state that

ż

pR3qN

˜
1 `

Nÿ

i“1

|2πξi|2
¸

ÿ

IPIσ

˜
ź

jPI
p1 ` |2πξj|2q

¸αĨ ź

kPIc
p1 ` |2πξk|2q

¸βI

|pu˚pξq|2dξ ă `8. (1.12)

Here and below Ic “ t1, ¨ ¨ ¨ , NuzI, αI P r0, 5{4q, βI P r0, 3{4q and αI ` βI ă 3{2.
As mentioned above, this result improves the results in [17, 18]. Actually, if we take αI “ 1

and βI “ 0, then (1.12) becomes (1.10). Thus the regularity (1.10) is a special case of (1.12).
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Furthermore, we can choose αI « 5

4
and βI « 1

4
in (1.12) which are much larger than the ones in

(1.10).
If we assume in particular that, for the fixed spin σ, there exists l such that Il “ t1, ¨ ¨ ¨ , Nu with

Il given by (1.8), then u˚ is totally antisymmetric (i.e., u˚ is antisymmetric w.r.t. t1, ¨ ¨ ¨ , Nu) and
(1.12) becomes

ż

pR3qN

˜
1 `

Nÿ

i“1

|2πξi|2
¸ ˜

Nź

j“1

p1 ` |2πξj|2q
¸α

|pu˚pξq|2 dξ ă `8

with any 0 ď α ă 5

4
. Then (1.12) is better than (1.10) and (1.11) for the totally antisymmetric

case.
Now we choose αI “ βI . Then if u˚ is not totally antisymmetric, the condition on αI and βI

shows that 0 ď αI “ βI ă 3

4
, and (1.12) becomes

ż

pR3qN

˜
1 `

Nÿ

i“1

|2πξi|2
¸ ˜

Nź

j“1

p1 ` |2πξj|2q
¸β

|pu˚pξq|2 dξ ă `8 (1.13)

with any 0 ď β ă 3

4
. This is exactly (1.11) with s “ 1 and t ă 3

4
, and this regularity is independent

of the choice of the spin σ and of the antisymmetry of the eigenfunctions. Thus we provide an
alternative proof for (1.11). As mentioned above and shown in [19], our regularity is optimal in
this case except for the totally antisymmetric eigenfunctions.

The proof of this new mixed regularity is based on a generalization of the Hardy-type inequality
for Coulomb system in [17] (i.e., Theorem 2.2) for any αI and βI as in (1.12). As in [18], from this
new Hardy-type inequality, we can obtain the corresponding hyperbolic cross space approximation
(i.e., Theorem 2.5). In particular, concerning the case αI “ βI ă 3

4
, we prove the convergence of

the hyperbolic cross space approximation of eigenfunctions associated with the regularity (1.11).

2. Set-up and main results

In this section, we introduce first the operators and functional spaces used in this paper, then
we present our main results and give the main ideas of the proof.

2.1. Operators and functional spaces. For every set I Ă t1, ¨ ¨ ¨ , Nu, we define the Hilbert
spaces L2

IppR3qNq and H1

I ppR3qNq of the wavefunctions which are antisymmetric with respect to I
by

L2

IppR3qNq :“ tu P L2ppR3qNq; u is antisymmetric with respect to Iu, (2.1)

and

H1

I ppR3qNq :“ tu P H1ppR3qNq; u is antisymmetric with respect to Iu, (2.2)

respectively. It is easy to see that, when |I| “ 1, H1

I ppR3qNq “ H1ppR3qNq and L2

IppR3qNq “
L2ppR3qNq. However when |I| ą 1, we have L2

IppR3qNq Ĺ L2ppR3qNq and H1

I ppR3qNq Ĺ H1ppR3qNq.
Now we are going to define the new mixed Sobolev space like (1.11) in consideration of the

antisymmetry with respect to I. Before going further, we define some fractional Laplacian-type
operators associated with I. Define the operator LI,α,β by

LI,α,β :“
˜

ź

jPI
p1 ` |∇j|2qα{2

¸ ˜
ź

iPIc
p1 ` |∇i|2qβ{2

¸
, (2.3)
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where Ic “ t1, ¨ ¨ ¨ , NuzI and ∇i is the gradient with respect to the coordinate xi P R
3. This

operator is defined with the help of the Fourier transform (see Section 3 for details). In particular,
when I “ t1, ¨ ¨ ¨ , Nu, then

LI,α,β “
Nź

j“1

p1 ` |∇j|2qα{2

is indeed independent of the choice of β.
In addition to the operator LI,α,β, the following operators will be useful,

L
piq
I,α,β :“

¨
˝ ź

jPIztiu
p1 ` |∇j|2qα{2

˛
‚

¨
˝ ź

iPIcztiu
p1 ` |∇i|2qβ{2

˛
‚,

and

L
pi,jq
I,α,β :“

¨
˝ ź

jPIzti,ju
p1 ` |∇j|2qα{2

˛
‚

¨
˝ ź

iPIczti,ju
p1 ` |∇i|2qβ{2

˛
‚.

Thus,

LI,α,β “ p1 ` |∇i|2qγi{2Lpiq
I,α,β, LI,α,β “ p1 ` |∇i|2qγi{2p1 ` |∇j|2qγj{2L

pi,jq
I,α,β, (2.4)

where γk “ α if k P I, and γk “ β if k P Ic.
We next introduce the corresponding functional spaces XI,α,β defined by

XI,α,β :“ tu P H1

I ; }LI,α,βu}H1ppR3qN q ă `8u, (2.5)

endowed with the norm

}u}I,α,β :“ }LI,α,βu}H1ppR3qN q. (2.6)

We also define the following norm and semi-norm respectively,

}u}0,I,α,β :“ }LI,α,βu}L2ppR3qN q, }u}1,I,α,β :“ }∇LI,α,βu}L2ppR3qN q. (2.7)

Here ∇ :“ p∇1, ¨ ¨ ¨ ,∇Nq is the gradient with respect to x P pR3qN . Obviously, }u}2I,α,β “ }u}2
0,I,α,β`

}u}2
1,I,α,β.

2.2. Main results. Before going further, we need some assumptions on α and β.

Assumption 2.1. We assume that α P r0, 5{4q, β P r0, 3{4q and α ` β ă 3{2.
The key tool to prove the regularity of eigenfunctions is the following.

Theorem 2.2 (Hardy-type inequality for Coulomb system in the scalar product). For every I Ă
t1, ¨ ¨ ¨ , Nu, and under Assumption 2.1 on α, β, there is a constant Cmix,α,β independent of N , Z
such that for any u, v P XI,α,β,

|〈LI,α,βpVne ` Veequ,LI,α,βv〉| ď Cmix,α,β

?
N maxtZ,Nu}u}0,I,α,β}v}1,I,α,β. (2.8)

It is shown in [17] that (2.8) holds for α “ 1 and β “ 0. Based on this inequality, the regularity
of eigenfunction u˚ and the corresponding hyperbolic cross space approximation are also proven
therein.

Our main result on the new mixed regularity of the wavefunction is the following.

Theorem 2.3 (Mixed regularity of eigenfunctions). Let I Ă t1, ¨ ¨ ¨ , Nu, and let u˚ P H1

I ppR3qNq
be a solution to the eigenvalue problem (1.2). Then, under Assumption 2.1 on α and β, u˚ P XI,α,β.



6 LONG MENG

This proof is postponed until Section 5.
According to Remark 1.3, we know that u given by (1.7) is situated in

Ş
IPIσ H

1

I ppR3qNq. Then
we have

Corollary 2.4. Let u given by (1.7) be an eigenfunction of the eigenvalue problem (1.2) with q

spin states and a fixed spin σ. Then u˚ P Ş
IPIσ XI,αI ,βI

where αI and βI satisfy Assumption 2.1.

We first recall the definition of the hyperbolic cross space approximation. Let Ω be a scaling
parameter which will be given in Theorem 2.5. Let HI,α,βpR,Ωq be a region defined by

HI,α,βpR,Ωq :“
#

pω1, ¨ ¨ ¨ , ωNq P pR3qN ;
ź

iPI

ˆ
1 `

ˇ̌
ˇωi

Ω

ˇ̌
ˇ
2
˙α ź

jPIc

ˆ
1 `

ˇ̌
ˇωj

Ω

ˇ̌
ˇ
2
˙β

ď R2

+
. (2.9)

Note that this region can be considered as cartesian product of hyperboloid-like regions, from
which the notion hyperbolic cross space approximation originates. Then we define the projector

pPR,Ω
I,α,βuqpxq :“

ż

pR3qN
χ
R,Ω
I,α,βpξqpupξq exp p2πiξ ¨ xqdξ (2.10)

where χR,Ω
I,α,β is the characteristic function of the domain HI,α,βpR,Ωq. The approximation (2.10)

of u is called the hyperbolic cross space approximation.
In [18], based on the mixed regularity (1.10), the convergence of hyperbolic cross space approx-

imation of eigenfunctions is proven. Now we are going to prove the convergence of the hyperbolic
cross space approximation of eigenfunctions associated with the regularity proven in Theorem 2.3.

Based on Theorem 2.2, we get the following.

Theorem 2.5 (Hyperbolic cross space approximation). Let I Ă t1, ¨ ¨ ¨ , Nu. For any eigenfunction
u˚ P H1

I of (1.2), and every Ω ě 2

π
Cmix,α,β

?
N maxtZ,Nu, under Assumption 2.1 on α, β, we have

}u˚ ´ PR,Ω
I,α,βu˚}L2ppR3qN q ď

?
2πe5{8

R
}u˚}L2ppR3qN q,

and

}∇pu˚ ´ PR,Ω
I,α,βu˚q}L2ppR3qN q ď 2

?
2πe5{8

R
Ω}u˚}L2ppR3qN q.

Here the constant Cmix,α,β is defined in Theorem 2.2.

This proof is provided in Section 6.

2.3. Main ideas of the proof of Theorem 2.2. As mentioned in Introduction, the extension of
the results in [17–19] is based on Theorem 2.2. Once Theorem 2.2 is proven, following the proofs
in [17, 18] line by line, we can prove Theorem 2.3 and Theorem 2.5, respectively. Thus this paper
is devoted mainly to the proof of Theorem 2.2. As the proof of Theorem 2.2 is quite technical,
before entering the details, let us try to explain the main ideas and the main improvements with
respect to the existing results.

Let

LI :“
â

jPI
∇j, L

piq
I :“

â

jPIztiu
∇j and L

pi,jq
I :“

â

kPIzti,ju
∇k.

The Hardy-type inequality used in [17,18] can be expressed in the following way.

Theorem 2.6. [17, 18] For every I Ă t1, ¨ ¨ ¨ , Nu, there is a constant CI independent of N , Z
such that for any u, v P XI,1,0,

|〈LIpVne ` Veequ, LIv〉| ď CI

?
N maxtZ,Nu}u}0,I,α,β}v}1,I,α,β. (2.11)
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One can essentially recover Theorem 2.2 with our Theorem 2.6 by setting α “ 1 and β “ 0.

Remark 2.7. Actually, Theorem 2.2 is optimal at least for the case α “ β if the wavefunction
u is not totally antisymmetric. Otherwise, if (2.8) holds for some α “ β ě 3

4
, then following the

proofs in [17] and [18] as in Section 5 in this paper, Theorem 2.3 and Corollary 2.4 will also hold
for these α and β. This means that for any eigenfunction u˚ which is not totally antisymmetric,
u˚ P XI,α,β with some α “ β ě 3

4
. However, [19] (see also (1.11) and (1.13) in this paper) shows

that α “ β ă 3

4
is optimal. Then we reach a contradiction. Thus (2.8) is optimal for the case

α “ β if the wavefunction u is not totally antisymmetric.

Now we compare these two inequalities technically. We first give a glimpse into the formulae on
the left-hand side of (2.8) and (2.11):

LI,α,βVneu “
Nÿ

i“1

Mÿ

ν“1

p1 ` |∇i|2qγi{2
ˆ

Zν

|xi ´ aν |L
piq
I,α,βu

˙
, (2.12)

LIVneu “
Nÿ

i“1

Mÿ

ν“1

∇i

ˆ
Zν

|xi ´ aν |L
piq
I u

˙
, (2.13)

LI,α,βVeeu “ 1

2

ÿ

i‰j

p1 ` |∇i|2qγi{2p1 ` |∇j|2qγj{2
ˆ

1

|xi ´ xj|
L

pi,jq
I,α,βu

˙
, (2.14)

and

LIVeeu “ 1

2

ÿ

i‰j

∇
γ1

i

i

â
∇

γ1

j

j

ˆ
1

|xi ´ xj|
L

pi,jq
I u

˙
, (2.15)

where γk “ α, γ1
k “ 1 if k P I; and γk “ β, γ1

k “ 0 if k P Ic.
Notice that by the Leibniz rule, ∇yp 1

|y|fpyqq “ ´ y

|y|3fpyq ` 1

|y|∇yf . Then from (2.13), (2.15) and

by using Hardy inequality and its antisymmetric version (see e.g., Corollary 3.8 with s “ 1), one
can deduce (2.11) directly.

We can not prove Theorem 2.2 as for Theorem 2.6 since the Leibniz rule fails for fractional
Laplacian operators. In addition, the optimality of Theorem 2.2 for the case α “ β and the
singularity of the Coulomb potential make the proof of (2.8) in Theorem 2.2 much more delicate
than the one of (2.11) in Theorem 2.6.

To prove Theorem 2.2, we need first to study the relationship between the fractional operator
p1`|∇i|2qγi{2 and the Coulomb type potentials. In this paper, this is equivalent to the study of the
relationship between |∇i|γi and the Coulomb type potentials by introducing a bounded operator
Ks,y :“ p1 ` |∇y|2qs{2p1 ` |∇y|sq´1 in Section 3.1.

The main tool of this paper is the following Hardy-type inequality (i.e., Theorem 3.3):

}|y|´s|∇y|´sf}L2pR3q Às }f}L2pR3q, 0 ď s ă 3

2
,

and its dual form:

}|∇y|´s|y|´sf}L2pR3q Às }f}L2pR3q, 0 ď s ă 3

2
.

This is the most important inequality used in this paper and this gives the tool to study the
electron-nucleus term Vne immediately (see (2.12)).
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Concerning the electron-electron term Vee in (2.14), we need a corresponding version of Hardy-
type inequality for two particles. From the above Hardy-type inequality, one can deduce the
following (see Lemma 3.6):

}|y ´ z|´s´t|∇y|´s|∇z|´tf}L2pR3ˆR3q Às,t }f}L2pR3ˆR3q, s, t ě 0, s ` t ă 3

2
.

This gives the condition that β ă 3

4
and α ` β ă 3

2
in Assumption 2.1.

Thanks to antisymmetry, we can also generalize the standard Hardy inequality for two particles
since the antisymmetry will counterbalance the singularity of the potential 1

|xi´xj | . More precisely,

for any function g P C8
0

pR3 ˆ R
3q satisfying gpx, yq “ ´gpy, xq, it is easy to see that gpx, yq “ 0

for x “ y. Thus |gpx, yq| ď C|x´ y| in any compact neighborhood of the set tx “ yu. As a result,››››
g

|y ´ z|2s
››››
L2pR3ˆR3q

ă `8, 0 ď s ă 5

4
.

Then arguing as for the standard Hardy inequality, we show in Corollary 3.8 and Lemma 3.9 the
following inequalities with antisymmetry:››››

g

|y ´ z|2s
››››
L2pR3ˆR3q

Às

››››
∇y∇zg

|y ´ z|2s´2

››››
L2pR3ˆR3q

Às }|∇y|s|∇z|sg}
L2pR3ˆR3q , 1 ď s ă 5

4
.

Returning back to (2.8) and (2.14), we will use the following extension of the Hardy-type inequality
for two particles with antisymmetry in Lemma 4.5:

}|∇y|s´1{2|∇y|s´1{2|y ´ z|´1g}L2pR3ˆR3q Às }|∇y|s|∇z|sg}L2pR3ˆR3q, 0 ď s ă 5

4
.

This gives the condition α ă 5

4
in Assumption 2.1. In addition, this estimate shows that spatial

antisymmetry implies regularity.
Once the fractional Laplacian operator is defined and the above inequalities and their extensions

are established, we can obtain Theorem 2.2 immediately.

This paper is organised as follows. As mentioned above, we will use the fractional Laplacian
operator. Thus in Section 3, we will first study the fractional Laplacian. Then based on Hardy-type
inequalities, we will deduce the above inequalities. In Section 4, we will use the above inequalities
to prove Theorem 2.2. Then in Section 5 and Section 6, following the proofs in [18], we will prove
Theorem 2.3 and Theorem 2.5, respectively.

3. Fractional Laplacian operators and related inequalities

In the following, we denote the gradients ∇y and ∇z corresponding to the variables y and z in
R

3, respectively.
In the next subsection, we study the fractional Laplacian operator p1`|∇y|2qs{2 on R

3. Actually,
we rather study the fractional Laplacian operator |∇y|s. The relationship between |∇y|s and
p1 ` |∇y|2qs{2 will be studied equally. Then, for some s, t ą 0, we will study some Hardy-type
inequalities associated with the operators |∇y|´s|y|´s and |∇y|´s|∇z|´t|y ´ z|´s´t.

3.1. Fractional Laplacian. First of all, we define our convention for the Fourier transform. Let
f P L2pR3q, g P L2pR3 ˆ R

3q and u P L2ppR3qNq, then the Fourier transforms of f , g and u are
respectively

Fypfqpξyq :“
ż

R3

fpyqe´2πiξy ¨ydy, Fy,zpgqpξy, ξzq :“ Fz ˝ Fypgqpξy, ξzq,

and

Fx1,¨¨¨ ,xN
puqpξq :“ FxN

˝ ¨ ¨ ¨ ˝ Fx1
puqpξq, ξ :“ pξ1, ¨ ¨ ¨ , ξNq with ξk P R

3, k “ 1, ¨ ¨ ¨ , N.
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For s ą 0, a function f P L2pR3q is said to be in HspR3q if and only if

}f}2HspR3q :“
ż

R3

p1 ` |ξy|2qs|Fypfqpξyq|2dξy ă `8.

The fractional Laplacian |∇y|s (or p´△yqs{2) is defined on functions f P HspR3q by the Fourier
representation:

Fyp|∇y|sfqpξyq :“ |2πξy|sFypfqpξyq.
Similarly, p1 ` |∇y|2qs{2 is defined by

Fypp1 ` |∇y|2qs{2fqpξyq :“ p1 ` |2πξy|2qs{2Fypfqpξyq.
The operator LI,α,β which is defined on functions u P XI,α,β can be regarded as a composition of
fractional Laplacian operators on R

3 in the following manner:

LI,α,βu :“ p1 ` |∇1|2qγ1{2 ˝ ¨ ¨ ¨ ˝ p1 ` |∇N |2qγN {2u,

where γk “ α if k P I, and γk “ β if k P Ic.
Applying the Fourier transform to solve the Poisson equation

|∇y|sf1pyq “ f2pyq in R
3,

we find that |2πξy|sFypf1qpξyq “ Fypf2qpξyq. The inverse of the fractional Laplacian, or negative
power of the Laplacian |∇y|´s with s ą 0 is defined on functions f in the Schwartz space SpR3q
by

Fyp|∇y|´sfqpξyq “ |2πξy|´sFypfqpξyq for ξy ‰ 0.

In principle, we need the restriction 0 ă s ă 3 because when s ě 3 the multiplier |ξy|´s does not
define a tempered distribution (for more details, see e.g. [16]).

On the other hand, the term 1

|y|s is a tempered distribution for 0 ă s ă 3 with Fourier transform

bsFyp| ¨ |´sqpξyq “ b3´s|ξy|´3`s, bs “ π´s{2Γps{2q, (3.1)

where Γ is the Gamma function. For the detail, see e.g., [6, Eqn. (3.3)] (the difference of the
definition of bs therein is because of the different definition of the Fourier transform) or [14, Theorem
5.9] by using the fact that Fypfgq “ Fypfq ˚ Fypgq. Hence, if 0 ă s ă 3, the operator |∇y|´s can
be rewritten as

|∇y|´sfpyq “ b3´s

p2πqsbs

ż

R3

|z ´ y|´3`sfpzqdz, f P SpR3q. (3.2)

Suppose that 0 ă s ă 3, then |∇y|s|y|´t is an L1

loc
pR3q-function for 0 ă t ă 3 ´ s and, using (3.1),

|∇y|s|y|´t “ F´1

y p|2πξy|sFyp| ¨ |´tqq “ p2πqsb3´t

bt
F´1

y p| ¨ |´3`t`sq “ p2πqsbs`tb3´t

b3´s´tbt
|y|´s´t. (3.3)

This equation can also be found in [6, Eqns. (3.4)-(3.5)]. Also, |∇y|´s|y|´t is a L1

loc
pR3q-function

for 0 ă s ă t ă 3 and

|∇y|´s|y|´t “ F´1

y p|2πξy|´sFyp| ¨ |´tqq “ bt´sb3´t

p2πqsb3`s´tbt
|y|s´t. (3.4)

We end this subsection by studying the relationship between p1 ` |∇y|2qs{2 and |∇y|s, then in
the next subsections we will study Hardy-type inequalities associated with the fractional Laplacian
operator |∇y|s.

Let

Ks,y :“ p1 ` |∇y|2qs{2p1 ` |∇y|sq´1, (3.5)



10 LONG MENG

which is defined by the Fourier transform:

FypKs,yfqpξyq :“ p1 ` |2πξ|2qs{2

1 ` |2πξ|s Fypfqpξyq.

By the Fourier transform, it is easy to see that

K˚
s,y “ Ks,y. (3.6)

Then we have the following.

Lemma 3.1. For any 0 ď s ď 2,

}Ks,y}L2pR3qÑL2pR3q ď 1.

Proof. For any 0 ď s ď 2, fpyq P L2pR3q,
}Ks,yf}L2pR3q “ }p1 ` |2πξy|2qs{2p1 ` |2πξy|sq´1Fypfq}L2pR3q.

As 0 ď s{2 ď 1, p1 ` |2πξy|2qs{2 ď p1 ` |2πξy|sq. Thus,

}Ks,yf}L2pR3q ď }Fypfq}L2pR3q “ }f}L2pR3q.

Hence the lemma. �

Remark 3.2. Actually, the operator Ks,y is also bounded from below. One can use the inequalities
pap ` bpq ď pa ` bqp ď 2ppap ` bpq for a, b ě 0. (We thank one of the referees for this remark.)

3.2. Hardy-type inequalities for a single particle. We now consider the term |∇y|´s|y|´sfpyq
with f P L2pR3q. Actually, |∇y|´s|y|´s is the adjoint of the operator |y|´s|∇y|´s which has been
well studied in [7] (see equally [2, Theorem 1.7.1]). The following holds.

Theorem 3.3 (Hardy-type inequality [7]). Let p´1 ` q´1 “ 1. Suppose s ą 0 and 3s´1 ą p ą 1.
Then

}|y|´s|∇y|´sf}LppR3q ď Cs,p}f}LppR3q (3.7)

where

Cs,p :“ 2´s
Γp1

2
p3p´1 ´ sqqΓp3

2
q´1q

Γp3

2
pq´1 ` sqqΓp1

2
3p´1q .

If p ě 3s´1 or p “ 1, then Cs,p is unbounded.

Remark 3.4. It is shown in [7] that the constant Cs,p is optimal. When p “ 2, (3.7) is equally
proven in [1, Theorem 2.58] but without the optimal constant Cs,p.

Remark 3.5. Replacing fpyq by |∇y|sgpyq in (3.7), then (3.7) can be rewritten as:

}|y|´sg}LppR3q ď Cs,p}|∇y|sg}LppR3q. (3.8)

When p “ 2 and s “ 1, (3.7) is indeed the Hardy inequality with the optimal constant C1,2 “ 2.

When p “ 2 and s “ 1

2
, (3.7) is the Kato inequality with the optimal constant C 1

2
,2 “

?
π?
2

(see

e.g. [2, Formula (1.7.7)]).

In this paper, we only use the case p “ 2. By duality, we also have the following: for 0 ă s ă 3

2

}|∇y|´s|y|´sf}L2pR3q ď Cs,2}f}L2pR3q.

Notice that |∇y|srfpy ` aqs “ r|∇y|sf spy ` aq. Then from Theorem 3.3, for any a P R
3 and

0 ă s ă 3

2
,

}| ¨ ´a|´sf}L2pR3q ď Cs,2}|∇y|sf}L2pR3q. (3.9)



ON THE MIXED REGULARITY OF N -BODY COULOMBIC WAVEFUNCTIONS 11

By Fubini’s Theorem and for any hpy, zq P L2pR3 ˆ R
3q, we have

}|y ´ z|´shpy, zq}L2pR3ˆR3q ď Cs,2}|∇y|sh}L2pR3ˆR3q. (3.10)

The dual version of (3.9) and (3.10) can be represented respectively as follows: for a P R
3 and

0 ă s ă 3{2,
}|∇y|´s| ¨ ´a|´sf}L2pR3q ď Cs,2}f}L2pR3q (3.11)

and

}|∇y|´s|y ´ z|´sf}L2pR3ˆR3q ď Cs,2}f}L2pR3ˆR3q. (3.12)

3.3. Hardy-type inequalities for two particles. The rest of this section is devoted to Hardy-
type inequalities for |∇y|´s|∇z|´t|z ´ y|´s´t terms for some s, t ě 0. By using Theorem 3.3, we
have the following.

Lemma 3.6. For s, t ě 0, s ` t ă 3{2, and f P L2pR3 ˆ R
3q, we have

}|∇y|´s|∇z|´t|y ´ z|´s´tf}L2pR3ˆR3q ď 2cs`t}f}L2pR3ˆR3q (3.13)

and

}|y ´ z|´s´t|∇y|´s|∇z|´tf}L2pR3ˆR3q ď 2cs`t}f}L2pR3ˆR3q, (3.14)

with c0 :“ 1 and, for 0 ă s ă 3{2, cs :“ Cs,2 where Cs,2 is defined in Theorem 3.3.

Proof. For simplicity, we use the shorthand }f}L2 for }f}L2pR3ˆR3q. We prove first

}|∇y|´s|∇z|´t|y ´ z|´s´tf}L2 ď 2cs`t}f}L2 .

If s “ t “ 0, then }f}L2pR3ˆR3q ď 2c0}f}L2pR3ˆR3q where c0 “ 1.
Now we assume s “ 0 and t ‰ 0. Thanks to (3.12), we have

}|∇z|´t|y ´ z|´tf}L2 ď ct}f}L2 ď 2ct}f}L2 .

The case t “ 0 and s ‰ 0 can be treated in the same manner. Now we only need to consider the
case s, t ą 0. For any function upy, zq P L2pR3 ˆ R

3q, by Fourier transform on R
3 ˆ R

3, we have

}|∇y|´s|∇z|´t|y ´ z|´s´tf}L2 “ p2πq´s´t}|ξy|´s|ξz|´tFy,zp|y ´ z|´s´tfqpξy, ξzq}L2 .

Notice that |τ |t ď |τ |s`t ` 1 for τ P R. Then for τ “ |ξy|{|ξz|, we have

|ξy|´s|ξz|´t ď |ξy|´s´t ` |ξz|´s´t.

Thus,

}|ξy|´s|ξz|´tFy,zp|y ´ z|´s´tfqpξx, ξyq}L2

ď }|ξy|´s´tFy,zp|y ´ z|´s´tfqpξy, ξzq}L2 ` }|ξz|´s´tFy,zp|y ´ z|´s´tfqpξy, ξzq}L2

“ p2πqs`t}|∇y|´s´t|y ´ z|´s´tf}L2 ` p2πqs`t}|∇z|´s´t|y ´ z|´s´tf}L2 .

As 0 ă s ` t ă 3{2, by (3.12), we have

}|∇y|´s´t|y ´ z|´s´tf}L2 ď cs`t}f}L2 ,

and

}|∇z|´s´t|y ´ z|´s´tf}L2 ď cs`t}f}L2 .

Consequently, we deduce

}|∇y|´s|∇z|´t|x ´ y|´s´tf}L2 ď 2cs`t}f}L2 .

By duality, Eqn. (3.14) follows. �



12 LONG MENG

For the wavefunction u, the antisymmetry with respect to I will counterbalance the singularities
of the potential between electrons. Based on this observation, Lemma 3.6 can be extended in
consideration of the antisymmetry. In Theorem 2.2, we only focus on the case t “ s. The
extension is based on the following.

Lemma 3.7. Let a P R
3 and k P r1, 3{2q Y p3{2, 5{2q. If f P C8

0
pR3q for k P r1, 3{2q, or if

f P C8
0

pR3ztauq for k P p3{2, 5{2q, we have
››››

f

| ¨ ´a|k
››››
L2pR3q

ď 2

|2k ´ 3|

››››
∇yf

| ¨ ´a|k´1

››››
L2pR3q

.

The proof is inspired by [17, Lemma 2].

Proof. We have the relationship:

p2k ´ 1q 1

|y ´ a|2k “ ´∇
1

|y ´ a|2k´1
¨ ∇|y ´ a|.

Under the assumption on f , we have
ş
R3

|fpyq|2
|y´a|2k dy ă `8. Then by integration by parts, we obtain

p2k ´ 1q
ż

R3

|f |2
|y ´ a|2k dy “

ż

R3

∇y ¨ p|f |2∇|y ´ a|q
|y ´ a|2k´1

dy.

Using △|y ´ a| “ 2

|y´a| on the right-hand side, then

p2k ´ 1q
ż

R3

|f |2
|y ´ a|2k dy “ 2ℜ

ż

R3

f∇yf ¨ ∇|y ´ a|
|y ´ a|2k´1

dy ` 2

ż

R3

|f |2
|y ´ a|2k dy,

by the Cauchy-Schwarz inequality, we obtain
ˇ̌
ˇ̌2k ´ 3

2

ˇ̌
ˇ̌
ż

R3

|f |2
|y ´ a|2k dy ď

ˆż

R3

|f |2
|y ´ a|2k dy

˙1{2 ˆż

R3

|∇|y ´ a| ¨ ∇f |2
|y ´ a|2k´2

dy

˙1{2
.

As |∇|y ´ a| ¨ ∇f | ď
ˇ̌
∇|y ´ a|

ˇ̌
|∇f | ď |∇f |, we finally get the conclusion:

|2k ´ 3|2
4

ż

R3

|f |2
|y ´ a|2k dy ď

ż

R3

|∇f |2
|y ´ a|2k´2

dy.

This ends the proof. �

Using Fubini’s theorem and Lemma 3.7, the following holds for antisymmetric functions.

Corollary 3.8. For s P r1, 5{4q and f P C8
0

pR3 ˆ R
3q with fpy, zq “ ´fpz, yq, we have

››››
f

|y ´ z|2s
››››
L2pR3ˆR3q

ď 4

|4s ´ 5||4s ´ 3|

››››
∇y∇zf

|y ´ z|2s´2

››››
L2pR3ˆR3q

.

Proof. This is a generalization of [17, Eqn. (3.9)]. We first fix z P R
3, and let gzpyq “ fpy, zq. As

fpy, zq “ ´fpz, yq and f P C8
0

pR3 ˆ R
3q, we know that gz P C8

0
pR3ztzuq. Thus Lemma 3.7 shows

that for any z P R
3

››››
gz

| ¨ ´z|2s
››››
L2pR3

yq
ď 2

|4s ´ 3|

››››
∇ygz

| ¨ ´z|2s´1

››››
L2pR3

yq
.

Taking L2-norm with respect to z in the above inequality, we get
››››
fpy, zq

|y ´ z|2s
››››
L2pR3ˆR3q

ď 2

|4s ´ 3|

››››
∇yfpy, zq
|y ´ z|2s´1

››››
L2pR3ˆR3q

.
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Now 1 ď 2s´ 1 ă 3

2
and ∇yfpy, ¨q P C8pR3q for any fixed y P R

3. Arguing as above, fixing y P R
3,

and using Lemma 3.7 again, we infer
››››
fpy, zq

|y ´ z|2s
››››
L2pR3ˆR3q

ď 4

|4s ´ 5||4s ´ 3|

››››
∇y∇zfpy, zq
|y ´ z|2s´2

››››
L2pR3ˆR3q

.

This ends the proof. �

Combining Lemma 3.6 with Corollary 3.8, we have the following.

Lemma 3.9. For s P r1, 5{4q and f P C8
0

pR3 ˆ R
3q with fpy, zq “ ´fpz, yq, we have

››››
f

|y ´ z|2s
››››
L2pR3ˆR3q

ď c2s }|∇y|s|∇z|sf}
L2pR3ˆR3q (3.15)

where c2s :“ 8c2s´2

p5´4sqp4s´3q and c2s´2 “ C2s´2,2.

Remark 3.10. Denote the functional space Yanti,spR3 ˆ R
3q by

Yanti,spR3 ˆ R
3q :“ tf P L2pR3 ˆ R

3q; fpy, zq “ ´fpz, yq, |∇y|s|∇z|sf P L2pR3 ˆ R
3qu.

Then Yanti,spR3 ˆ R
3q is a completion of C8

0
pR3 ˆ R

3q with the antisymmetry fpy, zq “ ´fpz, yq.
Thus by density, (3.15) still holds for f P Yanti,spR3 ˆ R

3q.

4. Hardy-type inequalities for the Coulomb system

Now, we are going to use these inequalities to prove Theorem 2.2. We will study separately the
contribution of the potential Vne in Section 4.1 and the potential Vee in Section 4.2. Theorem 2.2
follows immediately from Lemma 4.1 and Lemma 4.3 with Cmix,α,β “ C1,mix,α,β ` C2,mix,α,β where
C1,mix,α,β and C2,mix,α,β are given in Lemma 4.1 and Lemma 4.3 respectively.

Before going further, we recall that Z “ řM

ν“1
Zν and that the constant ck is defined by : c0 “ 1,

ck “ Ck,2 for k P p0, 3{2q with Ck,p defined in Theorem 3.3, and ck “ 8ck´2

p5´2kqp2k´3q for k P r2, 5{2q.

4.1. Contribution of the electrons-nuclei interaction. In this subsection, we are going to
prove the following.

Lemma 4.1 (Contribution of Vne). Let I Ă t1, ¨ ¨ ¨ , Nu. For any α, β P r0, 3{2q, there is a constant
C1,mix,α,β independent of N,Z such that for any u, v P XI,α,β,

|〈LI,α,βVneu,LI,α,βv〉| ď C1,mix,α,β

?
NZ}u}0,I,α,β}v}1,I,α,β. (4.1)

It is an immediate result of the following.

Lemma 4.2. For s P r´1, 1{2q, a P R
3, and f P H1`spR3q, we have

››|∇y|s| ¨ ´a|´1f
››
L2pR3q ď Cs}|∇y|1`sf}L2pR3q,

where Cs “ pc1`s ` csqc1´s if s ą 0, C0 “ c1 “ 2, Cs “ c´sc1`s if ´1 ď s ă 0.

Before proving Lemma 4.2, we use it to prove Lemma 4.1 first.

Proof of Lemma 4.1. Recall that Ks,y “ p1 ` |∇y|2qs{2p1 ` |∇y|sq´1.
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Following (2.12), (3.6) and the formal identity |∇i||∇i|´1 “ 1, we have

〈LI,α,βVneu,LI,α,βv〉 “
Nÿ

i“1

Mÿ

ν“1

Zν

〈

p1 ` |∇i|2qγi{2|xi ´ aν |´1L
piq
I,α,βu,LI,α,βv

〉

“
Nÿ

i“1

Mÿ

ν“1

Zν

〈

|∇i|´1p1 ` |∇i|γiq|xi ´ aν |´1L
piq
I,α,βu, |∇i|Kγi,xi

LI,α,βv
〉

“
Nÿ

i“1

Mÿ

ν“1

Zν

〈

|∇i|´1|xi ´ aν |´1L
piq
I,α,βu, |∇i|Kγi,xi

LI,α,βv
〉

`
Nÿ

i“1

Mÿ

ν“1

Zν

〈

|∇i|γi´1|xi ´ aν |´1L
piq
I,α,βu, |∇i|Kγi,xi

LI,α,βv
〉

where γk “ α if k P I, and γk “ β if k P Ic. By definition (2.7),

}u}2
1,I,α,β “

Nÿ

i“1

}∇iu}2
0,I,α,β. (4.2)

Thus by Lemma 3.1,

|〈LI,α,βVneu,LI,α,βv〉| ď

¨
˝

Nÿ

i“1

›››››
ÿ

ν

Zν |∇i|´1|xi ´ aν |´1L
piq
I,α,βu

›››››

2

L2ppR3qN q

˛
‚

1{2

}v}1,I,α,β

`

¨
˝

Nÿ

i“1

›››››
ÿ

ν

Zν |∇i|γi´1|xi ´ aν |´1L
piq
I,α,βu

›››››

2

L2ppR3qN q

˛
‚

1{2

}v}1,I,α,β.

By Lemma 4.2, we have
›››››
ÿ

ν

Zν |∇i|s´1|xi ´ aν |´1L
piq
I,α,βu

›››››
L2ppR3qN q

ď
ÿ

ν

Zν}|∇i|s´1|xi ´ aν |´1L
piq
I,α,βu}L2ppR3qN q

ď Cs´1Z}|∇i|sLpiq
I,α,βu}L2ppR3qN q ď Cs´1Z}u}0,I,α,β,

where s “ 0 or s “ γi ě 0 and the last inequality holds since |2πξi|s ď p1` |2πξi|2qγi{2. Using (4.2)
again, we finally get

|〈LI,α,βVneu,LI,α,βv〉| ď C1,mix,α,β

?
NZ}u}0,I,α,β}v}1,I,α,β.

with C1,mix,α,β :“ C0 ` maxtCα´1, Cβ´1u independent of N,Z. This ends the proof. �

Now, we turn back to prove Lemma 4.2.

Proof of Lemma 4.2. When s “ 0, it is just the Hardy inequality and C0 “ c1 “ 2.
When s P r´1, 0q, by (3.11), we have

››|∇y|s| ¨ ´a|´1f
››
L2pR3q ď c´s}| ¨ ´a|´s´1f}L2pR3q ď c´sc´s´1}|∇y|´s´1f}L2pR3q.

Hence Lemma 4.2 for s P r´1, 0q with Cs “ c´sc1`s.



ON THE MIXED REGULARITY OF N -BODY COULOMBIC WAVEFUNCTIONS 15

When 0 ă s ă 1{2, we use the formal identity |∇|s “ |∇||∇|s´1. Thus,››|∇y|s|y ´ a|´1fpyq
››
L2pR3q “

››|∇y|s´1∇y|y ´ a|´1fpyq
››
L2pR3q

ď }|∇y|s´1|y ´ a|´1∇yfpyq}L2pR3q ` }|∇y|s´1|y ´ a|´3py ´ aqfpyq}L2pR3q.

Using (3.11) again, we get

}|∇y|s´1|y ´ a|´1∇yfpyq}L2pR3q ď c1´s}|y ´ a|´s∇yfpyq}L2pR3q ď c1´scs}|∇y|1`sf}L2pR3q.

Analogously, as 0 ă s ă 1{2, we have

}|∇y|s´1|y ´ a|´3py ´ aqfpyq}L2pR3q

ď c1´s}|y ´ a|´1´sfpyq}L2pR3q ď c1´sc1`s}|∇y|1`sf}L2pR3q.

We conclude now that, for s P p0, 1{2q, Lemma 4.2 holds with Cs “ c1´spcs ` c1`sq, i.e.,››|∇y|s| ¨ ´a|´1f
››
L2pR3q ď Cs}|∇y|1`sf}L2pR3q,

This ends the proof.
�

4.2. Contribution of the electron-electron interaction. In this subsection, we are going to
prove the following.

Lemma 4.3 (Contribution of Vee). Let I Ă t1, ¨ ¨ ¨ , Nu. Under Assumption 2.1 on α, β, there is
a constant C2,mix,α,β independent of N,Z such that for any u, v P XI,α,β,

|〈LI,α,βVeeu,LI,α,βv〉| ď C2,mix,α,βN
3{2}u}0,I,α,β}v}1,I,α,β. (4.3)

Recall that bs “ π´s{2Γps{2q where Γp¨q is the Gamma function and recall that

Yanti,spR3 ˆ R
3q :“ tf P L2pR3 ˆ R

3q; fpy, zq “ ´fpz, yq, |∇y|s|∇z|sf P L2pR3 ˆ R
3qu.

To prove Lemma 4.3, we need the followings.

Lemma 4.4. Define Ys,tpR3 ˆR
3q :“ tg P L2pR3 ˆR

3q; |∇y|s|∇z|tg P L2pR3 ˆR
3qu. Let 0 ď t ď s,

s ` t ă 3{2 and f P Ys,tpR3 ˆ R
3q. Then,

}|∇y|s`t´1|y ´ z|´1f}L2pR3ˆR3q ď C 1
s,t}|∇y|s|∇z|tf}L2pR3ˆR3q,

where C 1
s,t :“

´
2s`tπs`t´2bs`tcs`t

b3´s´t
` 2c1

¯
if 1 ă s ` t ă 3{2, and C 1

s,t :“ 2c1´s´tcs`t if 0 ď s ` t ď 1.

Lemma 4.5. Let 0 ď s ă 5{4 and f P Yanti,spR3 ˆ R
3q. Then,

}|∇y|s´1{2|∇z|s´1{2|y ´ z|´1f}L2pR3ˆR3q ď Canti,s}|∇y|s|∇z|sf}L2pR3ˆR3q,

where Canti,0 :“ 2c1, Canti,s :“ 4c3´2sc2s´2 ` 4c3´2sc2s´1 ` 4c3´2sc2s if 1 ď s ă 5{4, and Canti,s :“
C1´s

anti,0C
s
anti,1 if 0 ă s ă 1.

We prove Lemma 4.3 first. The proofs of Lemma 4.4 and Lemma 4.5 are postponed to Subsection
4.2.1 and Subsection 4.2.2 respectively.

Proof of Lemma 4.3. Recall that Ks,y :“ p1 ` |∇y|2qs{2p1 ` |∇y|sq´1. Following (2.14) and (3.6),
we have

〈LI,α,βVeeu,LI,α,βv〉 “ 1

2

Nÿ

i,j“1

i‰j

〈

p1 ` |∇i|2qγi{2p1 ` |∇j|2qγj{2|xi ´ xj|´1L
pi,jq
I,α,βu,LI,α,βv

〉

“ 1

2

ÿ

i‰j

〈

p1 ` |∇i|γiqp1 ` |∇j|γjq|xi ´ xj|´1L
pi,jq
I,α,βu,Kγi,xi

Kγj ,xj
LI,α,βv

〉

,
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where γk “ α if k P I, and γk “ β if k P Ic. Then by using the formal identity |∇k|γk “ |∇k|γk´1|∇k|
for k “ i or k “ j, we get

〈LI,α,βVeeu,LI,α,βv〉 “ 1

2

ÿ

i‰j

〈

L
pi,jq
I,α,βu, |xi ´ xj|´1Kγi,xi

Kγj ,xj
LI,α,βv

〉

` 1

2

ÿ

i‰j

〈

|∇j|γj´1|xi ´ xj|´1L
pi,jq
I,α,βu, |∇j|Kγi,xi

Kγj ,xj
LI,α,βv

〉

` 1

2

ÿ

i‰j

〈

|∇i|γi´1|xi ´ xj|´1L
pi,jq
I,α,βu, |∇i|Kγi,xi

Kγj ,xj
LI,α,βv

〉

` 1

2

ÿ

i‰j

〈

|∇i|γi |∇j|γj |xi ´ xj|´1L
pi,jq
I,α,βu,Kγi,xi

Kγj ,xj
LI,α,βv

〉

.

(4.4)

For the first term on the right-hand side of (4.4), it follows from (3.7), Lemma 3.1 and the fact
1 ď p1 ` |2πξk|2qγk for k “ i or k “ j that

ˇ̌
ˇ
〈

L
pi,jq
I,α,βu, |xi ´ xj|´1Kγi,xi

Kγj ,xj
LI,α,βv

〉ˇ̌
ˇ

ď }Lpi,jq
I,α,βu}L2ppR3qN q}|xi ´ xj|´1Kγi,xi

Kγj ,xj
LI,α,βv}L2ppR3qN q

ď c1

2
}u}0,I,α,β p}|∇i|LI,α,βv}0,I,α,β ` }|∇j|LI,α,βv}0,I,α,βq .

Thus, according to (4.2), we get

ˇ̌
ˇ̌
ˇ
ÿ

i‰j

〈

L
pi,jq
I,α,βu, |xi ´ xj|´1Kγi,xi

Kγj ,xj
LI,α,βv

〉

ˇ̌
ˇ̌
ˇ ď c1N

3{2}u}0,I,α,β}v}1,I,α,β. (4.5)

For the second term, it follows from Lemma 3.1, Lemma 4.2 and the fact γj P r0, 3{2q that

ˇ̌
ˇ
〈

|∇j|γj´1|xi ´ xj|´1L
pi,jq
I,α,βu, |∇j|Kγi,xi

Kγj ,xj
LI,α,βv

〉ˇ̌
ˇ

ď
›››|∇j|γj´1|xi ´ xj|´1L

pi,jq
I,α,βu

›››
L2ppR3qN q

}|∇j|Kγi,xi
Kγj ,xj

LI,α,βv}L2ppR3qN q

ď Cγj}|∇j|γjLpi,jq
I,α,βu}L2ppR3qN q}|∇j|v}0,I,α,β ď Cγj}u}0,I,α,β}|∇j|v}0,I,α,β,

where the last inequality holds since |2πξj|γj ď p1 ` |2πξj|2qγj{2. Thus,

ˇ̌
ˇ̌
ˇ
ÿ

i‰j

〈

|∇j|γj´1|xi ´ xj|´1L
pi,jq
I,α,βu, |∇j|Kγi,xi

Kγj ,xj
LI,α,βv

〉

ˇ̌
ˇ̌
ˇ ď Cα,βN

3{2}u}0,I,α,β}v}1,I,α,β (4.6)

with Cα,β :“ maxtCα, Cβu. Analogously, for the third term,

ˇ̌
ˇ̌
ˇ
ÿ

i‰j

〈

|∇i|γi´1|xi ´ xj|´1L
pi,jq
I,α,βu, |∇i|Kγi,xi

Kγj ,xj
LI,α,βv

〉

ˇ̌
ˇ̌
ˇ ď Cα,βN

3{2}u}0,I,α,β}v}1,I,α,β. (4.7)

Finally, we deal with the last term on the right-hand side of (4.4). It is the most delicate term
in (4.4) and Assumption 2.1 on α, β is necessary. Before going further, we assume that γj ď γi.
The case γi ď γj can be treated in the same manner.
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We first consider the case ti, ju Ć I. Then as γj ď γi, we have γj “ β P r0, 3{4q. Thus by using
Lemma 3.1 and the formal identity |∇i|γi “ |∇i|γi`γj´1|∇i|1´γj ,

ˇ̌
ˇ
〈

|∇i|γi |∇j|γj |xi ´ xj|´1L
pi,jq
I,α,βu,Kγi,xi

Kγj ,xj
LI,α,βv

〉ˇ̌
ˇ

“
ˇ̌
ˇ
〈

|∇i|γi`γj´1|xi ´ xj|´1L
pi,jq
I,α,βu, |∇j|γj |∇i|1´γjKγi,xi

Kγj ,xj
LI,α,βv

〉ˇ̌
ˇ

ď }|∇i|γi`γj´1|xi ´ xj|´1L
pi,jq
I,α,βu}L2ppR3qN q}|∇j|γj |∇i|1´γjv}0,I,α,β.

Notice that |τ |γj ď 1 ` |τ | for any τ P R and 0 ď γj ă 3{4. For τ “ |ξj |
|ξi| , we have

|ξj|γj |ξi|1´γj ď |ξj| ` |ξi|.
Thus,

}|∇j|γj |∇i|1´γjv}0,I,α,β ď }|∇i|v}0,I,α,β ` }|∇j|v}0,I,α,β.
On the other hand, thanks to Lemma 4.4, Assumption 2.1 and the fact |2πξk|γk ď p1` |2πξk|2qγk{2

with k “ i or k “ j, we have

}|∇i|γi`γj´1|xi ´ xj|´1L
pi,jq
I,α,βu}L2ppR3qN q ď C 1

γi,γj
}u}0,I,α,β. (4.8)

We conclude that, if ti, ju Ć I, then
ˇ̌
ˇ
〈

|∇i|γi |∇j|γj |xi ´ xj|´1L
pi,jq
I,α,βu,Kγi,xi

Kγj ,xj
LI,α,βv

〉
ˇ̌
ˇ

ď C 1
γi,γj

}u}0,I,α,β p}|∇i|v}0,I,α,β ` }|∇j|v}0,I,α,βq .
Now we consider the case ti, ju Ă I. Then γi “ γj “ α with α P r0, 5{4q. Besides, the

function u is antisymmetric with respect to ti, ju. We fix the variables pxkqkPt1,¨¨¨ ,Nuzti,ju, and let
fpxi, xjq “ upxq with x “ px1, ¨ ¨ ¨ , xNq. Thus fpxi, xjq P Yanti,αpR3

xi
ˆ R

3

xj
q, and by Lemma 4.5,

}|∇i|α´1{2|∇j|α´1{2|xi ´ xj|´1f}L2pR3
xi

ˆR3
xj

q ď Canti,α}|∇i|α|∇j|αf}L2pR3
xi

ˆR3
xj

q.

Finally, for i, j P I, by the formal identity |∇i|α|∇j|α “ |∇i|α´1{2|∇j|α´1{2|∇i|1{2|∇j|1{2, we get
ˇ̌
ˇ
〈

|∇i|α|∇j|α|xi ´ xj|´1L
pi,jq
I,α,βu,Kα,xi

Kα,xj
LI,α,βv

〉
ˇ̌
ˇ

“
ˇ̌
ˇ
〈

|∇i|α´1{2|∇j|α´1{2|xi ´ xj|´1L
pi,jq
I,α,βu, |∇j|1{2|∇i|1{2Kγi,xi

Kγj ,xj
LI,α,βv

〉ˇ̌
ˇ

ď }|∇i|α´1{2|∇j|α´1{2|xi ´ xj|´1L
pi,jq
I,α,βu}L2ppR3qN q}|∇j|1{2|∇i|1{2v}0,I,α,β

ď Canti,α

2
}|∇i|α|∇j|αLi,j

I,α,βu}L2ppR3qN q p}|∇i|v}0,I,α,β ` }|∇j|v}0,I,α,βq

ď Canti,α

2
}u}0,I,α,β p}|∇i|u}0,I,α,β ` }|∇j|v}0,I,α,βq .

(4.9)

Let C2
α,β :“ maxtCanti,α

2
, C 1

α,β, C
1
β,βu. For the last term on the right-hand side of (4.4), under

Assumption 2.1 on α, β, we conclude
ˇ̌
ˇ̌
ˇ
ÿ

i‰j

〈

|∇i|γi |∇j|γj |xi ´ xj|´1L
pi,jq
I,α,βu,Kγi,xi

Kγj ,xj
LI,α,βv

〉

ˇ̌
ˇ̌
ˇ ď C2

α,βN
3{2}u}0,I,α,β}v}1,I,α,β. (4.10)

Combining (4.5),(4.6),(4.7) and (4.10), we finally get

| 〈LI,α,βVeeu,LI,α,βv〉 | ď C2,mix,α,βN
3{2}u}0,I,α,β}v}1,I,α,β,

with C2,mix,α,β :“ pc1 ` 2Cα,β ` C2
α,βq{2 independent of Z,N . This ends the proof. �
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4.2.1. Proof of Lemma 4.4. We split the condition 0 ď s ` t ă 3{2 into two cases: 0 ď s ` t ď 1

and 1 ă s ` t ă 3{2. For the case 0 ď s ` t ď 1, by Lemma 3.6, we have

}|∇y|s`t´1|y ´ z|´1f}L2pR3ˆR3q

ď c1´s´t}|y ´ z|´s´tf}L2pR3ˆR3q ď 2c1´s´tcs`t}|∇y|s|∇z|tf}L2pR3ˆR3q.

Thus, C 1
s,t :“ 2c1´s´tcs`t if 0 ď s ` t ď 1.

Now, we turn to prove the case 1 ă s ` t ă 3{2. It is based on the study of the fractional
Laplacian in Section 3.1.

We consider first the Fourier transform of fpy,zq
|y´z|τ . For any function gpy, zq P L2pR3 ˆR

3q, we have

Fy,zpgqpξy, ξzq “ Fz˝Fypgqpξy, ξzq. Besides, thanks to (3.1), we have Fyp|¨´z|´τ qpξyq “ b3´τ

bτ

e´2iπz¨ξy

|ξy |3´τ .

Thus,

Fy,z

ˆ
f

|y ´ z|τ
˙

pξy, ξzq “ b3´τ

bτ

ż

R3

1

|l|3´τ
Fzpe´2iπz¨lFypfqpξy ´ l, zqqdl

“ b3´τ

bτ

ż

R3

1

|l|3´τ
Fy,zpfqpξy ´ l, ξz ` lqdl.

(4.11)

Thus for s ` t ą 1, by Plancherel’s Theorem,

}|∇y|s`t´1|y ´ z|´1f}L2pR3ˆR3q

“ 2s`t´1πs`t´2

››››
ż

R3

|ξy|s`t´1Fy,zpfqpξy ´ l, ξz ` lq
|l|2 dl

››››
L2pR3ˆR3q

.

For any k P R
3 and 1 ă s ` t ă 3{2, we have |ξy|s`t´1 ď |ξy ´ k|s`t´1 ` |k|s`t´1. Let k “ l, thus

}|∇y|s`t´1|y ´ z|´1f}L2pR3ˆR3q

ď p2πqs`t´1π´1

››››
ż

R3

|Fy,zpfqpξy ´ l, ξz ` lq|
|l|3´s´t

dl

››››
L2pR3ˆR3q

` p2πqs`t´1π´1

››››
ż

R3

|ξy ´ l|s`t´1|Fy,zpfqpξy ´ l, ξz ` lq|
|l|2 dl

››››
L2pR3ˆR3q

.

(4.12)

Using (4.11) and Plancherel’s Theorem again, we get
››››
ż

R3

|Fy,zpfqpξy ´ l, ξz ` lq|
|l|3´s´t

dl

››››
L2pR3ˆR3q

“ bs`t

b3´s´t

}|y ´ z|´s´tF´1

y,z p|Fy,zpfq|q}L2pR3ˆR3q.

By Lemma 3.6, we finally deduce

}|y ´ z|´s´tF´1

y,z p|Fy,zpfq|q}L2pR3ˆR3q

ď 2cs`t}|∇y|s|∇z|tF´1

y,z p|Fy,zpfq|q}L2pR3ˆR3q

“ 2cs`tp2πqs`t}|ξy|s|ξz|tFy,zpfq}L2pR3ˆR3q “ 2cs`t}|∇y|s|∇z|tf}L2pR3ˆR3q.

On the other hand, for the second term on the right-hand side of (4.12), we have
››››
ż

R3

|ξy ´ l|s`t´1|Fy,zpfqpξy ´ l, ξz ` lq|
|l|2 dl

››››
L2pR3ˆR3q

“ p2πq1´s´t

››››
ż

R3

|Fy,zp|∇y|s`t´1fqpξy ´ l, ξz ` lq|
|l|2 dl

››››
L2pR3ˆR3q

“ 21´s´tπ2´s´t}|y ´ z|´1F´1

y,z p|Fy,zp|∇y|s`t´1fq|q}L2pR3ˆR3q.
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As 0 ď t ď s and t ` s ă 3{2, we have t ď 3{4. Thus by Lemma 3.6,

}|y ´ z|´1F´1

y,z p|Fy,zp|∇y|s`t´1fq|q}L2pR3ˆR3q

ď 2c1}|∇y|1´t|∇z|tF´1

y,z p|Fy,zp|∇y|s`t´1fq|q}L2pR3ˆR3q

“ 4πc1}|ξy|1´t|ξz|tFy,zp|∇y|s`t´1fq}L2pR3ˆR3q “ 2c1}|∇y|s|∇z|tf}L2pR3ˆR3q.

Consequently, for 0 ď t ď s and 1 ă s ` t ă 3{2, we deduce

}|∇y|s`t´1|y ´ z|´1f}L2pR3ˆR3q ď
ˆ
2s`tπs`t´2bs`tcs`t

b3´s´t

` 2c1

˙
}|∇y|s|∇z|tf}L2pR3ˆR3q.

Thus C 1
s,t :“

´
2s`tπs`t´2bs`tcs`t

b3´s´t
` 2c1

¯
if 1 ă s ` t ă 3{2 and 0 ă t ď s. This ends the proof.

4.2.2. Proof of Lemma 4.5. When s “ 0, by Lemma 3.6, we have

}|∇y|´1{2|∇z|´1{2|y ´ z|´1f}L2pR3ˆR3q ď 2c1}f}L2pR3ˆR3q.

Thus, Canti,0 :“ 2c1
Now, we assume 1 ď s ă 5{4. By the formal identity

|∇y|s´1{2|∇z|s´1{2 “ |∇y||∇y|s´3{2|∇z||∇z|s´3{2,

we have
}|∇y|s´1{2|∇z|s´1{2|y ´ z|´1f}L2pR3ˆR3q

“ }∇y b ∇z|∇y|s´3{2|∇z|s´3{2|y ´ z|´1f}L2pR3ˆR3q

ď }|∇y|s´3{2|∇z|s´3{2|y ´ z|´1∇y b ∇zf}L2pR3ˆR3q

` }|∇y|s´3{2|∇z|s´3{2|y ´ z|´3py ´ zq b ∇zf}L2pR3ˆR3q

` }|∇y|s´3{2|∇z|s´3{2|y ´ z|´3pz ´ yq b ∇yf}L2pR3ˆR3q

` }|∇y|s´3{2|∇z|s´3{2p∇y b ∇z|y ´ z|´1qf}L2pR3ˆR3q.

(4.13)

As ´1{2 ď s ´ 3{2 ă ´1{4, by Lemma 3.6, we have

}|∇y|s´3{2|∇z|s´3{2g}L2pR3ˆR3q ď 2 c2s´3}|y ´ z|3´2sg}L2pR3ˆR3q.

Besides, it is not difficult to see that

|∇y b ∇z|y ´ z|´1| ď 6 |y ´ z|´3.

Thus,

}|∇y|s´1{2|∇z|s´1{2|y ´ z|´1f}L2pR3ˆR3q

ď 2c3´2s}|y ´ z|2´2s∇y b ∇zf}L2pR3ˆR3q ` 2c3´2s}|y ´ z|1´2s∇zf}L2pR3ˆR3q

` 2c3´2s}|y ´ z|1´2s∇yf}L2pR3ˆR3q ` 12c3´2s}|y ´ z|´2sf}L2pR3ˆR3q.

(4.14)

By Lemma 3.6, we have

}|y ´ z|2´2s∇y b ∇zf}L2pR3ˆR3q ď 2c2s´2}|∇y|s|∇z|sf}L2pR3ˆR3q,

and, as 1 ď 2s ´ 1 ă 3{2,
}|y ´ z|1´2s∇zf}L2pR3ˆR3q ď 2c2s´1}|∇y|s|∇z|s´1∇zf}L2pR3ˆR3q

“ 2c2s´1}|∇y|s|∇z|sf}L2pR3ˆR3q.

Analogously, we have

}|y ´ z|1´2s∇yf}L2pR3ˆR3q ď 2c2s´1}|∇y|s|∇z|sf}L2pR3ˆR3q.
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Finally, by Lemma 3.9 and Remark 3.10, we get

}|y ´ z|´2sf}L2pR3ˆR3q ď c2s}|∇y|s|∇z|sf}L2pR3ˆR3q.

Thus, when 1 ď s ă 5{4, we have

}|∇y|s´1{2|∇z|s´1{2|y ´ z|´1f}L2pR3ˆR3q ď Canti,s}|∇y|s|∇z|sf}L2pR3ˆR3q

with Canti,s :“ 4c3´2sc2s´2 ` 4c3´2sc2s´1 ` 24c3´2sc2s.
Finally, by using the interpolation theory between the cases s “ 0 and s “ 1, we immediately

obtain the conclusion: for 0 ă s ă 1,

}|∇y|s´1{2|∇z|s´1{2|y ´ z|´1f}L2pR3ˆR3q ď Canti,s}|∇y|s|∇z|sf}L2pR3ˆR3q,

where Canti,s “ C1´s
anti,0C

s
anti,1. This ends the proof.

5. Application to mixed regularity of eigenfunctions

This section is devoted to the proof of Theorem 2.3.
Let I Ă t1, ¨ ¨ ¨ , Nu. Imitating the proof in [18], we split the eigenfunction u˚ P H1

I ppR3qNq of
(1.2) into the high-frequency part and the low-frequency part. Denote the projector PΩ to the
high-frequency part by

Fx1,¨¨¨ ,xN
pPΩuqpξq :“ 1|¨|ěΩpξqFx1,¨¨¨ ,xN

puqpξq, u P L2

IppR3qNq, ξ “ pξ1, ¨ ¨ ¨ , ξNq, (5.1)

where Ω is a constant such that

Ω ě 2

π
Cmix,α,β

?
N maxtN,Zu. (5.2)

For any function u P L2

IppR3qNq, let

uH :“ PΩu, uL :“ p1 ´ PΩqu.
Given a functional space Y , the subspaces PΩY and p1 ´ PΩqY are formally defined by

PΩY :“ tuH ; u P Y u and p1 ´ PΩqY :“ tuL; u P Y u.
Then, under Assumption 2.1 on α, β, the low-frequency part uL P XI,α,β for any u P H1

I ppR3qNq.
Hence u˚,L :“ p1 ´ PΩqu˚ P XI,α,β. Thus to prove u˚ P XI,α,β, it suffices to prove u˚,H :“ PΩu˚ P
XI,α,β.

To prove u˚,H P XI,α,β, we consider the following variational problem in u for the eigenvalue
problem (1.2):

〈LI,α,βHu,LI,α,βvH〉 ´ λ 〈LI,α,βu,LI,α,βvH〉 “ 0 for any vH P PΩXI,α,β, (5.3)

from which, using the fact that u “ uH ` uL, we deduce

〈LI,α,βpH ´ λquH ,LI,α,βvH〉

“ ´ 〈LI,α,βpVne ` VeequL,LI,α,βvH〉 for any vH P PΩXI,α,β. (5.4)

Obviously, when α “ β “ 0, LI,α,β “ 1 and XI,α,β “ H1

I . Thus for α “ β “ 0, u˚ solves (5.3), then
u˚,H solves (5.4) with uL “ u˚,L.

Before going further, we study the properties of the variational problem (5.4).

Lemma 5.1. Under Assumption 2.1 on α, β, for any given uL P p1 ´ PΩqXI,α,β, the variational
problem (5.4) admits a unique solution ψH,α,βpuLq P PΩXI,α,β.
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Proof. We will prove this lemma by using Lions-Lax-Milgram’s Theorem (see e.g., [15, Theorem
2.1, Chpt. III.2]). Thanks to Theorem 2.2 and (5.2), for any uH , vH P PΩXI,α,β, we have

|〈LI,α,βpVne ` VeequH ,LI,α,βvH〉| ď πΩ

2
}u}0,I,α,β}v}1,I,α,β ď 1

4
}uH}1,I,α,β}vH}1,I,α,β,

since }uH}L2ppR3qN q ď p2πΩq´1}∇uH}L2ppR3qN q. Then, according to Remark 1.1, λ ă 0, and we have

|〈LI,α,βpH ´ λqvH ,LI,α,βvH〉|

ě
〈

p´1

2
∆ ´ λqLI,α,βvH ,LI,α,βvH

〉

´ 1

4
}vH}2

1,I,α,β ě 1

4
}vH}2

1,I,α,β ě 1

8
}vH}2I,α,β.

Thus we get the weak coercivity: for uH , vH P PΩXI,α,β,

inf
}vH}I,α,β“1

sup
}uH}I,α,βď1

|〈LI,α,βpH ´ λquH ,LI,α,βvH〉|

ě inf
}vH}I,α,β“1

|〈LI,α,βpH ´ λqvH ,LI,α,βvH〉| ě 1

8
,

(5.5)

the continuity:

| 〈LI,α,βpH ´ λquH ,LI,α,βvH〉 | ď }uH}I,α,β}vH}I,α,β; (5.6)

and the continuity of the right-hand side term in (5.4):

| 〈LI,α,βpVne ` VeequL,LI,α,βvH〉 | ď }uL}I,α,β}vH}I,α,β. (5.7)

Thus by Lions-Lax-Milgram’s Theorem, under Assumption 2.1 on α, β, for any given uL P p1 ´
PΩqXI,α,β, (5.4) admits a unique solution ψH,α,βpuLq P PΩXI,α,β. �

Theorem 2.3 can be immediately obtained by the following.

Lemma 5.2. For any α, β satisfying Assumption 2.1 and for uL “ u˚,L, ψH,α,βpu˚,Lq “ u˚,H is
the unique solution to the variational problem (5.4). Thus u˚,H P XI,α,β.

Proof of Lemma 5.2. Let uL “ u˚,L in (5.4). When α “ β “ 0, by Lemma 5.1, ψH,0,0pu˚,Lq is
the unique solution to (5.4). On the other hand, for α “ β “ 0, u˚,H solves equally (5.4) with
uL “ u˚,L. Thus by the uniqueness of solution to (5.4), ψH,0,0pu˚,Lq “ u˚,H .

To end the proof, it suffices to prove ψH,α,βpu˚,Lq “ u˚,H for any α, β satisfying Assumption 2.1.
As the operator LI,α,β is invertible, we denote the functional space XI,´α,´β by

XI,´α,´β :“ tu; L´1

I,α,βu P H1

I ppR3qNqu.

Thus for any vH P PΩXI,α,β, we have L2

I,α,βvH P PΩXI,´α,´β. On the other hand, for any φH P
PΩXI,´α,´β, L

´2

I,α,βφH P PΩXI,α,β. Let vH “ L´2

I,α,βφH , then (5.4) can be rewritten as

〈pH ´ λquH , φH〉 “ ´ 〈pVne ` VeequL, φH〉 for any φH P PΩXI,´α,´β. (5.8)

Now, for any α1, β1 satisfying Assumption 2.1, let ψH,α1,β1puLq P PΩXI,α1,β1 be the unique solution
to (5.4) for α “ α1 and β “ β1. Obviously, H1

I ppR3qNq Ă XI,´α1,´β1 . Then PΩH
1

I ppR3qNq Ă
PΩXI,´α1,´β1 . Thus thanks to (5.8), for any φH P PΩH

1

I ppR3qNq, we have

〈pH ´ λqψH,α1,β1puLq, φH〉 “ ´ 〈pVne ` VeequL, φH〉 ,

which implies that ψH,α1,β1puLq also solves (5.4) for α “ β “ 0. Then, by Lemma 5.1, for any
α1, β1 satisfying Assumption 2.1, ψH,α1,β1puLq “ ψH,0,0puLq. As ψH,0,0pu˚,Lq “ u˚,H , we finally get
ψH,α1,β1pu˚,Lq “ u˚,H . By Lemma 5.1, u˚,H “ ψH,α1,β1pu˚,Lq P XI,α1,β1 . This ends the proof. �
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6. Application to the hyperbolic cross space approximation

Finally, in this section, we study the hyperbolic cross space approximation and prove Theorem
2.5. We need to replace in Theorem 2.2 the operator LI,α,β by LI,α,β,τ which is defined by

LI,α,β,τ :“
ź

jPI

ˆ
1 ` |∇j|2

τ 2

˙α{2 ź

iPIc

ˆ
1 ` |∇i|2

τ 2

˙β{2
.

We consider equally the following norms

}u}0,I,α,β,τ :“ }LI,α,β,τu}L2ppR3qN q, }u}1,I,α,β,τ :“ }∇LI,α,β,τu}L2ppR3qN q.

It is easy to see that for τ ě 1

τ´αN}u}0,I,α,β ď }u}0,I,α,β,τ ď }u}0,I,α,β, τ´αN}u}1,I,α,β ď }u}1,I,α,β,τ ď }u}1,I,α,β,
while for 0 ă τ ă 1

}u}0,I,α,β ď }u}0,I,α,β,τ ď τ´αN}u}0,I,α,β, }u}1,I,α,β ď }u}1,I,α,β,τ ď τ´αN}u}1,I,α,β.
Before going further, we need the following.

Lemma 6.1. Under Assumption 2.1 on α, β, we have for any u, v P XI,α,β,

|〈LI,α,β,τ pVne ` Veequ,LI,α,β,τv〉| ď Cmix,α,β

?
N maxtZ,Nu}u}0,I,α,β,τ}v}1,I,α,β,τ , (6.1)

where Cmix,α,β is defined in Theorem 2.2.

Proof. Let uτ pxq :“ τ´3N{2upτ´1xq and vτ pxq :“ τ´3N{2vpτ´1xq where x “ px1, ¨ ¨ ¨ , xNq P pR3qN .
Let

V τ
ne :“

Nÿ

i“1

Mÿ

ν“1

Zν

|xi ´ τaν | .

It is easy to see uτ , vτ P XI,α,β since u, v P XI,α,β. Then, by Theorem 2.2, we have

|〈LI,α,βpV τ
ne ` Veequτ ,LI,α,βvτ 〉| ď Cmix,α,β

?
N maxtZ,Nu}uτ}0,I,α,β}vτ}1,I,α,β. (6.2)

The scaling definition yields

|〈LI,α,βpV τ
ne ` Veequτ ,LI,α,βvτ 〉| “ τ´1 |〈LI,α,β,τ pVne ` Veequ,LI,α,β,τv〉| . (6.3)

On the other hand,

}uτ}0,I,α,β “ }LI,α,βuτ}L2

I
ppR3qN q “ }LI,α,β,τu}L2

I
ppR3qN q “ }u}0,I,α,β,τ (6.4)

and

}vτ}1,I,α,β “ }∇LI,α,βvτ}L2

I
ppR3qN q “ τ´1}∇LI,α,β,τv}L2

I
ppR3qN q “ τ´1}v}1,I,α,β,τ . (6.5)

Gathering together (6.2) to (6.5), Eqn. (6.1) follows. �

Let I Ă t1, ¨ ¨ ¨ , Nu. Let u˚ P H1

I pR3qN be an eigenfunction of (1.2), and let u˚,H “ PΩu˚,
u˚,L “ p1 ´ PΩqu˚ with PΩ defined by (5.1). We consider the following variational problem: for
any vH P PΩXI,α,β,

〈LI,α,β,τ pH ´ λquH ,LI,α,β,τvH〉 “ ´ 〈LI,α,β,τ pVne ` Veequ˚,L,LI,α,β,τvH〉 . (6.6)

Following the proof of Theorem 2.3 in Section 5 and under Assumption 2.1 on α, β, we know that
u˚,H is the unique solution to the variational problem (6.6).

Recall that Ω ě 2

π
Cmix,α,β

?
N maxtN,Zu and let vH “ u˚,H . Then we have

|〈LI,α,β,τ pH ´ λqu˚,H ,LI,α,β,τu˚,H〉| ě 1

4
}u˚,H}2

1,I,α,β,τ (6.7)
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and

| 〈LI,α,β,τ pVne ` Veequ˚,L,LI,α,β,τu˚,H〉 | ď πΩ

2
}u˚,L}0,I,α,β,τ}u˚,H}1,I,α,β,τ . (6.8)

By (6.7) and (6.8), we get

πΩ

2
}u˚,H}0,I,α,β,τ ď 1

4
}u˚,H}1,I,α,β,τ ď πΩ

2
}u˚,L}0,I,α,β,τ . (6.9)

It follows from (6.9) and the identity }u˚}2
0,I,α,β,τ “ }u˚,L}2

0,I,α,β,τ ` }u˚,H}2
0,I,α,β,τ that

}u˚,H}0,I,α,β,τ ď
?
2}u˚}0,I,α,β,τ , }u˚,H}1,I,α,β,τ ď 2

?
2πΩ}u˚}0,I,α,β,τ . (6.10)

Lemma 6.2. Let Ω ě 2

π
Cmix,α,β

?
N maxtN,Zu be large enough. Under Assumption 2.1 on α, β,

we have

}u˚}0,I,α,β,2πΩ ď
?
2 e5{8 }u˚}L2ppR3qN q, }u˚}1,I,α,β,2πΩ ď 2

?
2 πe5{8 Ω }u˚}L2ppR3qN q.

Proof. The proof is in the spirit of [18, Theorem 9]. Under Assumption 2.1 on α, β, we have
0 ď β ď α ă 5{4 and

ź

jPI

ˆ
1 ` |ξj|2

|Ω|2
˙α ź

iPIc

ˆ
1 ` |ξi|2

|Ω|2
˙β

ď exp

ˆ
5|ξ|2
4|Ω|2

˙
,

where ξ :“ pξ1, ¨ ¨ ¨ , ξNq P pR3qN . Thus, by (5.1) and using the fact that u˚,L “ p1 ´ PΩqu˚, we
have

}u˚,L}2
0,I,α,β,2πΩ “

ż

|ξ|ăΩ

ź

jPI

ˆ
1 ` |ξj|2

|Ω|2
˙α ź

iPIc

ˆ
1 ` |ξi|2

|Ω|2
˙β

|Fx1,¨¨¨ ,xN
pu˚qpξq|2dξ

ď
ż

|ξ|ďΩ

exp

ˆ
5|ξ|2
4|Ω|2

˙
|Fx1,¨¨¨ ,xN

pu˚qpξq|2dξ ď e5{4 }u˚}2L2ppR3qN q.

Let now τ “ 2πΩ. Then Eqn. (6.10) implies

}u˚}0,I,α,β,2πΩ ď
?
2e5{8}u˚}L2ppR3qN q, }u˚}1,I,α,β,2πΩ ď 2

?
2πe5{8Ω}u˚}L2ppR3qN q.

This ends the proof. �

Finally, we turn to the proof of Theorem 2.5.

Proof of Theorem 2.5. For any ξ P HI,α,βpR,Ωqc where HI,α,βpR,Ωq is defined by (2.9), we have

1 ď 1

R2

ź

iPI

˜
1 `

ˇ̌
ˇ̌2πξi
2πΩ

ˇ̌
ˇ̌
2
¸α ź

jPIc

˜
1 `

ˇ̌
ˇ̌2πξi
2πΩ

ˇ̌
ˇ̌
2
¸β

.

Thus, by Lemma 6.2, it is easy to see that

}p1 ´ PR,Ω
I,α,βqu˚}L2ppR3qN q ď 1

R
}p1 ´ PR,Ω

I,α,βqu˚}0,I,α,β,2πΩ

ď 1

R
}u˚}0,I,α,β,2πΩ ď

?
2e5{8

R
}u˚}L2ppR3qN q.

Analogously,

}∇pu˚ ´ PR,Ω
I,α,βu˚q}L2ppR3qN q ď 1

R
}u˚}1,I,α,β,2πΩ ď 2

?
2πe5{8

R
Ω}u˚}L2ppR3qN q.

This ends the proof. �
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