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ON THE MIXED REGULARITY OF N-BODY COULOMBIC
WAVEFUNCTIONS

LONG MENG

ABSTRACT. In this paper, we prove a new mixed regularity of Coulombic wavefunction taking into
account the Pauli exclusion principle. We also study the hyperbolic cross space approximation of
eigenfunctions associated with this new regularity, and deduce the corresponding error estimates in
L?-norm and H'-semi-norm. The proofs are based on the study of extended Hardy-type inequalities
for Coulomb-type potentials.

1. INTRODUCTION

In most applications of molecular simulation, a molecule is described by an assembly of M static
nuclei equipped with N electrons, with M, N in N, . We assume that the nuclei are fixed, according
to the Born-Oppenheimer approximation, while the electrons are modeled quantum mechanically
through a wavefunction and the N-body Hamiltonian operator:

1
H = _igAi_Vne"F‘/ee (11)
with
N M 7
Vne = Z Z - )
i=1lv=1 |xl aV|
and
N
1 1
‘/ee = ;
2 ”2_11 \z; — ]
i#]
where a; -+ ,ap; € R? are the positions of nuclei with respective charges Z, -, Zy € Ny (in
atomic units), and x1,--- ,zy € R? are the coordinates of given N electrons. We denote Z :=

Zﬁil 7, the total nuclear charge. The right-hand side terms in ((LT]) model the kinetic energy, the
Coulomb attraction between nuclei and electrons V,,. and the Coulomb repulsion between electrons
V.e, respectively.

Mathematically, the electronic ground - or excited - state problem can be expressed by the
Euler-Lagrange equation of the eigenvalue problem of the operator (ILTl):

Hu = \u, (1.2)
where v € H'((R*)™) and |u/z2(gsv) = 1.
Remark 1.1. [t is shown in [18] that any eigenvalue of ([L2) is negative.

The eigenvalue problem (L2) is well-explored mathematically (see for example [11], as well as
the regularity properties of eigenfunctions of problem (2] [3H5,8HI0L12]).

In quantum mechanics, in addition to the spatial coordinates, a particle may have internal
degrees of freedom, the most important one being the spin. Electrons, for example, have two kinds
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2 LONG MENG

of spins ¢ with value 1,2. If a particle has ¢ kinds of spins, we shall say that the particle has ¢
spin states and we label them by the integer

gef{l,-- ,q}.
From the mathematical point of view, it is interesting to consider an arbitrary ¢ spin states in our
system. For this reason, in this article, we will study the wavefunctions of N identical particles
with ¢ spin states instead of the electronic wavefunctions.
A wavefunction ¥ of identical N particles with ¢ spin states can be written as

U:RHYY x {1, ¢}V - C, (z,0)— V(z,0), (1.3)

where x := (21, - ,zy) and 0 := (0, - ,on) with z; e R® and 0; € {1,--- , q}.

There are two kinds of particles: fermions and bosons. Fermions, among them electrons, satisfy
the Pauli exclusion principle: the sign of the wavefunction ¥ changes sign under an exchange of
the space coordinates x;, x;, and the spins o;, 0; of two identical fermions ¢, j. More precisely, Pauli
exclusion principle writes :

(z) (@) \ _
V(P 2, P o) =—V(z,0) (1.4)

where Pz(f) and Pz(j) the permutation operators which exchange the space coordinates z;, x; and
the spins o;, 0; respectively, i.e.

PZS;S)(’x“’xj7):(’xj’7x“)7 (15)
and
-Pl(j')(70-“70-.7’):(70-.7770-7'7) (16)

On the other hand, bosons satisfy the Bose—Einstein statistics in which the particles occupy
symmetric quantum states. Thus the bosonic wavefunctions U satisfies (L4]) when the sign — is
replaced by +.

Now we are going to fix the spin ¢, and only consider the antisymmetry of the fermionic wave-
function with respect to x. As the eigenvalue problem (LZ) does not act upon the spin variables,
for every fixed spin o, the wavefunction ¥(z,0) in (L3]) can be represented by the wavefunction
u(z) which is defined by

u: (RHY - C, z— U(z,0). (1.7)

Furthermore, for every fixed spin o, the particles can be categorized into ¢ subsets according to
their spin states:

I={ie{l,--- ,N}yo, =1}, l=1,--,q and Z,:={L, -, I} (1.8)

In particular, if o; # [ for any i = 1,--- | N, we set [, = ¢ and |[;| = 0. If i, 5 € [ with I € Z, and
|I| > 1, then o; = ;. Thus

Pz(]a) o =o.

Therefore, the permutation operator Pl(j) keeps the spin ¢ invariant if the ¢-th and j-th electrons
have the same spin. Hence for every fixed o and for any 4,5 € I with [ € Z, and |I| > 1, (L4
implies the fermionic wavefunction v is antisymmetric with respect to x;, z;, i.e.,
u(Pz(f)x) = —u(z). (1.9)
In particular, if x; = z; then u(xz) = 0: thanks to the antisymmetry, the fermionic wavefunctions
can counterbalance the singularity of the interaction potential ﬁ
]
Relying on this observation, a new regularity result about eigenfunctions of problem (L2) has
been proven in [I7,[18] which can help to break the complexity barriers in computational quantum
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mechanics. More precisely, it is shown in [I7,[18] that, for every fixed spin o, any eigenfunction wu,
of problem ([[L2]) satisfies

f (1 +) |27r§i!2> <Z [ ]+ |27T£k|2>> | ()]* d€ < +oo, (1.10)
(RN i=1

Iel, kel

where U, (€) = Fuy o ay (us)(§) = S(R3)N uy(x)e~ 2% dxy is the Fourier transform of u with ¢ :=
(&1,--- ,éx) and & € R34 = 1,--- | N. The proof is based on a Hardy-type inequality for the
Coulomb system in the scalar product. Then based on this Hardy-type inequality, a hyperbolic
cross space approximation of any eigenfunction of (IL2]) has been studied. The convergence of this
approximation is proven in [I8]. The hyperbolic cross space approximation is defined by (Z.10)
below.

Later, by using r12-methods and interpolation of Sobolev spaces, H.C. Kreusler and H. Yserentant
[13] proved that any eigenfunction wu, of problem ([2)) satisfies

N S /N t
f (1 +) |27r€¢|2> (1_[(1 + |27T€k|2)) @ (€[ dg < +o0, (1.11)
(R3HN i=1 k=1

for s =0and ¢t = 1 or s =1 and t < 3/4. Notice that this regularity is independent of the
choice of o. It is shown in [13] that the bound 3/4 is the best possible: it can neither be reached
nor surpassed except for the totally antisymmetric eigenfunctions. However, lacking Hardy-type
inequalities associated with the new type of mixed regularity, they could not prove the convergence
of the corresponding hyperbolic cross space approximation of eigenfunctions.

In this article, we are going to improve the results of [I3] and [18] in two directions: a) we
prove the convergence of the hyperbolic cross space approximation of eigenfunctions associated
with the regularity (ILIT]); b) due to the Pauli exclusion principle, taking the antisymmetry of the
wavefunctions into account, we prove a better mixed regularity of eigenfunctions and prove the
convergence of the corresponding hyperbolic cross space approximation.

We generalize the concept of the antisymmetric functions such that, under this new definition,
non-antisymmetric functions can also be regarded as special antisymmetric functions.

Definition 1.2 (Generalized antisymmetric function). Let I < {1,--- ,N}. When |I| > 1, a
wavefunction u is antisymmetric with respect to I if and only if, for any i,j € I,

u(P(x)x) = —u(x),

2
where Pl(f) is defined by ([LH). When |I| = 1, every wavefunction u is antisymmetric with respect
to I.

Remark 1.3. According to (L), (L9) and above definition, wavefunction u defined by (L) with

q spin states and the fixed spin o is antisymmetric with respect to I for any I € Z,,.

Let u, given by (7)) with ¢ spin states and the fixed spin ¢ be an eigenfunction of (L2)). The
main results of this paper (Theorem 2.3 and Corollary 2.4)) then state that

N ay Br
J(l +>) |27T€i|2) > (H(l + |27T€j|2)> (H(l + |27T€k|2)> @ (§)]*dE < +oo. (1.12)

i=1 1T, \jeI kele
(R3)N

Here and below I¢ = {1,--- | NW\I, ay € [0,5/4), 5; € [0,3/4) and a; + B; < 3/2.
As mentioned above, this result improves the results in [I7,[18]. Actually, if we take oy = 1
and f; = 0, then (LI2) becomes (LIO). Thus the regularity (II0) is a special case of (LI2).



4 LONG MENG

Furthermore, we can choose o ~ 2 and 8; ~ § in (II2) which are much larger than the ones in
(CI10).

If we assume in particular that, for the fixed spin o, there exists [ such that I, = {1,--- , N} with
I; given by ([L8)), then u, is totally antisymmetric (i.e., u, is antisymmetric w.r.t. {1,---, N}) and

(CT2) becomes
N N @
f (HZ\%@-P) (H(H 127@-!2)) (&) d€ < +0
(RN i=1

j=1

with any 0 < o < 2. Then ([I2) is better than (LI0) and (LII) for the totally antisymmetric
case.

Now we choose oy = (7. Then if u, is not totally antisymmetric, the condition on a; and [
shows that 0 < oy = 7 < 2, and (LI2) becomes

N N B
f (1 ) |27rsi12) <H<1 + \w?)) @ (€)1 d€ < +0 (1.13)
(R3HN i=1

J=1

with any 0 < 8 < %. This is exactly (LII) with s = 1 and ¢t < %, and this regularity is independent
of the choice of the spin ¢ and of the antisymmetry of the eigenfunctions. Thus we provide an
alternative proof for (LII)). As mentioned above and shown in [I9], our regularity is optimal in
this case except for the totally antisymmetric eigenfunctions.

The proof of this new mixed regularity is based on a generalization of the Hardy-type inequality
for Coulomb system in [17] (i.e., Theorem 2.2)) for any «; and f; as in (LI2). As in [I8], from this
new Hardy-type inequality, we can obtain the corresponding hyperbolic cross space approximation
(i.e., Theorem 2.5]). In particular, concerning the case oy = fr < 3, we prove the convergence of
the hyperbolic cross space approximation of eigenfunctions associated with the regularity (LII]).

2. SET-UP AND MAIN RESULTS
In this section, we introduce first the operators and functional spaces used in this paper, then

we present our main results and give the main ideas of the proof.

2.1. Operators and functional spaces. For every set [ < {1,---, N}, we define the Hilbert
spaces L2((R3)N) and H}((R*)Y) of the wavefunctions which are antisymmetric with respect to I
by

LA(R)NY) := {ue L*(R*)™); u is antisymmetric with respect to I}, (2.1)
and
Hi(R*)N) := {u e H((R*)M); u is antisymmetric with respect to I}, (2.2)

respectively. It is easy to see that, when |I| = 1, Hi (R®*)Y) = H'((R*)Y) and L}((R?)V) =
L*((R?)Y). However when |I| > 1, we have L((R3)") < L?((R*)™) and H} ((R*)N) < HY((R?)V).

Now we are going to define the new mixed Sobolev space like (III]) in consideration of the
antisymmetry with respect to I. Before going further, we define some fractional Laplacian-type
operators associated with I. Define the operator £L;, s by

Lrap:= (H(l + |vj|2)a/2) (H(l + IVi\Q)m) : (2.3)

Jel iele
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where I¢ = {1,--- ,N}\I and V;, is the gradient with respect to the coordinate z; € R3. This
operator is defined with the help of the Fourier transform (see Section [3 for details). In particular,
when I = {1,--- N}, then

N

Lros =[]0 +[V,;)"?

j=1

is indeed independent of the choice of 5.
In addition to the operator L; , g, the following operators will be useful,

9= [T a+1vP2 | T a+ VP72,
jel\{i} iele\{i}
and
iD= [ a+1v,P)2 [T a+vi???
jel\{i,j} iel\{i,j}
Thus,
Lrag= 1+ [Vi22LY 00 Lrap= 1 +|Vi220+ V22200 (2.4)

where v, = aif ke I, and v, = f if ke I°.
We next introduce the corresponding functional spaces X7, 3 defined by

Xl,a,ﬁ = {u S H}, Hﬁj,aﬁuHHl((Rs)N) < +OO}, (25)
endowed with the norm
lulres = |Lrapula sy (2.6)
We also define the following norm and semi-norm respectively,
lullo,ras = [Lrapulrzweayy,  |uliras == [VLrapulr2(@sm).- (2.7)
Here V := (Vy,---, Vy) is the gradient with respect to z € (R*)™. Obviously, [[ul? , 5 = [ul3 ; o5+

1 060

2.2. Main results. Before going further, we need some assumptions on o and (5.

Assumption 2.1. We assume that o € [0,5/4), 5 €[0,3/4) and a + 5 < 3/2.
The key tool to prove the regularity of eigenfunctions is the following.

Theorem 2.2 (Hardy-type inequality for Coulomb system in the scalar product). For every I <
{1,--- N}, and under Assumption 21 on «, 3, there is a constant Cyiz.a s independent of N, Z
such that for any u,v € X143,

(L1 0s(Vie + Ve )ty L1.0.50)| < CrnizasV' N max{Z, N'}|u

It is shown in [17] that (28] holds for &« = 1 and 8 = 0. Based on this inequality, the regularity
of eigenfunction u, and the corresponding hyperbolic cross space approximation are also proven
therein.

Our main result on the new mixed regularity of the wavefunction is the following.

0.1,0,8|V[1,1,0,8- (2.8)

Theorem 2.3 (Mixed regularity of eigenfunctions). Let I = {1,---, N}, and let u, € H} ((R?)Y)
be a solution to the eigenvalue problem (L2)). Then, under Assumption[Z1 on o and B, uy € X1 5.
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This proof is postponed until Section [Al
According to Remark [L3, we know that u given by (L7 is situated in (,., H}((R*)"). Then
we have

Corollary 2.4. Let u given by (LT) be an eigenfunction of the eigenvalue problem (L2) with q
spin states and a fived spin 0. Then uy € (V;er, X1,0,,8, where ay and By satisfy Assumption 21

We first recall the definition of the hyperbolic cross space approximation. Let €2 be a scaling
parameter which will be given in Theorem 2.5l Let H; . (R, €2) be a region defined by

2>a H (1 + 2>ﬁ < RQ}. (2.9)

Note that this region can be considered as cartesian product of hyperboloid-like regions, from
which the notion hyperbolic cross space approximation originates. Then we define the projector

(PR2,)(x) = j( O exp 2ric - (210

“i

Q

Hinp(R,Q) = {(M, L wn) € (RBY, 1—[ (1 N ‘%
iel

where Xﬁiz,@ is the characteristic function of the domain Hy, s(R,2). The approximation (Z.I0)
of w is called the hyperbolic cross space approrimation.

In [18], based on the mixed regularity (ILI0), the convergence of hyperbolic cross space approx-
imation of eigenfunctions is proven. Now we are going to prove the convergence of the hyperbolic
cross space approximation of eigenfunctions associated with the regularity proven in Theorem 2.3]

Based on Theorem 2.2, we get the following.

Theorem 2.5 (Hyperbolic cross space approximation). Let I < {1,--- ,N}. For any eigenfunction
u, € Ht of [L2), and every Q = 2C,ninapsV N max{Z, N}, under Assumption[Z1 on «, 3, we have

2?8

R
Hu* - PI,a,ﬂu*HLQ((R3)N) < THu*HLQ((RB)N)’

and

24/2me®/®
R

IV (us — Pffgu*)ﬂm((ww) < QH“*”B((R?’)N)'

Here the constant Cyiy o.p is defined in Theorem [2.2.
This proof is provided in Section

2.3. Main ideas of the proof of Theorem As mentioned in Introduction, the extension of
the results in [I7HI9] is based on Theorem 22 Once Theorem is proven, following the proofs
in [I7,18] line by line, we can prove Theorem and Theorem 2.5 respectively. Thus this paper
is devoted mainly to the proof of Theorem 2.2l As the proof of Theorem is quite technical,
before entering the details, let us try to explain the main ideas and the main improvements with

respect to the existing results.
Let

Ly :=®Vj, Lgi) = ® V; and Lgi’j) = @ Vi.
jel jen\{i} kel\{i,j}

The Hardy-type inequality used in [I7,18] can be expressed in the following way.

Theorem 2.6. [17,[18] For every I < {1,--- N}, there is a constant C; independent of N, Z
such that for any w,v € X1,

(L1 (Vye 4+ Vie)u, Liv)| < CpvV/N max{Z, N}|u

0,1,0,3 U|17[7a75. (211)
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One can essentially recover Theorem 2.2 with our Theorem 2.6 by setting « = 1 and § = 0.

Remark 2.7. Actually, Theorem [2.2 is optimal at least for the case o = [ if the wavefunction
w is not totally antisymmetric. Otherwise, if (Z8) holds for some o = 8 = %, then following the
proofs in [17] and [18] as in Section[d in this paper, Theorem 2.3 and Corollary [27] will also hold
for these a and (. This means that for any eigenfunction u, which is not totally antisymmetric,

Uy € Xpap with some o = B = 3. However, [19] (see also (LII) and (LI3) in this paper) shows

that « = < % is optimal. Then we reach a contradiction. Thus ([2.8) is optimal for the case

a = B if the wavefunction u is not totally antisymmetric.

Now we compare these two inequalities technically. We first give a glimpse into the formulae on

the left-hand side of (2.8)) and (2.11):

N M 7 )
LrasVpen =3 (1 4+ V)2 <ﬁg§@}wu) , (2.12)

i=1v=1

L; ne“—ZZV <|xz _”ay’ Lt ) (2.13)

i=1v=1

1 2\7;/2 2\7;/2 1 (4,5)
LrapVeeu = 52(1 + [ V5F) =5 (1 4 | V47)7 m—mﬁl’a’ﬁu ) (2.14)

i#j o ]|

and

7 ’YJ (7)
LiVou == Zv”@v <|x _x]|L Ju>, (2.15)

z;éj

where v, =, v, = 1if k e [; andvk—ﬁ,%’c:()ifk‘efc.

Notice that by the Leibniz rule, V (| fW) = —nefly)+ ﬁvyf. Then from 213), (2I5) and
by using Hardy inequality and its antisymmetric version (see e.g., Corollary 3.8 with s = 1), one
can deduce (2Z.I1]) directly.

We can not prove Theorem as for Theorem since the Leibniz rule fails for fractional
Laplacian operators. In addition, the optimality of Theorem for the case @« = (3 and the
singularity of the Coulomb potential make the proof of (Z8]) in Theorem much more delicate
than the one of (2I7]) in Theorem 2.6l

To prove Theorem 2.2] we need first to study the relationship between the fractional operator
(14]V4]?)7/? and the Coulomb type potentials. In this paper, this is equivalent to the study of the
relationship between |V, and the Coulomb type potentials by introducing a bounded operator
Koy = (1+|V,2)*2(1 +|V,|*)"! in Section B.11

The main tool of this paper is the following Hardy-type inequality

—~

i.e., Theorem [B.3)):

—S —S 3
Yl IV 7 flleesy Ss [ fll2@ws), 0<s< 3
and its dual form:
—s|,,|—s 3
IV 2yl sy Ss [fllz@s), 0<s< 3

This is the most important inequality used in this paper and this gives the tool to study the
electron-nucleus term V,,. immediately (see (2.12))).
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Concerning the electron-electron term V. in (Z14]), we need a corresponding version of Hardy-
type inequality for two particles. From the above Hardy-type inequality, one can deduce the
following (see Lemma [3.6]):

. _ _ 3
Iy = 217V 2 Vel T fl e xrs)y Sop | fl2@exrs)y, 5,620, s+t < 5

This gives the condition that 5 < % and o + [ < % in Assumption 2.1l
Thanks to antisymmetry, we can also generalize the standard Hardy inequality for two particles
since the antisymmetry will counterbalance the singularity of the potential rlm More precisely,
i—Zj
for any function g € CP(R? x R3) satisfying g(z,y) = —g(y, z), it is easy to see that g(x,y) = 0
for 2 = y. Thus |g(z,y)| < C|z — y| in any compact neighborhood of the set {x = y}. As a result,
5

< +00, O<S<Z

ly — 2>
Then arguing as for the standard Hardy inequality, we show in Corollary B.8 and Lemma the
following inequalities with antisymmetry:
g9 V,V.g

ly — 2> ly — z[*~2

L2(R3 xR3)

SS H|Vy|s|vz|sg”L2(R3ng), 1 < s < Z
LQ(RSXR3)

~NS

L2(R3 xR3)

Returning back to (2.8) and (2.14]), we will use the following extension of the Hardy-type inequality
for two particles with antisymmetry in Lemma

s— s— _ s s 5
H\Vy\ 1/Q\Vy| 1/2|y - Z| 19”L2(R3xR3) <s H\Vy| |Vz| gHLQ(R3><R3), 0<s< 1

This gives the condition o < % in Assumption 2.l In addition, this estimate shows that spatial
antisymmetry implies regularity.

Once the fractional Laplacian operator is defined and the above inequalities and their extensions
are established, we can obtain Theorem immediately.

This paper is organised as follows. As mentioned above, we will use the fractional Laplacian
operator. Thus in Section 3] we will first study the fractional Laplacian. Then based on Hardy-type
inequalities, we will deduce the above inequalities. In Section d], we will use the above inequalities
to prove Theorem 221 Then in Section [l and Section [0 following the proofs in [I§], we will prove
Theorem and Theorem 23] respectively.

3. FRACTIONAL LAPLACIAN OPERATORS AND RELATED INEQUALITIES

In the following, we denote the gradients V, and V., corresponding to the variables y and z in
R3, respectively.

In the next subsection, we study the fractional Laplacian operator (1+|V,|?)*? on R3. Actually,
we rather study the fractional Laplacian operator |V,|*. The relationship between |V,|* and
(1 + |V,[*)*? will be studied equally. Then, for some s, > 0, we will study some Hardy-type
inequalities associated with the operators |V, |~*|y|~* and |V, |~*|V ||y — z|*7".

3.1. Fractional Laplacian. First of all, we define our convention for the Fourier transform. Let
fe L*(R3),ge L*(R? x R®) and u € L?((R?)"), then the Fourier transforms of f, g and u are
respectively

Fy(F)(&) = JRB fe ™ vvdy,  F,.(9)(&, &) = F. o Fyl9)(&y, &),
and
Fayoan(W)(&) 1= Fupy 00 Fpy (u)(€), €:= (&, ,€n) with e R? k=1,--- | N.
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For s > 0, a function f € L?(R?) is said to be in H*(R?) if and only if
oy = [ 0+ IGRIIREIPdG, <+

The fractional Laplacian |V,[* (or (—=A,)*?) is defined on functions f € H*(R3) by the Fourier
representation:

fy(|vy|sf)(§y> = |27T€y|8]:y(f)<5y)-
Similarly, (1 + |V, [?)¥? is defined by

Fol L+ |V PY21)E) = (1 + 216, )2 Fy (£)(&)-

The operator L, g which is defined on functions u € X7, 3 can be regarded as a composition of
fractional Laplacian operators on R? in the following manner:

Lropu:=(1+ ‘V1|2)71/2 o o1+ ‘VN|2)’YN/2u’

where v, = aif ke I, and vy, = g if k e I°.
Applying the Fourier transform to solve the Poisson equation

V[ fily) = foly) in R,

we find that |27, [°F,(f1)(&,) = Fy(f2)(&,). The inverse of the fractional Laplacian, or negative
power of the Laplacian |V,|™* with s > 0 is defined on functions f in the Schwartz space S(R?)
by

Fy(IVy [ )(&y) = 127, | Fy (F)(&) for ¢, # 0.
In principle, we need the restriction 0 < s < 3 because when s > 3 the multiplier |{,|~* does not

define a tempered distribution (for more details, see e.g. [16]).
On the other hand, the term # is a tempered distribution for 0 < s < 3 with Fourier transform

boFy (| 17°)(&) = bs=sl&,|72**, b = 7D (5/2), (3.1)

where I is the Gamma function. For the detail, see e.g., [6, Eqn. (3.3)] (the difference of the
definition of b, therein is because of the different definition of the Fourier transform) or [14, Theorem
5.9] by using the fact that F,(fg) = F,(f) = F,(g). Hence, if 0 < s < 3, the operator |V,|™® can
be rewritten as

_ b3—s —34+ 3
fly) = oy R?). 2
Vi) = i |l G e SR (32
Suppose that 0 < s < 3, then |V, |*|y|~" is an L, (R*)-function for 0 < ¢ < 3 — s and, using (3.1)),
s - - S - <27T)sb _ — — s (27r)sb8 b — —5—
9, = Fr F ) = CT g st 2 OOty s

This equation can also be found in [6, Eqns. (3.4)-(3.5)]. Also, |V,|®|y|™" is a L, (R?)-function
for 0 <s <t <3 and
bt—sb3—t

(27)%b3 45—ty

We end this subsection by studying the relationship between (1 + |V,|?)*? and |V,|*, then in
the next subsections we will study Hardy-type inequalities associated with the fractional Laplacian
operator |V, |°.

Let

|vy|_s|y|_t = ]:1;1(|27T§y|_8]:y(| : |_t)) = |y|5_t- (3.4)

Kay:= 1 +|V, )0+ |V, )7, (3.5)
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which is defined by the Fourier transform:

}—y(lcs,yf)@y) =

By the Fourier transform, it is easy to see that

Ki, = Ksy (3.6)

(1 +[2mE[*)

L]

Then we have the following.
Lemma 3.1. For any 0 < s < 2,
IKsyllL2®s)—r2ms) < 1.
Proof. For any 0 < s < 2, f(y) € L*(R3),
|y fllzzgmsy = (L + |27, )2 (1 + 1226, 1°) 7 Fy (f) | 2 e
As0<s/2<1, (1+2m6,2)¥% < (1 +|27&,]*). Thus,
Ko lres) < 1) oy = 1 leacesy.

Hence the lemma. O

Remark 3.2. Actually, the operator K, is also bounded from below. One can use the inequalities
(a? +bP) < (a+ b)P < 2P(aP + bP) for a,b = 0. (We thank one of the referees for this remark.)

3.2. Hardy-type inequalities for a single particle. We now consider the term |V, |~*|y|~* f(y)
with f € L?(R%). Actually, |V, %|y|~* is the adjoint of the operator |y|=*|V,|~* which has been
well studied in [7] (see equally [2, Theorem 1.7.1]). The following holds.

Theorem 3.3 (Hardy-type inequality [7]). Let p~' + ¢~' = 1. Suppose s > 0 and 3s7' > p > 1.

Then
Y1 * 1V fllremey < Copll fllzeme) (3.7)
where
PPN C1C a1 Ve
; L(3(gt + )T (33p71)

Ifp=3s~ orp=1, then Cy,, is unbounded.

Remark 3.4. It is shown in [7] that the constant Cs,, is optimal. When p = 2, [310) is equally
proven in [1, Theorem 2.58] but without the optimal constant Cs,.

Remark 3.5. Replacing f(y) by |V, |°g(y) in B1), then BT) can be rewritten as:
Hyl gl Lr@s) < CspllVy " gllLe @) (3.8)
When p = 2 and s = 1, (310) is indeed the Hardy inequality with the optimal constant Cy o = 2.

When p = 2 and s = %, B20) is the Kato inequality with the optimal constant 0%72 = % (see
e.g. [2, Formula (1.7.7)]).

In this paper, we only use the case p = 2. By duality, we also have the following: for 0 < s < %

NV 751y fllz@sy < Cszf fllr2(ms)-

Notice that |V, |*[f(y + a)] = [|V,|*f](y + a). Then from Theorem B.3] for any a € R*® and
0<s<?2
29

Il =™ flzzms) < CualIVyl* e, (3.9)



ON THE MIXED REGULARITY OF N-BODY COULOMBIC WAVEFUNCTIONS 11

By Fubini’s Theorem and for any h(y, z) € L*(R? x R?), we have
Ily = 217°h(y, 2) |2 @exre) < Co2f [Vy[* Rl r2ms xrs)- (3.10)

The dual version of ([3.9) and ([B.I0) can be represented respectively as follows: for a € R? and
0<s<3/2,

V7] —al ™ fllro@s) < Cic

flrz@s) (3.11)

and

V% ly — 2|7 fll 2@ xrsy < Cool fll22®sxrs)- (3.12)

3.3. Hardy-type inequalities for two particles. The rest of this section is devoted to Hardy-
type inequalities for |V, |7%|V,| 7"z — y| =" terms for some s,¢ > 0. By using Theorem B3] we
have the following.

Lemma 3.6. Fors,t >0, s+t <3/2, and f € L*(R3 x R3), we have
VIVl y = 2177 flr2mases) < 20sse] fllLo@axes) (3.13)
and
Iy = 217V IVl flemoxme) < 2esme] fllr2mexme), (3.14)
with co :=1 and, for 0 < s < 3/2, ¢s := Csa where Cs 5 is defined in Theorem [3.3.
Proof. For simplicity, we use the shorthand | f||2 for | f|L2sxrs). We prove first
V75 Vel ™y = 2177 flle < 2esme] f22.

If s =1t=0, then | f|r2msxrs) < 2¢o| f|lL2(rs xr3) Where ¢o = 1.
Now we assume s = 0 and ¢ # 0. Thanks to (3.12), we have

IVl ly = 27" flle < el fllze < 2¢] £ 22

The case t = 0 and s # 0 can be treated in the same manner. Now we only need to consider the
case s,t > 0. For any function u(y, ) € L?*(R® x R3), by Fourier transform on R? x R3, we have

V5 Vel y = 217 fllee = 2m) 7 I o181 Fyally — 2177 )&, &) 2z
Notice that |7|" < |7|** 4+ 1 for 7 € R. Then for 7 = |,|/|¢.], we have
L N A e T
Thus,
16417117 Fyaly — 2177 ) (& €)1
< W&l Fyelly — 217 )& &) lee + &A™ Fyally — 217 £) (&, &) 22
= @2m) [V [Ty = 27T e + 2) TV T y = 2T e
As 0 < s+t < 3/2, by (312]), we have
IVl ™y = 217 f e < corell fll2e,
and
IV ly = 2177 flli2 < corel fllze.
Consequently, we deduce
IV IVal "l = g™ flle < 2e0se] fle-
By duality, Eqn. (3I4) follows. O
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For the wavefunction u, the antisymmetry with respect to I will counterbalance the singularities
of the potential between electrons. Based on this observation, Lemma can be extended in
consideration of the antisymmetry. In Theorem 2.2 we only focus on the case t = s. The
extension is based on the following.

Lemma 3.7. Let a € R? and k € [1,3/2) U (3/2,5/2). If f € CP(R3) for k € [1,3/2), or if
f e CP(R3\{a}) for ke (3/2,5/2), we have

[, = o
|- —al* L2(R3) 12k = 3| ||| - —al*! L2(R3)
The proof is inspired by [I7, Lemma 2|.
Proof. We have the relationship:
1 1
2k—1)———=-V———-V]y—al
B e = Yy Ve
Under the assumption on f, we have SRS E_(?";k dy < +o0. Then by integration by parts, we obtain
2 . 2 _
ke |y — al re |y —alt”
Using Aly —al| = \yTQaI on the right-hand side, then
hik IVyf - Viy—ad hik
(2k — 1)J — o dy = 2R — o Ay +2 — oy,
ws |y — al g |y —al ws |y — al

by the Cauchy-Schwarz inequality, we obtain

2k—3f I 4y < f N f Vly—al- V7P, N
wo |y — a7 " \Jps ly —af?* e [y —al |

2
As |V]y —a| - Vf| < |V]y — al||Vf] < |V ], we finally get the conclusion:

2k — 3|2 2 Vf?
2k -3 [ £ o< | VP,
4 R3 |y—a| R3 |y—a|

This ends the proof. OJ

Using Fubini’s theorem and Lemma [3.7] the following holds for antisymmetric functions.

Corollary 3.8. For s € [1,5/4) and f € CP(R® x R3) with f(y,2) = —f(z,y), we have

4 V,V.f
S 252
L2(R3xR3) |45 — 5[|4s — 3| |||y — z[*~

' f
|y — 2[* L2(R3 xR3)

Proof. This is a generalization of [I7, Eqn. (3.9)]. We first fix z € R3, and let g.(y) = f(y, 2). As
fly,2z) = —f(z,y) and f € CF(R® x R?), we know that g, € CF(R*\{z}). Thus Lemma [B.17 shows
that for any z € R3

2 V9.

LQ(Rg) = ‘43 — 3| . —2‘25_1

E
P

L2(R3)
Taking L?-norm with respect to z in the above inequality, we get

f(y,2) 2 vV, f(y,2)

ly — 2> L2(R3xR3) T l4s =3 [y — 2>

L2(R3 xR3)
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Now 1 <2s—1< 2 and V,f(y, ) € C*(R?) for any fixed y € R®. Arguing as above, fixing y € R?,
and using Lemma [3.7] again, we infer

Y

_ Z|2$

4 H Vyvzf(y,z)
L2(R3 xR3) [4s —5[[4s =3[ || [y — 2[*2

L2(R3xR3)

This ends the proof. 0J

Combining Lemma with Corollary B.8] we have the following.

Lemma 3.9. For s € [1,5/4) and f € CF(R3 x R3) with f(y,z) = —f(z,y), we have

< Cos H|vy|s‘vz|sfHL2(RsxR3) (3.15)
L2(R3xR3)

BEE
ly — z|?

8cas—2

where co5 1= (5—4s)(45—3)

and cas—9 = C'25—2,2-
Remark 3.10. Denote the functional space Yami’s(R?’ X ]R3) by
Yoniis(R? x R?) := {f € L*(R® x R®); f(y,2) = —f(2,9),|V,|*|V.[°f € L*(R® x R*)}.

Then Yonis(R? x R?) is a completion of CF(R* x R?®) with the antisymmetry f(y,z) = —f(z,y).
Thus by density, B.15) still holds for f € Vi o(R? x R3).

4. HARDY-TYPE INEQUALITIES FOR THE COULOMB SYSTEM

Now, we are going to use these inequalities to prove Theorem 2.2 We will study separately the
contribution of the potential V,,. in Section [L.1] and the potential V., in Section Theorem
follows immediately from Lemma BTl and Lemma .3 with Ciz0.8 = C1 miz,a8 + C2,miz,a,sz Where
Chmiza,p a0d Co iz o5 are given in Lemma .l and Lemma F.3 respectively.

Before going further, we recall that Z = Zyzl 7, and that the constant ¢ is defined by : ¢y = 1,
cx = Cho for k € (0,3/2) with Oy, defined in Theorem B3, and ¢ = =——>=2 for k € [2,5/2).

(5—2k)(2k—3)

4.1. Contribution of the electrons-nuclei interaction. In this subsection, we are going to
prove the following.

Lemma 4.1 (Contribution of V;,.). Let I < {1,--- ,N}. For any «, 8 € [0,3/2), there is a constant
Clmiz,ap ndependent of N, Z such that for any u,v € X143,

|<£I,oz,6vneu7 *CI,oz,BU>| < Cl,mi;v,a,ﬁ\/NZHuHO,I,a,ﬁ

v]1,1,0,- (4.1)
It is an immediate result of the following.
Lemma 4.2. For se€[—1,1/2), ae R3, and f € H'**(R?), we have
19,11 =al™ £l s sy < Colll Vil Pl
where Cs = (C145 + ¢s)c1—s if s >0, Co =1 =2, Cs = c_sc145 if =1 < s < 0.
Before proving Lemma [4.2] we use it to prove Lemma [A.1] first.

Proof of Lemma[{.1. Recall that Ky, = (1 + |V, |?)*2(1 +|V,|*) L.
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Following (2.12)), (8.6) and the formal identity |V;||V;|~! = 1, we have

<£[’a,5vneu E[agv Z Z Z < 1 + |Vz|2)%/2\xz — CLV|_1£§€L76U,£LQ,BU>

i=1lv=1

N M
= Z Z ZV <|Vl|_1(1 + |vz|%>|l‘z - aV|_1£§Z’)a’ﬁu7 |vi|lcw,xi£1,a,ﬁv>

i=1v=1
N M
= 2 2 (19 i — 0| LD s IVl L1
i=1v=1
N M
+ 2 Z Zl/ <‘vz %71|.§L’1 au| 1£] No ﬁu ’vl’|]c%7wi£[7augv>
i=lv=1

where 7, = a if k € I, and v, = f if k € I°. By definition (2.7),

2 , ,,8 — 2 , 76. (42)
i=1
Thus by Lemma 3.1,
N 5 1/2
(LrapVact: Lrag)l < | 25|20 2ol Vil Mo — au| L7, pu [0]1.70.

i=1| v L2((R3)N)
N 5 1/2
S 2|V s — a, | LE), u |
i=1] v L2((R3)N)

By Lemma [4.2] we have

M Z, Vil i — a| LY, pu

L2((R3)N)
<Y ZIVil* i — a| 1LY, gul 2 sy
< Con1 Z||ViP LY, sul2@syyy < Comr Z|ulo,r,a,8,

where s = 0 or 5 = ; = 0 and the last inequality holds since |27&|* < (1 + |27&;]?)"/2. Using ([&2)
again, we finally get

’ <£I,a,,8vneu7 £I,a,,87j> ‘ <

9 ’ﬁ.
with C1 migap := Co + max{Cy_1,Cs_1} independent of N, Z. This ends the proof. O

Now, we turn back to prove Lemma

Proof of Lemma[{.3 When s = 0, it is just the Hardy inequality and Cy = ¢; = 2.
When s € [—1,0), by (BI1), we have

IVl —al ™" f o sy < c=sll - —al ™ fllzame) < cosemsaa|IVy 77 fllrame).

Hence Lemma for s € [—1,0) with Cs = ¢_gc14s.
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When 0 < s < 1/2, we use the formal identity |V|* = |V||V|*"1. Thus,
H|vy|s|y - a|_1f(y)HL2(R3) = H|Vy|s_1vy|y - a'|_1f<y)HL2(R3)
<Vl My = a7 Vy f) 2@y + [V My = al 7y — a) f (1) [ 2ee)-
Using (3.10) again, we get
IV y = al ™'V f @)l r2@s) < er-sllly — al =V f) 2@y < crmses [V |5 F 2 ooy
Analogously, as 0 < s < 1/2, we have
[V Hy — a7 (y — a) f ()] 2 ey
<y — a7 W) 2eey < cmserss [Vl 2.
We conclude now that, for s € (0,1/2), Lemma .2 holds with Cs = ¢;_4(¢s + ¢144), 1€,
19581 =l |2y < Ol e,

This ends the proof.
O

4.2. Contribution of the electron-electron interaction. In this subsection, we are going to
prove the following.

Lemma 4.3 (Contribution of V..). Let I < {1,--- ,N}. Under Assumption 21l on «, 3, there is
a constant Camiz o p independent of N, Z such that for any u,v € X1, 3,

(L1,0,8Veetts L£1,0,60)] < Comiz.a s N2 [ullo, 10,80 ]1,1,0,6- (4.3)
Recall that by = 7=%/2I'(s/2) where I'(-) is the Gamma function and recall that
Yontis(R? x R?) = {f € L*(R® x R%); f(y, 2) = —f(2,9), [Vy[*|Vs["f € L*(R® x R%)}.
To prove Lemma 3] we need the followings.

Lemma 4.4. Define Y ;(R* x R?) := {g e L*(R®* xR3); |V, [*|V.|'g € L*(R*xR3)}. Let 0 <t < s
s+t<3/2and f €Y, (R® x R3). Then,

IV 17y = 217 flra@sxrsy < CoylIVy IVl flli2s xrs),

9s+tpst+t—2p

)

b3—s—t

where C7 ; := ( shtCott 4 2cl> if 1l <s+1t<3/2, and Cip =201 5 4Cops if0< s+t <1

Lemma 4.5. Let 0 < s < 5/4 and f € Yo s(R? x R?). Then,
H|vy|8_1/2|VZ|S_1/2|y - Z|_1fHL2(R3><R3) < Canti,SH|vy|s|VZ|8fHL2(R3><R3)7
where Contio := 2¢1, Coaptis = 4C3_25Cos—o + 4C3_25Cos_1 + 4dc3_25Cos if 1 <5 < 5/4, and Coppis =

Cl=s O3 if0<s<1.

antt,0~ anti,1

We prove Lemma 43| first. The proofs of Lemma[4.4land Lemma[4.5are postponed to Subsection
421 and Subsection [£.2.2] respectively.

Proof of Lemma[f.3. Recall that K, := (1 + |V,|?)¥?(1 + |V,|*)~!. Following (2.14) and (3.6)),

we have

LoVt Erpih = 5 S0 (4 [P0 4 192750 — 250, Lra
i,7=1
1]

—;Z<(1+]V

i#]

1
2

Y1 V) i = D, K Ky L)
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where v, = aif k € I, and 4, = Bif k € I°. Then by using the formal identity |V,|"* = [V,|* 71| V4|
for k =1 0r k =7, we get

(L10,8Veelt, L10,v) = %Z <£§i&j?ﬁ“’ ;= xj|_1’C%“’C%$J’£“"’Bv>
1#]

S (P L 9K K L)
itj

L1 Z <|v |~,Z—1|xI o x]’ I'C(Ilg)b’u |vi|]C%’xi]C7Mj,C]7a’51)> (4.4)
wéy

+ = Z <|V V]V 2 — | lﬁ ﬁu IC%”“’CW’””J[J a’ﬁv>
wéy

For the first term on the right-hand side of ([4.4), it follows from (3.7), Lemma 3.1l and the fact
1< (1+ |27&]?)™ for k =i or k = j that

‘<£ga gUs ‘xl - :CJ’ ]C’Yiwz‘lc“/j@jﬁ[vaﬂv>‘
Hﬁfa/aUHL? @z — 2517y, 2Ky L1050 23y

< 5||U||o,f,a,ﬂ IVl L1050

l0,1,0,8 + [|V;|Lra,8v

O,I,a,ﬁ) .

Thus, according to (£.2]), we get

< 01N3/2Hu|]0,17a,5 v

- (4.5)

1#]

For the second term, it follows from Lemma 3.1 Lemma [£2] and the fact v; € [0, 3/2) that
1951757 s = | L5250, IV Ky, L1,

< | 1ViP s =

11V 51K 2K 5 £ 10,50 [ 2R3 v

L2((R3)N)

’7B\ Vi

< CollIV517 £52 sul qesym || Vv

where the last inequality holds since [2w&;|" < (1 + [27¢;|?)/2. Thus,

1#]

with C, 5 := max{C,, Cs}. Analogously, for the third term,
S IV o = L0 V1K Ky )| < N e (A7)
i#£]

Finally, we deal with the last term on the right-hand side of ([@4]). It is the most delicate term
in (£4) and Assumption 21 on «, § is necessary. Before going further, we assume that v; < ;.
The case 7; < 7; can be treated in the same manner.
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We first consider the case {i,j} ¢ I. Then as v; < ;, we have v; = 5 € [0,3/4). Thus by using
Lemma Bl and the formal identity |V;|7 = |V, |7V, |17,

(<

= (Va7 g — a7 L0 IV‘IWIV@-II_”’C% x,-’Cvj,a:jﬁfaﬁv
B

1
Y% ’% |:L’z - xj| Ela BUs ]C’Yiyffz‘lc’}’j»zj‘c[ya75v>‘

< [V

W gy — ) IEJQBUHH( r3y [V B

Notice that |7]% < 1+ |7| for any 7 € R and 0 < ; < 3/4. For 7 = %, we have

& 1161 < 1&g + &l
Thus,
V1V 0o, < 1 Vilvlloras + [1Vj[0l0.1,0,6-
On the other hand, thanks to Lemma 4] Assumption 2] and the fact [27&,|" < (1 + |27&|?) /2
with £ =4 or k = j, we have

[V
We conclude that, if {7, j} ¢ I, then

(v

Now we consider the case {i,7} < I. Then v; = v, = o with a € [0,5/4). Besides, the
function u is antisymmetric with respect to {i, j}. We fix the variables (xy)keq1,... N}\fij}, and let
[z, ) = u(z) with = (21, ,zy). Thus f(z;,7;) € Vansia(RS x Rig_), and by Lemma 5]

Ty

a8 (4.8)

’YWL'YJ71|$1 — $J| 1£Ia6uHL2((R3)N) < Cl

YisYj u

’Yz

|’Y]|x - .T]’ lﬁfaﬂ 7’C7ufﬂzlc'737wj£1 auB/U>‘

’717’73 HUHOIC)‘ﬁ (H|v |v||01a 7,(3)

197317215102 2 — 5] 7 fllas, xvz ) < Cantiall| Vil *I V51 Flz2ga, xms )-
Finally, for 4,5 € I, by the formal identity |V;|%|V;|* = |V;|*7Y2|V,|*~ 2|V, V2|V, ]2, we get
IV i = | £ 0, Ko Ko, L0 )|
= (Il 219 2y — g £, |vj11/2|vz-|1/2/c%,xi/cw,zjcf,a,ﬁv>\

< |||Vi|“‘1/2|VjI“‘1/2lzv 2| LY gl 2 gy || V52V 2 (4.9)
Cantza a P,

<—5 3L gl (IVilolloras + 11V510]0106)
Canti,

< S g ws)

Let gﬁ. = max{ “””" 0 Ch st For the last term on the right-hand side of ([f.4]), under
Assumption 2.l on «, B, we conclude

> (v
i#]
Combining (43),[#4), 1) and (£I0), we finally get

’ <£I,o¢,ﬁ‘/eeu7 EI,a,B”) | < C2,mi:c,a,,8N3/2 R ,B”U o,
with Co miz.a,s 1= (€1 +2Cap + CY, 5)/2 independent of Z, N. This ends the proof. O

Vi

(4.10)

Vil ks = a3 LD, Ky, L0 )| < Cl N2
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4.2.1. Proof of Lemma[{-4 We split the condition 0 < s +¢ < 3/2 into two cases: 0 < s+t <1
and 1 < s+t < 3/2. For the case 0 < s + ¢ < 1, by Lemma [3.6, we have

V177 y = 217 fl2sxrsy
< Ccrs—t||ly — Z|787tf”L2(R3 xR3) S chfsftCertH’Vy‘s‘vz‘tf”LQ(R3 xR3)-

Thus, Cf, 1= 2c1 s IO < s +E < 1
Now, we turn to prove the case 1 < s+t < 3/2. It is based on the study of the fractional
Laplacian in Section Bl

We consider first the Fourier transform of £%:2)

ly—=z|"
2imz-Ey

Fu(9) (&, &) = FooF,(9)(&y, €:). Besides, thanks to ([3.I)), we have F, (|- —z|7")(&,) = b‘;’: %T
Thus,

. For any function g(y, z) € L*(R? x R3), we have

f o b3—7’ 1 —imz-
Fy.z <M) (&,&) = b J]R3 |l|3—_7_fz<€ 2 l}"y(f)(ﬁy —1,z2))dl o
bs_, 1 '
-2 | el ~Le + D

Thus for s +t > 1, by Plancherel’s Theorem,
IV 1"y — 217 fl 2o xes)

— 2S+t—1ﬂ_s+t—2

J |§y|s+t71]:y,z(f)<€y B l7§z + l)dl
RS 1>

LR
For any k € R* and 1 < s + ¢ < 3/2, we have |§, [T < |¢, — k"7~ + |k|***~. Let k = [, thus

VP Hy = 217 fl 2 ge cre

f “Fy,z(f)(gy B laﬁz + l)’dl
RS

|l|3—s—t

< (27T)S+t_171'_1

L2(R3 xR3) (4.12)

J|@—w“wa4ﬁ@—ug+mﬂ
R3

+ (27T)s+t71ﬂ_71 |l|2

L2(R3xR3)

Using (AI1) and Plancherel’s Theorem again, we get
R3

’”375715

b st
oy = 2 F L (1 ()D) 2 s xes)-

L2(R3XR3) b3—s—t

By Lemma [3.6, we finally deduce
Illy = 277 F, 2 (1 Fye (D 2o e
< 2054t [IVy [Vl Fy 2 (1Fy 2 (N)D | 2ga e
= 205+t(27r)8+t“’€y|8|€z’t]:y,Z(f)HLQ(R?’xRi'*) = 268+tH’vy‘s‘VZ‘tf||L2(R3xR3)-
On the other hand, for the second term on the right-hand side of (412]), we have
[ ot IADG e,
R3 ’”2 L2(R3 xR3)
f [ Fo (V€ — L& + l)’dl
R3

Uk 12(R? xR3)
= 27 ly — 2 T (e (VT T D e oxre).

_ (27T)1—s—t
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AsO<t<sandt+s<3/2, wehave t < 3/4. Thus by Lemma [3.0]
Iy — 21 F, 2 (1Fy IV I D 2 s xrs)
< 201 [V "IV F (1 F (VP D |2 s xrsy
= dme |61 N Fy 2 (IVy P )| n2@oxrsy = 261]|[VyI°| Vil fll L2 (s xrs).-

Consequently, for 0 <t < sand 1 < s+t < 3/2, we deduce
2s+t7.rs+t—2b

_ _ s14Cs s
IV, = 217 flraguoes) < ( — ”Cl) (19,09 Fl 2

b3fsft

25+t7rs+t72b

Thus C7; := ( oiCott 201> ifl <s+t<3/2and 0 <t <s. This ends the proof.

b3757t
4.2.2. Proof of Lemma[{.5 When s = 0, by Lemma [3.6] we have
[V |72V 2y = 27 fllre@exrs) < 26| fle@exes).

ThllS, Comti,O = 261
Now, we assume 1 < s < 5/4. By the formal identity

VAV = (9,19, 9,

we have
|||vy|8_1/2|vz|5_1/2|y - Z|_1f||L2(R3><]R3)

= |V, ® V.|V, [" V.| y — 2|7 e e xrey
<[V IRV Ry — 27V, @ Ve fle@exes)
+ H’Vy‘s_gﬂyvz‘s_gﬂ‘y - Z’_g(y —2)® szHL2(R3xR3)
+ IV RV = 2 Pz — ) © Vo f 2 ms xrs)
+ IV P2V 2V, @ Vely — 27 fllie s xes)-
As —1/2 < s—3/2 < —1/4, by Lemma [3.6] we have

(4.13)

1V 221V gl 2 exmey < 2casslly — 227> gll2@exre).

Besides, it is not difficult to see that
Vy®@V.ly— 27! <6y — 2.
Thus,
IV 2V 2y = 27 f 2 s xms)
< 203 04|ly — 2PV @ V. f | r2rexrsy + 263-24]|[y — 2|' V. f 12 me xr) (4.14)
+ 2e3 24|y — 217V fll 2 grs sy + 12¢3-2 [y — 217 f | 12 rs xrs)-

By Lemma [3.6] we have

lly — 2PV, ® V. flle@sxrsy < 20052V [*I V2 f 2o xre),
and, as 1 <25 —1 < 3/2,

Iy — 21" 2V fllra@s xrsy < 2c25-1 | Vyl*| V"7 Vo fll 2 (rs )

= 2¢o5 1[|[Vy[*| V| f|l L2 @3 xm3)-

Analogously, we have

Iy — 21"V fle@axrs) < 2c26-1]||Vy|*| V2 ]® Fll 2R3 xR3)-
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Finally, by Lemma and Remark B.10, we get
Iy = 217 flz@sxrs) < Cosl|Vyl*| Vel fllz (s xrs).
Thus, when 1 < s < 5/4, we have
IV T2V 2y = 27 fllr2@srs) < Cantis |V PVl Fl2@s xps)

with Coniys = 4C3_05C25—2 + 4C3_05Cp5—1 + 24C3_94Cos.
Finally, by using the interpolation theory between the cases s = 0 and s = 1, we immediately
obtain the conclusion: for 0 < s < 1,

H’vy‘s_l/Q‘vZ‘s_l/Q‘y - Z‘_lfHLQ(Rfixﬂ@) < Canti,s

where Copiis = Cl=s Cintia- This ends the proof.

ant,0

’vy‘s‘VZ|8fHL2(R3xR3)7

5. APPLICATION TO MIXED REGULARITY OF EIGENFUNCTIONS

This section is devoted to the proof of Theorem 2.3

Let I < {1,---,N}. Imitating the proof in [I8], we split the eigenfunction u, € H}((R3)") of
(C2) into the high-frequency part and the low-frequency part. Denote the projector Py to the
high-frequency part by

‘le,"',wN(PQu)(§> = ILHZQ(S)FM,@N(U)(S)? u € L?((RB)N% § = (61’ e 7€N)7 (51>

where () is a constant such that

Q> ZChizasVNmax{N, Z}. (5.2)

2o

For any function u € L2((R?)V), let
ug = Pou, ur = (1— Py)u.
Given a functional space Y, the subspaces PoY and (1 — Pg)Y are formally defined by
PoY :={ug;ueY} and (1-FPa)Y :={up;ueY}.

Then, under Assumption 2l on «, 8, the low-frequency part uy, € X4 for any u € H}((R?)N).
Hence uy 1 := (1 — Po)uy € X14p. Thus to prove u, € X;, 3, it suffices to prove u, g := Pou, €
X17a75'

To prove u.py € Xr3, we consider the following variational problem in u for the eigenvalue

problem (L2)):
(LrapHu,Lrapva) — AN(Lrapu, L1apvn) =0 for any vy € PoXi a5, (5.3)
from which, using the fact that v = ug + ur, we deduce
(Lraps(H—Nup,L16500)
= —(L1.08Vhe + Vee)ur, L1 0 pvn) for any vy € PoXpap. (5.4)

Obviously, when o = 8 =0, L, =1 and X; .5 = H}. Thus for « = 8 = 0, u, solves (5.3), then
Uy, g solves (B.4) with uy, = uy p.
Before going further, we study the properties of the variational problem ([5.4]).

Lemma 5.1. Under Assumption 21 on «, 3, for any given uy, € (1 — Po)X1 4.8, the variational
problem (B.4)) admits a unique solution Yy o p(ur) € PoXias-
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Proof. We will prove this lemma by using Lions-Lax-Milgram’s Theorem (see e.g., [I5] Theorem

2.1, Chpt. II1.2]). Thanks to Theorem 22 and (5.2), for any uy, vy € PoXr 4, we have

sy
2

since |ug| p2(geyyy < (27Q) 7 Vug | 12(rs)~y. Then, according to Remark [T}, A < 0, and we have

(Lras(H — Nve, L1.a,5v5)]

’<£[,a,ﬁ(vne + ‘/ee)'ufHa EI,a,BUHH <

1
|ullo.r.as]v)110,8 < ZHUH 1,La,8|VH|1,LL,a,8

1 1 1 1
> ( (=54 = NLrasvi, Lrapvn ) — - vilias = Zlvalises = glval?ags:
2 4 4 8
Thus we get the weak coercivity: for uy, vy € PoX1 a4,
inf sup |<[,]’a75(H — )\)UH, EI,Q,BUHH
i lz,e8=1 jug|f.op<1
. 1 (5.5)
> inf  [(Lras(H = Ny, Lrapvr)| = <,
[verlra,s=1 8
the continuity:
| (Lraps(H —Nuw, Lrapvn) | <|vuwlres|vilas; (5.6)
and the continuity of the right-hand side term in (5.4)):
| (L1.a,8(Vae + Vee)ur, L1.a,8va) | < |uplzasl|vellras- (5.7)
Thus by Lions-Lax-Milgram’s Theorem, under Assumption 2.1 on «, 3, for any given uy € (1 —
Po)X1ap, (6.4) admits a unique solution ¢y g(ur) € PoXias- O

Theorem [2.3] can be immediately obtained by the following.

Lemma 5.2. For any «, 8 satisfying Assumption (21 and for up, = s, Ypeps(Uer) = Uspg s
the unique solution to the variational problem (54). Thus uy g € X ap.

Proof of Lemma[2.2. Let u, = uyy in (B4). When o = 8 = 0, by Lemma Bl g 00(usr) is
the unique solution to (5.4). On the other hand, for & = = 0, u, g solves equally (5.4]) with
ur, = Uy . Thus by the uniqueness of solution to (B.4]), ¥y 0.0(ts,r) = Us n-

To end the proof, it suffices to prove ¥y o g(ts 1) = s g for any a, 8 satisfying Assumption 2,11
As the operator L, s is invertible, we denote the functional space X; _, s by

Thus for any vy € PoXjq, we have L7 ;uy € PoXj_o_s. On the other hand, for any ¢y €
PoXr a3, E;iﬁqﬁH € PoXjap. Let vy = Eii,5¢H7 then (5.4]) can be rewritten as

<(H — )\)UH, qu) = — <(Vne + ‘/ee)UL, ¢H> for any ng € PQX[’_Q7_,(3. (58)
Now, for any o, §’ satisfying Assumption 211 let ¢y o p(ur) € PoX1 o s be the unique solution
to (54) for « = o/ and 8 = B. Obviously, H}(R*)") « X;_o _g. Then PoH}((R)N) <
Po X7 o —g. Thus thanks to (58), for any ¢i € PoH}((R?)"Y), we have
(H = N¥map(ur), ¢n) = = (Vae + VeeJur, én) ,

which implies that g g (ur) also solves (5.4) for « = f = 0. Then, by Lemma [B.1] for any
o, B satisfying Assumption 201 ¢y o g (ur) = Yroo(un). As ¥uoo(tsr) = s g, we finally get
Vo p(Usr) = s . By Lemma Bl we g = Ypo g (Usr) € Xio g This ends the proof. O
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6. APPLICATION TO THE HYPERBOLIC CROSS SPACE APPROXIMATION

Finally, in this section, we study the hyperbolic cross space approximation and prove Theorem
2.5l We need to replace in Theorem the operator L£;, 3 by L4 s which is defined by

V? v2 B/2
EI’Q7B’T::H(1+|T’) H<1+|T’) .

jel elc

We consider equally the following norms

]

0,],a,8,7 +=— H»Cl,a,,B,TUHL%(R?’)N)v Hu 1,1,0,8,7 = HVﬁl,a,ﬁ,TUHL2((R3)N)-

It is easy to see that for 7 > 1

< Julhrosr <|

,o,89 7—7

767

apr < |

ap < |
while for 0 < 7 < 1

77B7T<7—

af < |

’ yﬁ’ ‘
Before going furthelr7 we need the following.

[ulor.a < [tlorasr <

) 75'

Lemma 6.1. Under Assumption[2.1 on «, 3, we have for any u,v € Xj, g,

‘(‘CI,CV,['},T(VTLe + ‘/ee)uy EI,Q,B,TUH < C
where Criz.ap 15 defined in Theorem [Z2.

Proof. Let u,(z) := 773Ny (77 x) and v, (z) := 773V/2p(r7'2) where z = (21, ,oy) € (RN

Let
e = ZZ|az:z—7'a|

i=1lv=1
It is easy to see u,, v, € X4 since u,v € Xy 4. Then, by Theorem 2.2 we have

|<£[,a,5(vy; + ‘/;e)uTa £[,a,ﬁUT>| < Omix7oc,5\/NmaX{Z7 N}HUTHOJ,a,ﬁ UT”LI,a,ﬁ- (62)
The scaling definition yields
‘<£],C¥,B(Vfrz—e + ‘/66)u7'7 El,a,EUTH = 7—71 |<£I,Q,B,T(Vne + ‘/ee)ua ['I,a,ﬂ,TU>| . (63)
On the other hand,

) 71877—7 (6'1)

) 76’7—

| a8 = 1Lraptr] 3wy = [Lrasrul ey = lulorass (6.4)

and
lvrl1r.08 = IVLLapV- 2@y = T IV ELLap AV 2 @eyyy = T 0l1 10,80 (6.5)
Gathering together (6.2) to (6.3), Eqn. (6.1)) follows. O

Let I < {1,---,N}. Let u, € H}(R*)" be an eigenfunction of (L2), and let u, gy = Pous,
Usr = (1 — Po)u, with Py defined by (5.1). We consider the following variational problem: for
any vy € PoX103,

(Lroapr(H—=Nupg,Lraprvu) == (LrasrVie+ Vee)Usr, L10.8:0H) - (6.6)

Following the proof of Theorem in Section B and under Assumption 2.1l on «, 3, we know that
Uy g is the unique solution to the variational problem (6.6]).

Recall that Q > %C’mmaﬁ\/ﬁmax{]\f, Z} and let vy = uy . Then we have

1
(Lrapr(H = Nt i1, L1,0,87Um)| = HU*H||1 Tofr (6.7)
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and
7€)
‘ <£I,a,,8,7'(vne + ‘/;e)u*,La £I,a,ﬁ,7u*,H> ‘ < 9 ,a,3, (68)
By (67) and (6.8]), we get
7§ 1 sy
THU*HHOM,&T < apr S — | B, (6.9)
It follows b B 0105, that
wpr < e < 2V2mQ|uso.1.08.7- (6.10)
Lemma 6.2. Let Q > mzxagfmaX{N Z} be large enough. Under Assumption 21 on o, 3,
we have
tslo.r,0,82r0 < V28 || L2mayyy,  usl1,1,0,8200 < < 2V2 71”8 Q |y | 2 ((R3)N)-

Proof. The proof is in the spirit of [I8, Theorem 9]. Under Assumption 2.1l on «, 3, we have

0<f<a<b/4and
&2 €12\ ° 5le?
L] (1 ’ |sz|2> L] (1 y |Q|2> <O (4|Q|2) ’

jel elc

where € 1= (&, ,&y) € (R®)N. Thus, by (5.1 and using the fact that u. = (1 — Po)us, we

have
& 1A% )
[, ) T+ R) 1Zmteors
<% jer

elc

|€|2 2 5/4 2
= Llsﬂ b (4|Q|2 | s oo () (€)°dE < e / ”U*Hm((RB)N)-

Let now 7 = 27Q). Then Eqn. (€I0) implies
| S \/§€S/SHU*HL2((R3)N)= [uall1ra82m0 < 2\/§7T65/BQHU*”L2((R3)N)

This ends the proof. 0
Finally, we turn to the proof of Theorem 2.5
Proof of Theorem[Z3 For any £ € Hy o 5(R, ) where H; o 5(R,2) is defined by (2.9), we have

1 2\ @ 2\ #
1<ﬁHG+ )UG+ )
Jele

el

2m¢;
2710

2m¢;
272

Thus, by Lemma [6.2] it is easy to see that

[(1 = Prs )t 2oy '—H( Pros) .27
1 \/§65/8
S5 0,0.2m0 S THU*HLQ((R3)N)'
Analogously,
1 24/2me®/®
IV (s = Prosue) | 2 (eyny < ﬁ\ a2m0 S TQHU*HLZ’((RS)N)'

This ends the proof. O
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