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ON THE MIXED REGULARITY OF N -BODY COULOMBIC WAVEFUNCTIONS

 

On the mixed regularity of N -body Coulombic wavefunctions

Introduction

In most applications of molecular simulation, a molecule is described by an assembly of M static nuclei equipped with N electrons, with M , N in N `. We assume that the nuclei are fixed, according to the Born-Oppenheimer approximation, while the electrons are modeled quantum mechanically through a wavefunction and the N -body Hamiltonian operator:

H " ´1 2 N ÿ i"1 △ i ´Vne `Vee (1.1) 
with

V ne :" N ÿ i"1 M ÿ ν"1 Z ν |x i ´aν | , and 
V ee :" 1 2 N ÿ i,j"1 i‰j 1 |x i ´xj | ,
where a 1 ¨¨¨, a M P R 3 are the positions of nuclei with respective charges Z 1 , ¨¨¨, Z M P N `(in atomic units), and x 1 , ¨¨¨, x N P R 3 are the coordinates of given N electrons. We denote Z :" ř M ν"1 Z ν the total nuclear charge. The right-hand side terms in (1.1) model the kinetic energy, the Coulomb attraction between nuclei and electrons V ne and the Coulomb repulsion between electrons V ee , respectively.

Mathematically, the electronic ground -or excited -state problem can be expressed by the Euler-Lagrange equation of the eigenvalue problem of the operator (1.1):

Hu " λu, (1.2) 
where u P H 1 ppR 3 q N q and }u} L 2 ppR 3 q N q " 1.

Remark 1.1. It is shown in [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] that any eigenvalue of (1.2) is negative.

The eigenvalue problem (1.2) is well-explored mathematically (see for example [START_REF] Hunziker | The quantum N -body problem[END_REF], as well as the regularity properties of eigenfunctions of problem (1.2) [3-5, 8-10, 12]).

In quantum mechanics, in addition to the spatial coordinates, a particle may have internal degrees of freedom, the most important one being the spin. Electrons, for example, have two kinds 2020 Mathematics Subject Classification. 35J10, 35B65, 41A25, 41A63 .

of spins r σ with value 1, 2. If a particle has q kinds of spins, we shall say that the particle has q spin states and we label them by the integer r σ P t1, ¨¨¨, qu.

From the mathematical point of view, it is interesting to consider an arbitrary q spin states in our system. For this reason, in this article, we will study the wavefunctions of N identical particles with q spin states instead of the electronic wavefunctions.

A wavefunction Ψ of identical N particles with q spin states can be written as

Ψ : pR 3 q N ˆt1, ¨¨¨, qu N Ñ C, px, σq Þ Ñ Ψpx, σq, (1.3) 
where x :" px 1 , ¨¨¨, x N q and σ :" pσ 1 , ¨¨¨, σ N q with x i P R 3 and σ i P t1, ¨¨¨, qu.

There are two kinds of particles: fermions and bosons. Fermions, among them electrons, satisfy the Pauli exclusion principle: the sign of the wavefunction Ψ changes sign under an exchange of the space coordinates x i , x j , and the spins σ i , σ j of two identical fermions i, j. More precisely, Pauli exclusion principle writes : ΨpP pxq i,j x, P pσq i,j σq " ´Ψpx, σq (1.4) where P pxq i,j and P pσq i,j the permutation operators which exchange the space coordinates x i , x j and the spins σ i , σ j respectively, i.e. P pxq i,j p¨¨¨, x i , ¨¨¨, x j , ¨¨¨q :" p¨¨¨, x j , ¨¨¨, x i , ¨¨¨q,

and P pσq i,j p¨¨¨, σ i , ¨¨¨, σ j , ¨¨¨q :" p¨¨¨, σ j , ¨¨¨, σ i , ¨¨¨q.

(

On the other hand, bosons satisfy the Bose-Einstein statistics in which the particles occupy symmetric quantum states. Thus the bosonic wavefunctions Ψ satisfies (1.4) when the sign ´is replaced by `. Now we are going to fix the spin σ, and only consider the antisymmetry of the fermionic wavefunction with respect to x. As the eigenvalue problem (1.2) does not act upon the spin variables, for every fixed spin σ, the wavefunction Ψpx, σq in (1.3) can be represented by the wavefunction upxq which is defined by u : pR 3 q N Ñ C, x Þ Ñ Ψpx, σq.

(1.7)

Furthermore, for every fixed spin σ, the particles can be categorized into q subsets according to their spin states: I l :" ti P t1, ¨¨¨, N u; σ i " lu, l " 1, ¨¨¨, q, and I σ :" tI 1 , ¨¨¨, I q u.

(1.8)

In particular, if σ i ‰ l for any i " 1, ¨¨¨, N , we set I l " H and |I l | " 0. If i, j P I with I P I σ and |I| ą 1, then σ i " σ j . Thus P pσq i,j σ " σ. Therefore, the permutation operator P pσq i,j keeps the spin σ invariant if the i-th and j-th electrons have the same spin. Hence for every fixed σ and for any i, j P I with I P I σ and |I| ą 1, (1.4) implies the fermionic wavefunction u is antisymmetric with respect to x i , x j , i.e., upP pxq i,j xq " ´upxq.

(1.9)

In particular, if x i " x j then upxq " 0: thanks to the antisymmetry, the fermionic wavefunctions can counterbalance the singularity of the interaction potential 1 |x i ´xj | . Relying on this observation, a new regularity result about eigenfunctions of problem (1.2) has been proven in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] which can help to break the complexity barriers in computational quantum mechanics. More precisely, it is shown in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] that, for every fixed spin σ, any eigenfunction u of problem (1.2) satisfies ż

pR 3 q N ˜1 `N ÿ i"1 |2πξ i | 2 ¸˜ÿ IPIσ ź kPI p1 `|2πξ k | 2 q ¸|p u ˚pξq| 2 dξ ă `8, (1.10) 
where p u ˚pξq :" F x 1 ,¨¨¨,x N pu ˚qpξq " ş pR 3 q N u ˚pxqe ´2πiξ¨x dx is the Fourier transform of u with ξ :" pξ 1 , ¨¨¨, ξ N q and ξ i P R 3 , i " 1, ¨¨¨, N . The proof is based on a Hardy-type inequality for the Coulomb system in the scalar product. Then based on this Hardy-type inequality, a hyperbolic cross space approximation of any eigenfunction of (1.2) has been studied. The convergence of this approximation is proven in [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF]. The hyperbolic cross space approximation is defined by (2.10) below.

Later, by using r12-methods and interpolation of Sobolev spaces, H.C. Kreusler and H. Yserentant [START_REF] Kreusler | The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces[END_REF] proved that any eigenfunction u ˚of problem (1.2) satisfies ż

pR 3 q N ˜1 `N ÿ i"1 |2πξ i | 2 ¸s ˜N ź k"1 p1 `|2πξ k | 2 q ¸t |p u ˚pξq| 2 dξ ă `8, (1.11) 
for s " 0 and t " 1 or s " 1 and t ă 3{4. Notice that this regularity is independent of the choice of σ. It is shown in [START_REF] Kreusler | The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces[END_REF] that the bound 3{4 is the best possible: it can neither be reached nor surpassed except for the totally antisymmetric eigenfunctions. However, lacking Hardy-type inequalities associated with the new type of mixed regularity, they could not prove the convergence of the corresponding hyperbolic cross space approximation of eigenfunctions.

In this article, we are going to improve the results of [START_REF] Kreusler | The mixed regularity of electronic wave functions in fractional order and weighted Sobolev spaces[END_REF] and [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] in two directions: a) we prove the convergence of the hyperbolic cross space approximation of eigenfunctions associated with the regularity (1.11); b) due to the Pauli exclusion principle, taking the antisymmetry of the wavefunctions into account, we prove a better mixed regularity of eigenfunctions and prove the convergence of the corresponding hyperbolic cross space approximation.

We generalize the concept of the antisymmetric functions such that, under this new definition, non-antisymmetric functions can also be regarded as special antisymmetric functions. Definition 1.2 (Generalized antisymmetric function). Let I Ă t1, ¨¨¨, N u. When |I| ą 1, a wavefunction u is antisymmetric with respect to I if and only if, for any i, j P I, upP pxq i,j xq " ´upxq, where P pxq i,j is defined by (1.5). When |I| " 1, every wavefunction u is antisymmetric with respect to I. Remark 1.3. According to (1.8), (1.9) and above definition, wavefunction u defined by (1.7) with q spin states and the fixed spin σ is antisymmetric with respect to I for any I P I σ .

Let u ˚given by (1.7) with q spin states and the fixed spin σ be an eigenfunction of (1.2). The main results of this paper (Theorem 2.3 and Corollary 2.4) then state that

ż pR 3 q N ˜1 `N ÿ i"1 |2πξ i | 2 ¸ÿ IPIσ ˜ź jPI p1 `|2πξ j | 2 q ¸αI ˜ź kPI c p1 `|2πξ k | 2 q ¸βI |p u ˚pξq| 2 dξ ă `8.
(1.12)

Here and below I c " t1, ¨¨¨, N uzI, α I P r0, 5{4q, β I P r0, 3{4q and α I `βI ă 3{2.

As mentioned above, this result improves the results in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF]. Actually, if we take α I " 1 and β I " 0, then (1.12) becomes (1.10). Thus the regularity (1.10) is a special case of (1.12). Furthermore, we can choose α I « 5 4 and β I « 1 4 in (1.12) which are much larger than the ones in (1.10).

If we assume in particular that, for the fixed spin σ, there exists l such that I l " t1, ¨¨¨, N u with I l given by (1.8), then u ˚is totally antisymmetric (i.e., u ˚is antisymmetric w.r.t. t1, ¨¨¨, N u) and (1.12) becomes ż

pR 3 q N ˜1 `N ÿ i"1 |2πξ i | 2 ¸˜N ź j"1 p1 `|2πξ j | 2 q ¸α |p u ˚pξq| 2 dξ ă `8
with any 0 ď α ă 5 4 . Then (1.12) is better than (1.10) and (1.11) for the totally antisymmetric case. Now we choose α I " β I . Then if u ˚is not totally antisymmetric, the condition on α I and β I shows that 0 ď α I " β I ă 3 4 , and (1.12) becomes ż

pR 3 q N ˜1 `N ÿ i"1 |2πξ i | 2 ¸˜N ź j"1 p1 `|2πξ j | 2 q ¸β |p u ˚pξq| 2 dξ ă `8 (1.13)
with any 0 ď β ă 3 4 . This is exactly (1.11) with s " 1 and t ă 3 4 , and this regularity is independent of the choice of the spin σ and of the antisymmetry of the eigenfunctions. Thus we provide an alternative proof for (1.11). As mentioned above and shown in [START_REF] Yserentant | The mixed regularity of electronic wave functions multiplied by explicit correlation factors[END_REF], our regularity is optimal in this case except for the totally antisymmetric eigenfunctions.

The proof of this new mixed regularity is based on a generalization of the Hardy-type inequality for Coulomb system in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF] (i.e., Theorem 2.2) for any α I and β I as in (1.12). As in [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF], from this new Hardy-type inequality, we can obtain the corresponding hyperbolic cross space approximation (i.e., Theorem 2.5). In particular, concerning the case α I " β I ă 3 4 , we prove the convergence of the hyperbolic cross space approximation of eigenfunctions associated with the regularity (1.11).

Set-up and main results

In this section, we introduce first the operators and functional spaces used in this paper, then we present our main results and give the main ideas of the proof.

2.1. Operators and functional spaces. For every set I Ă t1, ¨¨¨, N u, we define the Hilbert spaces L 2 I ppR 3 q N q and H 1 I ppR 3 q N q of the wavefunctions which are antisymmetric with respect to I by L 2 I ppR 3 q N q :" tu P L 2 ppR 3 q N q; u is antisymmetric with respect to Iu,

and H 1 I ppR 3 q N q :" tu P H 1 ppR 3 q N q; u is antisymmetric with respect to Iu,

respectively. It is easy to see that, when |I| " 1, H 1 I ppR 3 q N q " H 1 ppR 3 q N q and L 2 I ppR 3 q N q " L 2 ppR 3 q N q. However when |I| ą 1, we have L 2 I ppR 3 q N q Ĺ L 2 ppR 3 q N q and H 1 I ppR 3 q N q Ĺ H 1 ppR 3 q N q. Now we are going to define the new mixed Sobolev space like (1.11) in consideration of the antisymmetry with respect to I. Before going further, we define some fractional Laplacian-type operators associated with I. Define the operator L I,α,β by

L I,α,β :" ˜ź jPI p1 `|∇ j | 2 q α{2 ¸˜ź iPI c p1 `|∇ i | 2 q β{2 ¸, (2.3) 
where I c " t1, ¨¨¨, N uzI and ∇ i is the gradient with respect to the coordinate x i P R 3 . This operator is defined with the help of the Fourier transform (see Section 3 for details). In particular, when I " t1, ¨¨¨, N u, then

L I,α,β " N ź j"1 p1 `|∇ j | 2 q α{2
is indeed independent of the choice of β.

In addition to the operator L I,α,β , the following operators will be useful,

L piq I,α,β :" ¨ź jPIztiu p1 `|∇ j | 2 q α{2 '¨ź iPI c ztiu p1 `|∇ i | 2 q β{2 ', and 
L pi,jq I,α,β :" ¨ź jPIzti,ju p1 `|∇ j | 2 q α{2 '¨ź iPI c zti,ju p1 `|∇ i | 2 q β{2 '.
Thus,

L I,α,β " p1 `|∇ i | 2 q γ i {2 L piq I,α,β , L I,α,β " p1 `|∇ i | 2 q γ i {2 p1 `|∇ j | 2 q γ j {2 L pi,jq I,α,β , (2.4) 
where γ k " α if k P I, and γ k " β if k P I c . We next introduce the corresponding functional spaces X I,α,β defined by

X I,α,β :" tu P H 1 I ; }L I,α,β u} H 1 ppR 3 q N q ă `8u, (2.5) 
endowed with the norm }u} I,α,β :" }L I,α,β u} H 1 ppR 3 q N q .

(2.6)

We also define the following norm and semi-norm respectively, }u} 0,I,α,β :" }L I,α,β u} L 2 ppR 3 q N q , }u} 1,I,α,β :" }∇L I,α,β u} L 2 ppR 3 q N q .

(2.7)

Here ∇ :" p∇ 1 , ¨¨¨, ∇ N q is the gradient with respect to x P pR 3 q N . Obviously, }u} 2 I,α,β " }u} 2 0,I,α,β }u} 2 1,I,α,β . 2.2. Main results. Before going further, we need some assumptions on α and β. Assumption 2.1. We assume that α P r0, 5{4q, β P r0, 3{4q and α `β ă 3{2.

The key tool to prove the regularity of eigenfunctions is the following. Theorem 2.2 (Hardy-type inequality for Coulomb system in the scalar product). For every I Ă t1, ¨¨¨, N u, and under Assumption 2.1 on α, β, there is a constant C mix,α,β independent of N , Z such that for any u, v P X I,α,β ,

| L I,α,β pV ne `Vee qu, L I,α,β v | ď C mix,α,β ? N maxtZ, N u}u} 0,I,α,β }v} 1,I,α,β . (2.8)
It is shown in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF] that (2.8) holds for α " 1 and β " 0. Based on this inequality, the regularity of eigenfunction u ˚and the corresponding hyperbolic cross space approximation are also proven therein.

Our main result on the new mixed regularity of the wavefunction is the following.

Theorem 2.3 (Mixed regularity of eigenfunctions). Let I Ă t1, ¨¨¨, N u, and let u ˚P H 1 I ppR 3 q N q be a solution to the eigenvalue problem (1.2). Then, under Assumption 2.1 on α and β, u ˚P X I,α,β .

This proof is postponed until Section 5. According to Remark 1.3, we know that u given by (1.7) is situated in Ş IPIσ H 1 I ppR 3 q N q. Then we have Corollary 2.4. Let u given by (1.7) be an eigenfunction of the eigenvalue problem (1.2) with q spin states and a fixed spin σ. Then u ˚P Ş IPIσ X I,α I ,β I where α I and β I satisfy Assumption 2.1. We first recall the definition of the hyperbolic cross space approximation. Let Ω be a scaling parameter which will be given in Theorem 2.5. Let H I,α,β pR, Ωq be a region defined by

H I,α,β pR, Ωq :" # pω 1 , ¨¨¨, ω N q P pR 3 q N ; ź iPI ˆ1 `ˇˇωi Ω ˇˇ2 ˙α ź jPI c ˆ1 `ˇˇωj Ω ˇˇ2 ˙β ď R 2 + . (2.9)
Note that this region can be considered as cartesian product of hyperboloid-like regions, from which the notion hyperbolic cross space approximation originates. Then we define the projector pP R,Ω I,α,β uqpxq :"

ż pR 3 q N χ R,Ω I,α,β pξqp upξq exp p2πiξ ¨xqdξ (2.10)
where χ R,Ω I,α,β is the characteristic function of the domain H I,α,β pR, Ωq. The approximation (2.10) of u is called the hyperbolic cross space approximation.

In [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF], based on the mixed regularity (1.10), the convergence of hyperbolic cross space approximation of eigenfunctions is proven. Now we are going to prove the convergence of the hyperbolic cross space approximation of eigenfunctions associated with the regularity proven in Theorem 2.3.

Based on Theorem 2.2, we get the following.

Theorem 2.5 (Hyperbolic cross space approximation). Let I Ă t1, ¨¨¨, N u. For any eigenfunction u ˚P H 1 I of (1.2), and every Ω ě 2 π C mix,α,β ? N maxtZ, N u, under Assumption 2.1 on α, β, we have

}u ˚´P R,Ω I,α,β u ˚}L 2 ppR 3 q N q ď ? 2πe 5{8 R }u ˚}L 2 ppR 3 q N q , and 
}∇pu ˚´P R,Ω I,α,β u ˚q} L 2 ppR 3 q N q ď 2 ? 2πe 5{8 R Ω}u ˚}L 2 ppR 3 q N q .
Here the constant C mix,α,β is defined in Theorem 2.2.

This proof is provided in Section 6.

2.3.

Main ideas of the proof of Theorem 2.2. As mentioned in Introduction, the extension of the results in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF][START_REF] Yserentant | The mixed regularity of electronic wave functions multiplied by explicit correlation factors[END_REF] is based on Theorem 2.2. Once Theorem 2.2 is proven, following the proofs in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] line by line, we can prove Theorem 2.3 and Theorem 2.5, respectively. Thus this paper is devoted mainly to the proof of Theorem 2.2. As the proof of Theorem 2.2 is quite technical, before entering the details, let us try to explain the main ideas and the main improvements with respect to the existing results. Let

L I :" â jPI ∇ j , L piq I :" â jPIztiu ∇ j and L pi,jq I :" â kPIzti,ju ∇ k .
The Hardy-type inequality used in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] can be expressed in the following way.

Theorem 2.6. [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF][START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] For every I Ă t1, ¨¨¨, N u, there is a constant C I independent of N , Z such that for any u, v P X I,1,0 ,

| L I pV ne `Vee qu, L I v | ď C I ? N maxtZ, N u}u} 0,I,α,β }v} 1,I,α,β . (2.11) 
One can essentially recover Theorem 2.2 with our Theorem 2.6 by setting α " 1 and β " 0.

Remark 2.7. Actually, Theorem 2.2 is optimal at least for the case α " β if the wavefunction u is not totally antisymmetric. Otherwise, if (2.8) holds for some α " β ě 3 4 , then following the proofs in [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF] and [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF] as in Section 5 in this paper, Theorem 2.3 and Corollary 2.4 will also hold for these α and β. This means that for any eigenfunction u ˚which is not totally antisymmetric, u ˚P X I,α,β with some α " β ě 3 4 . However, [START_REF] Yserentant | The mixed regularity of electronic wave functions multiplied by explicit correlation factors[END_REF] (see also (1.11) and (1.13) in this paper) shows that α " β ă 3 4 is optimal. Then we reach a contradiction. Thus (2.8) is optimal for the case α " β if the wavefunction u is not totally antisymmetric. Now we compare these two inequalities technically. We first give a glimpse into the formulae on the left-hand side of (2.8) and (2.11):

L I,α,β V ne u " N ÿ i"1 M ÿ ν"1 p1 `|∇ i | 2 q γ i {2 ˆZν |x i ´aν | L piq I,α,β u ˙, (2.12 
)

L I V ne u " N ÿ i"1 M ÿ ν"1 ∇ i ˆZν |x i ´aν | L piq I u ˙, (2.13) 
L I,α,β V ee u " 1 2 ÿ i‰j p1 `|∇ i | 2 q γ i {2 p1 `|∇ j | 2 q γ j {2 ˆ1 |x i ´xj | L pi,jq I,α,β u ˙, (2.14) 
and

L I V ee u " 1 2 ÿ i‰j ∇ γ 1 i i â ∇ γ 1 j j ˆ1 |x i ´xj | L pi,jq I u ˙, (2.15) 
where γ k " α, γ We can not prove Theorem 2.2 as for Theorem 2.6 since the Leibniz rule fails for fractional Laplacian operators. In addition, the optimality of Theorem 2.2 for the case α " β and the singularity of the Coulomb potential make the proof of (2.8) in Theorem 2.2 much more delicate than the one of (2.11) in Theorem 2.6.

To prove Theorem 2.2, we need first to study the relationship between the fractional operator p1 `|∇ i | 2 q γ i {2 and the Coulomb type potentials. In this paper, this is equivalent to the study of the relationship between |∇ i | γ i and the Coulomb type potentials by introducing a bounded operator K s,y :" p1 `|∇ y | 2 q s{2 p1 `|∇ y | s q ´1 in Section 3.1.

The main tool of this paper is the following Hardy-type inequality (i.e., Theorem 3.3):

}|y| ´s|∇ y | ´sf } L 2 pR 3 q À s }f } L 2 pR 3 q , 0 ď s ă 3 2 ,
and its dual form:

}|∇ y | ´s|y| ´sf } L 2 pR 3 q À s }f } L 2 pR 3 q , 0 ď s ă 3 2 .
This is the most important inequality used in this paper and this gives the tool to study the electron-nucleus term V ne immediately (see (2.12)).

Concerning the electron-electron term V ee in (2.14), we need a corresponding version of Hardytype inequality for two particles. From the above Hardy-type inequality, one can deduce the following (see Lemma 3.6):

}|y ´z| ´s´t |∇ y | ´s|∇ z | ´tf } L 2 pR 3 ˆR3 q À s,t }f } L 2 pR 3 ˆR3 q , s, t ě 0, s `t ă 3 2 .
This gives the condition that β ă 3 4 and α `β ă 3 2 in Assumption 2.1. Thanks to antisymmetry, we can also generalize the standard Hardy inequality for two particles since the antisymmetry will counterbalance the singularity of the potential 1 |x i ´xj | . More precisely, for any function g P C 8 0 pR 3 ˆR3 q satisfying gpx, yq " ´gpy, xq, it is easy to see that gpx, yq " 0 for x " y. Thus |gpx, yq| ď C|x ´y| in any compact neighborhood of the set tx " yu. As a result,

› › › › g |y ´z| 2s › › › › L 2 pR 3 ˆR3 q ă `8, 0 ď s ă 5 4 .
Then arguing as for the standard Hardy inequality, we show in Corollary 3.8 and Lemma 3.9 the following inequalities with antisymmetry:

› › › › g |y ´z| 2s › › › › L 2 pR 3 ˆR3 q À s › › › › ∇ y ∇ z g |y ´z| 2s´2 › › › › L 2 pR 3 ˆR3 q À s }|∇ y | s |∇ z | s g} L 2 pR 3 ˆR3 q , 1 ď s ă 5 4 .
Returning back to (2.8) and (2.14), we will use the following extension of the Hardy-type inequality for two particles with antisymmetry in Lemma 4.5:

}|∇ y | s´1{2 |∇ y | s´1{2 |y ´z| ´1g} L 2 pR 3 ˆR3 q À s }|∇ y | s |∇ z | s g} L 2 pR 3 ˆR3 q , 0 ď s ă 5 4 .
This gives the condition α ă 5 4 in Assumption 2.1. In addition, this estimate shows that spatial antisymmetry implies regularity.

Once the fractional Laplacian operator is defined and the above inequalities and their extensions are established, we can obtain Theorem 2.2 immediately. This paper is organised as follows. As mentioned above, we will use the fractional Laplacian operator. Thus in Section 3, we will first study the fractional Laplacian. Then based on Hardy-type inequalities, we will deduce the above inequalities. In Section 4, we will use the above inequalities to prove Theorem 2.2. Then in Section 5 and Section 6, following the proofs in [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF], we will prove Theorem 2.3 and Theorem 2.5, respectively.

Fractional Laplacian operators and related inequalities

In the following, we denote the gradients ∇ y and ∇ z corresponding to the variables y and z in R 3 , respectively.

In the next subsection, we study the fractional Laplacian operator p1`|∇ y | 2 q s{2 on R 3 . Actually, we rather study the fractional Laplacian operator |∇ y | s . The relationship between |∇ y | s and p1 `|∇ y | 2 q s{2 will be studied equally. Then, for some s, t ą 0, we will study some Hardy-type inequalities associated with the operators |∇ y | ´s|y| ´s and |∇ y | ´s|∇ z | ´t|y ´z| ´s´t .

3.1. Fractional Laplacian. First of all, we define our convention for the Fourier transform. Let f P L 2 pR 3 q, g P L 2 pR 3 ˆR3 q and u P L 2 ppR 3 q N q, then the Fourier transforms of f , g and u are respectively

F y pf qpξ y q :" ż R 3
f pyqe ´2πiξy¨y dy, F y,z pgqpξ y , ξ z q :" F z ˝Fy pgqpξ y , ξ z q, and

F x 1 ,¨¨¨,x N puqpξq :" F x N ˝¨¨¨˝F x 1 puqpξq, ξ :" pξ 1 , ¨¨¨, ξ N q with ξ k P R 3 , k " 1, ¨¨¨, N.
For s ą 0, a function f P L 2 pR 3 q is said to be in H s pR 3 q if and only if

}f } 2 H s pR 3 q :" ż R 3
p1 `|ξ y | 2 q s |F y pf qpξ y q| 2 dξ y ă `8.

The fractional Laplacian |∇ y | s (or p´△ y q s{2 ) is defined on functions f P H s pR 3 q by the Fourier representation: F y p|∇ y | s f qpξ y q :" |2πξ y | s F y pf qpξ y q.

Similarly, p1 `|∇ y | 2 q s{2 is defined by F y pp1 `|∇ y | 2 q s{2 f qpξ y q :" p1 `|2πξ y | 2 q s{2 F y pf qpξ y q.

The operator L I,α,β which is defined on functions u P X I,α,β can be regarded as a composition of fractional Laplacian operators on R 3 in the following manner:

L I,α,β u :" p1 `|∇ 1 | 2 q γ 1 {2 ˝¨¨¨˝p1 `|∇ N | 2 q γ N {2 u,
where γ k " α if k P I, and γ k " β if k P I c . Applying the Fourier transform to solve the Poisson equation

|∇ y | s f 1 pyq " f 2 pyq in R 3 ,
we find that |2πξ y | s F y pf 1 qpξ y q " F y pf 2 qpξ y q. The inverse of the fractional Laplacian, or negative power of the Laplacian |∇ y | ´s with s ą 0 is defined on functions f in the Schwartz space SpR 3 q by F y p|∇ y | ´sf qpξ y q " |2πξ y | ´sF y pf qpξ y q for ξ y ‰ 0.

In principle, we need the restriction 0 ă s ă 3 because when s ě 3 the multiplier |ξ y | ´s does not define a tempered distribution (for more details, see e.g. [START_REF] Stinga | User's guide to the fractional Laplacian and the method of semigroups[END_REF]).

On the other hand, the term 1 |y| s is a tempered distribution for 0 ă s ă 3 with Fourier transform b s F y p| ¨|´s qpξ y q " b 3´s |ξ y | ´3`s , b s " π ´s{2 Γps{2q,

where Γ is the Gamma function. For the detail, see e.g., [6, Eqn. (3.

3)] (the difference of the definition of b s therein is because of the different definition of the Fourier transform) or [14, Theorem 5.9] by using the fact that F y pf gq " F y pf q ˚Fy pgq. Hence, if 0 ă s ă 3, the operator |∇ y | ´s can be rewritten as

|∇ y | ´sf pyq " b 3´s p2πq s b s ż R 3 |z ´y| ´3`s f pzqdz, f P SpR 3 q. (3.2)
Suppose that 0 ă s ă 3, then |∇ y | s |y| ´t is an L 1 loc pR 3 q-function for 0 ă t ă 3 ´s and, using (3.1), We end this subsection by studying the relationship between p1 `|∇ y | 2 q s{2 and |∇ y | s , then in the next subsections we will study Hardy-type inequalities associated with the fractional Laplacian operator |∇ y | s . Let

|∇ y | s |y| ´t " F ´1 y p|2πξ y | s F y p| ¨|´t qq " p2πq s b 3´t b t F ´1 y p| ¨|´3`t`s q " p2πq s b s`t b 3´t b 3´s´t b t |y| ´s´t . ( 3 
K s,y :" p1 `|∇ y | 2 q s{2 p1 `|∇ y | s q ´1, (3.5) 
which is defined by the Fourier transform: F y pK s,y f qpξ y q :" p1 `|2πξ| 2 q s{2 1 `|2πξ| s F y pf qpξ y q. By the Fourier transform, it is easy to see that K s,y " K s,y .

(3.6)

Then we have the following.

Lemma 3.1. For any 0 ď s ď 2, }K s,y } L 2 pR 3 qÑL 2 pR 3 q ď 1.

Proof. For any 0 ď s ď 2, f pyq P L 2 pR 3 q, }K s,y f } L 2 pR 3 q " }p1 `|2πξ y | 2 q s{2 p1 `|2πξ y | s q ´1F y pf q} L 2 pR 3 q .

As 0 ď s{2 ď 1, p1 `|2πξ y | 2 q s{2 ď p1 `|2πξ y | s q. Thus, }K s,y f } L 2 pR 3 q ď }F y pf q} L 2 pR 3 q " }f } L 2 pR 3 q .

Hence the lemma.

Remark 3.2. Actually, the operator K s,y is also bounded from below. One can use the inequalities pa p `bp q ď pa `bq p ď 2 p pa p `bp q for a, b ě 0. (We thank one of the referees for this remark.)

3.2. Hardy-type inequalities for a single particle. We now consider the term |∇ y | ´s|y| ´sf pyq with f P L 2 pR 3 q. Actually, |∇ y | ´s|y| ´s is the adjoint of the operator |y| ´s|∇ y | ´s which has been well studied in [START_REF] Herbst | Spectral theory of the operator pp 2 `m2 q 1{2 ´Ze 2 {r[END_REF] (see equally [2, Theorem 1.7.1]). The following holds.

Theorem 3.3 (Hardy-type inequality [START_REF] Herbst | Spectral theory of the operator pp 2 `m2 q 1{2 ´Ze 2 {r[END_REF]). Let p ´1 `q´1 " 1. Suppose s ą 0 and 3s ´1 ą p ą 1. Then }|y| ´s|∇ y | ´sf } L p pR 3 q ď C s,p }f } L p pR 3 q (3.7) where C s,p :" 2 ´s Γp 1 2 p3p ´1 ´sqqΓp 3 2 q ´1q Γp 3 2 pq ´1 `sqqΓp 

}|y| ´sg} L p pR 3 q ď C s,p }|∇ y | s g} L p pR 3 q . (3.8)
When p " 2 and s " 1, (3.7) is indeed the Hardy inequality with the optimal constant C 1,2 " 2. When p " 2 and s " 1 2 , (3.7) is the Kato inequality with the optimal constant C 1 2 ,2 " ? π ?

2 (see e.g. [START_REF] Balinsky | Spectral analysis of relativistic operators[END_REF]Formula (1.7

.7)]).

In this paper, we only use the case p " 2. By duality, we also have the following: for 0 ă s ă 3 2

}|∇ y | ´s|y| ´sf } L 2 pR 3 q ď C s,2 }f } L 2 pR 3 q .
Notice that |∇ y | s rf py `aqs " r|∇ y | s f spy `aq. Then from Theorem 3.3, for any a P R 3 and 0 ă s ă 3 2 , }| ¨´a| ´sf } L 2 pR 3 q ď C s,2 }|∇ y | s f } L 2 pR 3 q .

(3.9) By Fubini's Theorem and for any hpy, zq P L 2 pR 3 ˆR3 q, we have }|y ´z| ´shpy, zq} L 2 pR 3 ˆR3 q ď C s,2 }|∇ y | s h} L 2 pR 3 ˆR3 q .

(3.10)

The dual version of (3.9) and (3.10) can be represented respectively as follows: for a P R 3 and 0 ă s ă 3{2,

}|∇ y | ´s| ¨´a| ´sf } L 2 pR 3 q ď C s,2 }f } L 2 pR 3 q (3.11)
and

}|∇ y | ´s|y ´z| ´sf } L 2 pR 3 ˆR3 q ď C s,2 }f } L 2 pR 3 ˆR3 q .
(3.12)

3.3. Hardy-type inequalities for two particles. The rest of this section is devoted to Hardytype inequalities for |∇ y | ´s|∇ z | ´t|z ´y| ´s´t terms for some s, t ě 0. By using Theorem 3.3, we have the following.

Lemma 3.6. For s, t ě 0, s `t ă 3{2, and f P L 2 pR 3 ˆR3 q, we have

}|∇ y | ´s|∇ z | ´t|y ´z| ´s´t f } L 2 pR 3 ˆR3 q ď 2c s`t }f } L 2 pR 3 ˆR3 q (3.13)
and

}|y ´z| ´s´t |∇ y | ´s|∇ z | ´tf } L 2 pR 3 ˆR3 q ď 2c s`t }f } L 2 pR 3 ˆR3 q , (3.14) 
with c 0 :" 1 and, for 0 ă s ă 3{2, c s :" C s,2 where C s,2 is defined in Theorem 3.3.

Proof. For simplicity, we use the shorthand }f } L 2 for }f } L 2 pR 3 ˆR3 q . We prove first

}|∇ y | ´s|∇ z | ´t|y ´z| ´s´t f } L 2 ď 2c s`t }f } L 2 .
If s " t " 0, then }f } L 2 pR 3 ˆR3 q ď 2c 0 }f } L 2 pR 3 ˆR3 q where c 0 " 1. Now we assume s " 0 and t ‰ 0. Thanks to (3.12), we have

}|∇ z | ´t|y ´z| ´tf } L 2 ď c t }f } L 2 ď 2c t }f } L 2 .
The case t " 0 and s ‰ 0 can be treated in the same manner. Now we only need to consider the case s, t ą 0. For any function upy, zq P L 2 pR 3 ˆR3 q, by Fourier transform on R 3 ˆR3 , we have

}|∇ y | ´s|∇ z | ´t|y ´z| ´s´t f } L 2 " p2πq ´s´t }|ξ y | ´s|ξ z | ´tF y,z p|y ´z| ´s´t f qpξ y , ξ z q} L 2 .
Notice that |τ | t ď |τ | s`t `1 for τ P R. Then for τ " |ξ y |{|ξ z |, we have

|ξ y | ´s|ξ z | ´t ď |ξ y | ´s´t `|ξ z | ´s´t . Thus, }|ξ y | ´s|ξ z | ´tF y,z p|y ´z| ´s´t f qpξ x , ξ y q} L 2 ď }|ξ y | ´s´t F y,z p|y ´z| ´s´t f qpξ y , ξ z q} L 2 `}|ξ z | ´s´t F y,z p|y ´z| ´s´t f qpξ y , ξ z q} L 2 " p2πq s`t }|∇ y | ´s´t |y ´z| ´s´t f } L 2 `p2πq s`t }|∇ z | ´s´t |y ´z| ´s´t f } L 2 .
As 0 ă s `t ă 3{2, by (3.12), we have

}|∇ y | ´s´t |y ´z| ´s´t f } L 2 ď c s`t }f } L 2 ,
and

}|∇ z | ´s´t |y ´z| ´s´t f } L 2 ď c s`t }f } L 2 .

Consequently, we deduce

}|∇ y | ´s|∇ z | ´t|x ´y| ´s´t f } L 2 ď 2c s`t }f } L 2 .
By duality, Eqn. (3.14) follows.

For the wavefunction u, the antisymmetry with respect to I will counterbalance the singularities of the potential between electrons. Based on this observation, Lemma 3.6 can be extended in consideration of the antisymmetry. In Theorem 2.2, we only focus on the case t " s. The extension is based on the following. Lemma 3.7. Let a P R 3 and k P r1, 3{2q Y p3{2, 5{2q. If f P C 8 0 pR 3 q for k P r1, 3{2q, or if f P C 8 0 pR 3 ztauq for k P p3{2, 5{2q, we have

› › › › f | ¨´a| k › › › › L 2 pR 3 q ď 2 |2k ´3| › › › › ∇ y f | ¨´a| k´1 › › › › L 2 pR 3 q .
The proof is inspired by [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF]Lemma 2].

Proof. We have the relationship: 

p2k
|2k ´3| 2 4 ż R 3 |f | 2 |y ´a| 2k dy ď ż R 3 |∇f | 2 |y ´a| 2k´2 dy.
This ends the proof. Using Fubini's theorem and Lemma 3.7, the following holds for antisymmetric functions.

Corollary 3.8. For s P r1, 5{4q and f P C 8 0 pR 3 ˆR3 q with f py, zq " ´f pz, yq, we have

› › › › f |y ´z| 2s › › › › L 2 pR 3 ˆR3 q ď 4 |4s ´5||4s ´3| › › › › ∇ y ∇ z f |y ´z| 2s´2 › › › › L 2 pR 3 ˆR3 q .
Proof. This is a generalization of [START_REF] Yserentant | On the regularity of the electronic Schrödinger equation in Hilbert spaces of mixed derivatives[END_REF]Eqn. (3.9)]. We first fix z P R 3 , and let g z pyq " f py, zq. As f py, zq " ´f pz, yq and f P C 8 0 pR 3 ˆR3 q, we know that g z P C 8 0 pR 3 ztzuq. Thus Lemma 3.7 shows that for any

z P R 3 › › › › g z | ¨´z| 2s › › › › L 2 pR 3 y q ď 2 |4s ´3| › › › › ∇ y g z | ¨´z| 2s´1 › › › › L 2 pR 3 y q .
Taking L 2 -norm with respect to z in the above inequality, we get

› › › › f py, zq |y ´z| 2s › › › › L 2 pR 3 ˆR3 q ď 2 |4s ´3| › › › › ∇ y f py, zq |y ´z| 2s´1 › › › › L 2 pR 3 ˆR3 q . Now 1 ď 2s ´1 ă 3
2 and ∇ y f py, ¨q P C 8 pR 3 q for any fixed y P R 3 . Arguing as above, fixing y P R 3 , and using Lemma 3.7 again, we infer

› › › › f py, zq |y ´z| 2s › › › › L 2 pR 3 ˆR3 q ď 4 |4s ´5||4s ´3| › › › › ∇ y ∇ z f py, zq |y ´z| 2s´2 › › › › L 2 pR 3 ˆR3 q .
This ends the proof.

Combining Lemma 3.6 with Corollary 3.8, we have the following.

Lemma 3.9. For s P r1, 5{4q and f P C 8 0 pR 3 ˆR3 q with f py, zq " ´f pz, yq, we have

› › › › f |y ´z| 2s › › › › L 2 pR 3 ˆR3 q ď c 2s }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q (3.15)
where c 2s :" 8c 2s´2 p5´4sqp4s´3q and c 2s´2 " C 2s´2,2 .

Remark 3.10. Denote the functional space Y anti,s pR 3 ˆR3 q by Y anti,s pR 3 ˆR3 q :" tf P L 2 pR 3 ˆR3 q; f py, zq " ´f pz, yq,

|∇ y | s |∇ z | s f P L 2 pR 3 ˆR3 qu.
Then Y anti,s pR 3 ˆR3 q is a completion of C 8 0 pR 3 ˆR3 q with the antisymmetry f py, zq " ´f pz, yq. Thus by density, (3.15) still holds for f P Y anti,s pR 3 ˆR3 q.

Hardy-type inequalities for the Coulomb system

Now, we are going to use these inequalities to prove Theorem 2.2. We will study separately the contribution of the potential V ne in Section 4.1 and the potential V ee in Section 4. Before going further, we recall that Z " ř M ν"1 Z ν and that the constant c k is defined by : c 0 " 1, c k " C k,2 for k P p0, 3{2q with C k,p defined in Theorem 3.3, and c k " 8c k´2 p5´2kqp2k´3q for k P r2, 5{2q.

Contribution of the electrons-nuclei interaction.

In this subsection, we are going to prove the following. Lemma 4.1 (Contribution of V ne ). Let I Ă t1, ¨¨¨, N u. For any α, β P r0, 3{2q, there is a constant C 1,mix,α,β independent of N, Z such that for any u, v P X I,α,β ,

| L I,α,β V ne u, L I,α,β v | ď C 1,mix,α,β ? N Z}u} 0,I,α,β }v} 1,I,α,β . (4.1)
It is an immediate result of the following.

Lemma 4.2. For s P r´1, 1{2q, a P R 3 , and f P H 1`s pR 3 q, we have

› › |∇ y | s | ¨´a| ´1f › › L 2 pR 3 q ď C s }|∇ y | 1`s f } L 2 pR 3 q , where C s " pc 1`s `cs qc 1´s if s ą 0, C 0 " c 1 " 2, C s " c ´sc 1`s if ´1 ď s ă 0.
Before proving Lemma 4.2, we use it to prove Lemma 4.1 first.

Proof of Lemma 4.1.

Recall that K s,y " p1 `|∇ y | 2 q s{2 p1 `|∇ y | s q ´1.
When 0 ă s ă 1{2, we use the formal identity |∇| s " |∇||∇| s´1 . Thus,

› › |∇ y | s |y ´a| ´1f pyq › › L 2 pR 3 q " › › |∇ y | s´1 ∇ y |y ´a| ´1f pyq › › L 2 pR 3 q ď }|∇ y | s´1 |y ´a| ´1∇ y f pyq} L 2 pR 3 q `}|∇ y | s´1 |y ´a| ´3py ´aqf pyq} L 2 pR 3 q .
Using (3.11) again, we get

}|∇ y | s´1 |y ´a| ´1∇ y f pyq} L 2 pR 3 q ď c 1´s }|y ´a| ´s∇ y f pyq} L 2 pR 3 q ď c 1´s c s }|∇ y | 1`s f } L 2 pR 3 q .
Analogously, as 0 ă s ă 1{2, we have

}|∇ y | s´1 |y ´a| ´3py ´aqf pyq} L 2 pR 3 q ď c 1´s }|y ´a| ´1´s f pyq} L 2 pR 3 q ď c 1´s c 1`s }|∇ y | 1`s f } L 2 pR 3 q .
We conclude now that, for s P p0, 1{2q, Lemma 4.2 holds with C s " c 1´s pc s `c1`s q, i.e.,

› › |∇ y | s | ¨´a| ´1f › › L 2 pR 3 q ď C s }|∇ y | 1`s f } L 2 pR 3 q
, This ends the proof. 4.2. Contribution of the electron-electron interaction. In this subsection, we are going to prove the following.

Lemma 4.3 (Contribution of V ee ). Let I Ă t1, ¨¨¨, N u. Under Assumption 2.1 on α, β, there is a constant C 2,mix,α,β independent of N, Z such that for any u, v P X I,α,β , | L I,α,β V ee u, L I,α,β v | ď C 2,mix,α,β N 3{2 }u} 0,I,α,β }v} 1,I,α,β . (4.3) 
Recall that b s " π ´s{2 Γps{2q where Γp¨q is the Gamma function and recall that Y anti,s pR 3 ˆR3 q :" tf P L 2 pR 3 ˆR3 q; f py, zq " ´f pz, yq,

|∇ y | s |∇ z | s f P L 2 pR 3 ˆR3 qu.
To prove Lemma 4.3, we need the followings.

Lemma 4.4. Define Y s,t pR 3 ˆR3 q :" tg P L 2 pR 3 ˆR3 q; |∇ y | s |∇ z | t g P L 2 pR 3 ˆR3 qu. Let 0 ď t ď s, s `t ă 3{2 and f P Y s,t pR 3 ˆR3 q. Then,

}|∇ y | s`t´1 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď C 1 s,t }|∇ y | s |∇ z | t f } L 2 pR 3 ˆR3 q ,
where C 1 s,t :"

´2s`t π s`t´2 b s`t c s`t b 3´s´t
`2c 1 ¯if 1 ă s `t ă 3{2, and C 1 s,t :" 2c 1´s´t c s`t if 0 ď s `t ď 1.

Lemma 4.5. Let 0 ď s ă 5{4 and f P Y anti,s pR 3 ˆR3 q. Then,

}|∇ y | s´1{2 |∇ z | s´1{2 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď C anti,s }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q ,
where C anti,0 :" 2c 1 , C anti,s :" 4c 3´2s c 2s´2 `4c 3´2s c 2s´1 `4c 3´2s c 2s if 1 ď s ă 5{4, and C anti,s :" Proof of Lemma 4.3. Recall that K s,y :" p1 `|∇ y | 2 q s{2 p1 `|∇ y | s q ´1. Following (2.14) and (3.6), we have

C 1´s anti,0 C s anti,1 if 0 ă s ă 1. We prove Lemma 4.
L I,α,β V ee u, L I,α,β v " 1 2 N ÿ i,j"1 i‰j p1 `|∇ i | 2 q γ i {2 p1 `|∇ j | 2 q γ j {2 |x i ´xj | ´1L pi,jq I,α,β u, L I,α,β v " 1 2 ÿ i‰j p1 `|∇ i | γ i qp1 `|∇ j | γ j q|x i ´xj | ´1L pi,jq I,α,β u, K γ i ,x i K γ j ,x j L I,α,β v ,
We first consider the case ti, ju Ć I. Then as γ j ď γ i , we have γ j " β P r0, 3{4q. Thus by using Lemma 3.1 and the formal identity

|∇ i | γ i " |∇ i | γ i `γj ´1|∇ i | 1´γ j , ˇˇ |∇ i | γ i |∇ j | γ j |x i ´xj | ´1L pi,jq I,α,β u, K γ i ,x i K γ j ,x j L I,α,β v ˇ" ˇˇ |∇ i | γ i `γj ´1|x i ´xj | ´1L pi,jq I,α,β u, |∇ j | γ j |∇ i | 1´γ j K γ i ,x i K γ j ,x j L I,α,β v ˇď }|∇ i | γ i `γj ´1|x i ´xj | ´1L pi,jq I,α,β u} L 2 ppR 3 q N q }|∇ j | γ j |∇ i | 1´γ j v} 0,I,α,β .
Notice that |τ | γ j ď 1 `|τ | for any τ P R and 0 ď γ j ă 3{4. For τ "

|ξ j | |ξ i | , we have |ξ j | γ j |ξ i | 1´γ j ď |ξ j | `|ξ i |. Thus, }|∇ j | γ j |∇ i | 1´γ j v} 0,I,α,β ď }|∇ i |v} 0,I,α,β `}|∇ j |v} 0,I,α,β .
On the other hand, thanks to Lemma 4.4, Assumption 2.1 and the fact

|2πξ k | γ k ď p1 `|2πξ k | 2 q γ k {2
with k " i or k " j, we have

}|∇ i | γ i `γj ´1|x i ´xj | ´1L pi,jq I,α,β u} L 2 ppR 3 q N q ď C 1 γ i ,γ j }u} 0,I,α,β . (4.8) 
We conclude that, if ti, ju Ć I, then

ˇˇ |∇ i | γ i |∇ j | γ j |x i ´xj | ´1L pi,jq I,α,β u, K γ i ,x i K γ j ,x j L I,α,β v ˇď C 1
γ i ,γ j }u} 0,I,α,β p}|∇ i |v} 0,I,α,β `}|∇ j |v} 0,I,α,β q . Now we consider the case ti, ju Ă I. Then γ i " γ j " α with α P r0, 5{4q. Besides, the function u is antisymmetric with respect to ti, ju. We fix the variables px k q kPt1,¨¨¨,N uzti,ju , and let f px i , x j q " upxq with x " px 1 , ¨¨¨, x N q. Thus f px i , x j q P Y anti,α pR 3 x i

ˆR3

x j q, and by Lemma 4.5,

}|∇ i | α´1{2 |∇ j | α´1{2 |x i ´xj | ´1f } L 2 pR 3 x i ˆR3 x j q ď C anti,α }|∇ i | α |∇ j | α f } L 2 pR 3 x i

ˆR3

x j q . Finally, for i, j P I, by the formal identity

|∇ i | α |∇ j | α " |∇ i | α´1{2 |∇ j | α´1{2 |∇ i | 1{2 |∇ j | 1{2 , we get ˇˇ |∇ i | α |∇ j | α |x i ´xj | ´1L pi,jq I,α,β u, K α,x i K α,x j L I,α,β v ˇ" ˇˇ |∇ i | α´1{2 |∇ j | α´1{2 |x i ´xj | ´1L pi,jq I,α,β u, |∇ j | 1{2 |∇ i | 1{2 K γ i ,x i K γ j ,x j L I,α,β v ˇď }|∇ i | α´1{2 |∇ j | α´1{2 |x i ´xj | ´1L pi,jq I,α,β u} L 2 ppR 3 q N q }|∇ j | 1{2 |∇ i | 1{2 v} 0,I,α,β ď C anti,α 2 }|∇ i | α |∇ j | α L i,j
I,α,β u} L 2 ppR 3 q N q p}|∇ i |v} 0,I,α,β `}|∇ j |v} 0,I,α,β q ď C anti,α 2 }u} 0,I,α,β p}|∇ i |u} 0,I,α,β `}|∇ j |v} 0,I,α,β q .

(4.9)

Let C 2 α,β :" maxt

C anti,α 2 
, C 1 α,β , C 1 β,β u. For the last term on the right-hand side of (4.4), under Assumption 2.1 on α, β, we conclude ˇˇˇˇÿ We split the condition 0 ď s `t ă 3{2 into two cases: 0 ď s `t ď 1 and 1 ă s `t ă 3{2. For the case 0 ď s `t ď 1, by Lemma 3.6, we have

i‰j |∇ i | γ i |∇ j | γ j |x i ´xj | ´1L pi,jq I,α,β u, K γ i ,x i K γ j ,x j L I,α,β v ˇˇˇˇď C 2 α,β N 3{2
}|∇ y | s`t´1 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď c 1´s´t }|y ´z| ´s´t f } L 2 pR 3 ˆR3 q ď 2c 1´s´t c s`t }|∇ y | s |∇ z | t f } L 2 pR 3 ˆR3 q .
Thus, C 1 s,t :" 2c 1´s´t c s`t if 0 ď s `t ď 1. Now, we turn to prove the case 1 ă s `t ă 3{2. It is based on the study of the fractional Laplacian in Section 3.1.

We consider first the Fourier transform of f py,zq |y´z| τ . For any function gpy, zq P L 2 pR 3 ˆR3 q, we have F y,z pgqpξ y , ξ z q " F z ˝Fy pgqpξ y , ξ z q. Besides, thanks to (3.1), we have F y p|¨´z| ´τ qpξ y q " b 3´τ bτ e ´2iπz¨ξy |ξy| 3´τ . Thus,

F y,z ˆf |y ´z| τ ˙pξ y , ξ z q " b 3´τ b τ ż R 3 1 |l| 3´τ F z pe ´2iπz¨l F y pf qpξ y ´l, zqqdl " b 3´τ b τ ż R 3 1 |l| 3´τ F y,z pf qpξ y ´l, ξ z `lqdl. (4.11)
Thus for s `t ą 1, by Plancherel's Theorem,

}|∇ y | s`t´1 |y ´z| ´1f } L 2 pR 3 ˆR3 q " 2 s`t´1 π s`t´2 › › › › ż R 3 |ξ y | s`t´1 F y,z pf qpξ y ´l, ξ z `lq |l| 2 dl › › › › L 2 pR 3 ˆR3 q .
For any k P R 3 and 1 ă s `t ă 3{2, we have |ξ y | s`t´1 ď |ξ y ´k| s`t´1 `|k| s`t´1 . Let k " l, thus

}|∇ y | s`t´1 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď p2πq s`t´1 π ´1 › › › › ż R 3 |F y,z pf qpξ y ´l, ξ z `lq| |l| 3´s´t dl › › › › L 2 pR 3 ˆR3 q `p2πq s`t´1 π ´1 › › › › ż R 3 |ξ y ´l| s`t´1 |F y,z pf qpξ y ´l, ξ z `lq| |l| 2 dl › › › › L 2 pR 3 ˆR3 q .
(4.12)

Using (4.11) and Plancherel's Theorem again, we get

› › › › ż R 3 |F y,z pf qpξ y ´l, ξ z `lq| |l| 3´s´t dl › › › › L 2 pR 3 ˆR3 q " b s`t b 3´s´t
}|y ´z| ´s´t F ´1 y,z p|F y,z pf q|q} L 2 pR 3 ˆR3 q .

By Lemma 3.6, we finally deduce

}|y ´z| ´s´t F ´1 y,z p|F y,z pf q|q} L 2 pR 3 ˆR3 q ď 2c s`t }|∇ y | s |∇ z | t F ´1 y,z p|F y,z pf q|q} L 2 pR 3 ˆR3 q " 2c s`t p2πq s`t }|ξ y | s |ξ z | t F y,z pf q} L 2 pR 3 ˆR3 q " 2c s`t }|∇ y | s |∇ z | t f } L 2 pR 3 ˆR3 q .
On the other hand, for the second term on the right-hand side of (4.12), we have

› › › › ż R 3 |ξ y ´l| s`t´1 |F y,z pf qpξ y ´l, ξ z `lq| |l| 2 dl › › › › L 2 pR 3 ˆR3 q " p2πq 1´s´t › › › › ż R 3 |F y,z p|∇ y | s`t´1 f qpξ y ´l, ξ z `lq| |l| 2 dl › › › › L 2 pR 3 ˆR3 q " 2 1´s´t π 2´s´t }|y ´z| ´1F ´1 y,z p|F y,z p|∇ y | s`t´1 f q|q} L 2 pR 3 ˆR3 q .
As 0 ď t ď s and t `s ă 3{2, we have t ď 3{4. Thus by Lemma 3.6,

}|y ´z| ´1F ´1 y,z p|F y,z p|∇ y | s`t´1 f q|q} L 2 pR 3 ˆR3 q ď 2c 1 }|∇ y | 1´t |∇ z | t F ´1 y,z p|F y,z p|∇ y | s`t´1 f q|q} L 2 pR 3 ˆR3 q " 4πc 1 }|ξ y | 1´t |ξ z | t F y,z p|∇ y | s`t´1 f q} L 2 pR 3 ˆR3 q " 2c 1 }|∇ y | s |∇ z | t f } L 2 pR 3 ˆR3 q .
Consequently, for 0 ď t ď s and 1 ă s `t ă 3{2, we deduce

}|∇ y | s`t´1 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď ˆ2s`t π s`t´2 b s`t c s`t b 3´s´t `2c 1 ˙}|∇ y | s |∇ z | t f } L 2 pR 3 ˆR3 q .
Thus C 1 s,t :"

´2s`t π s`t´2 b s`t c s`t b 3´s´t
`2c 1 ¯if 1 ă s `t ă 3{2 and 0 ă t ď s. This ends the proof.

4.2.2.

Proof of Lemma 4.5. When s " 0, by Lemma 3.6, we have

}|∇ y | ´1{2 |∇ z | ´1{2 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď 2c 1 }f } L 2 pR 3 ˆR3 q .
Thus, C anti,0 :" 2c 1 Now, we assume 1 ď s ă 5{4. By the formal identity

|∇ y | s´1{2 |∇ z | s´1{2 " |∇ y ||∇ y | s´3{2 |∇ z ||∇ z | s´3{2 , we have }|∇ y | s´1{2 |∇ z | s´1{2 |y ´z| ´1f } L 2 pR 3 ˆR3 q " }∇ y b ∇ z |∇ y | s´3{2 |∇ z | s´3{2 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď }|∇ y | s´3{2 |∇ z | s´3{2 |y ´z| ´1∇ y b ∇ z f } L 2 pR 3 ˆR3 q `}|∇ y | s´3{2 |∇ z | s´3{2 |y ´z| ´3py ´zq b ∇ z f } L 2 pR 3 ˆR3 q `}|∇ y | s´3{2 |∇ z | s´3{2 |y ´z| ´3pz ´yq b ∇ y f } L 2 pR 3 ˆR3 q `}|∇ y | s´3{2 |∇ z | s´3{2 p∇ y b ∇ z |y ´z| ´1qf } L 2 pR 3 ˆR3 q . (4.13) 
As ´1{2 ď s ´3{2 ă ´1{4, by Lemma 3.6, we have

}|∇ y | s´3{2 |∇ z | s´3{2 g} L 2 pR 3 ˆR3 q ď 2 c 2s´3 }|y ´z| 3´2s g} L 2 pR 3 ˆR3 q .
Besides, it is not difficult to see that

|∇ y b ∇ z |y ´z| ´1| ď 6 |y ´z| ´3.
Thus,

}|∇ y | s´1{2 |∇ z | s´1{2 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď 2c 3´2s }|y ´z| 2´2s ∇ y b ∇ z f } L 2 pR 3 ˆR3 q `2c 3´2s }|y ´z| 1´2s ∇ z f } L 2 pR 3 ˆR3 q `2c 3´2s }|y ´z| 1´2s ∇ y f } L 2 pR 3 ˆR3 q `12c 3´2s }|y ´z| ´2s f } L 2 pR 3 ˆR3 q .
(4.14) By Lemma 3.6, we have

}|y ´z| 2´2s ∇ y b ∇ z f } L 2 pR 3 ˆR3 q ď 2c 2s´2 }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q ,
and, as 1 ď 2s ´1 ă 3{2,

}|y ´z| 1´2s ∇ z f } L 2 pR 3 ˆR3 q ď 2c 2s´1 }|∇ y | s |∇ z | s´1 ∇ z f } L 2 pR 3 ˆR3 q " 2c 2s´1 }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q .
Analogously, we have

}|y ´z| 1´2s ∇ y f } L 2 pR 3 ˆR3 q ď 2c 2s´1 }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q .
Finally, by Lemma 3.9 and Remark 3.10, we get

}|y ´z| ´2s f } L 2 pR 3 ˆR3 q ď c 2s }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q .
Thus, when 1 ď s ă 5{4, we have

}|∇ y | s´1{2 |∇ z | s´1{2 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď C anti,s }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q
with C anti,s :" 4c 3´2s c 2s´2 `4c 3´2s c 2s´1 `24c 3´2s c 2s . Finally, by using the interpolation theory between the cases s " 0 and s " 1, we immediately obtain the conclusion: for 0 ă s ă 1,

}|∇ y | s´1{2 |∇ z | s´1{2 |y ´z| ´1f } L 2 pR 3 ˆR3 q ď C anti,s }|∇ y | s |∇ z | s f } L 2 pR 3 ˆR3 q ,
where C anti,s " C 1´s anti,0 C s anti,1 . This ends the proof.

Application to mixed regularity of eigenfunctions

This section is devoted to the proof of Theorem 2.3. Let I Ă t1, ¨¨¨, N u. Imitating the proof in [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF], we split the eigenfunction u ˚P H 1 I ppR 3 q N q of (1.2) into the high-frequency part and the low-frequency part. Denote the projector P Ω to the high-frequency part by

F x 1 ,¨¨¨,x N pP Ω uqpξq :" ½ |¨|ěΩ pξqF x 1 ,¨¨¨,x N puqpξq, u P L 2 I ppR 3 q N q, ξ " pξ 1 , ¨¨¨, ξ N q, (5.1) 
where Ω is a constant such that

Ω ě 2 π C mix,α,β ? N maxtN, Zu. (5.2) 
For any function u P L 2 I ppR 3 q N q, let u H :" P Ω u, u L :" p1 ´PΩ qu.

Given a functional space Y , the subspaces P Ω Y and p1 ´PΩ qY are formally defined by P Ω Y :" tu H ; u P Y u and p1 ´PΩ qY :" tu L ; u P Y u.

Then, under Assumption 2.1 on α, β, the low-frequency part u L P X I,α,β for any u P H 1 I ppR 3 q N q. Hence u ˚,L :" p1 ´PΩ qu ˚P X I,α,β . Thus to prove u ˚P X I,α,β , it suffices to prove u ˚,H :" P Ω u ˚P X I,α,β .

To prove u ˚,H P X I,α,β , we consider the following variational problem in u for the eigenvalue problem (1.2):

L I,α,β Hu, L I,α,β v H ´λ L I,α,β u, L I,α,β v H " 0 for any v H P P Ω X I,α,β , (5.3) 
from which, using the fact that u " u H `uL , we deduce

L I,α,β pH ´λqu H , L I,α,β v H " ´ L I,α,β pV ne `Vee qu L , L I,α,β v H for any v H P P Ω X I,α,β . (5.4) 
Obviously, when α " β " 0, L I,α,β " 1 and X I,α,β " H 1 I . Thus for α " β " 0, u ˚solves (5.3), then u ˚,H solves (5.4) with u L " u ˚,L .

Before going further, we study the properties of the variational problem (5.4).

Lemma 5.1. Under Assumption 2.1 on α, β, for any given u L P p1 ´PΩ qX I,α,β , the variational problem (5.4) admits a unique solution ψ H,α,β pu L q P P Ω X I,α,β .

Application to the hyperbolic cross space approximation

Finally, in this section, we study the hyperbolic cross space approximation and prove Theorem 2.5. We need to replace in Theorem 2.2 the operator L I,α,β by L I,α,β,τ which is defined by

L I,α,β,τ :" ź jPI ˆ1 `|∇ j | 2 τ 2 ˙α{2 ź iPI c ˆ1 `|∇ i | 2 τ 2
˙β{2 .

We consider equally the following norms }u} 0,I,α,β,τ :" }L I,α,β,τ u} L 2 ppR 3 q N q , }u} 1,I,α,β,τ :" }∇L I,α,β,τ u} L 2 ppR 3 q N q .

It is easy to see that for τ ě 1 τ ´αN }u} 0,I,α,β ď }u} 0,I,α,β,τ ď }u} 0,I,α,β , τ ´αN }u} 1,I,α,β ď }u} 1,I,α,β,τ ď }u} 1,I,α,β , while for 0 ă τ ă 1 }u} 0,I,α,β ď }u} 0,I,α,β,τ ď τ ´αN }u} 0,I,α,β , }u} 1,I,α,β ď }u} 1,I,α,β,τ ď τ ´αN }u} 1,I,α,β .

Before going further, we need the following. where C mix,α,β is defined in Theorem 2.2.

Proof. Let u τ pxq :" τ ´3N {2 upτ ´1xq and v τ pxq :" τ ´3N {2 vpτ ´1xq where x " px 1 , ¨¨¨, x N q P pR 3 q N . Let On the other hand, }u τ } 0,I,α,β " }L I,α,β u τ } L 2 I ppR 3 q N q " }L I,α,β,τ u} L 2 I ppR 3 q N q " }u} 0,I,α,β,τ (6.4) and }v τ } 1,I,α,β " }∇L I,α,β v τ } L 2 I ppR 3 q N q " τ ´1}∇L I,α,β,τ v} L 2 I ppR 3 q N q " τ ´1}v} 1,I,α,β,τ . (6.5)

Gathering together (6.2) to (6.5), Eqn. (6.1) follows.

Let I Ă t1, ¨¨¨, N u. Let u ˚P H 1 I pR 3 q N be an eigenfunction of (1.2), and let u ˚,H " P Ω u ˚, u ˚,L " p1 ´PΩ qu ˚with P Ω defined by (5.1). We consider the following variational problem: for any v H P P Ω X I,α,β , L I,α,β,τ pH ´λqu H , L I,α,β,τ v H " ´ L I,α,β,τ pV ne `Vee qu ˚,L , L I,α,β,τ v H .

( ? 2 e 5{8 }u ˚}L 2 ppR 3 q N q , }u ˚}1,I,α,β,2πΩ ď 2 ? 2 πe 5{8 Ω }u ˚}L 2 ppR 3 q N q .

Proof. The proof is in the spirit of [START_REF] Yserentant | The hyperbolic cross space approximation of electronic wavefunctions[END_REF]Theorem 9]. Under Assumption 2.1 on α, β, we have 0 ď β ď α ă 5{4 and

ź jPI ˆ1 `|ξ j | 2 |Ω| 2 ˙α ź iPI c ˆ1 `|ξ i | 2 |Ω| 2 ˙β ď exp ˆ5|ξ| 2 4|Ω| 2 ˙,
where ξ :" pξ 1 , ¨¨¨, ξ N q P pR 3 q N . Thus, by (5.1) and using the fact that u ˚,L " p1 ´PΩ qu ˚, we have 4|Ω| 2 ˙|F x 1 ,¨¨¨,x N pu ˚qpξq| 2 dξ ď e 5{4 }u ˚}2 L 2 ppR 3 q N q .

Let now τ " 2πΩ. Then Eqn. (6.10) implies }u ˚}0,I,α,β,2πΩ ď ? 2e 5{8 }u ˚}L 2 ppR 3 q N q , }u ˚}1,I,α,β,2πΩ ď 2 ? 2πe 5{8 Ω}u ˚}L 2 ppR 3 q N q .

This ends the proof.

Finally, we turn to the proof of Theorem 2.5.

Proof of Theorem 2.5. For any ξ P H I,α,β pR, Ωq c where H I,α,β pR, Ωq is defined by (2.9), we have

1 ď 1 R 2 ź iPI ˜1 `ˇˇˇ2 πξ i 2πΩ ˇˇˇ2 ¸α ź jPI c ˜1 `ˇˇˇ2 πξ i 2πΩ ˇˇˇ2 ¸β .
Thus, by Lemma 6.2, it is easy to see that }p1 ´PR,Ω I,α,β qu ˚}L 2 ppR 3 q N q ď 1 R }p1 ´PR,Ω I,α,β qu ˚}0,I,α,β,2πΩ ď 1 R }u ˚}0,I,α,β,2πΩ ď ? 2e 5{8 R }u ˚}L 2 ppR 3 q N q .

Analogously, }∇pu ˚´P R,Ω I,α,β u ˚q} L 2 ppR 3 q N q ď 1 R }u ˚}1,I,α,β,2πΩ ď 2 ? 2πe 5{8 R Ω}u ˚}L 2 ppR 3 q N q .

This ends the proof.

. 3 )

 3 This equation can also be found in[START_REF] Frank | Hardy-Lieb-Thirring inequalities for fractional Schrödinger operators[END_REF] Eqns. (3.4)-(3.5)]. Also, |∇ y | ´s|y| ´t is a L 1 loc pR 3 q-function for 0 ă s ă t ă 3 and |∇ y | ´s|y| ´t " F ´1 y p|2πξ y | ´sF y p| ¨|´t qq " b t´s b 3´t p2πq s b 3`s´t b t |y| s´t . (3.4)

2 .

 2 Theorem 2.2 follows immediately from Lemma 4.1 and Lemma 4.3 with C mix,α,β " C 1,mix,α,β `C2,mix,α,β where C 1,mix,α,β and C 2,mix,α,β are given in Lemma 4.1 and Lemma 4.3 respectively.

  3 first. The proofs of Lemma 4.4 and Lemma 4.5 are postponed to Subsection 4.2.1 and Subsection 4.2.2 respectively.

4 . 2 . 1 .

 421 }u} 0,I,α,β }v} 1,I,α,β . (4.10) Combining (4.5),(4.6),(4.7) and (4.10), we finally get| L I,α,β V ee u, L I,α,β v | ď C 2,mix,α,β N 3{2 }u} 0,I,α,β }v} 1,I,α,β , with C 2,mix,α,β :" pc 1 `2C α,β`C2 α,β q{2 independent of Z, N . This ends the proof. Proof ofLemma 4.4. 

Lemma 6 . 1 .

 61 Under Assumption 2.1 on α, β, we have for any u, v P X I,α,β ,| L I,α,β,τ pV ne `Vee qu, L I,α,β,τ v | ď C mix,α,β ? N maxtZ, N u}u} 0,I,α,β,τ }v} 1,I,α,β,τ ,(6.1)

  i ´τ a ν | . It is easy to see u τ , v τ P X I,α,β since u, v P X I,α,β . Then, by Theorem 2.2, we have | L I,α,β pV τ ne `Vee qu τ , L I,α,β v τ | ď C mix,α,β ? N maxtZ, N u}u τ } 0,I,α,β }v τ } 1,I,α,β . (6.2) The scaling definition yields | L I,α,β pV τ ne `Vee qu τ , L I,α,β v τ | " τ ´1 | L I,α,β,τ pV ne `Vee qu, L I,α,β,τ v | . (6.3)

ˆ1 `|ξ i | 2 |Ω| 2 dξ ď ż |ξ|ďΩ exp ˆ5|ξ| 2

 222 ˙β |F x 1 ,¨¨¨,x N pu ˚qpξq| 2

  6.6) Following the proof of Theorem 2.3 in Section 5 and under Assumption 2.1 on α, β, we know that u ˚,H is the unique solution to the variational problem(6.6).Recall that Ω ě 2 I,α,β,τ pV ne `Vee qu ˚,L , L I,α,β,τ u ˚,H | ď πΩ 2 }u ˚,L } 0,I,α,β,τ }u ˚,H } 1,I,α,β,τ . (6.8) By (6.7) and (6.8), we get πΩ 2 }u ˚,H } 0,I,α,β,τ ď 1 4 }u ˚,H } 1,I,α,β,τ ď πΩ 2 }u ˚,L } 0,I,α,β,τ . (6.9) It follows from (6.9) and the identity }u ˚}2 0,I,α,β,τ " }u ˚,L } 2 0,I,α,β,τ `}u ˚,H } 2 0,I,α,β,τ that }u ˚,H } 0,I,α,β,τ ď ? 2}u ˚}0,I,α,β,τ , }u ˚,H } 1,I,α,β,τ ď 2 ? 2πΩ}u ˚}0,I,α,β,τ . (6.10) Lemma 6.2. Let Ω ě 2 π C mix,α,β ? N maxtN, Zu be large enough. Under Assumption 2.1 on α, β, we have }u ˚}0,I,α,β,2πΩ ď

π C mix,α,β ? N maxtN, Zu and let v H " u ˚,H . Then we have | L I,α,β,τ pH ´λqu ˚,H , L I,α,β,τ u ˚,H | ě 1 4 }u ˚,H } 2 1,I,α,β,τ (6.7) and | L
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Following (2.12), (3.6) and the formal identity |∇ i ||∇ i | ´1 " 1, we have

where γ k " α if k P I, and γ k " β if k P I c . By definition (2.7), }u} 2 1,I,α,β "

Thus by Lemma 3.1,

By Lemma 4.2, we have

, where s " 0 or s " γ i ě 0 and the last inequality holds since |2πξ i | s ď p1 `|2πξ i | 2 q γ i {2 . Using (4.2) again, we finally get

with C 1,mix,α,β :" C 0 `maxtC α´1 , C β´1 u independent of N, Z. This ends the proof. Now, we turn back to prove Lemma 4.2.

Proof of Lemma 4.2. When s " 0, it is just the Hardy inequality and C 0 " c 1 " 2.

When s P r´1, 0q, by (3.11), we have

where γ k " α if k P I, and γ k " β if k P I c . Then by using the formal identity

For the first term on the right-hand side of (4.4), it follows from (3.7), Lemma 3.1 and the fact

Thus, according to (4.2), we get ˇˇˇˇÿ i‰j L pi,jq

For the second term, it follows from Lemma 3.1, Lemma 4.2 and the fact γ j P r0, 3{2q that

where the last inequality holds since |2πξ j | γ j ď p1 `|2πξ j | 2 q γ j {2 . Thus,

with C α,β :" maxtC α , C β u. Analogously, for the third term, ˇˇˇˇÿ

Finally, we deal with the last term on the right-hand side of (4.4). It is the most delicate term in (4.4) and Assumption 2.1 on α, β is necessary. Before going further, we assume that γ j ď γ i . The case γ i ď γ j can be treated in the same manner.

Proof. We will prove this lemma by using Lions-Lax-Milgram's Theorem (see e.g., [15, Theorem 2.1, Chpt. III.2]). Thanks to Theorem 2.2 and (5.2), for any u H , v H P P Ω X I,α,β , we have

since }u H } L 2 ppR 3 q N q ď p2πΩq ´1}∇u H } L 2 ppR 3 q N q . Then, according to Remark 1.1, λ ă 0, and we have

Thus we get the weak coercivity: for u H , v

the continuity:

and the continuity of the right-hand side term in (5.4):

Thus by Lions-Lax-Milgram's Theorem, under Assumption 2.1 on α, β, for any given u L P p1 ṔΩ qX I,α,β , (5.4) admits a unique solution ψ H,α,β pu L q P P Ω X I,α,β . Theorem 2.3 can be immediately obtained by the following. Lemma 5.2. For any α, β satisfying Assumption 2.1 and for u L " u ˚,L , ψ H,α,β pu ˚,L q " u ˚,H is the unique solution to the variational problem (5.4). Thus u ˚,H P X I,α,β .

Proof of Lemma 5.2. Let u L " u ˚,L in (5.4). When α " β " 0, by Lemma 5.1, ψ H,0,0 pu ˚,L q is the unique solution to (5.4). On the other hand, for α " β " 0, u ˚,H solves equally (5.4) with u L " u ˚,L . Thus by the uniqueness of solution to (5.4), ψ H,0,0 pu ˚,L q " u ˚,H .

To end the proof, it suffices to prove ψ H,α,β pu ˚,L q " u ˚,H for any α, β satisfying Assumption 2.1. As the operator L I,α,β is invertible, we denote the functional space X I,´α,´β by X I,´α,´β :" tu; L ´1 I,α,β u P H 1 I ppR 3 q N qu. Thus for any v H P P Ω X I,α,β , we have L 2 I,α,β v H P P Ω X I,´α,´β . On the other hand, for any φ H P P Ω X I,´α,´β , L ´2 I,α,β φ H P P Ω X I,α,β . Let v H " L ´2 I,α,β φ H , then (5.4) can be rewritten as pH ´λqu H , φ H " ´ pV ne `Vee qu L , φ H for any φ H P P Ω X I,´α,´β .

(5.8)

Now, for any α 1 , β 1 satisfying Assumption 2.1, let ψ H,α 1 ,β 1 pu L q P P Ω X I,α 1 ,β 1 be the unique solution to (5.4) for α " α 1 and β " β 1 . Obviously, H 1 I ppR 3 q N q Ă X I,´α 1 ,´β 1 . Then P Ω H 1 I ppR 3 q N q Ă P Ω X I,´α 1 ,´β 1 . Thus thanks to (5.8), for any φ H P P Ω H 1 I ppR 3 q N q, we have pH ´λqψ H,α 1 ,β 1 pu L q, φ H " ´ pV ne `Vee qu L , φ H , which implies that ψ H,α 1 ,β 1 pu L q also solves (5.4) for α " β " 0. Then, by Lemma 5.1, for any α 1 , β 1 satisfying Assumption 2.1, ψ H,α 1 ,β 1 pu L q " ψ H,0,0 pu L q. As ψ H,0,0 pu ˚,L q " u ˚,H , we finally get ψ H,α 1 ,β 1 pu ˚,L q " u ˚,H . By Lemma 5.1, u ˚,H " ψ H,α 1 ,β 1 pu ˚,L q P X I,α 1 ,β 1 . This ends the proof.