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A note about the mixed regularity of Schrodinger
Coulomb system

Long Meng*

Abstract

In this note, we proved some inequalities for Coulomb-type potential by ex-
tending the Herbst’s inequality. Based on these inequalities, we can prove the
optimal mixed regularity of Schrédinger Coulomb system directly even in consid-
eration of Paulli exclusion principle. And we provided a hyperbolic cross space
approximation, and deduced the estimates for L?-norm and H'-semi-norm of the
€ITOrS.

1 Introduction and results

For most applications of molecular simulation, the matter is described by an assembly
of nuclei equipped with electrons. And in the quantum world, the state of electrons is
modelled by the N-body Hamiltonian operator:
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where a; - -+ ,ayp are the positions of nuclei endowed with the charge Zi,---, Zy re-
spectively, and zq,---,xy are the coordinates of given NN electrons. And the right

hand-side terms respectively model the kinetic energy, the attraction between nuclei
and electrons V,,., the repulsion between electrons V..

Mathematically, the electronic ground state or excited state problem can be ex-
pressed by the Euler-Lagrange equation which is indeed the eigenvalue problem of the
operator (1):

Hu = \u. (2)
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In quantum mechanics, in addition to the spatial coordinates, a particle such as the
electron may have internal degrees of freedom, the most important of which is spin.
For example, the electrons have two kinds of spin 0 = +1/2 (here 0 = 1 or 0 = 2 for
convenience). But here, we consider a more general kinds of particles equipped with ¢
spin states. And we label them by the integer

ce{l,-- ,q}.
And a wave function of N particles with ¢ spin states can be written as
u: (RHY x {1, , ¢} - C:(x,0) - u(z,0).
For fixed spin state o, we can rewrite the wavefunction u(x, o) by u(x) and
u: (RHY - C:z— u(z, o).

There are two kinds of particles: fermions and bosons. For fermions, the particles
satisfy the Pauli exclusion principle. Mathematically speaking, let P; ; be a permutation
which exchange the space coordinates z; and x; and the spins o; and o; simultaneously,
then

u(Pyy(z,0)) = ~u(z,0).

In particular, the identical fermions are totally anti-symmetric. And for bosons, they
satisfy the Bose—Einstein statistics which means the particles occupy the symmetric
quantum states. Particularly for the identical bosons, they are totally symmetric.

Problem (2) is well-explored mathematically (see for example [HS00|, and about
the regularity properties of the eigenfunction of problem (2) [Kat57, HOHOS94, FHO-
HOS02, HOHOS01, FHOHOS05, HOHOLT08, FHOHOS09|). However,the advantage of
this model vanishes when it comes to performing real calculation because of its large di-
mensionality. Thus models such as Hartree-Fock and Kohn-Sham are proposed, see for
example [LBL05|. However they are no true, unbiased discretizations of the Schrodinger
equation in the sense of numerical analysis.

Decades ago, H. Yserentant [Yse04,Yse07,Ysell,KY12| proposed a mixed regularity
about the eigenfunctions of problem (2), and this result can help to break the complexity
barriers in computational quantum mechanics. For fixed spin state o, the particles are
categorized into ¢ subsets in terms of the spin states

7, = {i;0; =1}, s=1,---,q.
If 31 e {1,---,q} such that i,j € Z;, then
w(P;jx,0) = —u(z,0). (3)

herein P, ; is a permutation which only exchanges the space coordinate z; and x;. If
z; = xj, u(r) = 0. Thus the wavefunctions can counterbalance the singularity of
the interaction potential between electrons. Based on this observation, H. Yserentant
proved in [Yse04, Yse07| that the wavefunction u of problem (2) under spin state o

satisfies
[ (14 2mmer) (S3TT0 4 ont) Lot ac <

=1 keT,



where F(u) := (. u(z)e > *dz is the Fourier transform of u.

Later, by using r12-methods and interpolation of Sobolev space, H.C. Kreusler and
H. Yserentant [KY12] proved that the wavefunction u of problem (2) without regard to
the spin state satisfies

f (1 + Z |27T§z~|2) (H(l + |27T§k|2)> | (u)|* dg <0,

k=1

for s = 0,t = 1 or s = 1,t < 3/4. And the bound 3/4 is the best possible and can
neither be reached nor surpassed.

But what is the best mixed regularities in consideration of the spin states?
And is there an error estimate for it? In this note, we are trying to answer these
questions.

The spin states of fermions can be divided into three cases which will provide dif-
ferent regularities:

(A) Any two particles have different spin states: for any [ € {1,--- ,q}, |Z;| < 1. In
brief, ¢ = N.

(B) Some particles have the same spin states while the others do not: there exists a
le{l,---,q}, such that 1 < |Z;| < N. In brief, 1 < ¢ < N.

(C) The particles are identical: there exists al € {1,...,q}, such that Z; = {1,--- , N}
and if k # [, 7, = . In brief, ¢ = 1.

Indeed, the case (A) means that the wavefunction v is totally non-anti-symmetric (for
any i,j € {1,---, N}, the equation (3) does not hold); and the case (B) means the
wavefunction u has some kind of anti-symmetric property (for some [ € {1,--- ¢} and
any i,j € Z;, the equation (3) holds); and the case (C) means that the wavefunction u
is totally anti-symmetric (for any i,7 € {1,--- , N}, the equation (3) holds).

In particular, the bosons can be viewed as a exception of case (A), since they are
non-anti-symmetric either.

Similar to [Yse04], we consider the test functions in D7 which is the space of the
infinite differentiable functions

uw: (RN - C: (21, ---,2y5) > u(xy, -, 2y)
having a bounded support with spin states taken into account. And its completion in

LA((R3)N), HY((R®)N) is denoted by L2((R3)™), HL((R*)Y) respectively.
For the case (B), define the operator £z, 3 by

1/2

Lrap= |2, (H(l + \lez)“> [T a1y

1=1 \jeT, ieT\T,

where V; is the gradient for the coordinate x;. This operator is defined by the Fourier
transform, for details see Section 2.
Specially for the case (A) or case (C), we define another operator £, by

N

Lra =[]0+ V22

i=1



It can be considered as a special case of operator Lz,5: ¢ = 1, Z; = J for case (A);
and for the case (C),q=1,7, ={1,--- ,N}.

Based on these operators, we introduce the following functional space Xz, 4 and
X1, which is defined by

Xz.0,6(R)Y) := {u, Lz, pu € HZ(R)Y)},
and
Xrol(R%)Y) := {u, Lz 0u e HZ(R*)™)},
endowed with the norm
lulz.as = | L5t my(meym),
and
|ullz,0 := HEI,aUHH}_((R:%)N)-

Theorem 1.1. Let u be the solution of the eigenvalue problems of operator 2 under the
fixed spin state o, then we have the following results:

u € ﬂ XI,,B-

0<p3<0.75

u e ﬂ ﬂ XLQ’B.

0<a,3<0.75 1<a<1.25,
a+p<1.5,
0<pB

u e ﬂ ﬂ XZ,a'

0<a<0.75 1<a<1.25

e For the case (A),

e For the case (B),

o [or the case (C),

By Sobolev’s interpolation, we can get the following corollary:
Corollary 1.2. Under the assumption of Theorem 1.1:

e For the case (B),
u € ﬂ XZ,a,ﬂ-

0<a<1.25,
0<3<0.75,
a+p<1.5

u € ﬂ X7a-

0<a<1.25

e For the case (C),

Remark 1.3. The optimality can be gotten from Lemma 3.8.

DG
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and we define the projector
(Pru) (&) = [ xn(€)a(e) exp (it - ) dg

with y g the characteristic function of the domain H(R).
Then we have the following norm convergence rate:

Theorem 1.4. Under the conditions of o, 8 in Theorem 1.1, for all eigenfunctions
u e HY(N\) with fized spin state o and X\ non-positive, and for Q large enough, we have

NoT

lu — PRU”LQ((RS)N) < R 60'625”“”L2((R3)N),
and 5
vV 4q
HV(U - PRU)||L2((R3)N) < —60'625Q”u”L2((R3)N).

R

2 Fractional Laplacian and related inequalities

For 0 < a < 2, the fractional Laplacian |V|* (or (—A)%?) is defined on functions
u: R? — R as a Fourier representation by

F(IV[*u)(§) = [2m€]** F(u)(€)-

In addition, for @ > 2, the fractional Laplacian |V|* can be viewed as the composition
of |[V|*~22] and (—A)L2!) where |z is the integer part of z.
A function u € L?(R?) is said to be in H*(a > 0) if and only if

felequey 1= | 1+ EB PP dE < o

In this note, the operator L7, 3 is defined by the same manner:

q N 1/2
f@mwmh«2<ﬂuﬂ%wwﬁ(Huﬂ%awﬂ> F(u)(©).

=1 \i=1 JeT,
If we apply the Fourier transform to solve the Poisson equation
V|°u = f inRY,

we find that |27&|*F(u)(§) = F(f)(&). The inverse of the fractional Laplacian, or
negative power of the Laplacian |V|=®, s > 0, is defined for f € S(RY) as

FVITu)(§) = 2n€[~*F(u)(€)  fork #0.

In principle, we need the restriction 0 < o < d because when « > d the multiplier |k|~¢
does not define a tempered distribution (for more details, see for example [Sti19]).

On the other hand, the term ﬁ is a tempered distribution for 0 < a < d with
Fourier transform

baF (|- |79)(€) = ba—alé] ™™, b = 77¥?I(a/2), (4)

5



(see for example |[LLO1|). Hence, if 0 < o < d, the operator [V|* can be represented by

_ bd—oc —d+
@ = — “ dy.
VI u(e) = st | ol uty) dy )
Suppose that 0 < a < d, then |V|%|z|? is a L{ (RY)-function for 0 < 8 < d — o and
6% — bOé bd— —a—
V|| = S e, (6)
bd_a_ﬁbg

And |V|7?|z|77 is equally a L _(R%)-function for 0 < o < 8 < d and

loc

bs_aba—
V|| = P | (7)
ba+a—pbs

However, in this note, we need to deal with the term |V|**(|z|7Pu). The first and
most important result about it is the famous Herbst’s inequality which is based on the
Formula (5):

Theorem 2.1. [Her77] Define the operator C, on S(R?) by
Co = [V

and letp~t+q~ ! = 1. Suppose a > 0 and do™ > p > 1. Then C,, extends to a bounded
operator on LP(R?) with

P Gdp —a)T(3dg )
(Celsaren =2 g T )Gy ) )

If p=dat orp=1, then C, is unbounded.

Remark 2.2. Let v := |V|%u, then this theorem can be expressed as:

2|~ u| roray < [Calare@ay | V]l Lr may.-

Remark 2.3. For 1 <p<dp+# 2 and a = 1, it is not the Hardy’s inequality which is

written as:

Il ey < 2 IVl o

However, ford > 2, p =2 and o = 1, it is the Hardy’s inequality since
IIV]ullp2®ay = VU] r2ga),

and
2

AR

Remark 2.4. Let (¢)~' + p~! = 1, then we have that
|CallBaray) = [Callsrrmay-

And particularly, when p = 2, we have a special result:

HC;HB(B(Rd)) = HCaHB(L2(Rd))7

namely
V™% L2 ey < |CallBr2@ay 7| w] L2 (ray.-

6



In this note, we only need the case d = 3 and p = 2. Let

Cqo = HCa HB(LQ(Ri”))

for 0 < o < 3/2. And if a = 0, then |[u;2@a) = |u]r2(ra), We define ¢y := 1.
Considering the interaction between electrons, we need to deal with the term Iw+y|:

Lemma 2.5. Define the operator C, 5 on S(R3*?) by
Cop = |z —y| 2V, [V, [

where V., ¥V, are the gradient for variable © € R* and y € R? respectively.
Suppose that o, f > 0 and o + § < 3/2. Then C, 5 extends to a bounded operator
on L?(R3*3) with
”Caﬁ

|B(L2(R3X3)) < 2Ca48-

Proof. Notice that

Il — 4121V |7, | P lageamonsy = 1Vl V|l — 4172 aguaquoesy
Now, for any function u(z,y) € L*(R3*3), by Fourier transform
Ve~V | P la—y ™ P auaxsy = (2m) "7 [€a| &P F (Ja—y |7 u) (& &) | r2msxs).

Herein & := (&,,&,), and &, &, are the frequency with respect to = and y respectively.
As [t|* < [t]*TP + 1 for t € R, and let t = |&,]/|E,], we yield

I e T e T (9)
Thus,
Va1V [Pl =yl Pul| 2 s<s)
=(2m) *NI&] T F (|l =y 7P u) (€as &) 2oy
<@m) P& T F (Jo — 1m0 u) (€as &) | r2ens)
+ (2m) 0 1& | T I F (| =yl Pu) (e, &) 12 o)
=[ Va7 — y| = Pul p2ms<s
+[1Vy[7 P — g7 2 goxs)
For the term |||V~ P|z — y|~* Pul| 2(gsxs), it is an integral with respect to z and y
together. Now, we only consider the integral over z and fix y. Changing coordinates
z =z —y, then
1Vl =yl Pula, y) |2y (v)
=[IVa7 P27 Pulz + g, y) | 2y ()
<Cat+slu(z +y,9)| 2 (y)
=Caralu(@,y)|12mz) (y)-
Thus,
[1Va =Pl = y|7*Pul p2(sxsy < casplull 2@s<s)-

Analogously,
|||Vy|_a_6|$ - y|_°‘_5u||Lz(R3x3) < Ca_;_gHuHL%Rsxs).

7



Consequently, we deduce that
H|v$|_a’vy|_ﬁ|l‘ — y|_a_’8U||L2(R3><3) < 20&+BHUHL2(R3X3)7

namely,
lle = yIm P IVl ™V P2 @exs)) < 2eas.

]

If u e CP(R*\{0}), for a > d/2, we have the following Hardy’s type inequality which
is the generalization of [Yse04, Lemma 2| with a similar proof:

Lemma 2.6. [Men19] If u e C(R*\{0}), then

2
<
|20 — 3|

Vu

’x|a71

u
|

L2(R?) L2(R?) '
for ae[1,3/2) u (3/2,5/2).

And the the potential of the interaction between electrons:

Corollary 2.7. [Men19] If u € CF(R3*3) with u(z,y) = —u(y,z) for z,y € R3. Then
we have the following inequality:

< 4
L2 (R3%3) 120 — 5|20 — 3|

u
|z — y|®

V.V,u

|z — y|o2

L2(R3x3)
for a €[2,2.5).
Combining the Lemma 2.5 with the Corollary 2.7, we have

Corollary 2.8. If u € CP(R**3) with u(z,y) = —u(y,z) for z,y € R3.Then we have
the following inequality:

u
|z — y|*

S Gk H’Vz’a/QWyya/QuHL?(

R?)XS)
LQ(R3><3)

with ¢, = (5_;23“% and « € [2,2.5).

3 Properties of the interaction potentials

In the proof of the mixed regularity, the study of the potential plays the core role. In this
section, we analyse the regularity of the interaction potentials. And we split firstly the
potentials into two types: nucleus-electron interaction potentials and electron-electron
interaction potentials.



3.1 Nucleus-electron interaction potential
Lemma 3.1. Let K = (1 4+ |V[>)¥2(1 + |V|*)™!, then for any 0 < a < 2
IKllsz2es)) < 1.
Proof. For any 0 < a < 2, u e L*(R3),
[KCuluy = (1 + [2mER)72(1 + [2m€]*) ™ F () o
As (1 + [27€%)*2 < (1 + |27€]%), we know that
|Kulr2@sy < |F ()] r2@s) = lull2s)-
Now we get the conclusion. O]
Lemma 3.2. For 0 < a <1, and u e H'7%(R?),

|v|—aL
|z

< cacl_aH |V|1_aUHL2(R3).
— aV|

L2(R3)

And for 0.5 < 8 < 1.5, and u € H*7P(R?),
1912912 = o0l gy < s sl Pl agusy

Proof. Here we use Theorem 2.1 twice. And for convenience, let a, = 0. Notice that
by Theorem 2.1,

VI sems)) = [zl VI s2@s)) = ca-
Then,
_a u a—1
Vel < callal )

|| L2(R3)

And
llal* gy = el V191l sy < eroal| V1] 2.
Now we get
—a Uu —a
'IVI T —a < ooV u] 2w
14 L2(R3)

And for the second inequality, similarly, as 0 < § < 1.5 we get that

H|v|—ﬂﬂ

ol < eallel (Tl e,

L2(R3)

As |V]z|™'| = |z|72, we have that

[P (V 2]l 2y = (1217 u] 2 @s).
Besides 0 < 2 — § < 1.5, by Theorem 2.1 again,

[z~ 2@s) < ol V70l L2es).

Thus,
IV = ™ gy < sV e



Lemma 3.3. For 0 < a < 0.5, and u e H'T*(R3),

u

< (C14a + Ca)c1-al [V Ul 12(r3).
L? (R?’)

Hw

|z —a,|
Proof. Similarly, for convenience, let a, = 0. Notice that

u

s

e

L2(R3) |z — qf L2(R3) ‘

Thus,

u
HIW“—
2]

By Lemma 3.2, we get

<[IVI*= (V]2 ) [V 2T (V)

“HLz(Rd (R3) "

L2(R3)

H\V\O‘ Y(V|z|~ 1uHL2 <c_ acl+a|HV\1+o‘uHLz(R3),

and

V12 (V)] s

)< < cl_acaH]V]HauHLQ(Rg).

Consequently,

u

< (erra + ca)eral V" u] o).
L2(R3)

H\vr“

|z — a,|
O

Combining Hardy’s inequality with Lemma 3.2 and Lemma 3.3, we have the follow-
ing corollary:

Corollary 3.4. For —1 < a < 0.5, and ue H'**(R3), then

u

< Coll [V ul 2 g3y,
L2(R3)

H\vwa

lz —a,|
where Cy = (C14a + Ca)Cl—a if @ >0; Co=2; Cp = c_qC11q if —1 <a <0.
Now, the main estimate in this subsection is

Lemma 3.5. For u,v € CP(R?) and for any 0 < a < 1.5, then

1 a2 U
[CRA

|z = al

1+ W\?)a/%>\
<(Coc + (1 + VP20 sy [V (L + [V]2)20] e,

Proof. As (1 + |V[>)*2 = (1 + |V|*)K, we know that
(4 19PPe 1 T

10

u 2\ /2 @ u ( )

= (K L+ V)"0 ) + (VI —,
|z — a| | —

vl

(1+ |V|2)a/%> .

10



For the first term in the right-hand side, by Holder inequality,

u
(et iwrr)

By Hardy’s inequality or Herbst’s inequality, we know that

K1+ |V)?)*2y

< |l p2(rs)

|z — al

L2(R3)

K(1 + [V]2)*2y < 2| VK + [VP)*20] o g

=
L2(R3)

|_V|

And as

VK@ + |V [2)e? KV (1 + (V)2 [V + V)20 o sy

UHL2(R3 UHL2(R3

by Lemma 3.1, we know that

K1+ V)2 < 2|V + V)20 Loy

L2(R3)

1
|z — a|

And obviously
[ull sy < 11+ [V1P)* %) L2 gas).

Thus,

u a «a @
(K 0 [T} < 211+ V) ey (V10 + ()

UHL?(RB) :

For the second term in the right-hand side of equation (10), by Holder’s inequality
again

IV(1+ |V|2)°‘/2v\|L2(R3).

(I7PR 1 (VR0 < e

|33 ay| L2(R3)
And we have that
H|v|a IIC |a—1 U )
|:L‘ - au| LQ(R3) |J7 - au| LZ(RS)
By Corollary 3.4,
— u (0% o
H|V|a ! |[)3 s | < Ca_1H|V| UHL2(R3) < Ca—lH(l + |V|2) /QUHLQ(RS).
v L2(R3)
Consequently,

N2 U
(e

|z — al

1+ |vw2>a/2v>\
<(Cac + 21+ [V 2] sy [V (L + [V]2)20] o)

11



3.2 Electron-electron interaction potential
Lemma 3.6. For0 <8< a,1<a+ 8 <15 and u(x,y) € CP(R3*3), then
Vel o =yl ] agaxs) < basl|Val*[VyPull p2(roxa).
with baﬁ = 2((27T)a+6_171'_lbaJrgCaJrﬁ/bg,a,g + 2)
Proof. If a + 3 =1, then by Lemma 2.5, we obtain directly
llz = o1l ases) < 261 [1Vl°[9, Pl agoes) = 411VoI1V, Pul o,

where ¢; = 4. By virtue of Formula (4) and as F(f(- + 2))(§) = e*™=*F(u)(€), we
obtain that for 0 <t < 3,

F(HE) () - ot | PSS ()

z —yl* by Jge 1>~

In particular 2—? = 7~ 1. Thus, for a + 3 > 1, by Plancherel’s Theorem

Ve =y ul| 2 ans)
|£z’a+6lf ‘F(u)(gl' _2l7€y + l) di
R3 |l| L2(R3%3)

F e — L& +1
|§Aa+ﬁ_1J; | <u>05’”2 &40,

:(271_)a+571ﬂ_71

<(27T>0‘+5_177_1

LQ(R3X3)
For any [, [&,|*™771 < [I|*TF71 + |¢, — 1|*FF1, we yield

Ve |7 e — gyl ul| 2 rass)

[ Lo,

+8-1,_-1
<(2m) 0 s

L2(R3X3)

[ oot re —tb 0l
s i

+ (27r)0‘+ﬁ_17r_1

L2(]R3><3)

Using the Formula (11) again, for the first term, we get

F@E - 16 +D)
J

_ baJrﬁ B —a—fB 1
L2(R3%3) bg_a_ﬂ H|ZL‘ y| a (|“F(u)|)HL2(]R3x3)-

By Lemma 2.5, we obtain
H|27 - y|7a75f71(‘f<u)‘)HL2(R3><3)
L2604 8|V |V P FH(|IF ()] 22 oy
=2Ca18]| V2| Vy| ] p2m3xs).

For the second term, similarly

[t re —tb 0l
. i

=[lz =y FHIF (Va7 )] 2 monsy,

(27T)a+ﬂ—17r—1

L2(R3X3)

12



and as < «a, then g < 0.75, thus
[l =y FHIF (VP ) 2 ses)
<261 ||V |V PFHIF (VL[ ) ]) | pograss
=4V ||V [ 2 zsxs),
where ¢; = 4. Consequently, for 0 < f < a and 1 < a + 8 < 1.5, we deduce
[Vl * 7 2 =y ul| 2 gy

<2((27‘(’)0&57171'71ba+50a+5/b3,a,5 + 2)” |Vm|°‘|Vy|5uHL2(R3Xa).

Combing these two cases together, as by /by = mand 4 < 2((2m)* P~ r b, sCars/b3—a—p+
2) if a + f =1, we conclude

19,175 — g1l ooy
<2((27‘(’)a+’671ﬂ'71ba+gca+5/b3,a,5 + Q)H’Vx’a|vy’ﬂuHL2(R3x3).

Lemma 3.7. For u(x,y),v(z,y) € CL(R**3), and define

[[vllas = (1 + [Val)2 (1 + [V, 2)720] 1o sy

If0<a,B and o+ B < 1.5, then

(192220 (VP20 = gl (14 V)2 (14 [V, 2)20)
<Dapllillas (120l + [1Vy0llas)

with
)1+ Co-1 + Cs1 + 2¢o15C1—a—p if O0<a,B,a+ (<1,
o 14+Co1+Cs1+bog if 0<a,B,1<a+3<1.5.
Furthermore, if u is anti-symmetric (u(z,y) = —u(y,x)), then for 1 < a < 1.25,

[+ V)20 + [V, P) 2 =yl ™, (14 [Val) 2 (1 + [V, [*)*20)
Dol [ullas(IVav]laa + [IVyv]laa)-

with if 1 < a < 1.25,
Dyoi=1+2C,—1 + 2(coq—2 + 2¢90-1 + \/602a)03_2a.
Proof. Similar to Lemma 3.5, we introduce the operator K, , defined by
Ko = (1+ Vo )21+ [V, [*) 7
Now,
(L V)2 (14 [V )7 =yl (14 [V )2 (1 + [V, )7 P0)
= (L + Vol A+ |V ) aalpylz =yl ™, (14 [V )21+ [V, )7 20)
= (Kaalsylz =yl ru, (1 + Vo )21+ [V, )7 0) (12)
+ ((IVal® + [V [Vl =yl (14 (V)2 (1 + |V, 7))
+ (VeI Vy P KaaKayle =yl hu, (1+ Vo) (1 + [V, 1)720)
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Now, we calculate every term in the right-hand side of this equation separately.

Steps 1. For the first term.

[(KaalCoyl =yl u, (L+ Va2 (1 + [V, [7)70)
< Jul paqganay 12 = 917 Kawksy (1 + Va2 (1 + [V, 2)720] 1o gos,
Using Hardy’s inequality for x and y respectively and by Lemma 3.1, we get

[l =y Kawksy (1 + Vo) (1 + [V, [2)72

SIVaka oo yvllas + 11VyKa ks y]la,s
<IVavllas + [[Vyollas.

UHLQ(R:)’XB)

As [u] 2 (gsxsy < [[|ulla,s, then

(KoK le =y, (14 V)2 (L4 V7))
<llellas (NIlellas + 17y0lls)

Steps 2. For the second term.

‘<(|Vw|a + ’vy‘ﬁ)lca,xlcb’,yw —y| ", (1+ ‘Vx‘Q)a/Q(l + |Vy]2)ﬁ/21)>|
<[(IVal*KawKpyle =yl ™ u, (1 + VL) (1 + ]V, )7 20)]
+ ’<|Vy|ﬁ/Ca,$IC57y\x —y| T, (14 [V )2 (1 + \Vy|2)ﬁ/2v>’ .
As 1 =|V,|7|V,|, we have that

‘<|vx|alco‘v$lc/37y|x - y|_1u7 (1 + |Vx|2)a/2(1 + |vy|2),3/2v>‘
= [Vl Ky — ™, [Vl (1 + [V (1 + [V, [2)720)|
< IVl K u Ky — y,—luHLQ(RSXB) 11V |

By Lemma 3.1,
H|vm|aillca,$lcﬁ,y’x - yyiluHLQ(RSXS) < H’vx’a71|x - y|71uHL2(R3x3) .

Only considering the integral over z € R3 and fixing y € R?, by Corollary 3.4 for
0 < a < 1.5, we obtain

191 = 1] gy ) < Comt 119l 2oy ().

Thus,
H|v$|a_1|x - y|_1uHL2(R3x3) < C(oc—l |||vw|au“L2(R3x3) .

Since |HV;,;‘QUHL2(R3><3) < H|U‘Ha,57 we y1€1d

19 e =y~ ] ooy < Cotltlls
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Consequently,
[(IVa|* KoK ylz =yl u, (1+ [Vo )21+ [V, 1) 20)| < Coi|[ulllasl[ Voo
Analogously, for 0 < g < 1.5,
[Vl Kauksylz =y, (14 [Va )21+ [V, ) 20)] < Coa] |uflasl[ Vo] |as-
Thus,
‘<(|Vx|a + |Vy|ﬁ)lca,mlcﬁyy|x - y|_1u, (1+ |vx|2)a/2(1 + |vy|2)6/20>|
<(Ca-1 + Cp-1)|[ullas ([ Vavlllas + [[Vyv]las)-

Steps 3. For the last term without anti-symmetry.

Assume that § < «, thus f < 0.75 and 0 < a — # < 0.5. If not, we can exchange

the notation «, 8 and z,y respectively, then 8 < a.
We have that

V2V P KaaKC gl =yl s (14 [V )2 (1 + [V, [?)720)
= [(IVal 7 K e Ko gl =yl ', [V 21V [P (1 + [Va?)*2(1 4 |V, )20

Since |z]# < 1+ |2], let 2 = |¢,/&,], then

[Eal' PIE)" < ] + 16y,

thus
IV 1V 0lllas < (IIVallas + 11Vy0l]a,s)-

Now, we yield

[Vl [V KawKpyle =yl u, (14 Vo )2 (1 + [V, [*)7%0))| (13)
< IVl o = gl o sy (1950l + 1190l
If o« + 8 <1, by Theorem 2.1

19217 — g1 ] g < 1acsllr — Y7l s
And by Lemma 2.5,

“’vx’a+ﬁ_1|$ - y|_1uHL2(R3X3 < QCl—a—ﬁca—i-,é’”‘vx‘a’vy‘ﬁuHLz(H@“)-

)
If « + 3 > 1, then by Lemma 3.6 we get

H|vm|a+6il|x - y|71uHL2(R3x3) < baﬂ”‘V:ﬂ‘a|vy‘ﬂuHL2(R3X3)-
Finally, let Cy g := 2¢c1_q-pcatp if a + 8 <1, and Cyp := bap if « + 5 =1, then

[(IVal? IV KaKsylz — vl u, (1 + Vo) (1 + [V, [2)720)|
<Coapllullas([|Vevllas + [1Vy0llas).
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Steps 4. For the last term with anti-symmetry.
For a = 1, it has been proved in [Yse04]|, with

‘<|vw||vy||x - y|_1u7 |VI||Vy|U>}
<(5+ 4V6)| ] ]aa (Ve |law + [1Vyllaa)-

Thus,
IVl V1 KooKyl = o™, (1 [V 721+ 9, )0))

<(5 + 4V6) | [ul|aa (1 Va0l laer + [V 0] aye)-
If o > 1, we have that
IVl Vy [ KaaKay|r =y, (1 + [V )2 (1 + [V, [2)*20)|
= [(IVa T2V [T g aKa gt =yl ™M, Va2V |2 (1 (Vo) (1 + [V, 1) 0))|

As [&] 216,12 < 1/2(€| + 1&]), we get

(V2] V[ *Koa e a2 =yl ™, (14 Vo) (1 + [V, ) 20))|

. - . (14)
<12 |[[Va* 21V P2 — gl ] o gasay (Va0 llas + [1V50]ass).

Notice that s i B
H’vﬂ?’a / |vy’a / ‘le'—y| UHLQ(R3X3)

= [ VoVl Va2V, 122 — M| o s
<[IWal* 2219, [ — g7 (Vo V) | o sy
+ IV 22V, [ (Ve = y T (V)| o s,
+ IV, 1RV 2 =y (Vat) | oy
+ IVl RV 1 (VY =y )] o sy

Now, we use Lemma 2.5 again. For the first term:

[V, |* 2w — y |71 (Vo Vyu < 20320 ||lv =y (Ve Vyu

)HLQ(]RBXS) )HLQ(RSXS) )

and as 0 < 2a—2 < 0.5

H|QJ - y|2’2°‘(VxVyu < ZCQQ,QH|Vx|a‘vy|auHL2(R3x3).

Mysgeoes
Thus,

H |vm|a—3/2|vy|a—3/2|x — y|—1(vxvyu) HLZ(R3X3) < 403_20[02&_2“ |U|| ‘ma.
For the second term,

H|vx|a_3/2|vy|a_3/2(vx|x - y|_1)(vyu)HL2(R3x3)
<2¢3-20| |7 — Y2 ( Vel — yI7)(Vyw) | 2 eoxs)

2263_2a H ]x - y’l_zavyuHLz(R3x3) .
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As 0 <2a—1< 1.5,
H]:c — y‘172avyuHL2(R3X3) < 2026,,1”‘Vx‘a|vy’auHL2(R3x3).
Hence,
[IV7[*=2219,|* 72 (Valz — y| ) (Vi) 2 gscsy < des—2ac20-1 ][] a0
And,
(192125219, =42, [o = 41 ) (V) gy < 4320020110l
For the last term, as |V, V, |z —y|7? = 6|z — y| 75,
[IValo =22V, [* (Vo V|2 — g1 )] o gy
<263 90|z = yP (Vo Vylz =yl u L2@sxs)
=2V6¢3_90 |7 — Y| 72U L2 m3xs).-
And since u € C°, u(z,y) = —u(y, =), and 2 < 2a < 2.5, by Corollary 2.8,
[V 27219, [* 22 (Vo le =y )] o oy
<2\/603_2a02aH|Vx|a|Vy|“u||Lz(R3x3).
Consequently, if o > 1,
(V][ Vy | Ka oKyl =yl ™M, (14 [Va?) 21+ [V, 1) 20)
<2(Cga-2 + 20201 + \/662a>03—2a”|uH|a,a(H|vaH|a,a + [IVyollaa)-

As ¢y = 1,¢; = 2 and ¢ = 8, we know that 5 + 4v/6 < 2(co + 2¢; + V/6¢3)cy). Finally
for 1 < a < 1.25,

(Vo IV [*KawKaglz =yl u, (14 Va2 (1 + [V, ) ?0)]
<2(c2a—2 + 2Co0-1 + \/6020)03—204”‘““’a,a(wvxvma,a + H’vyvma,a)-

Steps 5. Conclusion.

Combining the first three steps, we conclude that there is a constant D,, g, such that
[+ V)20 + [V )72 |2 =yl (14 [V P) 2 (1 + |V, )7 0))|
<D gll|uflas(IVav[las + [[Vyollas),
with
D 1+ Coq +Cpo1 4+ 201_0-pCastp if 0<a,B,0<a+p<1;
PN+ Cat + Cpot + bag if 0<a,B,1<a+fB<L15.
Furthermore if u(x,y) = —u(y, ), for 1 < o < 1.25,
[+ V)20 + [V )P e =y Tha, (14 Vo) 21+ [V, [2)720)]
<Dool|tflaa(lVevllaa + [[Vyvllaa),
with if 1 < o < 1.25,

Doo =14 2C 1 + 2(Caa—2 + 2¢2a-2 + V620324
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Lemma 3.8. For the condition a + § < 1.5 (or a < 1.25 if w is anti-symmetric) in
Lemma 3.7, the bound 1.5 (or 1.25 respectively) can neither be reached nor surpassed.

Proof. By estimate (13), we only need
H|vx|a+ﬂ_l|x - y‘_luHLQ(st) < 0.

Let 11 = x — y and ro = x + y, then for the gradient V, Vy corresponding to ry, o
respectively we have that

V. =Vi+ Vs, VyZVQ_Vl.

As u e CP(R?*3), by cusp analysis, u(ry,r2) ~ O(ry/|r1]) and |r1| " u ~ O(|r1|7!) when
Ir] = 0. And |V, |2~ = |V + Vu|*™P71 ~ |Vq[*"P~1 as |ry| — 0. Consequently, in
a neighborhood of |r1| = 0 small enough, by Formula (6)

Va7 o — g7 hu ~ OV |71 = O =7F).

Thus if a + 5 = 1.5,
”|V$|a+571’l’ — y‘ilu”LQ(RSXS) = 0.

For u is anti-symmetric, notice that u ~ O(|r1|) when |r1| — 0. Then, u/|r;| ~
O(r1/lri]). As [V |[* V2|V, |12 ~ [V, P27, we get

Vol Mo =y ru ~ OV P /) = O ' 2).
Thus, if a > 1.25,
[ Va|* 21V 2|2 — y| | pogroxs) = oo
]

Remark 3.9. In the above lemma, we can not replace O(ry/|r1|) by O(1), since |V11| =
0 while |V1(r1/|r1])] = O(Jr:|™1).

3.3 For the Coulomb system

For convenience, we define another operator L7, 3 by
L0 = (H(l + |Vz'|2)a/2) [T a+1v,»%”
€l jEI\Il
Obviously,
q
‘C%,a,ﬁ = Z ‘C%,l,a,ﬁ‘
I=1

And recall that

NS 7z, 1 1
P I ey R P

i=1v=1
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By Lemma 3.5, we know that if 0 < «, 8 < 1.5, for Yu,v € D7,

U
L — L
‘< Z,l,a,5|xi —aV|’ I,l,a,BU>

with 7, 5 = max{Cy_1,Cs_1} + 2. Thus,

< C 5l L1,0,8ull 2(3)M) | VL1 10,80 L2 (3N

(L1 1.0,8Vietty L70,0,60)| < Ch s ZNY?| L1050 123y | V L2 00,80] 12((R3)v),

where Z = Y™ 7,V :=(Vy,---,Vy) and

N
|Volgz sy = Z | Vv |72 msywy-
i=1

Consequently,
|<£I7a,5Vneu, /CI,a,,B'U>| < C;’BZNl/Q||£Ija”3u||L2((R3)N) HVELQ,/;UHLz((R:’,)N),

Now, we need to consider the different cases: (A)-(C). For case (B), if ¢, j € Z;, u satisfies
the equation (3). And for 1 < a < 1.25 (or 0 < o < 0.75), by Lemma 3.7,

u
L — L
‘< Zl,a,B ’-Tz — x]" ) I,l,a,ﬁv>‘

<Do¢,oc

|£I7lja75’u||L2((R3)N) (Hviﬁll,aﬁvHL%(H@)N) + ij'CIJ,a,B,UHLZ((RE‘)N)) .

IfieZjand j¢ Z;, for 1 <a (or 0 < a <0.75), 0 < f and a + < 1.5, by Lemma 3.7,

u
L —, L
‘< IJ,Ol,ﬁ ‘:L',L _ x]’ Y I,Z,OC,BU>’

<l)OéﬁH‘CI,l,oc,BuHLQ((R3)1\’) (‘|Vi£I,l,a,,BU‘|L2((R3)N) + ||Vj£1'7[7a”321||L2((R3)N)) .
And ifi,j ¢ I, for 0 < B < 0.75,

U
L — L
‘< I,l,a,6|xi _Ij|7 I,l,a,ﬁv>‘

SDﬁ’ﬂHﬁLI’QﬁUHLQ((RS)N) (HviﬁI,l,a,ﬂUHL%(RS)N) + ijﬁl,l,oz,ﬁvHL2((R3)N)) .

Finally, we yield
(Lz0,8Veetl, £ 1,0,5V)]

N
iD;”BN Z ||£I,lya75u”L2((R3)N) HVZ'£I717(X75U‘|L2((R3)N)
i=1

<DZX”3N3/2||£Ijl’a”3U,HL2((R3)N) HVﬁI,LQﬁUHL%(R?,)N).

with D;ﬁ = maX{Daﬁ, Dma, D/gﬁg}.
Consequently, for 1 < o <1.25 (or 0 < @ < 0.75), 0 < 8 < 0.75 and a + < 1.5:

(L.0,8Veetss L7,0,50)| < Dl gN*?| L1050l 2 (wo)v) | VL1080 2@ 3).-
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Analogously, for case (A), and for 0 < 8 < 0.75 we have that
[(Lz,5Veeu, L1,50)| < D gN*2( Lz gt 2oy |V Lz,50] 2@y v)-
And for case (C), and for 1 < o < 1.25 (or 0 < o < 0.75), we have that
[(Lz.aVeett, Lz,00)| < Dy o N*2| Lz, 12((@3)%) |V £2,00 | 2 (@3)v)
Now we conclude:
Lemma 3.10. e For case (A), if 0 < B < 0.75,

‘(ﬁI,Bv(Vne + Vee)uv £I76,U>|

(15)
<(Ch 52 + Dy gNYN?| L1 g p2(qroyy |V Lz,50 | 12 oy

e [Forcase (B), if 1 <a <125 (or0<a<0.75),0 < <0.75 and a + < 1.5,

|<£I,a,ﬂ(vne + ‘/ee)uv EI,a,ﬂrUH

! / 1/2 (16)
é(C’aﬁZ + DaﬁN)N ||£Iva’5u||L2((R3)N) |‘V£Laﬁv|’L2((R3)N).
o For case (C), if 1 <a<1.25 (or0 < a<0.75),
E (0% Vne + ‘/ee u? £ a’U
(LzalVoe + Ve, Lz a0l -

<(ChoZ + Dl o N)N?|| L1 ot 12((r3yv) |V L7,00] 12 (R

4 The Regularity of Solutions

Repeating the proof in [Yse07], we split the eigenfunctions into the high-frequency part
and the low frequency part and estimate the high-frequency part by the low frequency
part. Let P be the projector to the high frequency part, with

F(Pou)(§) := Lig=aF (u)(§)-

where
N
€7 = l&l”
i=1

And let
ug = Pou, up:=(1— Pg)u.

Hence uz, € H} is well-defined. And we only need to prove the existence of ugy. We
have that
Jur | z2msyvy < Q)7 V] 2 (gsyny-

For case (B), taking vy € PoXz.a5((R*)N) (or vy € PoXz.00((R?)YN) for case (A) and
case (C)), then for the existence of mixed regularity we need to study:

(LzapHu, L7 opvn) — AN(Lzopt, L10pvn) =0
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Decomposing u by ug and uy, we have

(Lzap(H—Nup, L10s0H)

=1/2(VLzapunr, VL1 apv) + (L1058 Vae + Vee)un, L1.0,8VH)
— MLz pun, L£1.0,8VH)

= (L70s(Vie + Vee)ur, L1 a.8vH) -

Let
Q= (2m) N (ClsZ + DL JN)N'? = 1, (18)

then

(Lz,0,8(Vne + Vee)um, Lz,0,pvm)| < VAV Lz o pun| 2wy IV L0508 22 (@3)v),
”EI,a,ﬁUHHLQ((Rs)N) < HV»CI,a,,BUH”LQ((Rs)N) .

As the eigenvalues of problem 2 are negatives, therefore we have the coercivity
(Lras(H — Nun, Lz05ur) = 1/8|un|zq (19)

the continuity

(Lz0,8(H = Nug, L105v8)| < |un|z.0,8/vH]70.8, (20)

and the continuity of the term (L7, 5(Vie + Vee) ¥, L7 .0.50m)

(Lz,a,8(Vie + Vee U, LTapvm)| < (Cf 32 + D/oz,aN)Nl/2’£I,a75wL2((R3)N)HUH’Z7C¥,€7 |
21

And now, we prove the regularity of the eigenfunctions.

Sketch Proof of the Theorem 1.1. This proof is similar to the proof in [Yse04, Ysell].
So we just give the sketch of proof, and only consider the case (B), the proof of other
cases is same.

Step 1. For the frequency bounds €2 as in (18), the equation

(L10,5(H = N, L7.0,8v1) = (L2,08Vae + Vee) U, L1apvn) , You € PaXz05((R*)Y)
(22)

possesses a unique solution uy € PoX7 o 5((R?)Y) for all given functions v € Xz, 5((R*)Y)

by using the Lax-Milgram theorem, and combining the estimate (19) with the estimate

(16) for 9.
Step 2. For the frequency bounds 2 as in (18), the equation

<<H - )‘)UHJ XH> = <(Vne + ‘/ee)w7XH> ) VXH € PQH1<<R3)N) (23)

possesses a unique solution uy € PoX7 o 5((R*)Y) for all given functions ¢ € H'((R*)Y),
see [Yse04, Yse07].

Step 3. For all yy € PoH'((R*)Y), there is a unique high-frequency function vy €
PoX7,.,5((R*)N) such that £7 |, sun = x5
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By Fourier transform, we have
> (H(l + !27@\2)&) [T 0+ 12087 |0 (w) = Xa(w),
=1 €1 mEI\Il

Thus we know that PoH' < L3, ;PoX7.45((R*)Y).

Step 4. We rewrite the equation (22) as
((H = Nug, L3, gvi) = ((Vae + Vee)¥, L7 o g01) » You € PaXza5((R*)"Y).

And by the step 3, we know the solution of equation (22) satisfies the original equation
(23) for all xi € PoH'((R®)Y). Hence for all Lz, 51 € L*((R*)"), by the uniqueness
of solution, we yield that the solution of problem (23) ug € Xz, g((R*)™).

Step 5. Since the low-frequency part u; of the solution is contained in Dz, we know
the solution u € X7, 5((R*)"). And by Lemma 3.8, we know the condition o > 1.25,
a+ f =1.50r = 0.75 can not be reached or surpassed. In this sense, our results are
optimal. O

Proof of Corollary 1.2. Recall that
Lo = <H(1 + |Vz'|2)a/2) [T +1v»%”
i€y jEI\Il
Since u € X7 ,45((R*)Y), we know that

HﬁI’LQﬁUHHl((Rs)N)) < 00.
Assume that u € X704, 5, (R*)™) [ X758, (R*)?), then for any 0 < s < 1,
H['I,l,scu+(1—s)a2,sﬁ1+(l—s)62uuHl((R3)N))
S 1-—s
=1L tar 0 L5 3l a1 2y

<Lz 1,00, 0] 51 (@3yvy) + 1L 00,8l 1 (RSN
<00.

Now, we get conclusion. O]

5 Numerical analysis

In this part, we study the hyperbolic cross space approximation, which is almost same
with [Yse07| except Theorem 9 in it. So we just give the sketch, and only consider the
case (B).

Let 1 = uy and vy = uy, then by estimates (19) and (21), we get

1/8|up |7 o5 < (ChopZ + Dby NIN?| Lz .0 sur] 2@ || z.0.5-
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Thus,
7TQ/4H,CLQ75UHHL2((R3 §1/8HV,CIQ5UHHL2 (R3)N
<(C/ 5Z + D N)N1/2|\£z7a75uL|\L2((R3)N).

Let Q > 327~ (Cl, 4Z + D, ,N)N'? large enough, then

Lz, | L2(m3)N) < \@||£La,,8ULHL2((R3)N), (24)

and
IV Lz pum|re < V29 Lz apurre. (25)

We take the following norm:

q N ¢ 2 2\ @ 12\ ?
=S [ (14 (11 () ) o
= i=1 keZ JEI\T;
and
& 2\ * 12\ °
Il 70,50 = Z (H( o ) ) 11 <1+ o ) [F )l de.
keT, JeT\T

Lemma 5.1. For scaling parameters {2 > 2#‘1(0&62 + Dg’a]\f)]\fl/2 large enough, the
etgenfunction u € Xz o p satisfies the estimates

Hullz.0,80 < V24 %|ul 2@y, [ullzass < /20”5 ul| g2 gy

Proof. The proof is similar with [Yse07, Theorem 9]. By estimate (24), replace u by
u((27Q)~1z), then
llellzos0 < V20|urllz.as0

DI

with

&

Q

12 g
- ) () de.

lluslza60 = Z (H(

kEZl

As 0 < < a<1.25

2\ @ 12\ P Nle 2
kEIl ]GI\Zl =1
Thus,
lleLllz.os0
< Z J exp ( ) (u)* d¢
=1 Jjg<
<qe [P d.
Finally,
llulllz.a0 < v/20€"% Ju] 2 o))
The other case can repeated equally. O
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Proof of Theorem 1.4. Thus, we know that

1 1 V2q

lu — Pru| p2(msyvy < EH\U — Prul|z,ap0 < ﬁ!HU\Hz,a,ao < ?60'625\\UHL2((R3)N>-

And for the other term,

V2q
HV(U - PRU)HL2((R3)N) < —60'6QSQHuHL2((R3)N).

R
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