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Abstract
This paper investigates the broadband vibro-acoustic and dynamic behavior of different structures, such as
flat and curved panels and cylindrical shells. The aim of this work is to investigate propagation and dis-
persion features through the analysis of the wavenumber domain. The technique used to investigate the
vibro-acoustic behavior is a wave propagation based technique, implemented to obtain the propagative and
evanescent waves using a harmonic force excitation. The employed techniques are used to obtain the har-
monic displacement field, given as primary input for the wavenumber domain analysis. To deeply investigate
the dispersion features, a Discrete Fast Fourier Transform (DFFT) technique is used. The whole displace-
ment field could be obtained by experimental tests or by numerical simulations; in our case, it is calculated
using a classical Finite Element Analysis (FEA), by a commercial Finite Element package, or by an in-home
algorithm, developed in a commercial numerical computing software.

1 Introduction

Flat and curved panels are widely used in the field of transportation engineering. In the aerospace engineer-
ing, the shape of the most employed structures for the aircrafts and for the space launchers can be considered
to be axial-symmetric (the fuselage of the aircrafts, the first, the upper stages and the fairings of the launch-
ers, for example).
The dynamic behavior and the vibro-acoustic response of these structures are a fundamental challenge for
the industry. Indeed, the most important aspect is the understanding of the waves dispersion characteristics
under different loading conditions. The identification of the propagation parameters is a fundamental issue
in vibro-acoustics. In the last years, some analytical formulations were developed for flat and/or homoge-
neous structures and they can be found in [1], [2] and [3]. These analytical formulations are limited to the
low-frequency domain, in which the mode are well defined; in the mid-high-frequency range classic analyt-
ical approach do not give a good estimation of the waves dispersion characteristics. In this bandwidth some
statistical and energetic approaches were developed in [4], [5] and [6].
The identification of the wave propagation parameters is one of the most important challenges in vibro-
acoustics. In literature several technique are available, especially for one-dimensional structures, mainly
based on the loss factor identification, by the research of the complex wavenumber [7]. In their work,
McDaniel et al. developed a strategy to estimate the frequency-dependent loss-factor in one-dimensional



structures, identifying the complex wavenumber of flexural and evanescent waves at each frequency.
In the last decades, some applications to two-dimensional structures have been proposed in literature. For
example, Ferguson et al. [8] proposed a technique to identify the dominant wavenumber in a considered area,
using a windowed field of the displacement of the structure, computing the correlation between the normal
velocity measurement and an harmonic wave-field. Another method for the identification of the wavenumber
was developed by Grosh et al. [9], based on Prony series.
An interesting algorithm for the identification of the complex wavenumber and of the damping loss factor
was developed by Berthaut et al. [10]; the proposed method is called Inhomogeneous Wave Correlation
(IWC) method and it allows to identify the complex flexural wavenumber in the broadband frequency range.
An application of this method to one- and two-dimensional sandwich structures can be found in [11] and an
application on ribbed plates was proposed by Ichchou et al. [12] and [13]; Cherif et al. [14] proposed the
damping loss factor identification for flat plates; the identification of the material characteristics of the sand-
wich panels was proposed by Droz et al. [15]; Van Belle et al. [16] proposed the estimation of the flexural
dispersion curve for a plate with local resonators; Van Damme et al. [17] applied this method to identify the
mechanical properties of a classical timber plate.
This paper shows the comparison between the classical Discrete Fast Fourier Transform (DFFT) approach
and the Inhomogeneous Wave Correlation (IWC) method in the k-space analysis. Both methods are applied
on different structures: flat and curved panels and cylindrical structures. The wave field is obtained using ei-
ther a full Finite Element Analysis (FEA) or a Wave Finite Element Method (WFEM) (this method is widely
used in waves propagation investigations and it is well-described in [18], [19], [20], [21] and [22]).

2 Methodology

In this section, two different wavenumber identification techniques are presented. The classical approach
in the wavenumber domain analysis is the Continuous Fourier Transform (CFT) and its equivalent in the
discrete domain, the Discrete Fourier Transform (DFT). The second method adopted in this work is the
Inhomogeneous Wave Correlation method (IWC). Both methods use the harmonic displacement field as
primary input, usually defined in the (x, y) plane (see Eq. (1), in which the symbol ŵ indicates that the
displacement field is frequency-dependent), either from a harmonic excitation or from a temporal Fourier
transform.

w(x, y, t) =

∫ +∞

0
ŵ(x, y)eiωt dω (1)

The two methods are explained in the next sections; DFT and CFT are briefly described for the sake of
clarity.

2.1 Spatial Fourier Transform

The DFT assumes two hypotheses:

1. the displacement field ŵ is given in an uniform grid (xi = idx, yj = jdy)(1≤i≤N1−1,1≤j≤N2−1), in
which N1 and N2 are the number of the acquisition points along the axes x and y, respectively, dx and
dy are the space increments along the axes x and y, respectively;

2. the field is assumed to be 2D-periodic, i.e.:

∀i, j ∈ N2, ŵ(idx, jdy) = ŵ((i/N1)dx, (j/N2)dy) (2)



The spatial mesh has to be small enough to satisfy the Nyquist criterion, at the least half of the smallest
wavelength of interest; on the other hand, the span of the measurement has to be large enough to have an
acceptable resolution in the wavenumber domain.
In the discrete domain, we can assume ∆kx = 2π

N1dx
and ∆ky = 2π

N2dy
as a basis for the complex functions

space; the family of exponential functions with discrete wavenumbers can be written: (kxp = p∆kx, kyq =
q∆ky)(1≤p≤N1−1,1≤q≤N2−1). Consequently, the displacement field can be written as:

ŵ(xi, yj) =

N1−1∑
p=0

N2−1∑
q=0

̂̂w(kxp, kyq)e
i(kxpxi+kyqyj) (3)

The DFT ŵ −→ ̂̂w assumes the following expression:

̂̂w(kxp, kyq) =
1

N1N2

N1−1∑
i=0

N2−1∑
j=0

ŵ(xi, yj)e
−i(kxpxi+kyqyj) (4)

The periodicity condition, expressed in Eq. (2), imposes that also the DFT is periodic:

̂̂w(kx, ky) = ̂̂w(kx +
2π

dx
, ky

)
= ̂̂w(kx, ky +

2π

dy

)
(5)

In this work, the DFT is performed in MATLAB and no additional windowing or signal processing was
applied.

2.2 Inhomogeneous Wave Correlation method

Using the same displacement field as for the DFT, the dispersion relation can be found using a different
approach: the Inhomogeneous Wave Correlation method. For a fixed frequency f0, the spatial response is
correlated with an inhomogeneous running wave (Eq. (6)), in which the terms θ, γ, 2πk are the heading angle,
the attenuation factor and the apparent wavelength, respectively. The wave attenuation is strictly connected
to the damping by this relationship: γ =

ηcϕ
2cg

, with η, cϕ, cg being the damping loss factor, the phase velocity
and the group velocity, respectively. This wave is defined as follows:

σ̂k,γ,θ(x, y) = e−ik(θ)(1+iγ(θ))(x cos θ+y sin θ) (6)

The unknown wavenumber k = k<+ ik= can be found by the correlation between the inhomogeneous wave
and the complete wave field, as the location of the maximum of the normalized correlation function:

IWC(k, γ, θ) =
|
∫∫
S ŵ · σ̂

∗
k,γ,θ dx dy|√∫∫

S |ŵ|2 dx dy ·
∫∫
S |σ̂k,γ,θ|2 dx dy

(7)

where * denotes the complex conjugate. The identification of a complex wavenumber for a given direc-
tion θ leads to the maximization of the function (k, γ) −→ IWC(k, γ, θ); typically, the IWC has a well-
defined maximum, denoting the point where the measured signal correlates best with the inhomogeneous
wave σ̂k,γ,θ(x, y).
In practical applications, the wave field is measurable in discrete points, so the integration over the entire
surface S in Eq. (7) is replaced by a finite weighted sum:

∫∫
S
dx dy =⇒

N∑
i=1

ρiSi (8)



where ρi is the coherence of the measured data at each point (ρi = 1 if the coherence is not available) and
Si is an estimation of the surface around the point i.

IWC(k, γ, θ) =
|
∑N

i=1 ŵ(xi, yi) · σ̂∗k,γ,θ(xi, yi)Si|√∑N
i=1|ŵ(xi, yi)|2Si ·

∑N
i=1|σ̂k,γ,θ(xi, yi)|2Si

(9)

Considering the well-known relationships between arcs and angles, and the transformation from the Carte-
sian coordinates reference system to the cylindrical one, the IWC method can be applied also on curved
structure. Moving from the couple of coordinates (x, y) to the couple of coordinates (x, ϕ) and taking in
account the circumferential wavenumber (Eq. (10)) instead of the one along the y axis, the new formulation
of the IWC method can be easily developed.

kθ = kxR = kx
∆x

∆θ
(10)

where ∆θ is the angular distance.

In this work, the IWC method is implemented in MATLAB, for both reference systems.

3 Numerical applications and results

In this section, the methods previously explained are applied to a flat (Fig. 1) and a curved (Fig. 2) panels
and to a cylindrical shell (Fig. 3). The numerical models are built using a commercial Finite Element (FE)
package. The numerical simulations of the two panels are obtained by a full FE analysis while the cylindrical
shell is analyzed with a WFEM approach.

Figure 1: Flat panel: Finite Element Model

3.1 Flat panel

The first application is made on an isotropic flat panel. The employed material is a common alloy (E =
70.0× 109 Pa, ν = 0.33 and ρ = 2700.0 kg /m3) and the geometric properties are: Lx = Ly = 1.0 m and
t = 0.001 m. The FE model of the panel is shown in Fig. 1.
The harmonic displacement field is obtained by numerical simulations using an in-home algorithm developed
in MATLAB. The displacement field is calculated for different locations of the harmonic punctual excitation;
in the specific case hereby shown, the force is located in the middle of the plate, on the bottom surface. The
normal displacements are then extracted and used as primary input for the FFT and IWC calculations. All the
simulations were performed considering with free-free boundary conditions. A constant structural damping
is assumed and fixed at 1%; the dynamic matrix has the following expression: D = K(1 + iη)−ω2M . The



Figure 2: Curved panel: Finite Element Model

Figure 3: Cylinder: Finite Element Model

excitation covered a relatively large frequency broadband: from 50 Hz to 1200 Hz.
Two different frequencies are shown in Fig. 4; in Fig. 4a and 4b the normal displacement fields are shown.
These displacements are used both in the FFT and IWC method, in order to obtain the wavenumber domain;
the k-space plots at these two different frequencies are shown in Fig. 4c and 4d, respectively. In these two
figures, a perfect agreement in the peaks estimation is obtained between the two methods. At each heading
angle of the inhomogeneous wave, the IWC method estimated the same value of (kx, ky) obtained with the
FFT, predicting the classical ring shape expected for the isotropic panel.

3.2 Curved panel

In this section, the previous methods are applied on a curved panel. The employed material is a common
alloy (E = 70.0× 109 Pa, ν = 0.33 and ρ = 2700.0 kg /m3) and the geometric properties are: Lx = 1.0 m,
R = 0.5 m and t = 0.002 m. The FE model of the curved panel is shown in Fig. 2. The FE model
of the structure is assembled in a commercial FE software and the dynamic analysis is computed using
an in-home algorithm developed in MATLAB. The excitation is punctual and located in the middle of the
structure, normal to the inner surface; this location has been selected in order to excite many natural modes as
possible. The forced responses and the wavenumber domain at two different frequencies are shown in Fig. 6.
The transversal displacement field is obtained by projecting the displacement at each point from the global
reference system of the structure into the local one; the out-of-plane displacements are shown in Fig. 6a and
6b, for the two considered frequencies.
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(a) 3D displacement field at 500.0Hz.
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(b) 3D displacement field at 1100.0Hz.

(c) Comparison FFT-IWC at 500.0Hz. (d) Comparison FFT-IWC at 1100.0Hz.

Figure 4: Flat panel: displacement field and wavenumber estimation at two different frequencies
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Figure 5: Flat panel: bending dispersion curve
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(a) 3D displacement field at 250.0Hz.
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(b) 3D displacement field at 1350.0Hz.

(c) Comparison FFT-IWC at 250.0Hz. (d) Comparison FFT-IWC at 1350.0Hz.

Figure 6: Curved panel: displacement field and wavenumber estimation at two different frequencies

3.3 Cylindrical shell

The last structure that has been investigated is a cylindrical shell. The cylinder is made of a classical isotropic
alloy (E = 70.0× 109 Pa, ν = 0.33 and ρ = 2700.0 kg /m3) and the geometric properties are: Lx = 1.2 m,
R = 0.35 m and t = 0.0147 m. The FE model of the cylinder is shown in Fig. 3. The FE model of the
cylinder is built same as in the previous sections. The full displacement field is obtained implementing
the WFEM. The harmonic excitation is located on the inner surface of the cylinder, locally normal to the
surface and oriented along the radial direction. The normal displacement field and the wavenumber domain
at two different frequencies are shown in Fig. 7. The normal displacement field is obtained by projecting the
displacement of each node in the local reference system.

4 Conclusions

This paper compares two wavenumber identification techniques manly devoted to the the measurement of
the dispersion of the bending waves in different structures. The IWC method shows a good agreement with
the classical FFT approach and with the Kircchoff-Love theory in the estimation of the k-space and of the
flexural dispersion curve.
The IWC method is also applied to curved and axial-symmetric structures, showing a good agreement with
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(a) 3D displacement field at 735.0Hz.
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Figure 7: Cylinder: displacement field and wavenumber estimation at two different frequencies

the classical FFT approach, predicting the complex wavenumber at a fixed frequency and identifying the
complete θ-dependent dispersion curve; the classical 8-shape is also well identified, with a good estimation
of the maxima in the wavenumber domain at different heading angles of the inhomogeneous wave. In the
IWC algorithm, the introduction of the attenuation coefficient γ (with the associated damping loss factor
coefficient) offers the possibility to separate near-field from far-field, reducing the effect of the finite size of
the structures; the algorithm allows to identify and remove the wavenumbers with the imaginary part greater
than the real part, which are associated to the near-field propagation and exhibiting a high apparent loss
factor.
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