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Wavenumber identification technique for axial-symmetric structures

This paper investigates the broadband vibro-acoustic and dynamic behavior of different structures, such as flat and curved panels and cylindrical shells. The aim of this work is to investigate propagation and dispersion features through the analysis of the wavenumber domain. The technique used to investigate the vibro-acoustic behavior is a wave propagation based technique, implemented to obtain the propagative and evanescent waves using a harmonic force excitation. The employed techniques are used to obtain the harmonic displacement field, given as primary input for the wavenumber domain analysis. To deeply investigate the dispersion features, a Discrete Fast Fourier Transform (DFFT) technique is used. The whole displacement field could be obtained by experimental tests or by numerical simulations; in our case, it is calculated using a classical Finite Element Analysis (FEA), by a commercial Finite Element package, or by an in-home algorithm, developed in a commercial numerical computing software.

Introduction

Flat and curved panels are widely used in the field of transportation engineering. In the aerospace engineering, the shape of the most employed structures for the aircrafts and for the space launchers can be considered to be axial-symmetric (the fuselage of the aircrafts, the first, the upper stages and the fairings of the launchers, for example). The dynamic behavior and the vibro-acoustic response of these structures are a fundamental challenge for the industry. Indeed, the most important aspect is the understanding of the waves dispersion characteristics under different loading conditions. The identification of the propagation parameters is a fundamental issue in vibro-acoustics. In the last years, some analytical formulations were developed for flat and/or homogeneous structures and they can be found in [START_REF] Fahy | Wave propagation in damped, stiffened structures characteristic of ship construction[END_REF], [START_REF] Leissa | Vibration of Shells[END_REF] and [START_REF] Qatu | Vibration of Laminated Shells and Plates[END_REF]. These analytical formulations are limited to the low-frequency domain, in which the mode are well defined; in the mid-high-frequency range classic analytical approach do not give a good estimation of the waves dispersion characteristics. In this bandwidth some statistical and energetic approaches were developed in [START_REF] Lyon | Statistical Energy Analysis of Dynamical Systems: Theory and Applications[END_REF], [START_REF] Cotoni | A statistical energy analysis subsystem formulation using finite element and periodic structure theory[END_REF] and [START_REF] Chronopoulos | Predicting the broadband response of a layered cone-cylinder-cone shell[END_REF]. The identification of the wave propagation parameters is one of the most important challenges in vibroacoustics. In literature several technique are available, especially for one-dimensional structures, mainly based on the loss factor identification, by the research of the complex wavenumber [START_REF] Mcdaniel | A wave approach to estimating frequency-dependent damping under transient loading[END_REF]. In their work, McDaniel et al. developed a strategy to estimate the frequency-dependent loss-factor in one-dimensional structures, identifying the complex wavenumber of flexural and evanescent waves at each frequency. In the last decades, some applications to two-dimensional structures have been proposed in literature. For example, Ferguson et al. [START_REF] Ferguson | The estimation of wavenumbers in two dimensional structures[END_REF] proposed a technique to identify the dominant wavenumber in a considered area, using a windowed field of the displacement of the structure, computing the correlation between the normal velocity measurement and an harmonic wave-field. Another method for the identification of the wavenumber was developed by Grosh et al. [START_REF] Grosh | Complex wave-number decomposition of structural vibrations[END_REF], based on Prony series. An interesting algorithm for the identification of the complex wavenumber and of the damping loss factor was developed by Berthaut et al. [START_REF] Berthaut | K-space identification of apparent structural behavior[END_REF]; the proposed method is called Inhomogeneous Wave Correlation (IWC) method and it allows to identify the complex flexural wavenumber in the broadband frequency range. An application of this method to one-and two-dimensional sandwich structures can be found in [START_REF] Ichchou | Multi-mode wave propagation in ribbed plates: Part I, wavenumber-space characteristics[END_REF] and an application on ribbed plates was proposed by Ichchou et al. [START_REF] Ichchou | Multi-mode wave propagation in ribbed plates. Part II: predictions and comparisons[END_REF] and [START_REF] Ichchou | Identification of effective sandwich structural properties via an inverse wave approach[END_REF]; Cherif et al. [START_REF] Cherif | Damping loss factor estimation of two-dimensional orthotropic structures from a displacement field measurement[END_REF] proposed the damping loss factor identification for flat plates; the identification of the material characteristics of the sandwich panels was proposed by Droz et al. [START_REF] Droz | A new procedure for the determination of structural characteristics of sandwich plates in medium frequencies[END_REF]; Van Belle et al. [START_REF] Van Belle | On the impact of damping on the dispersion curves of a locally resonant metamaterial: Modelling and experimental[END_REF] proposed the estimation of the flexural dispersion curve for a plate with local resonators; Van Damme et al. [START_REF] Van Damme | Measuring dispersion curves for bending waves in beams: A comparison of Spatial Fourier Transform and Inhomogeneous Wave Correlation[END_REF] applied this method to identify the mechanical properties of a classical timber plate. This paper shows the comparison between the classical Discrete Fast Fourier Transform (DFFT) approach and the Inhomogeneous Wave Correlation (IWC) method in the k-space analysis. Both methods are applied on different structures: flat and curved panels and cylindrical structures. The wave field is obtained using either a full Finite Element Analysis (FEA) or a Wave Finite Element Method (WFEM) (this method is widely used in waves propagation investigations and it is well-described in [START_REF] Mead | Wave propagation in continuous periodic structures: research contributions from Southampton[END_REF], [START_REF] Manconi | Modelling wave propagation in two dimensional structures using finite element analysis[END_REF], [START_REF] Renno | Calculating the forced response of cylinders using the wave and finite element method[END_REF], [START_REF] Droz | A reduced formulation for the free-wave propagation analysis in composite structures[END_REF] and [START_REF] Errico | The modelling of the flow-induced vibrations of periodic flat and axial-symmetric structures with a wave-based method[END_REF]).

Methodology

In this section, two different wavenumber identification techniques are presented. The classical approach in the wavenumber domain analysis is the Continuous Fourier Transform (CFT) and its equivalent in the discrete domain, the Discrete Fourier Transform (DFT). The second method adopted in this work is the Inhomogeneous Wave Correlation method (IWC). Both methods use the harmonic displacement field as primary input, usually defined in the (x, y) plane (see Eq. ( 1), in which the symbol ŵ indicates that the displacement field is frequency-dependent), either from a harmonic excitation or from a temporal Fourier transform.

w(x, y, t) = +∞ 0 ŵ(x, y)e iωt dω (1) 
The two methods are explained in the next sections; DFT and CFT are briefly described for the sake of clarity.

Spatial Fourier Transform

The DFT assumes two hypotheses:

1. the displacement field ŵ is given in an uniform grid

(x i = idx, y j = jdy) (1≤i≤N 1 -1,1≤j≤N 2 -1)
, in which N 1 and N 2 are the number of the acquisition points along the axes x and y, respectively, dx and dy are the space increments along the axes x and y, respectively;

2. the field is assumed to be 2D-periodic, i.e.:

∀i, j ∈ N 2 , ŵ(idx, jdy) = ŵ((i/N 1 )dx, (j/N 2 )dy) (2) 
The spatial mesh has to be small enough to satisfy the Nyquist criterion, at the least half of the smallest wavelength of interest; on the other hand, the span of the measurement has to be large enough to have an acceptable resolution in the wavenumber domain.

In the discrete domain, we can assume ∆k x = 2π N 1 dx and ∆k y = 2π N 2 dy as a basis for the complex functions space; the family of exponential functions with discrete wavenumbers can be written:

(k xp = p∆k x , k yq = q∆k y ) (1≤p≤N 1 -1,1≤q≤N 2 -1)
. Consequently, the displacement field can be written as:

ŵ(x i , y j ) = N 1 -1 p=0 N 2 -1 q=0 ŵ(k xp , k yq )e i(kxpx i +kyqy j ) (3) 
The DFT ŵ -→ ŵ assumes the following expression:

ŵ(k xp , k yq ) = 1 N 1 N 2 N 1 -1 i=0 N 2 -1 j=0 ŵ(x i , y j )e -i(kxpx i +kyqy j ) (4) 
The periodicity condition, expressed in Eq. ( 2), imposes that also the DFT is periodic:

ŵ(k x , k y ) = ŵ k x + 2π dx , k y = ŵ k x , k y + 2π dy (5) 
In this work, the DFT is performed in MATLAB and no additional windowing or signal processing was applied.

Inhomogeneous Wave Correlation method

Using the same displacement field as for the DFT, the dispersion relation can be found using a different approach: the Inhomogeneous Wave Correlation method. For a fixed frequency f 0 , the spatial response is correlated with an inhomogeneous running wave (Eq. ( 6)), in which the terms θ, γ, 2π k are the heading angle, the attenuation factor and the apparent wavelength, respectively. The wave attenuation is strictly connected to the damping by this relationship: γ = ηcϕ 2cg , with η, c ϕ , c g being the damping loss factor, the phase velocity and the group velocity, respectively. This wave is defined as follows: σk,γ,θ (x, y) = e -ik(θ)(1+iγ(θ))(x cos θ+y sin θ)

The unknown wavenumber k = k + ik can be found by the correlation between the inhomogeneous wave and the complete wave field, as the location of the maximum of the normalized correlation function:

IW C(k, γ, θ) = | S ŵ • σ * k,γ,θ dx dy| S | ŵ| 2 dx dy • S |σ k,γ,θ | 2 dx dy (7) 
where * denotes the complex conjugate. The identification of a complex wavenumber for a given direction θ leads to the maximization of the function (k, γ) -→ IW C(k, γ, θ); typically, the IWC has a welldefined maximum, denoting the point where the measured signal correlates best with the inhomogeneous wave σk,γ,θ (x, y).

In practical applications, the wave field is measurable in discrete points, so the integration over the entire surface S in Eq. ( 7) is replaced by a finite weighted sum:

S dx dy =⇒ N i=1 ρ i S i (8) 
where ρ i is the coherence of the measured data at each point (ρ i = 1 if the coherence is not available) and S i is an estimation of the surface around the point i.

IW C(k, γ, θ) = | N i=1 ŵ(x i , y i ) • σ * k,γ,θ (x i , y i )S i | N i=1 | ŵ(x i , y i )| 2 S i • N i=1 |σ k,γ,θ (x i , y i )| 2 S i (9) 
Considering the well-known relationships between arcs and angles, and the transformation from the Cartesian coordinates reference system to the cylindrical one, the IWC method can be applied also on curved structure. Moving from the couple of coordinates (x, y) to the couple of coordinates (x, ϕ) and taking in account the circumferential wavenumber (Eq. ( 10)) instead of the one along the y axis, the new formulation of the IWC method can be easily developed.

k θ = k x R = k x ∆x ∆θ ( 10 
)
where ∆θ is the angular distance.

In this work, the IWC method is implemented in MATLAB, for both reference systems.

Numerical applications and results

In this section, the methods previously explained are applied to a flat (Fig. 1) and a curved (Fig. 2) panels and to a cylindrical shell (Fig. 3). The numerical models are built using a commercial Finite Element (FE) package. The numerical simulations of the two panels are obtained by a full FE analysis while the cylindrical shell is analyzed with a WFEM approach. The harmonic displacement field is obtained by numerical simulations using an in-home algorithm developed in MATLAB. The displacement field is calculated for different locations of the harmonic punctual excitation; in the specific case hereby shown, the force is located in the middle of the plate, on the bottom surface. The normal displacements are then extracted and used as primary input for the FFT and IWC calculations. All the simulations were performed considering with free-free boundary conditions. A constant structural damping is assumed and fixed at 1%; the dynamic matrix has the following expression: These displacements are used both in the FFT and IWC method, in order to obtain the wavenumber domain; the k-space plots at these two different frequencies are shown in Fig. 4c and4d, respectively. In these two figures, a perfect agreement in the peaks estimation is obtained between the two methods. At each heading angle of the inhomogeneous wave, the IWC method estimated the same value of (k x , k y ) obtained with the FFT, predicting the classical ring shape expected for the isotropic panel.

D = K(1 + iη) -ω 2 M . The

Curved panel

In this section, the previous methods are applied on a curved panel. The employed material is a common alloy (E = 70.0 × 10 9 Pa, ν = 0.33 and ρ = 2700.0 kg /m 3 ) and the geometric properties are: L x = 1.0 m, R = 0.5 m and t = 0.002 m. The FE model of the curved panel is shown in Fig. 2. The FE model of the structure is assembled in a commercial FE software and the dynamic analysis is computed using an in-home algorithm developed in MATLAB. The excitation is punctual and located in the middle of the structure, normal to the inner surface; this location has been selected in order to excite many natural modes as possible. The forced responses and the wavenumber domain at two different frequencies are shown in Fig. 6. The transversal displacement field is obtained by projecting the displacement at each point from the global reference system of the structure into the local one; the out-of-plane displacements are shown in Fig. 6a and 6b, for the two considered frequencies. 

Conclusions

This paper compares two wavenumber identification techniques manly devoted to the the measurement of the dispersion of the bending waves in different structures. The IWC method shows a good agreement with the classical FFT approach and with the Kircchoff-Love theory in the estimation of the k-space and of the flexural dispersion curve. The IWC method is also applied to curved and axial-symmetric structures, showing a good agreement with the classical FFT approach, predicting the complex wavenumber at a fixed frequency and identifying the complete θ-dependent dispersion curve; the classical 8-shape is also well identified, with a good estimation of the maxima in the wavenumber domain at different heading angles of the inhomogeneous wave. In the IWC algorithm, the introduction of the attenuation coefficient γ (with the associated damping loss factor coefficient) offers the possibility to separate near-field from far-field, reducing the effect of the finite size of the structures; the algorithm allows to identify and remove the wavenumbers with the imaginary part greater than the real part, which are associated to the near-field propagation and exhibiting a high apparent loss factor.
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  3D displacement field at 1100.0 Hz. (c) Comparison FFT-IWC at 500.0 Hz. (d) Comparison FFT-IWC at 1100.0 Hz.
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 45 Figure 4: Flat panel: displacement field and wavenumber estimation at two different frequencies
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 6 Figure 6: Curved panel: displacement field and wavenumber estimation at two different frequencies

  3D displacement field at 4100.0 Hz. (c) Comparison FFT-IWC at 735.0 Hz. (d) Comparison FFT-IWC at 4100.0 Hz.
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 7 Figure 7: Cylinder: displacement field and wavenumber estimation at two different frequencies
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