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Abstract. A theory for the scattering of polarized radiation
with partial frequency redistribution and coherence effects in the
presence of magnetic fields of arbitrary strength and direction
is developed within a classical framework. The time-dependent
equation for a classical oscillator is solved. While the oscillator
is being excited, it is also damped by emission of radiation and
subject to phase-destroying collisions. Fourier transformation of
the emitted wave train with phase-scrambling collisions leads
to the partial-redistribution expressions for the relation between
the polarization and frequencies of the incident and scattered ra-
diation. While previous treatments of partial redistribution have
been based on quantum perburbation theory, the classical theory
has the advantage of being fully non-perturbative. It is therefore
conceptually more transparent and leads itself to direct physical
interpretation. The classical and quantum theories give identical
results for aJ = 0 → 1 → 0 transition.
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1. Introduction

As the scattering polarization of the “second solar spectrum” has
recently become accessible to systematic exploration (Stenflo &
Keller 1996, 1997), a new diagnostic window for spectroscopy
and for solar studies has opened up. Due to the Hanle effect
the second solar spectrum is a sensitive function of the strength
and small-scale geometry of the spatially unresolved magnetic
fields (Stenflo et al. 1998) in a parameter domain that is in-
accessible to ordinary Zeeman-effect observations. This may
potentially allow for major advances in our understanding of
solar magnetism. The Hanle effect is also beginning to find its
applications in non-solar astrophysics (cf. Ignace et al. 1997).
However, the theory needed to interpret the wealth of new ob-
served phenomena in scattering physics on the Sun is not yet
fully developed or understood, although much progress has been
made in recent years (cf. Stenflo & Nagendra 1996; Nagendra
& Stenflo 1999). It is now a challenge to establish a good the-

oretical foundation and develop the adequate theoretical tools
that may be used in a polarized radiative transfer formalism.

Recently Bommier (1997a,b) has developed a general the-
ory for partial frequency redistribution of polarized radiation
in the presence of arbitrary magnetic fields. Her treatment is
based on a quantum-mechanical perturbation expansion, which
has been carried out to all orders to bring out the effects of
partial redistribution and collisional line broadening. Since the
physical interpretations of the various mathematical terms in the
perturbation expansion are not straightforward, the formalism
lacks transparency and is not well suited for an intuitive physi-
cal understanding. Still it is the theory that provides us with the
most general description of the scattering processes.

The classical oscillator theory on the other hand is applicable
to J = 0 → 1 → 0 transitions (normal Zeeman triplets), but
it cannot treat general quantized systems directly. It however
readily lends itself to phenomenological extension from theJ =
0 → 1 → 0 case to general Raman scattering for atomic systems
with arbitrary quantum numbers (cf. Stenflo 1998, and Sect. 12
below). A major advantage of the classical approach is that it
is non-perturbative and therefore physically transparent, and it
gives us excellent guidance for an intuitive grasp of the physics.
In contrast, no non-perturbative quantum-mechanical scattering
theory is available.

Previous treatments of classical scattering (Stenflo 1994,
1996, 1998) have used stationary solutions of the classical os-
cillator equation to derive a scattering Mueller matrix that in-
cludes the effects of arbitrary magnetic-fields (Hanle and Zee-
man effects). In addition, a classical model for collisions that
scramble the phase of a damped oscillator has been used to de-
rive how collisions enter into the Hanle effect (Stenflo 1994,
Chapter 10). However, stationary solutions always lead to fre-
quency coherence and provide no information on the redistribu-
tion between the incident and scattered frequencies. To obtain
such information one has to solve the time-dependent oscillator
equation, which we will do here in combination with the pre-
viously mentioned classical model for the effect of collisions.
This will give us self-consistent and non-perturbative expres-
sions for the polarized partial frequency redistribution line pro-
files in the presence of magnetic fields of arbitrary strengths.
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These expressions are found to be identical to those of the gen-
eral perturbative quantum theory of Bommier (1997b) for the
case of aJ = 0 → 1 → 0 transition with an unbroadened
ground state.

The theory of partial frequency redistribution has been de-
veloped within a quantum-mechanical framework by Weisskopf
(1933), Wooley (1938), Hummer (1962), Omont et al. (1972,
1973), Cooper et al. (1982), Domke & Hubeny (1988), and Bom-
mier (1997a,b), while Zanstra (1941) has used a classical model
to consider the redistribution effects of collisions. The present
work represents the first attempt at a more comprehensive treat-
ment of partial redistribution (with collisions, polarization, and
arbitrary magnetic fields) within a classical framework.

2. General formulation of classical scattering

The classical oscillator equation, which describes the motion
of a particle with charge−e and massm in a central Coulomb
potential (due to an atomic nucleus), subject to an external mag-
netic fieldB and an external, oscillating electric fieldE′, is
given by

dv

dt
+

e

m
(v × B) + γv + ω2

0r = − e

m
E′ . (1)

γ is the damping constant, the value of which can easily be
derived classically from the radiative reaction force on the ac-
celerated electric charge (cf. Stenflo 1994, pp. 44–47).ω0 is the
resonant frequency of the oscillating charge.

To decouple the component equations one introduces com-
plex spherical vectorseq , q = 0,±1, where

e0 = ez ,

e± = ∓(ex ± iey)/
√

2 . (2)

ex,y,z are Cartesian unit vectors with thez axis along the direc-
tion of the magnetic field. We now obtain the three decoupled
component equations

d2rq

dt2
− (2qiωL − γ)

drq

dt
+ ω2

0rq = − e

m
E′

q , (3)

whereωL = eB/(2m) is the Larmor frequency.
Usually one uses the stationary solutions of these equations

to find the complex dispersion properties of the medium. For
the frequency-redistribution problem, however, it is necessary
to solve the time-dependent problem.

Let us assume that we have found a solutionr = r(t) to the
time-dependent problem. This solution describes the trajectory
of a moving charge, whose electric field will fluctuate due to
the motions of the charge. These fluctuations propagate (as re-
tarded electric potentials) with the speed of light radially away
from the moving charge. In a plane perpendicular to the direc-
tion of propagation the transverse electric vector can simply be
described by the movements of the charge as projected onto this
plane and retarded by the time of propagation from the charge
to the chosen plane.

For problems in polarimetry it is usually most convenient to
represent the light in terms of a linear polarization basis. Thus

we use linear unit vectorseβ , β = 1, 2, oriented perpendicular
to the incident radiation (which is represented by the external
electric fieldE′ in Eq. (1)), while for the emitted radiation we
use linear unit vectorseα , α = 1, 2, which are oriented per-
pendicular to the direction of scattering. We denote the scalar
product between a linear and a complex spherical unit vector by

εα
q = eq · eα . (4)

It describes the normalized projection of the vectors for the clas-
sical oscillator on the vector system for the scattered radiation.
We can then express the scattered electric vector as

Eα(t) ∼
∑

q

εα∗

q rq(t) (5)

(∗ means complex conjugation). Similarly we can project the
linear vector components of the incident radiation on the com-
plex spherical vectors of the classical oscillator:

E′

q =
∑

β

εβ
q E′

β . (6)

As rq according to Eq. (3) scales withE′
q, we can combine

Eqs. (5) and (6) to get

Eα ∼
∑

β

wαβ E′

β , (7)

where

wαβ =
∑

q

[ rq(t, ω
′)/E′

q,0 ] εα∗

q εβ
q (8)

is theJones scattering matrix(cf. Stenflo 1994, p. 57), andE′
q,0

is the amplitude of the incoming monochromatic plane wave

E′

q = E′

q,0 e−iω′t . (9)

The oscillating phase factor has been omitted in Eq. (8),
since it vanishes when we form the bilinear tensor productw ⊗
w∗ of the Jones matricesw to form the coherency matrix. The
Mueller scattering matrixM that describes scattering of the
Stokes vector is readily obtained from the coherency matrix
through

M ∼ T (w ⊗ w∗)T −1 (10)

(cf. Stenflo 1994, p. 73; Stenflo 1998). For explicit expressions
of w⊗w∗ and the purely mathematical transformation matrices
T andT −1, see Stenflo (1998).

Theεs in Eq. (8) contain purely geometrical information in
the form of trigonometric expressions in terms of the angles
that the external magnetic field makes with the incident and
scattered radiation. They have been given explicitly in Stenflo
(1994, p. 57) for a coordinate system that has the magnetic field
along the polar axis.rq contains all the physics describing the
time variation and its dependence on the frequencyω′ of the
incident radiation. It is obtained as the time-dependent solution
of the oscillator equations (3).
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3. Spectral domain and the coherency matrix

What we want are the spectral properties of the scattered radia-
tion. They can be found by performing a Fourier transformation
of the fluctuating scattered electric vectorEα(t) to obtain the
transformẼα(ω), whereω represents the scattered frequencies:

Ẽα(ω) =

∫ +∞

−∞

Eα(t) eiωt dt . (11)

This implies according to Eqs. (7) and (8) that we need to
compute the Fourier transform

r̃q(ω, ω′) =

∫ +∞

−∞

rq(t, ω
′) eiωt dt , (12)

where the time-dependent solutionrq(t, ω
′) of the oscillator

equation (3) is assumed to implicitly also include the effects of
phase-scrambling collisions. The explicit procedure for treating
the collisions will be presented in Sect. 5.

Due to random phase shifts when we have random, phase-
destroying collisions, we need to perform ensemble averages
of the bilinear products̃rq r̃∗

q′ for many initial conditions for
the oscillator. In addition, as we will see in Sect. 5, we need to
average over the random lengths of the time intervals between
collisions. We write such an ensemble average of the coherency
matrix as〈r̃q r̃∗

q′〉. It contains all the frequency information,
including the partial redistribution expressions that relate the
incident and scattered frequencies to each other.

4. Solution of the time-dependent classical oscillator
loequation

With standard mathematical techniques for solving second-
order differential equations we arrive at the following general
solution of Eq. (1):

rq(t) = C1e
iw∗

−q
t + C2e

−iwqt

− e

2imω0

∫ t

t0

E′

q(z)
[

eiw∗

−q
(t−z) − e−iwq(t−z)

]

dz , (13)

where

wq = ω0 − qωL − iγ/2 , (14)

andC1,2 are integration constants determined by the initial con-
ditions.

The incident radiation is in the form of a monochromatic
plane wave with frequencyω′, given by Eq. (9). The state of
the oscillator at timet0 is an initial condition determined by the
constantsC1,2. Due to the randomness of the collisions (see next
section), the constantsC1,2 and the timet0 may be considered
as random.

With the plane wave expression (9) forE′
q, Eq. (13) becomes

rq(t) = C1e
iw∗

−q
t + C2e

−iwqt +
eE′

q,0

2mω0

·
(

eiw∗

−q
(t−t0)−iω′t0 − e−iω′t

ω′ + w∗
−q

−e−iwq(t−t0)−iω′t0 − e−iω′t

ω′ − wq

)

. (15)

Since the non-resonant terms are small in comparison with the
resonant ones, they may be neglected. We may therefore write

rq(t) = rq, stat(t) + Crq, trans(t) eiδ , (16)

where, if we for convenience neglect a proportionality factor
that includes the incoming wave amplitudeE′

q,0,

rq, stat(t) =
e−iω′t

ω′ − wq
(17)

represents the stationary solution (cf. Stenflo 1994, p. 49), which
is independent oft0 andC1,2, while

rq, trans(t) =
e−iwqt

ω′ − wq
(18)

represents the transitory solution for a free, damped oscillator.
It would be obtained from the homogeneous version of the os-
cillator equation (1) without driving term on the right hand side.
The phaseδ and amplitude factorC in Eq. (16) depend on the
random value oft0 and on the phase and amplitude ofC2 in
Eq. (15).

Other types of scenarios will in general lead to the same
structure for the solution of the time-dependent equation as in
Eqs. (16)–(18), namely as the sum of a stationary and a transi-
tory solution, with an arbitrary phase relation between them. The
factor1/(ω′ − wq) that appears in both the stationary and tran-
sitory solutions represents the absorption profile. As we will see
the stationary solution is the source of the frequency coherence
(RII) in the redistribution matrix, while the transitory solution is
the source of complete redistribution (RIII), since its oscillation
frequencies are decoupled from the driving frequencyω′.

5. Collisional destruction of the phase coherence

The collisions affect the scattered radiation in two different
ways: (a) They broaden the polarized line profiles (collisional
“damping”). (b) They change the magnetic-field dependence
of the Hanle effect (destruction of atomic polarization). The
advantage of the collisional model described here is that it ex-
plains in a unified way both (a) and (b) as a consequence of one
single mechanism or parameter, the damping parameterγc. It
produces the correct ratio (=2) between the line broadening rate
and the destruction rate for the atomic polarization. The theory
is the same as introduced in Stenflo (1994, p. 211), but here we
integrate it into a consistent and comprehensive treatment of the
partial redistribution problem.

Although in principle the Fourier integrals in Eqs. (11) and
(12) extend to infinity in both directions, a random collision in-
troduces an impulsive force (briefly dominating the right-hand
side of the oscillator equation (1)), which randomly scrambles
the phase of the oscillator. This scrambling statistically random-
izes the oscillators and destroys the phase coherence. Mathe-
matically it corresponds to a truncation of the Fourier transform
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at the time interval between two collisions. Since the phase of
the stationary solution is determined by the driving electromag-
netic waveE′

q, which is not affected by collisions, it is only the
transitory solution that is subject to the phase scrambling.

In terms of the classical scenario of the preceding section,
t0 represents the time of a collision (abrupt phase change). Dur-
ing the subsequent periodtc the oscillator is undisturbed by
collisions, so that the coherency is preserved, until another col-
lision occurs at timet0 + tc. The Fourier integral therefore only
gives non-zero contributions over the interval[t0, t0+tc], which
means that Eq. (12) becomes

r̃q, trans(ω, ω′) =

∫ t0+tc

t0

rq, trans(t, ω
′) eiωt dt (19)

for the transitory solution.
Due to the randomness of the phaseδ in Eq. (16), the cross

terms in the coherency matrix̃rq(ω, ω′) r̃∗
q′(ω, ω′) between the

stationary and transitory solutions vanish when we perform an
ensemble average over the collisions. Thus

r̃q r̃∗

q′ = r̃q, stat r̃∗

q′, stat + CC ′r̃q, trans r̃∗

q′, trans . (20)

Therefore the two solutions can be treated independently of
each other. Although the amplitude factorsC andC ′ may differ
for each individual transient periodtc, the ensemble averages
〈C〉 and〈C ′〉 will be the same. The actual value of〈CC ′〉 is
determined by the normalization, which will be done in Sect. 10.

The coherency matrix̃rq r̃∗
q′ , which is thus independently

formed for the stationary and transitory solutions, does not de-
pend ont0 or the random phaseδ of Eq. (16). However, for
the transitory solution it depends ontc, the time during which
the absorption-emission process is undisturbed by a collision.
Since the collisions occur randomly,tc can be assumed to obey
Poisson statistics. The probability that the interval between
two successive collisions is in the range[tc, tc + dtc] is then
e−tc/τc dtc/τc , whereτc is the average time between collisions.
r̃q r̃∗

q′ needs to be averaged over this distribution:

〈r̃q r̃∗

q′〉 = τc
−1

∫ ∞

0

r̃q r̃∗

q′ e−tc/τc dtc . (21)

For comparison with line-profile expressions in the literature
we introduce a collisional damping constantγc, definedby

γc/2 = 1/τc . (22)

6. Coherency matrix for the transitory solution

To simplify the following expressions we introduce the profile
functions

Φγ(νq − ν) =
2/i

ω0 − qωL − ω − iγ/2
,

Φ′

γ(νq′ − ν′) =
2/i

ω0 − q′ωL − ω′ − iγ/2
, (23)

where

νq = ν0 − qνL , (24)

ν0,L = ω0,L/2π, and the normalization factor2/i is introduced
to make the integral ofΦ over allν unity. Note that the primed
Φ′ (which contains the incident frequencyν′) represents the
absorption profile, the unprimedΦ the emission profile.

We will disregard at0-dependent phase factor, which van-
ishes when we form the coherency matrix and take into account
thet0-dependent terms in Eq. (15). The truncated Fourier trans-
form of Eq. (19) then becomes, if we also disregard the propor-
tionality factor 4 that comes from the2/i factors in Eq. (23),

r̃q,trans(ω, ω′)∼Φ′

γ(νq −ν′)Φγ(νq −ν)[1−e−i(wq−ω)tc ].(25)

After some straightforward algebra the average coherency
matrix becomes

〈r̃q r̃∗

q′〉trans ∼ Φ′

γ(νq − ν′) Φ′∗

γ (νq′ − ν′)

Φγ+γc
(νq − ν) Φ∗

γ+γc
(νq′ − ν)

(q − q′) ωL + i (γ + γc)

(q − q′) ωL + i (γ + γc/2)
. (26)

Next we introduce the generalized profile function

Φγ
q,q′(ν) = 1

2 [ Φγ(νq − ν) + Φ∗

γ(νq′ − ν) ] (27)

and the Hanle angleαq−q′ , where

tanαq−q′ =
(q − q′) ωL

γ + γc/2
. (28)

It is easy to verify that the productsΦγ Φ∗
γ of ordinary pro-

file functions can be expressed in terms of the general profile
function via

Φγ Φ∗

γ =
4

i (q − q′) ωL − γ
Φγ

q,q′(ν) . (29)

We may therefore write

〈r̃q r̃∗

q′〉trans ∼ fabs(ν
′) cos αq−q′ eiα

q−q′ Φγ+γc

q,q′ (ν) , (30)

where the absorption profilefabs(ν
′), which according to

Eq. (26) is proportional toΦ′
γΦ′∗

γ , will be discussed in Sect. 8
below.

7. Comparison with quantum collision theory

Let us at this point stress the important result that the total col-
lisional rate that enters in the Hanle effect (in the Hanle angle
αq−q′ in Eq. (28)) isγ + γc/2, while the total collisional line
broadening rate that determines the width of the profile function
Φγ+γc

q,q′ is γ +γc. This finding is to be compared with the results
of the quantum theory, according to which the line broadening
rate isΓ+ΓI +ΓE , whereΓ is the radiative rate,ΓI andΓE the
rates of inelastic and elastic collisions, respectively. The decay
rate that appears in the Hanle angleαq−q′ is according to quan-
tum theoryΓ+ΓI +D(K), K = 1, 2, whereD(K) is the rate of
destruction of the2K-multipole (the atomic polarization). Ex-
tensive calculations in quantum collision theory give the result
thatD(K) ≈ 1

2ΓE (Spielfiedel et al. 1991; Faurobert-Scholl et
al. 1995).
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When comparing the classical and quantum theories we may
make the identifications

γ = Γ + ΓI ,

γc = ΓE . (31)

It then automatically follows that

D(K) = γc/2 , (32)

and therefore

D(K) = ΓE/2 . (33)

We have thus retrieved the correct order of magnitude of the re-
sult of quantum collision theory. In the classical theory Eq. (33)
follows exclusively from the collisional truncation of the Fourier
integral. There is no need to consider special types of collisions
that would selectively destroy the atomic polarization. This el-
egant feature of the classical collision theory was previously
demonstrated in Stenflo (1994, pp. 212–213).

8. Absorption profile

Our treatment of collisions through truncation of the emission
process has induced collisional broadening, so thatγ in the pro-
file function gets replaced byγ + γc. The absorption profile
fabs is unaffected by this procedure, because it has been de-
termined when solving the time-dependent classical oscillator
equation,beforethe operation of a truncated Fourier transform
is performed to compute the spectral properties of the emitted
radiation.

The absorption profile must however be similarly broadened
by collisions. Due to time-reversal symmetry of the scattering
process we may infer that the absorption profile should also be
broadened as described by the total damping constantγ + γc

rather than byγ alone. Thus

fabs(ν
′) ∼ Φ′

γ+γc
(νq − ν′) Φ′∗

γ+γc
(νq′ − ν′) , (34)

or, in terms of the generalized profile function of Eq. (27),

fabs(ν
′) ∼ cos βq−q′ eiβ

q−q′ Φγ+γc

q,q′ (ν′) , (35)

where a second Hanle angleβq−q′ has been introduced, defined
by

tanβq−q′ =
(q − q′) ωL

γ + γc
. (36)

Although it may seem that the Hanle effect now enters the
coherency matrix in two different ways, in the form of the Hanle
angleβq−q′ in the absorption profile, and in the form of the
Hanle angleαq−q′ in the transitory portion of the emission ex-
pression, it turns out that only the effects due to the Hanle angle
αq−q′ survive when the branching ratios (see Sect. 10 below)
are taken into account (cf. Bommier 1997b). In the line core
the effects ofβq−q′ vanish due to cancellation between the con-
tributions from the stationary and transitory solutions, while in
the line wings the Hanle effect (from bothαq−q′ andβq−q′)
vanishes as shown in Stenflo (1998).

9. Coherency matrix for the stationary solution

As we see from Eqs. (17) and (18), the results for the stationary
solution can be obtained from the transitory one if we in the
time-dependent exponential factor replacewq by ω′. This is
achieved by making the substitutionsω0 → ω′, ωL → 0, and
γ → 0. Further, since the stationary solution, being driven by
the external electromagnetic field, is unaffected by collisions,
we may use the results from the transitory solution if we in
Eqs. (19) and (21) lettc → ∞ and thereforeγc → 0. These
substitutions then imply that

Φγ+γc

q,q′ (ν) → δ(ν − ν′) , (37)

whereδ(ν − ν′) is the Dirac delta function. The coherency
matrix for the stationary solution is then

〈r̃q r̃∗

q′〉stat ∼ fabs(ν
′) δ(ν − ν′) . (38)

10. Branching ratios

Combining Eqs. (30) and (38) we have

〈r̃q r̃∗

q′〉 /fabs(ν
′) ∼ A δ(ν − ν′)

+ B cos αq−q′ eiα
q−q′ Φγ+γc

q,q′ (ν) , (39)

whereA andB are branching ratios between the stationary and
transitory solutions, determined by probability arguments and
normalization.

As in Sect. 7 we make the identifications of Eq. (31), from
which the value ofD(K) to be used in the expression for the
Hanle angleαq−q′ follows according to Eq. (32). For simplicity
we will here use the quantum concept of transition rates to derive
expressions for the branching ratios.

It is only the fractionΓ/(γ + γc) of the scattering pro-
cesses that represent radiative transitions undisturbed by colli-
sions, which corresponds to frequency-coherent scattering. The
branching ratioA for frequency coherence is therefore

A =
Γ

Γ + ΓI + ΓE
. (40)

The second branching ratioB represents the fraction of the
scattering processes that are subject to elastic collisions that
destroy the frequency coherence but not the atomic polarization
(the2K-multipole). The rate of such elastic collisions isΓE −
D(K) (note thatD(0) = 0). We then get

B =
ΓE − D(K)

Γ + ΓI + ΓE

Γ

Γ + ΓI + D(K)
. (41)

Here the first factor on the right-hand side represents the prob-
ability that an elastic collision that does not destroy the atomic
polarization occurs during the life time of the excited state. The
second factor represents the probability that spontaneous emis-
sion occurs before the atomic polarization is destroyed. The
product is the joint probability for radiative decay of the excited
state to occur while the frequency coherence but not the atomic
polarization is destroyed.
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11. Redistribution matrix

The redistribution matrixR is defined by the equation

j = σ

∫

dΩ′

4π

∫

dν′ RIν′ , (42)

wherej is the Stokes emission vector,σ the scattering coef-
ficient, andIν′ is the incident Stokes vector. The rest frame
redistribution matrixR0 is

R0 ∼ M , (43)

where the Mueller scattering matrixM is given by Eq. (10),
and the constant of proportionality is determined by the nor-
malization condition that the integral ofR over all incident
and scattered directions and frequencies should beΓ/(Γ + ΓI)
(the fraction of radiated energy) for the first matrix component,
R11. From Eqs. (8), (10), and (43) we see thatR0 contains the
coherency matrix̃rq r̃∗

q′ , properly averaged over the collisional
processes as in Eq. (21).

In terms of commonly used terminology in partial redistri-
bution theory (cf. Mihalas 1978; Frisch 1996) we may write

R0 = ARII, 0 + BRIII, 0 , (44)

whereA andB are the two branching ratios of Eqs. (40) and
(41), andRII, 0 andRIII, 0 are the redistribution matrices for
frequency coherence and complete frequency redistribution, re-
spectively. They contain the combined redistribution in both
frequency and polarization.

Only in the limit of zero magnetic field is it possible to factor-
ize out the frequency redistribution from the polarization redis-
tribution, such that we get scalar frequency functionsRII, 0 and
RIII, 0 times frequency-independent phase matrices (cf. Stenflo
1994, pp. 216–217). The scalar functions are the same as those
that appear in unpolarized partial redistribution theory.

In the general case of arbitrary magnetic fields such a fac-
torization is not possible, since the different matrix elements
have different frequency profiles due to the Zeeman splitting,
and the Hanle anglesαq−q′ andβq−q′ are coupled to the gen-
eralized profile functionsΦγ

q,q′(ν) that depend on the Zeeman
effect, through the two indicesq andq′. Due to this coupling, the
general case may be called the mixed Hanle-Zeeman regime.

Explicit expressions for the redistribution matrixRII, 0 (the
frequency-coherent case) have been given in the semi-classical
treatment of Stenflo (1998) for the general, mixed Hanle-
Zeeman regime of arbitrary magnetic fields. It could be shown
(as was also demonstrated in the quantum treatment of Bom-
mier 1997b) how various limiting cases could be retrieved from
the general case, like the weak-field Hanle phase matrix, the
polarization of coronal forbidden lines (the strong-field limit),
“thermal” radiation (emission vector in LTE), and incoherent
scattering. It could also be shown how and why there is a tran-
sition of the Hanle effect from being present in the line core to
being absent in the line wings.

When we go from the rest frame to the observer’s frame
we have to introduce Doppler shifts for both the incident and
scattered frequencies and integrate over a Maxwellian velocity
distribution (cf. Stenflo 1994, pp. 75).

In a manner similar to the derivation of the general matrix
RII, 0 in Stenflo (1998) it is straightforward to use Eqs. (30)
and (35) to derive the complete frequency redistribution matrix
RIII, 0 for the general mixed Hanle-Zeeman case. It is outside
the scope of the present paper to do this explicitly here.

12. Concluding remarks

The classical theory that we have presented here gives a self-
consistent treatment of the general case of partial frequency re-
distribution for polarized radiation in the mixed Hanle-Zeeman
regime. The results obtained are identical to those of quan-
tum perturbation theory (Bommier 1997a,b) for the case of a
J = 0 → 1 → 0 scattering transition. The advantage of the
classical theory is that it is, in contrast to the quantum theory,
non-perturbative and therefore conceptually more transparent,
allowing us to see how the various physical effects enter in the
various expressions.

Although it is not clear whether it is possible or meaningful
to construct a classical analog for other types of atomic transi-
tions with other quantum numbers, it is straightforward to make
a phenomenological extension of the classical theory to enable
it to cover scattering transitions with arbitrary quantum num-
bers. This is possible, because the quantum-mechanical scatter-
ing amplitudes given by the Kramers-Heisenberg formula have
the same frequency dependence asrq in the classical theory.
The main additional features of the quantum theory are the rel-
ative line strengths determined by the oscillator strengths and
3-j symbols, and the transition frequency between the Zeeman
components, which replacesω0 − qωL in the classical theory
(cf. Stenflo 1998). By replacing therqs in the classical the-
ory with the corresponding Kramers-Heisenberg expressions,
it is possible to develop a partial-redistribution theory for arbi-
trary multi-level atomic systems for the general case of Raman
scattering (when the initial and final states are allowed to be
different) in arbitrary magnetic fields. It is outside the scope of
the present paper to do this extension explicitly here.

The remaining limitation of such an extended theory is the
implicit assumption made here that the initial state has zero
atomic polarization. To treat the still more general case when the
initial, lower level is polarized by optical depopulation pumping
one has to solve the statistical equilibrium equations for polar-
ized radiation, as has been done by Trujillo Bueno and Landi
Degl’Innocenti (1997) and Landi Degl’Innocenti (1998).
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