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Abstract. A theory for the scattering of polarized radiatiororetical foundation and develop the adequate theoretical tools
with partial frequency redistribution and coherence effects in thegat may be used in a polarized radiative transfer formalism.
presence of magnetic fields of arbitrary strength and direction Recently Bommier (1997a,b) has developed a general the-
is developed within a classical framework. The time-dependeny for partial frequency redistribution of polarized radiation
equation for a classical oscillator is solved. While the oscillatar the presence of arbitrary magnetic fields. Her treatment is
is being excited, it is also damped by emission of radiation abdsed on a quantum-mechanical perturbation expansion, which
subject to phase-destroying collisions. Fourier transformationttds been carried out to all orders to bring out the effects of
the emitted wave train with phase-scrambling collisions leagartial redistribution and collisional line broadening. Since the
to the partial-redistribution expressions for the relation betwephysical interpretations of the various mathematical terms in the
the polarization and frequencies of the incident and scatteredparturbation expansion are not straightforward, the formalism
diation. While previous treatments of partial redistribution havacks transparency and is not well suited for an intuitive physi-
been based on quantum perburbation theory, the classical themlyunderstanding. Still it is the theory that provides us with the
has the advantage of being fully non-perturbative. It is therefameost general description of the scattering processes.
conceptually more transparent and leads itself to direct physical The classical oscillator theory on the other handis applicable
interpretation. The classical and quantum theories give identital/ = 0 — 1 — 0 transitions (normal Zeeman triplets), but
results fora/ = 0 — 1 — 0 transition. it cannot treat general quantized systems directly. It however
readily lends itself to phenomenological extension fromthe
Key words: atomic processes — line: formation — scattering 8-— 1 — 0 case to general Raman scattering for atomic systems
polarization — magnetic fields — radiative transfer with arbitrary quantum numbers (cf. Stenflo 1998, and §ert. 12
below). A major advantage of the classical approach is that it
is non-perturbative and therefore physically transparent, and it
gives us excellent guidance for an intuitive grasp of the physics.
In contrast, no non-perturbative quantum-mechanical scattering
1. Introduction theory is available.

_ o . ., Previous treatments of classical scattering (Stenflo 1994,
Asthe scattering polarization of the “second solar spectrum 6, 1998) have used stationary solutions of the classical os-

recently become accessible to systematic exploration (Stenﬂ%fﬁator equation to derive a scattering Mueller matrix that in-

Keller 1996, 1997), a new diagnostic window for Spectroscopy, jes the effects of arbitrary magnetic-fields (Hanle and Zee-
and for solar studies has opened up. Due to the Hanle effgel,) oftects). In addition, a classical model for collisions that

the second solar spectrum is a sensitive function of the Strenggr]amble the phase of a damped oscillator has been used to de-

and small-scale geometry of the spatially unresolved magngiic, o\, collisions enter into the Hanle effect (Stenflo 1994,

fields (Stenflo et gl. 1998) in a parameter dom_aln that. IS '6’napter 10). However, stationary solutions always lead to fre-
accesglt;lle tﬁ ordfmary Zeeman-effect observations. This Mayoney coherence and provide no information on the redistribu-
potentially allow for major advances in our understanding gf,, henween the incident and scattered frequencies. To obtain

solar magnetism. The Hanle effect is also beginning to find &8, information one has to solve the time-dependent oscillator
applications in non-solar astrophysics (cf. lgnace et al. 1994 uation, which we will do here in combination with the pre-
However, the theory needed to interpret the wealth of new qn
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These expressions are found to be identical to those of the gem-use linear unit vectokss , 3 = 1, 2, oriented perpendicular
eral perturbative quantum theory of Bommier (1997b) for thte the incident radiation (which is represented by the external
case ofaJ = 0 — 1 — 0 transition with an unbroadenedelectric fieldE’ in Eq. (1)), while for the emitted radiation we
ground state. use linear unit vectors,, , a = 1,2, which are oriented per-

The theory of partial frequency redistribution has been dpendicular to the direction of scattering. We denote the scalar
veloped within a quantum-mechanical framework by Weisskopfoduct between a linear and a complex spherical unit vector by
(1933), Wooley (1938), Hummer (1962), Omont et al. (1972,
1973), Cooper etal. (1982), Domke & Hubeny (1988), and Borfis = €4 * €a - 4)
g'ig(nls?ggft’s)e’ \r/(var(]dlilstﬁggt?ct)rr? ((e%fgeitls? Z?iglﬁgi% 2sclérshsécs:£gﬁ‘alescrib'es the normalized projection of the vectors for the clas-
work represents the first attempt at a more compréhensive i Sl?l oscillator on the vector system for th_e scattered radiation.

. N . - o 39 can then express the scattered electric vector as
ment of partial redistribution (with collisions, polarization, an
arbitrary magnetic fields) within a classical framework. Eo(t) ~ Z R0 (5)
q

2. neral formulation of classical rin . . I .
General formulation of classical scattering (* means complex conjugation). Similarly we can project the

The classical oscillator equation, which describes the motibnear vector components of the incident radiation on the com-
of a particle with charge-e and massn in a central Coulomb plex spherical vectors of the classical oscillator:
potential (due to an atomic nucleus), subject to an external mag-

netic field B and an external, oscillating electric fiel’, is £, = Z&‘g Ej. (6)
given by 8

dv e s €, As r, according to Eq[{3) scales with!, we can combine
T + E(v X B) +yv +wir = —EE . Q) Eqgs. (%) and{6) to get

~ is the damping constant, the value of which can easily %e Zw 1o )
derived classically from the radiative reaction force on the ac B =6
celerated electric charge (cf. Stenflo 1994, pp. 44—4yis the A
resonant frequency of the oscillating charge. where

To decouple the component equations one introduces com- - 5
plex spherical vectors, , ¢ = 0, %1, where wap = Y [rg(t,w)/E}o]es" el (8)

q
ey = €,,
, is theJones scattering matricf. Stenflo 1994, p. 57), and!

= st 2. 2) . _ . ) ) 2,0
ex e zey)/\f @ is the amplitude of the incoming monochromatic plane wave
e,y are Cartesian unit vectors with thexis along the direc- e
tion of the magnetic field. We now obtain the three decoupldd, = Egoe ™" 9)
component equations The oscillating phase factor has been omitted in Eqg. (8),
d?r, 90 drg 20 _ € 3 since it vanishes when we form the bilinear tensor produet
a2 (2qiwr — V)E TWoTe = T By (3) 1 of the Jones matrices to form the coherency matrix. The

Mueller scattering matriX\ that describes scattering of the

wherew;, = eB/(2m) is the Larmor frequency. . : . .
Usually one uses the stationary solutions of these equati Strgolzegshvector is readily obtained from the coherency matrix

to find the complex dispersion properties of the medium. For
the frequency-redistribution problem, however, it is necessagy . 7(w @ w*)T (10)
to solve the time-dependent problem.

Let us assume that we have found a solutica r(¢) to the (cf. Stenflo 1994, p. 73; Stenflo 1998). For explicit expressions
time-dependent problem. This solution describes the trajectarfyw ® w* and the purely mathematical transformation matrices
of a moving charge, whose electric field will fluctuate due t& andT !, see Stenflo (1998).
the motions of the charge. These fluctuations propagate (as re-Thees in Eq.[8) contain purely geometrical information in
tarded electric potentials) with the speed of light radially awaie form of trigonometric expressions in terms of the angles
from the moving charge. In a plane perpendicular to the direixat the external magnetic field makes with the incident and
tion of propagation the transverse electric vector can simply beattered radiation. They have been given explicitly in Stenflo
described by the movements of the charge as projected onto {a&94, p. 57) for a coordinate system that has the magnetic field
plane and retarded by the time of propagation from the cham@eng the polar axis:, contains all the physics describing the
to the chosen plane. time variation and its dependence on the frequencyf the

For problems in polarimetry it is usually most convenient tmcident radiation. It is obtained as the time-dependent solution
represent the light in terms of a linear polarization basis. Thakthe oscillator equation§](3).
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3. Spectral domain and the coherency matrix e~ wa(t—to)—i'to _ e“”) (15)

What we want are the spectral properties of the scattered radia- W' — wg

tion. They can be found by performing a Fourier transformatltg}nce the non-resonant terms are small in comparison with the

of the fluctuating scattered electric vectiy, (¢) to obtain the_ resonant ones, they may be neglected. We may therefore write
transformE,, (w), wherew represents the scattered frequencies:

. +o0 , rq(t) = 7rq,stat(t) + CTq, trans(t) e, (16)
E,(w) = Ey(t)e™"dt. (11) ) . . .
o where, if we for convenience neglect a proportionality factor
This implies according to Eq$.](7) arld (8) that we need %gat includes the incoming wave amplitufl;,

compute the Fourier transform e—iw't

“too . 7/'q, stat (t) == o — W, (17)
Felw,w') = / re(t,w') et dt, 12)

—00 represents the stationary solution (cf. Stenflo 1994, p. 49), which

where the time-dependent solutiop(#,’) of the oscillator IS independent ofy andC 2, while
equation[(B) is assumed to implicitly also include the effects of o iwgt
phase-scrambling collisions. The explicit procedure for treatimg, ¢rans () = — (18)
the collisions will be presented in Selct. 5. W W

Due to random phase shifts when we have random, phagsgpresents the transitory solution for a free, damped oscillator.
destroying collisions, we need to perform ensemble averagewould be obtained from the homogeneous version of the os-
of the bilinear productg,, 7, for many initial conditions for cillator equation[{lL) without driving term on the right hand side.
the oscillator. In addition, as we will see in Sggt. 5, we need Tthe phas@ and amplitude facto€' in Eq. (18) depend on the
average over the random lengths of the time intervals betwgafAdom value of, and on the phase and amplitude®f in
collisions. We write such an ensemble average of the cohereggy, [15).
matrix as(r, 7). It contains all the frequency information,  Other types of scenarios will in general lead to the same
including the partial redistribution expressions that relate teeructure for the solution of the time-dependent equation as in

incident and scattered frequencies to each other. Egs.[16)-{1IB), namely as the sum of a stationary and a transi-
tory solution, with an arbitrary phase relation betweenthem. The

4. Solution of the time-dependent classical oscillator factor1/(w" —w,) that appears in both the stationary and tran-
loequation sitory solutions represents the absorption profile. As we will see

. . . _ the stationary solution is the source of the frequency coherence
With standard mathematical techniques for solving secongg,,)in the redistribution matrix, while the transitory solution is

order differential equations we arrive at the following generghe source of complete redistributiaR ), since its oscillation
solution of Eq.[(1L): frequencies are decoupled from the driving frequenty

Tq(t) _ Cleiw’iqt + C2€7iwqt

e 5. Collisional destruction of the phase coherence

t
: E;(Z) [eiwiq(t—z) _ e—iwq(t—z)] dz, (13) - o . .
2imwy The collisions affect the scattered radiation in two different

ways: (a) They broaden the polarized line profiles (collisional
“damping”). (b) They change the magnetic-field dependence
Wy = wo — qwr, — 17/2, (14) of the Hanle effect (destruction of atomic polarization). The
. . ) o advantage of the collisional model described here is that it ex-

a_n_dCLg are integration constants determined by the initial COBIains in a unified way both (a) and (b) as a consequence of one
d't'(?rnhs' incid diation is in the f f h .single mechanism or parameter, the damping parametdt

| € inci e_n:] rfa lation 'S, |n.t € grmEo a m_lo_rr]\oc rOm"’lft'ﬁroduces the correct ratio (=2) between the line broadening rate
plane wave with frequency’, given by q.B). 1€ state of 54 the destruction rate for the atomic polarization. The theory
the oscillator at time is an initial condition determined by '[heiS the same as introduced in Stenflo (1994, p. 211), but here we
cons_tantﬁlﬁz. Due tothe randomne_ss ofthe collisions _(see n%"tegrate itinto a consistent and comprehensive treatment of the
section), the constants, » and the time, may be considered partial redistribution problem

as rar_ldom. . Although in principle the Fourier integrals in EJs.J(11) and
Withthe plane wave expressign (9) f, Eq. [13) becomes (I2) extend to infinity in both directions, a random collision in-
¢E! , troduces an impulsive force (briefly dominating the right-hand
—= side of the oscillator equatiofl(1)), which randomly scrambles
ot (to)—iw'te it the phase of the oscillator. This scrambling statistically random-
,(6 - —¢€ izes the oscillators and destroys the phase coherence. Mathe-

where

ot et
Tq(t) = Cre™=a" + Coe™ """ + 2muwy

Wt wr, matically it corresponds to a truncation of the Fourier transform
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at the time interval between two collisions. Since the phasef; = wy, /27, and the normalization factay/i is introduced

the stationary solution is determined by the driving electromatp make the integral ob over allv unity. Note that the primed
netic wavek;, which is not affected by collisions, it is only the®’ (which contains the incident frequency) represents the
transitory solution that is subject to the phase scrambling. absorption profile, the unprimebl the emission profile.

In terms of the classical scenario of the preceding section, We will disregard &,-dependent phase factor, which van-
to represents the time of a collision (abrupt phase change). Digihes when we form the coherency matrix and take into account
ing the subsequent periad the oscillator is undisturbed bythet,-dependentterms in E@.(15). The truncated Fourier trans-
collisions, so that the coherency is preserved, until another ciarm of Eq. [I9) then becomes, if we also disregard the propor-
lision occurs at time, + t.. The Fourier integral therefore onlytionality factor 4 that comes from th¥/: factors in Eq.[(ZB),
gives non-zero contributions over the inter¢al to+t.], which , , , i(we—w)te
means that Eq.(12) becomes Tqerans (W, ') ~ @5 (Vg = 17) 8oy (g —v)[1L —eT 07970 ](25)

) ) to+te i After some straightforward algebra the average coherency
Tq, trans(w7 w ) = / Tq, trans (ta w ) e dt (19) matrix becomes
to

for the transitory solution. (Fq Ty )trans ~ @1 (vg — V) O (vg — 1)

Due to the randomness of the phasa Eq. [16), the cross Dy, (Vg — V) R5 L, (Vg — )
terms in the coherency matriy (w, ') 77 (w, w') between the (@—q)wr +i (7 +7)
stationary and transitory solutions vanish when we perform an . .

y Y P (¢—q)wr +i(y+7/2)

ensemble average over the collisions. Thus
Next we introduce the generalized profile function

Y _1 *
Therefore the two solutions can be treated independentlycpo?’q'(y) =2 [ Byl =)+ vy — )] @7)
each other. Although the amplitude factétendC” may differ and the Hanle angle,_,/, where

for each individual transient periad, the ensemble averages ,

(C) and(C") will be the same. The actual value 6FC") is  tap o, = m. (28)
determined by the normalization, which will be done in Sedt. 10. Y+ Ye/2

The coherency matrix, 7,, which is thus independently ;g easy to verify that the products, @ of ordinary pro-

formed for the stationary and transitory solutions, does not q;ﬁé functions can be expressed in terms of the general profile
pend ont, or the random phasé of Eq. (18). However, for ¢, ion via

the transitory solution it depends on the time during which
the absorption-emission process is undisturbed by a collisigj. ¢* — 4 7 ,(v). (29)
Since the collisions occur randomty,can be assumedtoobey = i(¢—¢)wr —v *1

Poisson statistics. The probability that the interval betwegp, may therefore write

two successive collisions is in the rangg, t. + dt.] is then

e~'e/™ dt. /7., wherer, is the average time between collisions(7; 7 Jirans ~ fabs (V) cos ag_qr €"¥=1' T 7<(v) (30)
74 T, Needs to be averaged over this distribution:

(26)

- ~x !~ ~%
TqTg = Tq stat Ty stat T CC'Tq, trans Ty trans - (20)

where the absorption profil¢,.s(+'), which according to

oo i i I H!* i i ;
(a5} = Tc,l/ o etelme dt, | 21) Egl.otwﬁ) is proportional t@’ @’*, will be discussed in Seéi. 8
0 :

For comparison with line-profile expressionsin the literature _ _ o
we introduce a collisional damping constaat definedby 7. Comparison with quantum collision theory

v./2=1/7,. (22) Letus atthis point stress the important result that the total col-
lisional rate that enters in the Hanle effect (in the Hanle angle
aq—q in Eq. (28)) isy + 7./2, while the total collisional line
broadening rate that determines the width of the profile function
To simplify the following expressions we introduce the profil@®] ' is v +7.. This finding is to be compared with the resuits
functions of the quantum theory, according to which the line broadening
rate isI’+1I'; +T'g, wherel' is the radiative ratd, ; andI' g the

6. Coherency matrix for the transitory solution

D, (vg—v) = 2/i . , rates of inelastic and elastic collisions, respectively. The decay
wo mqwL — W /2 rate that appears in the Hanle anglg , is according to quan-
& (v — ) = 2/i ‘ 23) tum theoryl' +I'; + D®) | K = 1,2, whereD¥) s the rate of
R wo — q'wp —w' —ivy/2’ destruction of the K-multipole (the atomic polarization). Ex-
where tensive calculations in qguantum collision theory give the result

that DU ~ 1I'y (Spielfiedel et al. 1991; Faurobert-Scholl et
Vg =1y — qUL, (24) al. 1995).
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When comparing the classical and quantum theories we nmtayCoherency matrix for the stationary solution

make the identifications As we see from Eqd.(17) arld {18), the results for the stationary

v =T+Ty, solution can be obtained from the transitory one if we in the

ve = Tp. (31) time-dependent exponential factor replacg by w’. This is
achieved by making the substitutions — ', w;, — 0, and

It then automatically follows that ~ — 0. Further, since the stationary solution, being driven by

D) _ )2, (32) the external electromagnetic field, is unaffected by collisions,

we may use the results from the transitory solution if we in
and therefore Eqgs.[I9) and[(21) let. — oo and thereforey. — 0. These

substitutions then imply that
DY) =Tp/2. (33) il

. , Pt S(v—1), 37
We have thus retrieved the correct order of magnitude of the ret? W) = 8w =) (37)

sult of quantum collision theory. In the classical theory Edl. (33)here §(» — /) is the Dirac delta function. The coherency
follows exclusively from the collisional truncation of the Fouriematrix for the stationary solution is then

integral. There is no need to consider special types of collisions

that would selectively destroy the atomic polarization. This e{fq 7y )stat ~ fabs(v') d(v —1'). (38)
egant feature of the classical collision theory was previously

demonstrated in Stenflo (1994, pp. 212-213). 10. Branching ratios

8. Absorption profile Combining Egs[(30) and (88) we have

Our treatment of collisions through truncation of the emissidfia ) /fans(v') ~ Ad(v —v/)

process has induced collisional broadening, so-fiathe pro- + B cosa,_ g €% q)gyc (v), (39)

file function gets replaced by + .. The absorption profile ’

fabs is unaffected by this procedure, because it has been WéereA andB are branching ratios between the stationary and

termined when solving the time-dependent classical oscillatbansitory solutions, determined by probability arguments and

equation peforethe operation of a truncated Fourier transforriormalization.

is performed to compute the spectral properties of the emitted As in SectlY we make the identifications of Eql(31), from

radiation. which the value ofD*) to be used in the expression for the
The absorption profile must however be similarly broadenétinle angley, - follows according to EqL{32). For simplicity

by collisions. Due to time-reversal symmetry of the scatteringe Will here use the quantum concept of transition rates to derive

process we may infer that the absorption profile should also @¢pressions for the branching ratios.

broadened as described by the total damping constanty, It is only the fraction'/(y + ~.) of the scattering pro-
rather than byy alone. Thus cesses that represent radiative transitions undisturbed by colli-

, , , - , sions, which corresponds to frequency-coherent scattering. The
Jans (V) ~ @1 (vg = V) O (vg — V'), (34)  branching ratio4 for frequency coherence is therefore
or, in terms of the generalized profile function of Eql(27), r (40)

‘ =" 40

Favs (V') ~ cos By g Pa=a QT (1)), (35) T+l +Te
where a second Hanle angle_,, has been introduced, defined The second branching rati® represents the fraction of the

by scattering processes that are subject to elastic collisions that
destroy the frequency coherence but not the atomic polarization

_(g—q)wr (the2 K -multipole). The rate of such elastic collisionsis —
tan Bg_gy = ————. (36) (K) 0
Y+ Ve D) (note thatD'®) = 0). We then get
Although it may seem that the Hanle effect now enters the Iy — DU T

coherency matrix in two different ways, in the form of the Hanl& = (41)
angle5,_, in the absorption profile, and in the form of the
Hanle anglex,_, in the transitory portion of the emission exHere the first factor on the right-hand side represents the prob-
pression, it turns out that only the effects due to the Hanle angleility that an elastic collision that does not destroy the atomic
aq—g Survive when the branching ratios (see Sedt. 10 belopglarization occurs during the life time of the excited state. The
are taken into account (cf. Bommier 1997b). In the line cosecond factor represents the probability that spontaneous emis-
the effects ofj,_, vanish due to cancellation between the corsion occurs before the atomic polarization is destroyed. The
tributions from the stationary and transitory solutions, while iproduct is the joint probability for radiative decay of the excited
the line wings the Hanle effect (from both,_, and 5,_,) state to occur while the frequency coherence but not the atomic
vanishes as shown in Stenflo (1998). polarization is destroyed.

I'+I'y+T'g F—&-F]—i—D(K)'
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11. Redistribution matrix In a manner similar to the derivation of the general matrix

Ry in Stenflo (1998) it is straightforward to use Es](30)

and [35%) to derive the complete frequency redistribution matrix
Q/ . _ . .

j= U/ d /du’ RI, . (42) R, for the general mixed Hanle Zegman case. It is outside
4dr the scope of the present paper to do this explicitly here.

wherej is the Stokes emission vecter,the scattering coef-
ficient, andI,/ is the incident Stokes vector. The rest framg2. Concluding remarks
redistribution matrixR is

The redistribution matrixR is defined by the equation

The classical theory that we have presented here gives a self-
Ry~ M, (43) consistent treatment of the general case of partial frequency re-

where the Mueller scattering matr is given by Eq.[(ID), distribution for polarized radiation in the mixed Hanle-Zeeman
and the constant of proportionality is determined by the ndegime. The results obtained are identical to those of quan-
malization condition that the integral d& over all incident {Um perturbation theory (Bommier 1997a,b) for the case of a
and scattered directions and frequencies should/g + ;) J = 0 — 1 — 0 scattering transition. The advantage of the
(the fraction of radiated energy) for the first matrix componerflassical theory is that it is, in contrast to the quantum theory,
Ry1. From Eqs.[(B)[{10), an@ (#3) we see tiyf contains the non-perturbative and therefore conceptually more transparent,
coherency matrix, 7, properly averaged over the coIIisionaP‘”O_W'”g us to see how the various physical effects enter in the
processes as in E.(21). various expressions. o _ _
In terms of commonly used terminology in partial redistri- Although it is not clear whether it is possible or meaningful

bution theory (cf. Mihalas 1978; Frisch 1996) we may write 0 construct a classical analog for other types of atomic transi-
tions with other quantum numbers, it is straightforward to make

Ry = ARy, 0 + BRio, (44) 4 phenomenological extension of the classical theory to enable

where A and B are the two branching ratios of EqS.]40) an#l to cover scattering transitions with arbitrary quantum num-

(@1), andRy; o and Ry o are the redistribution matrices forbers. This is possible, because the quantum-mechanical scatter-

frequency coherence and complete frequency redistribution, iR amplitudes given by the Kramers-Heisenberg formula have

spectively. They contain the combined redistribution in bothe same frequency dependencerain the classical theory.

frequency and polarization. The main additional features of the quantum theory are the rel-
Only in the limit of zero magnetic field is it possible to factorative line strengths determined by the oscillator strengths and

ize out the frequency redistribution from the polarization redig=j symbols, and the transition frequency between the Zeeman

tribution, such that we get scalar frequency functidis, and components, which replaces — qw in the classical theory

Ry, o times frequency-independent phase matrices (cf. Sterffé Stenflo 1998). By replacing the;s in the classical the-

1994, pp. 216-217). The scalar functions are the same as tHj¥ewith the corresponding Kramers-Heisenberg expressions,

that appear in unpolarized partial redistribution theory. it is possible to develop a partial-redistribution theory for arbi-
In the general case of arbitrary magnetic fields such a fdeary multi-level atomic systems for the general case of Raman

torization is not possible, since the different matrix elemeng§attering (when the initial and final states are allowed to be

have different frequency profiles due to the Zeeman splittingjfferent) in arbitrary magnetic fields. It is outside the scope of

and the Hanle ang|e$qiq, andﬂqiq, are Coup]ed to the gen_the present paper to do this extension epr|C|tIy here.

eralized profile function®] ,(v) that depend on the Zeeman The remaining limitation of such an extended theory is the

effect, throughthetwoindiéepandq’. Due to this coupling, the implicit assumption made here that the initial state has zero

general case may be called the mixed Hanle-Zeeman regimatomic polarization. To treat the still more general case when the
Explicit expressions for the redistribution matdi%; , (the initial, lower levelis polarized by optical depopulation pumping

frequency_coherent Case) have been given in the semi-classéid has to solve the statistical equilibrium equations for poIar-

treatment of Stenflo (1998) for the general, mixed Hanl&ed radiation, as has been done by Trujillo Bueno and Landi

Zeeman regime of arbitrary magnetic fields. It could be shovi?ggl'Innocenti (1997) and Landi Degl'lnnocenti (1998).

(as was also demonstrated in the quantum treatment of Bom-

mier 1997b) how various limiting cases could be retrieved frofaferences

the general case, like the weak-field Hanle phase matrix, the

polarization of coronal forbidden lines (the strong-field limityBommier V., 1997a, A&A 328, 706

“thermal” radiation (emission vector in LTE), and incohererfommier V., 1997b, A&A 328, 726

scattering. It could also be shown how and why there is a tr%c_)oper\]., Ballagh R.J., BurnettK., Hummer D.G., 1982, ApJ 260, 299

o . . . omke H., Hubeny I., 1988, ApJ 334, 527
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