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Abstract—Sensors and their associated data fusion tech-
niques, play a crucial role in Autonomous Vehicle (AV) decision-
making applications. Accurately evaluate performance and
reliability of the perception sources is an important task to
be able to know the consistency of this data fusion. In this
paper, a reference data generation framework for assessing
perception sensors performances is proposed. Our approach
relies on the complementary use of three data sources: a highly
precise 3D map with semantic information, a High Density
range finder sensor and a GNSS-RTK/INS localization unit.
3D map provides semantic knowledge of the environment and
HD range finder precisely senses ego-vehicle surroundings.
Finally, 3D map and HD scans are geometrically associated
using positioning information in order to combine them and
to infer reference data. Thorough experiments were conducted
to evaluate and validate the proposed approach. As a proof of
concept, performances of a LiDAR-based road plane detection
method were evaluated, quantified and reported in terms of
precision and recall.

I. INTRODUCTION

Majority of ADAS (Advanced Driver Assistance
Systems) functionalities rely on data transmitted by
integrated perception sensors to control the vehicle. Precise
performance evaluation of embedded perception solutions is
then an important task for AV and ADAS. It is therefore
crucial to be able to evaluate performances and reliability
of embedded perception solutions. In the aim of evaluating
and validating perception solutions, existing approaches that
have been proposed in the literature can be structured in
three categories: manual, semi–supervised and automatic
reference data creation.

Manual labeling: First and less complex method consists
in generating referenced datasets by human manual process-
ing. LiDAR (Light Detection And Ranging) datasets close to
ADAS functions conditions of use correspond to sequences
of point clouds measured from moving sensor. Sequences are
recorded to be reusable. Each cloud of the whole sequences
is manually segmented and object-level labeling is carried out
by hired annotators or crowd-sourcing means. This is the case
of KITTI Dataset [1], where the use of both hired annotators
and crowd-sourcing were exploited to assign label objects to
3D bounding boxes manually defined. Some approaches were
developed to simplify object labeling. In [2], labeling task is
facilitated by optimizing points clouds using voxels which are

further hand-labeled. Similar techniques are used for images
as in [3] where images are hand-labeled. In [4], a database
composed of LiDAR and images is addressed. Point clouds
are manually labeled and exploited further for referencing
images. Finally, in [5], [6] software tools are created to
facilitate and speed-up manual generation of reference data
for 2D/3D object detection. The main advantage of manual
labeling is the high accuracy of reference data created.
However, manual labeling is time- and cost- consuming and
is not a scalable solution. Indeed, hand-labeled data is specific
to each dataset and cannot be applied on new datasets.

Semi-supervised approaches: In [7] a semi-supervised
process for reference data generation method was developed
in order to annotate scenes collected from KITTI optical flow
dataset. This method uses the labeled 3D bounding boxes of
KITTI to project them on 2D images and label the pixels of
optical flow images. In [8], [9] stereo images are employed
to reconstruct 3D point clouds. The created clouds are then
classified by trained machine learning algorithm (e.g. random
forest algorithm). Finally, the labeled data are re-projected
in the 2D image plane. The disadvantage of these solutions
is the changing of dimensions between 2D images and 3D
point clouds that can bring errors in the data. Moreover,
with machine learning algorithm trained on a single dataset,
the risk of over-fitting can also bring classification errors in
assigned labels.

Automatic methods: Finally, as far as we know, unsuper-
vised approaches generating reference data are based on the
use of synthetic data. Sensor simulation tools like Blensor
[10], Helios [11] or Carla [12] are used to generate reference
data. This is the case in [13], [14], [15] where labeled
reference images are obtained in simulated environments.
This solution allows the user to generate a big amount
of reference data, sometimes very close to real data [16],
[17], [18] and scenarios are easy to reproduce with new
sensor solutions. However, since the environment is perfectly
controlled, synthetic data are not impacted by external errors
or other phenomena that only appear under real sensing
conditions. To be closer to non-simulated data, reference data
generated must take into considerations all the effects that
could appear under real conditions.
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To generate reference data needed for perception
algorithms evaluation, our approach aims to generate
reference data in a semi-supervised way and combines
some advantages of the three cited approaches. It is
done by augmenting perception data recorded with a
simulated controlled environment. The main strength is the
reproducibility and compatibility of our methodology with
new datasets recorded, without needing manual labeling for
each of the new datasets.

This paper is structured as follows : Section II describes
the proposed semi-supervised approach for reference data
generation allowing performance evaluation on perception
algorithms. This strategy also provides a common referencing
support to quantify consistent uncertainties of the perception
functions as stated in section IV. Experiments are presented to
assess our methodology. An implementation is also deployed
to evaluate a 3D road detection algorithm performances.
Finally, section V concludes, supported by the presented
results, and provides perspectives for future works.

II. DEVELOPED APPROACH

A. Framework overview

In order to evaluate perception solutions, it is necessary
to have access to reference data. When both reference data
and perception data are available for a given scenario, the
comparison between data allows us to evaluate the perception
solution. The expressed need to be able to evaluate the
perception algorithms relies on the availability of reference
data.

The proposed framework provides support for offline eval-
uation of perception algorithms. Thus, perception data are
recorded to be replayable and exploitable with our approach.
Our aim is to generate reference data without the need
of complex classification algorithms or repetitive manual
labeling. As it is illustrated in Fig. 1, three data sources
compose the proposed methodology : a perception system, a
localization system and a 3D map of the environment. They
are required for performing the semi-supervised generation
of reference data.

Fig. 1. Pipeline of the reference data generation framework

Perception system: is exploited to record raw perception
data Pt acquired under real conditions (e.g. point clouds for
LiDAR, images for cameras...), with all the phenomena and
external errors. Pt denotes a precise representation of the
ego-vehicle surroundings.

Localization system: provides precise localization
positions. This information facilitates data association
between perception data Pt and model data St. To do this,
a common reference frame F is exploited for Pt and St.
Thus, the pose of the perception system recorded at a time
t: Post, corresponds to the sensor position and attitude for
Pt and is used on the 3D map with the simulator to generate
St at the same position.

3D map: coupled with a simulation tool allows us to
generate model data St. The model constituting the geo-
referenced 3D map was produced using a precise Mobile
Mapping System (MMS) Reigl VMX450. Point clouds ob-
tained by MMS were then manually noise-filtered, post-
processed, fused and meshed to create the model. Each
object label (e.g. road, lane markings, traffic signs...) is
associated with a specific id and every part of the mesh
constituting the 3D model is labeled in conjunction with
the object represented in the scene. This post-processing is
performed only once. Subsequently, new datasets recorded
in the locations represented by the 3D map will be able
to exploit semantic information from this 3D map without
requiring new manual labeling.

Fig. 2. Comparison between the (a) 3D map, (b) data from the simulated
sensor and (c) the real data augmented

3D map is then imported in a settable simulation tool
[10], [11], [12]. A perception sensor model with same
characteristics of the system used to produce Pt is set and
integrated in the simulator. That is, for a given pose Post,
data generated by simulation St is a model-based perception
corresponding to Pt, but contains additional semantic
information deduced from the 3D map environment
knowledge.

In a last step, a data association method is applied be-
tween Pt and St in order to transfer semantic environment
knowledge contained in St on Pt, and outputs reference data
Rt. Thus, the combination of these three sources allows
us to transfer semantic environment knowledge into the
perception data by the way of labeling. Augmented data
resulting from this framework represents the reference data
and can be exploited in a purpose of evaluation for perception
algorithms.

B. System solution and implementation

1) Perception system: To record raw perception data Pt,
we oriented our system on LiDAR solution. Several reasons
motivate this choice. First, it provides range measurements
with a centimeter accuracy and each point measured is
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independent of other measurements. Second, it is an active
sensor, it is not sensitive to light conditions and can be
used to record data at any moment of the day without
needing modification on the sensor or on its settings. Last,
LiDAR data are represented in 3D. Any further treatment
on data is necessary to get 3D information as it is the case
with point cloud reconstructed from images. Possible errors
introduced by the reconstruction step are thus avoided.
These advantages grant access to a reliable and detailed
representation of the sensed environment in Pt.

A Velodyne VLP-32C is integrated on the top of our
vehicle offering the characteristics listed in Table I. Pt

produced by this sensor corresponds to 3D point clouds
recorded to accurately scan the environment in detail.

TABLE I
PERCEPTION SENSOR CHARACTERISTICS

Velodyne VLP-32C

Rotation frequency 10 Hz
Points per rotation 20.000

Vertical angular resolution 0.4°
Azimuthal angular resolution 0.1°

Range 200 m
Range measurements accuracy +/- 3 cm

2) Sensor simulator: Blensor [10] was used to generate
St. This simulation tool is completely settable and provides
support to new sensor models. LiDAR sensor model
characteristics corresponding to the Velodyne VLP-32C
were considered. To generate St, 3D map is first imported
in the simulator. Once the pose of the sensor is defined,
simulated point clouds St are obtained by ray tracing the 3D
map. Ray-object intersection creates impact points stored in
the cloud St. Each point is constituted by its 3D coordinates
and a label value corresponding to impacted object id.

3) Localization system: Finally, the system that plays
the link role between Pt and St is the localization unit.
Positioning accuracy of GNSS solutions in automotive is
no better than 2-3 m in good conditions (open sky without
outages or multipath effects) [19]. This is not enough to
grant access to an accurate data association between St and
Pt. To perform this task, we oriented our choice on a highly
accurate localization solution based on a GNSS-RTK/INS
coupling. RTK corrections signals received grant access to
centimeter accurate absolute positioning [19], [20], [21].
Coupling with INS (iXblue Atlans-C) gives complementary
information of the system attitude. Moreover, high rate of
recorded data provided by INS is employed to interpolate
the positioning between GNSS-RTK measurements. This
configuration outputs an accurate and absolute position of
the system.

Positions provided by the localization system are in
WGS84 coordinate system. If the 3D map is geo-referenced
in a reference frame different from WGS84, transformation
is applied on localization data in order to use a common

coordinate system F . In our case, the model is geo-referenced
in UTM and we define UTM as our common coordinate
system F . By the transformation method described in [22],
position coordinates from each pose Post, expressed in
WGS84, are projected into UTM coordinate system. Sensor
pose Post is used to geo-reference Pt and also to generate
St. Pt and St are geo-referenced with respect to the same
pose and overlap each-other allowing the data association.

C. Data augmentation
The last processing step allows us to generate reference

data Rt by a data association between Pt and St. The purpose
is to augment Pt with semantic environment knowledge
included in St by transfer of information. In this study, five
object classes are taken into account:

L = {road, signs, borders, lanes,N/A}
To realize the data association, objects represented in both

Pt and St are matched based on a geometrical criterion.
Since we oriented our approach on LiDAR data, Pt and
St correspond to point clouds. Given the big amount of
data that point clouds represent, processing them without
optimization can be memory consuming and costly in time.
Data association is sped-up using an octree structure [23].
Points are then gathered and stored in voxels. Given a 3D
query point q, it is then possible to know in which voxel
q is situated, which points compose the same voxel and
which ones are located in surroundings voxels. Thanks to this
optimization, neighbors research method given a specific a
research radius r is much sped-up and is used in Algorithm.1
to outputs Rt.

Algorithm 1 Data association algorithm
INPUT: Pt - LiDAR point cloud / St - Model point cloud
OUTPUT: Rt - Reference cloud
q - query point
r - radius of research arround q
n - neighbor found for q
m - number of neighbors found
N - set of neighbors found
for all point q ε Pt do

Find the neighbors n ε St situated in r
if m > 0, neighbors n are stored in N then

Label values occurrence in N are counted:
Case 1 - a label value Lj is more represented than
other labels values: Lj is assigned to q
Case 2 - several label values have the same number
of votes: Euclidian distance di is computed between
q and each ni1→m

, label value of the closest neighbor
Lj is assigned to q

else
No neighbor was found in r, q keeps its initial value
N/A

end if
q is stored in Rt

end for
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According to our approach, St is firstly optimized using
an octree structure. Each point q from Pt is processed,
Algorithm.1 allows us to transfer environment knowledge on
Pt and generate reference data Rt.

Augmented LiDAR data Rt resulting from Algorithm.1
corresponds to reference data and can then be exploited to
evaluate performances of perception solutions.

III. EXPERIMENTAL RESULTS

A. Methodology analysis

1) Simulation limits: As stated in Algorithm.1, the data
augmentation of Pt depends on the radius of research r. The
bigger r, the more neighbors will be found and the more
Pt points are labeled. However, the larger the number of
found neighbors, the more different label values will be found
and important labeling errors can be introduced. Two criteria
reflecting these aspects are studied.
The first criterion C1 reflects the quantity of semantic infor-
mation introduced by our approach on Pt. To quantify C1,
we use a sample of 100 reference clouds obtained by our
approach. All points contained in Pt are not “labelisable”
since objects non-referenced in the 3D map can be captured.
This is the case for moving objects (e.g. passage of other
vehicles during data recording) or, as we can see Fig.3.a with
captured trees and buildings, irrelevant elements distant from
the model and non-referenced in the 3D map Fig.3.b.

Fig. 3. Comparison between : (a) -Pt with labelisable points (red), non-
labelisable points (black), (b) - St on the model in Blensor

Taking this aspect into account, we compute the number
of “labelisable” points by estimating the fitted 3D bounding
box of St. The number of Pt points contained in this box
correspond to the number of “labelisable” points. Finally, C1

represents the percentage of labeled points compared to the
number of “labelisable” points.
The second criterion C2 reflects errors of labeling caused by
the radius of research r. To quantify C2, we simulate 100
clouds Xi. X ′i are generated by using the same points stored
in Xi and removing semantic labels. Our approach is applied
to augment semantic labels on X ′i points. Thereafter, the label
value of each point from X ′i is compared to the original value
found in Xi. C2 corresponds to the percentage of wrongly
labeled points.

Table.II summarizes the mean values of C1 and C2 com-
puted on 100 clouds for five values of r. As reported in
Table.II if r is small, risks of wrong labeling is reduced.
However, chances to find neighbors in r are also reduced
because of geometrical differences between St and Pt points
position. For further tests, r is set on 0.50m.

TABLE II
COMPUTED CRITERIA C1AND C2 ACCORDING TO r

r (m) 0.10 0.20 0.50 0.80 1.00
C1 28.80 % 59.73 % 80.73 % 85.27 % 87.38 %
C2 0.11 % 0.72 % 3.21 % 4.59 % 6.94 %

2) Role of the localization data: As explained in II-B3,
localization data plays a major role in our approach since
the labeling method is based on the geometrical overlap
between St and Pt. If localization measurements are error
impacted or does not reach a sufficient accuracy, offsets
between Pt and St appear. Therefore, Pt and St are not
correctly overlapping and labeling errors can appear during
data association, affecting the relevance of Rt. We can notice
this aspect in the beginning of one of our datasets, where an
irregular offset is visible between St and Pt (Fig.4.a), before
decreasing until an accurate overlap of the data (Fig.4.b).

Fig. 4. Offsets between St (red) and Pt (black) with : (a) high localization
standard deviation, (b) low localization standard deviation.

By studying the standard deviation (σ) of the localization
data on position measurements, we can see Fig.5 that the
evolution of σ matches perfectly with the noticed offsets. This
phenomenon can be explained by an imperfect initialization
on the INS causing the high values of σ during the first
measurements. Once the INS is fully initialized, the localiza-
tion measurements become more accurate, σ decreases. The
overlapping of St and Pt becomes then accurate (Fig.4.b).

Fig. 5. Evolution of the localization standard deviation on the position

This experiment shows the significance of the localization
data in the processing pipeline.
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3) Impact of localization errors: Localization data accu-
racy can be affected by measurements errors as it is the
case with the initialization of the INS in III-A2. With this
experiment, we evaluate impacts of these errors on reference
data created. Data used to lead the test are generated by
simulation tool [10].

• First, we use a sequence of 100 sensor poses Posi and
we simulate the 100 corresponding clouds Si.

• Second, we introduce centered -additive white Gaussian
noise on localization data. Noised poses are named
Pos′i. 100 clouds Xi are simulated with noisy poses
Pos′i but geo-referenced with Posi. This way, errors
on localization data can be simulated and controlled
according to the noise introduced. Xi generated by the
simulator are correctly labeled.

• A copy X ′i is made and label value of each point is
re-initialized with “N/A”. X ′i is then labeled by our
approach with Si.

• Finally, we compare each point between Xi and X ′i and
evaluate the percentages of points badly labeled.

Fig.6 represents effects of localization data noise on clouds
labeled by our approach. The experiment is leaded several
levels of noise introduced in Pos′i from 0.10m to 5m.

Fig. 6. Labeling errors according to noise level on localization data

The results shown in Fig.6 demonstrates that the accuracy
of localization data has to be carefully taken into account in
the process. The impact of localization noise is accentuated
in turns as we see with increasing curves. Thus, if localiza-
tion accuracy indicators show a low confidence level, data
resulting from our approach is not exploitable as reference
data.

B. Application of the approach

In this last experiment, performances of a 3D road detec-
tion algorithm [24] are evaluated thanks to reference data
generated by our framework. It is worth noting that such an
evaluation is suitable for algorithms and sensors performing
in 3D and 2D. To operate this test, a sequence of 200 clouds is
exploited. Fig.7 illustrates the processing pipeline including
the road detection.

Fig. 7. Steps of the road detection algorithm evaluation

Road Detection : Road detection algorithm performs
LiDAR point cloud Pt. All the points that are detected as road
receive the label value “road”. Remaining points keep their
initial label value “N/A”. The outputs labeled cloud tested is
named Tt.

Algorithm Evaluation : The last step of our approach
receives both Tt and Rt to evaluate the processing applied,
in our case, the road detection algorithm. Both clouds are
composed of the same points, only the label value can
be different between peer points. Evaluation metrics : true
positives (TP), true negatives (TN), false positives (FP) and
false negatives (FN) are computed by comparing points label
values L as detailed in Algorithm.2.

Algorithm 2 Evaluation metrics computing
INPUT: Rt - Reference cloud / Tt - Tested cloud
OUTPUT: TP, TN, FP, FN - Evaluation criteria
for all point pi ε Tt do

Find the peer point ri ε Rt

if Lpi and Lri = road then
TP = + 1

else if Lpi
and Lri 6= road then

TN = + 1
else if Lpi

= road and Lri 6= road then
FP = + 1

else if Lpi 6= road and Lri = road then
FN = + 1

end if
end for

Thanks to TP, FP and FN criteria, we can deduce standard
metrics recall and precision for each cloud of the sequence.
On Fig.8, curves corresponding to standard metrics for each
cloud are represented. By analyzing curves, we are able to
get a detection performances overview of the tested algorithm
and its behavior overall the sequence. Peaks allows us to
quickly identify parts of sequence where the performances
decrease.

Investigations are then facilitated (Fig.9) to identify why
the efficiency of the tested algorithm varies, what are the
causes responsible of performance decreases and how the
algorithm can be improved to overcome these causes.
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Fig. 9. Comparison of two cases among the algorithm results : (a) Accurate
road detection rate. (b) Inaccurate road detection rate. (Green points = points
well classified after comparison to our referencing approach, Red points =
points missed after comparison to our referencing approach)

IV. CONCLUSIONS

In this paper, a semi-supervised reference data genera-
tion method is presented. The joint use of LiDAR data
with synthetic data generated from a detailed 3D map, all
linked by localization data is exploited to augment semantic
information in LiDAR clouds and generate reference data.
Transfer of environment knowledge stored in synthetic data
on LiDAR data allows us to avoid the need of complex
classification algorithms. Thus, labeling errors are greatly
reduced. However, sensibilities on the localization accuracy
and the neighbors search parameters must be carefully taken
into account.

As a perspective, improving the simulated data to make
them closer to LiDAR data will allows us to reduce radius of
research. Risks of labeling errors will be reduced while keep-
ing a high percentage of transferred semantic information. To
deal with localization accuracy variations, clouds alignment
methods could also be introduced to support low confident
localization measurements. Efforts will be done to evaluate
other sensor modalities (e.g. vision systems) and to efficiently
manage dynamic objects on the evaluated scenarios.
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