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Abstract

We consider a fluid-structure interaction system composed by a rigid ball immersed into a viscous in-
compressible fluid. The motion of the structure satisfies the Newton laws and the fluid equations are the
standard Navier-Stokes system. At the boundary of the fluid domain, we use the Tresca boundary conditions,
that permit the fluid to slip tangentially on the boundary under some conditions on the stress tensor. More
precisely, there is a threshold determining if the fluid can slip or not and there is a friction force acting on
the part where the fluid can slip. Our main result is the existence of contact in finite time between the ball
and the exterior boundary of the fluid for this system in the bidimensional case and in presence of gravity.
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1 Introduction

The system composed by a rigid body and a viscous incompressible fluid, assuming no-slip of the fluid on
the solid boundaries, has been studied thoroughly from a mathematical point of view [15, 12, 3, 4, 8, 9].
These results yield that we have similar well-posedness properties as for the fluid alone prior to a possible
contact between the rigid body and the exterior boundary. One important issue is then to understand what
happens at the time of the contacts if they exist. In [14], the authors show that in dimension 2, if there
is a contact between solids, it occurs with null relative velocity and acceleration. Then, in [10, 11] it is
proved that for some particular geometry, in dimension 2 or 3 in space, no contact occurs in finite time.
For deformable structures, a similar result is proved in [7]. All these results are obtained again under the
assumption that the fluid does not slip on the solid boundaries. One of the remedies to recover contacts is
to take into account that, in presence of high shear on the boundaries, the fluid should be allowed to slip.
One classical model which includes this phenomenon is the Navier slip boundary conditions [13]. For these
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Figure 1: Geometry and notations

boundary conditions, the case of an immersed rigid body is studied in [5, 6, 16]. The authors obtain the
well-posedness of the corresponding system up to contact and show the existence of contact in finite time
between rigid bodies (in dimension 2 and 3). We mention also that the Cauchy theory for a model including
slip on the moving body but no-slip on the container boundary is studied in [2].

One drawback of the Navier slip boundary conditions is that it forces the fluid to slip tangentially whatever
the size of the shear on the boundaries. A more realistic model are the Tresca boundary conditions. In these
boundary conditions, the fluid sticks to the interface up to a shear-rate threshold that the fluid is prevented
to exceed by allowing slip on the interface. The boundaries of the fluid domain split then in a zone of small
shear rates where Dirichlet boundary conditions are imposed and high shear rates where a type of Navier
boundary conditions are imposed (but with an unknown slip length which encodes that the shear rate cannot
exceed the threshold value). Discussing whether such models allow contacts or not is a delicate issue. Indeed,
the intuitive idea would be to throw sufficiently fast the body toward the container boundary. This would
create high shear rate and induce slip on the solid boundaries which do not prevent from contact (again
see [6]). Yet, though less singular than the Dirichlet boundary conditions, the Navier boundary conditions
also imply a kinetic-energy dissipation that forces the velocity of the moving body to vanish when contact
occurs. Hence, one must be careful that this dissipation is not sufficiently fast to decrease the shear rate in
a sufficiently large zone below the disk implying that no-slip boundary conditions appear preventing from
collision occurence (see [10]). To discuss this issue, we focus on a simplified 2D symmetric configuration
similar to [6, 10, 11]. We focus on the 2D case since the knowledge on the Dirichlet problem shows that
contacts occur in the 2D case with more difficulties than in the 3D case.

We describe now the system under consideration in this paper. We assume that the rigid body is a ball
of radius 1 and that the container Ω is a rectangle:

Bh = B((h+ 1)e2, 1), Ω = (−L,L)× (0, L′),

with (e1, e2) the canonical basis of R2, and with h > 0 the distance between the rigid body and the container
boundary (it will be a function of time in what follows) and L > 1, L′ > 2 two constants. Corresponding to
the position Bh of the rigid body, we denote by

Ωh = Ω \Bh
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the fluid domain. The equations that govern our fluid-solid system write{
ρF (∂tu+ u · ∇u)−∆u+∇p = 0 in Ωh,

div u = 0 in Ωh,
(1.1)

u · n = λe2 · n on ∂Bh, (1.2){
u · τ − λe2 · τ = 0 if |D(u)n · τ | < 1,

∃β > 0 u · τ − λe2 · τ = −βD(u)n · τ if |D(u)n · τ | = 1,
on ∂Bh, (1.3)

u · n = 0 on ∂Ω, (1.4){
u · τ = 0 if |D(u)n · τ | < 1,

∃β > 0 u · τ = −βD(u)n · τ if |D(u)n · τ | = 1,
on ∂Ω, (1.5)

ḣ = λ, (1.6)

mλ̇ = −
∫
∂Bh

Σ(u, p)n · e2 dγ −mag, (1.7)

In the above equations n and τ are the fluid exterior normal and associated tangential unitary vectors,

D(u) :=
1

2

(
∇u+ (∇u)>

)
, Σ(u, p) := 2D(u)− pI2,

m is the mass of the rigid ball. We assume that the rigid body is homogeneous so that m = πρS where
ρS > 0 is the constant density of the structure. We also assume that the density of the fluid ρF > 0 is a
positive constant. The constant ma is equal to m− πρF = π(ρS − ρF ) and we assume ρS > ρF (so that the
ball is falling). We should point out that, since we consider a symmetric configuration, we have that the ball
does not rotate which allows us to remove the conservation of linear angular momentum. To simplify, we
take the viscosity of the fluid constant and equal to 1. We have also fixed the shear threshold to be equal to
1. Both simplifications are independent and do not restrict the generality. We complement the system with
initial data:

h(0) = h0, λ(0) = λ0, u(0, ·) = u0 in Ωh0 . (1.8)

The existence of weak solutions is tackled in dimension 3 in space in [1]. We explain now how to adapt this
definition to our framework. For this, we set first:

w∗ = w∗h =

{
e2 on ∂Bh

0 on ∂Ω.
(1.9)

Then the Tresca boundary conditions (1.2)–(1.5) write

(u− λw∗) · n = 0 on ∂Ωh, (1.10){
(u− λw∗) · τ = 0 if |D(u)n · τ | < 1,

∃β > 0 (u− λw∗) · τ = −βD(u)n · τ if |D(u)n · τ | = 1,
on ∂Ωh. (1.11)

We recall that this Tresca boundary conditions admits the following variational formulation [1]:

∀c ∈ R, (D(u)n · τ)c > |(u− λw∗) · τ | − |(u− λw∗) · τ + c| on ∂Ωh. (1.12)

We extend also u by λw∗ in Bh, so that div u = 0 in Ω and u ·n = 0 on ∂Ω (thanks to (1.10)). If u ∈ L2(Ω),
these properties are summarized by the statement u ∈ L2

σ(Ω). With these conventions, we say that (u, h) is
a weak solution of (1.1)–(1.8) on (0, T ) if

h ∈W 1,∞(0, T ), 0 < h < L′ − 2, ḣ = λ (1.13)

u ∈ L∞(0, T ;L2
σ(Ω)), u = λe2 in Bh, u|Ωh

∈ L2(0, T ;H1(Ωh)), (1.14)

and if, for any (w, `) satisfying

w ∈ C1([0, T ];L2
σ(Ω)), w = `e2 in Bh, ` ∈ C1([0, T ]), w|Ωh

∈ L∞(0, T ;H1(Ωh)), (1.15)
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there holds:

d

dt

[∫
Ωh

ρFu · w dx+mλ`

]
−
∫

Ωh

ρFu · (∂tw + (u · ∇)w) dx−mλ ˙̀ +

∫
Ωh

2D(u) : D(w) dx

+mag`+ 2

∫
∂Ωh

|(u− λw∗) · τ | − |[u− w − (λ− `)w∗] · τ | dγ 6 0. (1.16)

This last identity is obtained by multiplying (1.1) by w, integrating by parts, introducing (1.7) and reformu-
lating boundary terms thanks to (1.12). With similar arguments as in [1], one obtains the following result
for our system:

Theorem 1.1. Assume (h0, λ0) ∈ (0, L′ − 2)× R and u0 ∈ L2(Ωh0) satisfy:

divu0 = 0, u0 · n = λ0w∗ · n on ∂Ωh0 .

Then, there exist T > 0 and a weak solution (u, h) of (1.1)–(1.8) on (0, T ) that satisfies:

sup
(0,T )

[
1

2

∫
Ω

ρ|u|2 dx+magh

]
+ 2

∫ T

0

∫
Ωh(t)

|D(u)|2 dx dt+ 2

∫ T

0

∫
∂Ω

|u− λw∗| dγ dt

6
1

2

∫
Ω

ρ0|u0|2 dx+magh
0. (1.17)

Furthermore we have the following alternative:

• T =∞
• T <∞ and

(
limt→T h(t) = 0 or limt→T h(t) = L′ − 2

)
We omit the proof for conciseness. The main objective of this paper is to prove that the second alternative

can occur, meaning that the rigid ball can touch the exterior boundary in finite time. To this end, we are
going to assume that the initial velocity of the body vanishes. We fix u0 ∈ L2(Ωh0) and ρF and take m large
enough and h0 small enough. Our main result reads then:

Theorem 1.2. Given λ0 = 0 and u0 ∈ L2(Ωh0). For h0 small enough and mh0 large enough, there exist
T ∈ (0,∞) and a weak solution (u, h) such that

lim
t→T

h(t) = 0.

The proof of Theorem 1.2 is based on analysing the properties of the solution inherited from Theorem
1.1. To this end, we construct a particular family of test functions in the same spirit as in [10, 11, 6, 16]. We
use this family in our variational inequality and this leads us to a differential inequality on h where appears
a term of order ln(h) due to our boundary conditions. Using this differential inequality and taking m large
enough and h0 small enough, we show Theorem 1.2.

The outline of the paper is as follows. In the next section, we present the most novel arguments of our
analysis: an adapted Korn inequality and the treatment of the differential inequality leading to contact. In
the last section, we introduce the weak formulation of our problem, discuss the construction of a particular
family of test functions and we use these test functions in our weak formulation to deduce the expected
differential inequality on h.

2 Main steps in the proof of Theorem 1.2

We provide in this section two major steps in the proof of Theorem 1.2. The first one consists of a Korn
inequality. We recall that such inequalities are introduced to control the Lp-norm of a full gradient by
the same Lp-norm of the symmetric part of this gradient. Such inequalities are classical but, in our case,
we are specifically interested in the dependence of the constant appearing in this inequality on geometrical
parameters (especially the distance h). So, we give here a detailed analysis of this point. Moreover, it turns
out that we control a supplementary term which helps a lot the analysis. The second part of this section is
devoted to the final step in the proof of Theorem 1.2. Thanks to a multiplier argument we obtain in next
section a differential inequality for the distance h. We show in this section that this differential inequality
yields to finite-time contact.
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2.1 An adapted Korn inequality

In the whole subsection h > 0 and we consider functional inequalities in the associated domains Ωh and Bh.
We restrict to values of h lower than some fixed h0 ∈ (0, L′ − 2) since we want to consider possible contacts
with the bottom boundary of Ω only. Given h ∈ (0, L′ − 2), we set:

V 1(h) :=
{
u ∈ L2(Ω) ; u ∈ H1(Ωh), div u = 0 in Ω, u · n = 0 on ∂Ω, ∇u = 0 in Bh

}
.

We note that, given u ∈ V 1(h) there exists a unique λu ∈ R2 such that u = λu in Bh. Since u is globally
divergence-free on Ω, we have also that

u · n = λu · n on ∂Bh.

We start with estimating λu:

Lemma 2.1. Assume h ∈ (0, h0) and u ∈ V 1(Ωh). Then λ = λu satisfies

|λ|2 6 C1

∫
Ωh

|D(u)|2 dx.

for a constant C1 depending only on L,L′, h0.

Proof. We set
Ω+
h = {x ∈ Ωh ; x2 > 1 + h} .

This is a locally Lipschitz domain as long as 0 < h < L′ − 2. Assume u ∈ V 1(h), we write

0 =

∫
Ω+

h

div u dx =

∫
∂Ω+

h

u · n ds = −
∫

Γ1

u2 ds+ λ ·
∫

Γ2

n ds,

where Γ1 = {(x1, 1 + h) ; x1 ∈ (−L,−1)∪ (1, L)} and Γ2 = ∂Bh ∩ ∂Ω+
h . We deduce from the above relation

that

λ2 = −1

2

∫
(−L,−1)∪(1,L)

u2(x1, 1 + h) dx1.

Using that for almost every x1 ∈ (−L,−1)∪ (1, L), u2(x1, ·) ∈ H1((1 +h, L′)) and u2(x1, L
′) = 0, we deduce

that

|λ2| 6
1

2

∫
Ωh

|∂2u2(x)| dx 6 C‖D(u)‖L2(Ωh).

We can proceed similarly for λ1 by integrating the divergence-free condition on Ωrh = {x ∈ Ωh;x1 > 0} and
we deduce the result.

We can now prove the following result:

Lemma 2.2. Assume h ∈ (0, h0) and u ∈ V 1(h). Then there exists a constant C depending only on L,L′, h0

such that ∫
Ωh

|∇u|2 dx+

∫
∂Bh

|u|2 ds 6 C

∫
Ωh

|D(u)|2 dx.

Proof. Using a density argument, we can assume that u ∈ C∞(Ωh). First, we have

2

∫
Ωh

|D(u)|2 dx =

∫
Ωh

(∇u+ (∇u)>) : ∇u dx.

By integration by parts and using that div u = 0, we deduce

2

∫
Ωh

|D(u)|2 dx =

∫
Ωh

|∇u2| dx+

∫
∂Ω

[(u · ∇)u] · n ds+

∫
∂Bh

[(u · ∇)u] · n ds,

where we recall that n is the unit outer normal to Ωh. Using that u · n = 0 on ∂Ω and that Ω is a rectangle,
we deduce ∫

∂Ω

[(u · ∇)u] · n ds = 0.
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Finally, we compute the boundary integral on ∂Bh. For this, we introduce (r, θ) the cylindrical coordinates
centered in the center of Bh and (er, eθ) the associated local basis. We have then n = −er and, writing
differential operators in terms of (r, θ) coordinates, we obtain:

(u · ∇)u · er = ur∂rur +
1

r
uθ∂θur −

1

r
u2
θ

and

div u = ∂rur +
ur
r

+
∂θuθ
r

= 0.

This yields ∫
∂Bh

[(u · ∇)u] · n ds =

∫
∂Bh

|u|2 ds− 2

∫ 2π

0

uθ∂θur dθ.

Here, we may apply that ur = −λ · er on ∂Bh so that we can dominate:∣∣∣∣2 ∫ 2π

0

uθ∂θur dθ

∣∣∣∣ 6 C|λ|2 +
1

2

∫
∂Bh

|u|2 ds.

Finally, we obtain that

2

∫
Ωh

|D(u)|2 dx >
∫

Ωh

|∇u|2 dx+
1

2

∫
∂Bh

|u|2 ds− C|λ|2.

It remains to apply the previous lemma to control the λ term. This ends the proof.

Using Poincaré’s inequality on u1 and on u2 and using that u1 vanishes on the left/right boundaries
(resp. u2 vanishes on the top/bottom boundaries), we obtain that∫

Ωh

|u|2 dx 6 C

∫
Ωh

|D(u)|2 dx,

for a constant C depending only on L,L′. As a consequence, we deduce the following result:

Proposition 2.3. Assume h ∈ (0, h0) and u ∈ V 1(h), there exists a constant C depending only on L,L′, h0

such that ∫
Ωh

|∇u|2 dx+

∫
Ωh

|u|2 dx+

∫
∂Bh

|u|2 ds 6 C

∫
Ωh

|D(u)|2 dx.

To end up this section, we note that this proposition also implies another control of λ. This is the content
of the next lemma:

Lemma 2.4. Assume h ∈ (0, h0) and u ∈ V 1(h), with u = λe2 in Bh.Then

|λ| 6 Ch1/4‖D(u)‖L2(Ωh).

with a universal constant C.

For a proof, we refer to the arguments leading to Lemma 6.4 in [16] (see inequality (A.15)). We note
here that in the proof of [16], we can use the L2-norm on ∂Bh instead of the L2-norm on ∂Ω. Then, we
apply the above Korn inequality to conclude.

2.2 Final step of the proof of Theorem 1.2

Following the assumption of Theorem 1.2, we consider in this subsection that λ0 = 0 and that ρF and
u0 ∈ L2(F0) are given. We consider then the weak solution (u, h) provided by Theorem 1.1 for this initial
data. This solution is defined on (0, T ) where T is finite if contact occurs in time T. We shall prove that,
under the assumption that h0 is sufficiently small and mh0 is sufficiently large, then T might not exceed
some value T∗.

The proof of Theorem 1.2 relies on two ingredients. The first one is a differential inequality derived in
the next section. We summarize this result in the following lemma:
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Lemma 2.5. There exist C] > 0 and C∗ > 0 independent of (m,h0) such that as long as the distance
function h satisfies h 6 1, there holds:

ḣ(t) 6 −gt
2

+ C]gh0 +
C∗

m

∫ t

0

| ln(h(s))| ds . (2.1)

The proof of this lemma is postponed to the next section. The second ingredient of the proof is the
energy inequality (1.17). In case λ0 = 0 the initial energy of the system reads:

E0 :=
1

2

∫
Ω

ρ0|u0|2 dx+magh
0 =

ρF
2

∫
Ω

h0

|u0|2 dx+ (m− πρF )gh0. (2.2)

So, taking mh0 sufficiently large, we have E0 6 2mgh0 so that energy estimate entails:

|ḣ(t)| 6 2
√
gh0, ∀ t ∈ (0, T ). (2.3)

From now on, we suppose (2.3) and (2.1). We fix σ ∈ (0, 1/2) and we choose h0 sufficiently small and
mh0 sufficiently large so that: 

h0 < max

(
2

3(1 + σ)
,

1

(32C])2g

)
,

m >
8C∗

g

{∣∣∣∣ln h0

2

∣∣∣∣+ 3σ

∣∣∣∣ln [(1− σ)
h0

2

]∣∣∣∣} .
(2.4)

We emphasize that, the two conditions are fixed sussessively. First h0 is chosen to fulfill the first condition.
This fixes the right-hand side of the second inequality and we might choose a bigger m (which amounts to fix
mh0 sufficiently large). We will take m even larger in what follows (depending on h0 and σ). We introduce
then the sequence of times: 

t0 =
1

4

√
h0

g
,

tn+1 = tn + σ
h(tn)

2
√
gh0

,

(2.5)

and we show

Lemma 2.6. Given σ ∈ (0, 1/2), h0 sufficiently small and mh0 sufficiently large, the times tn as computed
by (2.5) are well defined for all n ∈ N. Furthermore, for any n > 0 there holds:

(1− σ)n
h0

2
6 h(tn) 6

(
1− σ2

32

)n
3

2
h0. (2.6)

The proof of this lemma shall end the proof of Theorem 1.2. Indeed, by relation (2.6) and definition (2.5),
we have that the sequence of time increments (tn+1−tn)n∈N is dominated by a converging geometric sequence.
In particular tn converges increasingly to a finite time T∗ with (applying again (2.6)) limn→∞ h(tn) = 0.
Since h is at least continuous we get h(T∗) = 0 preventing from T > T∗.

Proof of Lemma 2.6. We recall that we assume at first that h0 and mh0 are chosen so that (2.4) holds true.
We prove by induction that

h(t) ∈ (0, 1) , ∀ t ∈ [0, tn] , h(tn) satisfies (2.6). (Pn)

This entails the expected result.

Case n = 0. By (2.3) and the choice of t0, there holds:

h0

2
6 h(t) 6

3h0

2
∀ t ∈ [0, t0].

The restriction on h0 in (2.4) implies then that h(t) ∈ (0, 1) for t ∈ [0, t0] and h0/2 6 h(t0) 6 3h0/2.
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Induction. Now, fix n ∈ N and assume that (Pk) holds true for all k 6 n. First, from (2.3) and (2.5), we
have:

(1− σ)h(tn) 6 h(t) 6 (1 + σ)h(tn) ∀ t ∈ [tn, tn+1].

In particular, there holds:

(1− σ)n+1 h
0

2
6 h(t) 6 (1 + σ)

3

2
h0 ∀ t ∈ [tn, tn+1]. (2.7)

By choice of h0 we obtain that h(t) ∈ (0, 1) for t ∈ [tn, tn+1] and thus on [0, tn+1] thanks to the induction
assumption. We obtain also already the left-hand inequality in (2.7):

(1− σ)n+1 h
0

2
6 h(tn+1)

All that remains concerns the right-hand inequality in (2.7). For this, we note that h(t) 6 1 on [tn, tn+1] so
that (2.1) holds true. We have then, for t ∈ [tn, tn+1],

ḣ(t) 6 −g
2
t+ C]gh0 +

C∗

m

∫ t

0

| ln(h(s))|ds

6 −g
2
t0 + C]gh0 +

C∗

m

∫ t0

0

| ln(h(s))|ds+
C∗

m

n∑
k=0

∫ tk+1

tk

| ln(h(s))|ds.

For the first three terms, we apply that h(t) ∈ (h0/2, 1) on (0, t0), the definition of t0 and the restrictions
on h0 and m to obtain that:

−g
2
t0 + C]gh0 +

C∗

m

∫ t0

0

| ln(h(s))|ds 6 − 1

16

√
gh0 +

C∗

4m

√
h0

g

∣∣∣∣ln h0

2

∣∣∣∣ 6 − 1

32

√
gh0.

This entails:

ḣ(t) 6 − 1

32

√
gh0 +

C∗

m

n∑
k=0

∫ tk+1

tk

| ln(h(s))|ds.

Introducing again the definition of (tk+1, tk) and the bound below for h(t) on (tk+1, tk) (similar to (2.7) on
(tk, tk+1)) we deduce that:

ḣ(t) 6 − 1

32

√
gh0 +

C∗

m

N∑
k=0

σ
h(tk)

2
√
gh0

∣∣∣∣ln [(1− σ)k+1 h
0

2

]∣∣∣∣ .
Introducing the bound above taken from (2.6) for h(tk) in the remaining sum, we deduce that:

ḣ(t) 6 − 1

32

√
gh0 +

3C∗σ

4m

√
h0

g

N∑
k=0

(
1− σ2

32

)k ∣∣∣∣ln [(1− σ)k+1 h
0

2

]∣∣∣∣ .
Since σ ∈ (0, 1/2) and the series (

n∑
k=0

(
1− σ2

32

)k ∣∣∣∣ln [(1− σ)k+1 h
0

2

]∣∣∣∣
)
n

is convergent, we may increase the value of m so such that:

− 1

32

√
gh0 +

3C∗σ

4m

√
h0

g

n∑
k=0

(
1− σ2

32

)k ∣∣∣∣ln [(1− σ)k+1 h
0

2

]∣∣∣∣ 6 − σ

16

√
gh0. (2.8)

Integrating this bound above for ḣ(t) between tn and tn+1 we conclude that:

h(tn+1)− h(tn) 6 −σ
2

32
h(tn)

This ends up the proof.
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3 Proof of Lemma 2.5

The proof of Lemma 2.5 is obtained by chosing a suitable test-function in the weak formulation of (1.1)–
(1.8). We exhibit now this test-function. The construction is by now classical (see [10, 11] among other).
The main point is to define the test-function below the disk. So, given h 6 1, we set Gh the subdomain of
Ωh defined by

Gh :=

{
x ∈ R2 ; |x1| <

1

4
x2 ∈ (0, H(x1))

}
,

where H is a graph-parametrization of the bottom part of the disk boundary:

H(x1) := h+ γ(x1), γ(x1) = 1−
√

1− x2
1. (3.1)

We also define

G1/2
h :=

{
x ∈ R2 ; |x1| <

1

2
x2 ∈ (0, H(x1))

}
.

We choose δ sufficiently small so that:

∀h 6 1, {(x1, x2) /∈ Gh ; |(x1, x2)− (0, 1 + h)| ∈ [1 + δ, 1 + 2δ]} ⊂ Ω.

Then, in G1/2
h , we define

a(h, x1) = µ1h+ µ2x
2
1, (3.2)

and

φs(x1, x2) = x1

[
(1− a(h, x1))

x2

H(h, x1)
+ a(h, x1)

(
x2

H(h, x1)

)3
]
,

with µ1 = 1/6, µ2 = −3/2. This formula corresponds to the stream function of wh below the disk. We choose
to keep abstract letter µ1, µ2 to emphasize from where these explicit values come from in computations. We
also consider (with δ chosen above) φ : R2 → R such that

φ(x1, x2) =

{
x1 if |(x1, x2)| < 1 + δ,
0 if |(x1, x2)| > 1 + 2δ,

and we set:
φ0(x1, x2) = φ((x1, x2)− (0, 1 + h)).

Finally, our test-function reads in Ωh :

wh = ∇⊥Ψ =

[
−∂2Ψ
∂1Ψ

]
where Ψ =

{
(χφ0 + (1− χ)φ0) in Gh
φ0 in Ωh \ Gh

(3.3)

where χ : R2 → R is a smooth function such that

χ(x1, x2) =


1 in

(
−1

4
,

1

4

)2

,

0 in R2 \
[
−1

2
,

1

2

]2

.

(3.4)

Concerning this test-function, we have the following proposition:

Proposition 3.1. For any h 6 1, the test-function wh enjoys the properties:

divwh = 0 in Ωh, (wh − w∗) · n = 0 on ∂Ωh, 2D(wh)n · τ = 0 on ∂Ω, (3.5)

Moreover, there exists a constant C independent of h such that:

‖wh‖L2(Gh) +

∥∥∥∥∫ x2

0

∂hwh,1

∥∥∥∥
L2(Gh)

+

∥∥∥∥∫ x2

0

∇wh
∥∥∥∥
L∞(Gh)

6 C, (3.6)

‖2D(wh)n · τ‖L∞(∂Bh) +

∥∥∥∥∫ H

0

∇wh
∥∥∥∥
L∞(−1/2,1/2)

6 C (3.7)
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1

| ln(h)|

∫
∂Ωh

|[wh − w∗] · τ | dγ 6 C, (3.8)

h
1
4

(
‖∇wh‖L2(Gh) + ‖∂hwh,2‖L2(Gh) + ‖wh‖L2(∂Bh∩∂Gh)

+

[∫ 1/2

−1/2

(∫ H

0

∂hwh,1 dz

)2

dx1

]1/2
 6 C, (3.9)

and there exists a pressure qh such that, with a constant C independent of h :

‖∆wh −∇qh‖L2(Gh) 6 C, h
1
2

∣∣∣∣e2 ·
∫
∂Bh

Σ(wh, qh)ndγ

∣∣∣∣ 6 C. (3.10)

Outside the gap, we have, with a constant C independent of h :

‖wh‖L2(Ω\Gh) + ‖∂hwh‖L2(Ω\Gh) + ‖∇wh‖L∞(Ω\Gh) + ‖∆wh‖L2(Ω\Gh) + ‖∇qh‖L2(Ω\Gh) 6 C. (3.11)

Proof. The proof of this lemma is made of long and tedious computations. We recall that they are based
on the explicit formulas for wh. Beyond these explicit formulas, the main tools are a comparison between
powers of x2 and x1 appearing in the numerators with powers of H appearing on the denominator. For this,
we point out that x2 6 H while |x1| 6

√
H in Gh. After reduction of formulas based on these comparisons,

computing Sobolev norms reduces to the following estimates of integrals:

∫ 1/4

−1/4

|x1|e

H(x1)p
dx1 6


| ln(h)| if e = 1 and p = 1
h1−p if e = 1 and p > 2

h1/2−p if e = 0 and p > 1

We only provide the computation of the L∞-norm of 2D(wh)n · τ on ∂Bh to explain the choice of µ1 and

µ2. Explicit computations show that, on ∂Bh ∩ ∂G1/2
h , we have:

2D(w)n · τ =
x1h(1− 6µ1)− x3

1(3/2 + µ2)

H2
+O(1).

where O corresponds to a bounded function in x1 independently of h. We see here that, taking µ1 = 1/6 and
µ2 = −3/2, we compensate the diverging terms and obtain that 2D(wh)n · τ remains bounded independent
of h.

To conclude the proof, we provide the construction of the pressure qh which is slightly different from
previous computations due to the form of the function a. From the definition of wh, we deduce

∆w =

[
−∂112Ψ− ∂222Ψ
∂111Ψ + ∂122Ψ

]
in Ωh.

We then set qh = χq̃h in Gh (χ is the truncation function above) that we extend by 0 and where, for x ∈ Gh :

qh(x) =

∫ x1

−1/2

−6sa

H3
ds+ ∂12Ψ + 2

∫ x1

−1/2

(1− a)

(
2H ′

H2
− s

(
2

(H ′)2

H3
− H ′′

H2

))
ds

− 3x2
2

2

(
H ′′

H2
− 2

(H ′)2

H3

)
+ x1

(
3H ′′H ′

H3
− 3

(H ′)3

H4
− H ′′′

2H2

)
x2

2. (3.12)

To give the idea of such a choice, the first integral cancels ∂222Ψ in ∆wh,1 while the second one cancels ∂122Ψ.
Doing so, we have left a term −2∂112Ψ in ∆wh,1 − ∂1qh and a term ∂122Ψ in ∆wh,2 − ∂2qh. Unfortunately,
diverging terms remain in these quantities that we compensate with the remaining explicit terms of the
pressure. Indeed, with this choice, we obtain that

|∆wh −∇qh| 6 C

(
1 +
|x1|
H

)
in Gh
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which entails the expected result. Before ending the proof, we also mention that we choose the integrals in
qh starting form −1/2 in order to avoid the introduction of diverging term when operating the truncation
by χ. Due to the symmetries of the integrated functions, we could as well have chosen to start from 1/2.

To conclude, standard integration by parts using boundary conditions satisfied by wh entail that:

e2 ·
∫
∂Bh

Σ(wh, qn)ndγ =

∫
∂Ωh

wh · Σ(wh, qh)n dγ +

∫
∂Ωh

((w∗ − wh) · τ)(2D(wh)n · τ) dγ

=

∫
Ωh

wh · (∆wh −∇qh) dx+ 2

∫
Ωh

|D(wh)|2 dx+

∫
∂Bh

((w∗ − wh) · τ)(2D(wh)n · τ) dγ.

Inroducing in this relation the previous results of the proposition we obtain the expected bound. This
concludes the proof of the proposition.

Now, we consider a weak solution (u, h) on [0, T ] and we assume that 0 < h 6 1. We take the test
function wh obtained in Proposition 3.1 in the weak formulation (1.16). Noticing that we have ` = 1 in this
case, integrating by parts and introducing the pressure, we obtain:

d

dt

[∫
Ωh

ρFu · w dx+mḣ

]
−
∫

Ωh

ρFu · (∂tw + (u · ∇)w) dx+

∫
Ωh

u · (−∆w +∇q) dx

+ 2

∫
∂Ωh

(u− λw∗) · τ (D(w)n · τ) dγ + ḣe2 ·
∫
∂Bh

Σ(w, q)n dγ

+mag 6 2

∫
∂Ωh

|[u+ w − (λ+ 1)w∗] · τ | − |(u− λw∗) · τ | dγ. (3.13)

We introduce now Φ ∈ C1((0, 1]) such that

Φ′(h) = e2 ·
∫
∂Bh

Σ(wh, qh)n dγ. (3.14)

and we rewrite (3.13):

d

dt

[∫
Ωh

ρFu · w dx+mḣ+ Φ(h) +magt

]
−
∫

Ωh

ρFu · (∂tw + u · ∇w) dx+

∫
Ωh

u · (−∆w +∇q) dx

+ 2

∫
∂Ωh

(u− λw∗) · τ (D(w)n · τ) dγ 6 2

∫
∂Ωh

|[w − w∗] · τ | dγ. (3.15)

For t arbitrary in (0, T ), we integrate this last relation and use the explicit time-dependency of (wh, qh) with
λ0 = 0 to obtain:

mḣ(t) + Φ(h(t)) +magt 6

[∫
Ωh(s)

ρFu(s, x) · wh(s)(x) dx

]s=0

s=t

+ Φ(h0)

+

∫ t

0

∫
Ωh

ρFu · (ḣ∂hwh + u · ∇wh) dx ds

+

∫ t

0

∫
Ωh

u · (∆wh −∇qh) dx ds

− 2

∫ t

0

∫
∂Ωh

(u− λw∗) · τ (D(wh)n · τ) dγ ds

+ 2

∫ t

0

∫
∂Ωh

|[wh − w∗] · τ | dγ ds. (3.16)

We proceed by estimating the different terms on the right-hand side of this inequality. Below, we denote by
Cw any constant depending on our chosen test-functions and on the geometry but independent on h. We
extract the dependencies on the other parameters explicitly and thus provide the extensive computations
below to conclude the proof.
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From (1.17), (3.6) and (3.11), we have[∫
Ωh

ρFu · wh dx
]s=0

s=t

6 Cw
√
ρFE0, (3.17)

where we recall that E0 is defined by (2.2). To compute the second term, we decompose:∫ t

0

∫
Ωh

ρFu · (ḣ∂hw + u · ∇wh) dx ds =

∫ t

0

ρF ḣ

∫
Ωh

∂hwh · u dx ds+

∫ t

0

ρF

∫
Ωh

u · ∇wh · u dx ds. (3.18)

To estimate the the first term in the right-hand side of (3.18), we split Ωh into the domains Gh and Ωh \ Gh.
Combining (3.11), Proposition 2.3 and Lemma 2.1 yields∣∣∣∣∣ρF

∫ t

0

ḣ

∫
Ωh\Gh

u · ∂hw dx ds

∣∣∣∣∣ 6 CwρF

∫ t

0

|ḣ|
(∫

Ωh

|u|2 dx
) 1

2

6 CwρF

∫ t

0

∫
Ωh

|D(u)|2 dx ds

6 CwρFE
0.

In the domain Gh, we apply (3.6), (3.7) and (3.9)∣∣∣∣∫
Gh
ρFu · (ḣ∂hw) dx

∣∣∣∣ 6 ρF |ḣ|
[∣∣∣∣∫
Gh
u1∂2

(∫ x2

0

∂hwh,1 dz

)
dx

∣∣∣∣+

∣∣∣∣∫
Gh
u2∂hwh,2 dx

∣∣∣∣]

6 ρF |ḣ|

∣∣∣∣∫
Gh
∂2u1

(∫ x2

0

∂hwh,1 dz

)
dx

∣∣∣∣+ ‖u‖L2(∂Bh)

[∫ 1/2

−1/2

(∫ H

0

∂hwh,1 dz

)2

dx1

]1/2

+

∣∣∣∣∫
Gh
u2∂hwh,2 dx

∣∣∣∣
]
6 CwρF |ḣ|

[
‖∇u1‖L2(Ωh) + ‖u‖L2(∂Bh)|h|

−1/4 + ‖u2‖L2(Ωh)|h|
−1/4

]
.

Consequently, applying Lemma 2.4, Proposition 2.3 and (1.17), we conclude that∣∣∣∣∫ t

0

∫
Gh
ρFu · (ḣ∂hw) dx ds

∣∣∣∣ 6 CwρF

∫ t

0

∫
Ωh

|D(u)|2 dx ds 6 CwρFE
0.

Outside the gap, we refer to Proposition 2.3 and Lemma 2.4, Proposition 2.3 and (1.17) to yield again that:∣∣∣∣∣
∫ t

0

∫
Ωh\Gh

ρFu · (ḣ∂hw) dx ds

∣∣∣∣∣ 6 CwρF

∫ t

0

∫
Ωh

|D(u)|2 dx ds 6 CwρFE
0.

We conclude that: ∣∣∣∣∫ t

0

∫
Ωh

ρFu · (ḣ∂hw) dx ds

∣∣∣∣ 6 CwρFE
0. (3.19)

As for the other term in the right-hand side of (3.18), we have again:

ρF

∫
Ωh

(u · ∇)wh · u dx = ρF

∫
Gh

(u · ∇)wh · u dx+ ρF

∫
Ωh\Gh

(u · ∇)wh · u dx.

Using (3.11) and Proposition 2.3 entails:∣∣∣∣∣
∫ t

0

ρF

∫
Ωh\Gh

u · ∇wh · u dx ds

∣∣∣∣∣ 6 CwρFE
0.

For the other integral, we integrate by parts:∫
Gh
u · ∇wh · u dx =

∫ 1/4

−1/4

(u⊗ u)(x1, H(x1)) :

[∫ H(x1)

0

∇wh dz

]
dx1

−
∫
Gh
∂2(u⊗ u) :

(∫ x2

0

∇wh dz
)
dx

12



and we apply here (3.6), (3.7) and Proposition 2.3 to obtain

ρF

∣∣∣∣∫ t

0

∫
Gh
u · ∇wh · u dx ds

∣∣∣∣ 6 CwρF

∫ t

0

∫
Ωh

|D(u)|2 dx ds

6 CwρFE
0.

We have finally obtained that:∣∣∣∣∫ t

0

∫
Ωh

ρFu · (ḣ∂hw + u · ∇wh) dx

∣∣∣∣ 6 CwρFE
0. (3.20)

We proceed with the term on the third line of (3.16). Using (3.10) and (3.11), we have:∣∣∣∣∫ t

0

∫
Ωh

u · (−∆wh +∇qh) dx ds

∣∣∣∣ 6 (∫ t

0

‖u‖L2(Ωh) ds

)
‖ −∆wh +∇qh‖L∞(L2(Ωh))

6 Cw
√
t‖Du‖L2(L2(Ωh)) 6 Cw

√
tE0 6 CwE

0 + t. (3.21)

Concerning the term on the fourth line of (3.16), from (3.7), Korn inequality and the energy inequality
(1.17), we obtain:∣∣∣∣∫ t

0

∫
∂Ωh

(u− λw∗) · τ (D(wh)n · τ) dγ ds

∣∣∣∣ 6 Cw

∫ t

0

∫
∂Ωh

|u− λw∗| dγ ds 6 CwE
0. (3.22)

As for the term on the fifth line, recalling (3.8), we have also:∫ t

0

∫
∂Ωh

|[wh − w∗] · τ | dσ ds 6 Cw

∫ t

0

| ln(h(s))|ds. (3.23)

Combining (3.17), (3.20), (3.21), (3.22), (3.23) into (3.16), we obtain:

ḣ(t) 6

(
−g +

ρFπ + 1

m

)
t+

C0

m
+
C∗

m

∫ t

0

| ln(h(s))| ds, (3.24)

with C∗ = Cw and

C0 = Cw(1 + (ρF + 1)E0) + 2 max
(0,1)
|Φ(h)|

= Cw

(
1 + (ρF + 1)

[
ρF
2

∫
Ω

h0

|u0|2 dx+ (m− πρF )gh0

])
+ 2 max

(0,1)
|Φ(h)|

Here, we note that C∗ is independent of m,h0, while choosing mh0 = C1 sufficiently large (recall that
πρF/m < 1), depending on ρF , g and ‖u0‖L2(Ω

h0 ), we might bound

C0

m
=

[
Cw
C1

(
1 + (ρF + 1)

[
ρF
2

∫
Ω

h0

|u0|2 dx

])
+

2

C1
max
(0,1)
|Φ(h)|

]
h0 +

(
1− πρF

m

)
gh0

6 4gh0.

We obtain the expected result with C] = 4. This ends the proof of Lemma 2.5.
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