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Identifying the factors underlying the origin and maintenance of the latitudinal diversity gradient is a central problem
in ecology, but no consensus has emerged on which processes might generate this broad pattern. Interestingly, the
vast majority of studies exploring the gradient have focused on free-living organisms, ignoring parasitic and infectious
disease (PID) species. Here, we address the influence of environmental factors on the biological diversity of human
pathogens and their global spatial organization. Using generalized linear multivariate models and Monte Carlo
simulations, we conducted a series of comparative analyses to test the hypothesis that human PIDs exhibit the same
global patterns of distribution as other taxonomic groups. We found a significant negative relationship between
latitude and PID species richness, and a nested spatial organization, i.e., the accumulation of PID species with latitude,
over large spatial scales. Additionally, our results show that climatic factors are of primary importance in explaining
the link between latitude and the spatial pattern of human pathogens. Based on our findings, we propose that the
global latitudinal species diversity gradient might be generated in large part by biotic interactions, providing strong
support for the idea that current estimates of species diversity are substantially underestimated. When parasites and
pathogens are included, estimates of total species diversity may increase by more than an order of magnitude.

Introduction

Generally, the number of plant and animal species declines
as one moves away from the equator (Pianka 1966; Stevens
1989, 1992; Rohde 1992; Brown 1995; Kaufman 1995; Rosen-
zweig 1995; Roy et al. 1998; Huston 1999; Chown and Gaston
2000; Hawkins and Porter 2001). This pattern, known as the
latitudinal species diversity gradient, has been documented
for many contemporary taxonomic groups (see Brown 1995;
Rosenzweig 1995; Gaston and Blackburn 2000; Allen et al.
2002; Stevens et al. 2003). Over 30 hypotheses have been
proposed to explain it (Rohde 1992), and it is only over the
past several years that the most credible candidates have been
identified; these are hypotheses related to area, energy, and
time (Gaston and Blackburn 2000; Rahbek and Graves 2001)
and to habitat heterogeneity and geometric constraints
(Rahbek and Graves 2001).

The vast majority of studies exploring the latitudinal
species diversity gradient have focused on free-living organ-
isms, such as herbivores, mammals, and angiosperms, and
with rare exception (Hillebrand et al. 2001; Curtis et al. 2002;
Nee 2003), none has examined large-scale latitudinal species
diversity patterns of pathogenic microorganisms. Biotic
interactions such as parasitism, predation, and symbiosis
have been often invoked as a causal mechanism for the
gradient (see Rohde 1992), but no serious attempts have been
made to quantify its importance to biodiversity. Parasitic and
infectious diseases (PIDs), in particular, could prove to be key
in understanding large-scale patterns of species diversity on
Earth since they comprise a major part of total biological
diversity (Combes 1995; Poulin 1998). Moreover, our under-
standing of human diseases and the existence of complete
data sets provide an incomparable opportunity to explore the
existence of a relationship between PID species richness and
latitude, and to identify the determining factors of this
latitudinal gradient.

In recent years, research into nonrandom organization in
parasite communities has turned, e.g., to the possible
existence of nestedness. Nested structure is a hierarchical
organization of species composition in which assemblages
with successively lower species richness tend to be non-
random subsets of richer assemblages (Hanski 1982; Patterson
and Atmar 1986; Patterson and Brown 1991; Poulin and
Guégan 2000). Some species are widely distributed and occur
in many communities, whereas other species have more
restricted distributions and occur only in a subset of the
richest samples (Figure 1). When analysing the most impor-
tant mechanisms responsible for generating nestedness,
Wright et al. (1998) cited four candidate factors: random
sampling, area, isolation, and habitat type. In the present
study we seek an answer to the following question: To what
extent is the global distribution of human pathogens
specified by the properties of the physical environment or
the organism itself, and to what extent does it depend on
chance events?
We examine the global spatial distribution of species

richness for human PIDs, and test the hypothesis that human
diseases follow a latitudinal species richness gradient, with
low latitudes being the richest zones in pathogen species
diversity. We then test two additional propositions: (i) PID
assemblages show nested species patterns along latitudinal
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gradients, i.e., PIDs present at northern latitudes are also
present in larger PID assemblages of equatorial zones, and (ii)
PID assemblages may be strongly influenced by environ-
mental climatic forces.

Results

The Latitudinal Gradient of Species Richness for
Pathogens

After correcting for cofactors (i.e., area and socio-demo-
graphic, physical, and environmental parameters) that could
influence the relationships between latitude and PID species
richness, we still found that species richness in human
pathogens is strongly correlated with latitude (Table 1). On
average (seven times out of ten), tropical areas harbor higher
pathogen species diversities compared to more temperate
areas. Figure 2A illustrates the change in PID species diversity
with latitude across the two hemispheres.

The Nested Organization of Pathogen Species over Large
Scales

Monte Carlo analyses confirmed an overall nested species
pattern of global distribution in PID species richness (Ns =
2,481.4, R0 and R1 procedures, p , 0.0001) and showed
diversity to be strongly nested, with some anecdotal differ-
ences across the different groups of etiological agents (all
groups, p , 0.0001, except for vector-borne viruses, with the
R1 procedure [Ns = 1,787, p = 0.0015]). When considering
the Northern and Southern hemispheres separately, both
were highly nested (R0 and R1 procedures, Ns = 6,602, p ,

0.0001 and Ns = 1,230, p , 0.0001, respectively). This was
confirmed by the R00 procedure used by the Nestedness
Temperature Calculator program (Atmar and Patterson
1995), which provides a useful graphic representation of the
results (Figure 2B), showing that PID species diversity
decreases as one moves northwards or southwards from the
equator (F = 28.2307, df = 161, p , 0.0001). The occurrence

boundary lines (black exponential curves) were fitted by
nonlinear regression (y = 1.51 þ 20.01e-0.29x and y = 1.65 þ
35.87e-0.36x for Northern and Southern hemispheres, respec-
tively). Results from Monte Carlo simulations confirmed that
our nested matrix was nonrandomly generated (p , 0.0001)
(Figure 2C). The spatial organization of PID species richness
on the largest scale matches the nested species subset
hierarchy illustrated in Figure 1A.
Thus, pathogen species that compose a depauperate

community in temperate conditions statistically constitute a
proper subset of those occurring in warmer conditions, and
evidence of pathogen species occurring in temperate areas
but not in tropical ones was rare or anecdotal. It should be
noted that, at this large spatial scale, our study demonstrates a
nested pattern in PIDs, with a progression of species richness
from polar regions to the equator, indicating that nestedness
is strongly associated with latitude (see Figure 2B). But this
does not contradict the fact that some pathogens may be
strict endemics of more temperate areas (e.g., Lyme disease).

The Effect of Climatic Variables on Biodiversity
Latitude is a proxy variable for a wide range of covarying

bio-climatic factors and in itself has no meaning regarding
factors potentially affecting species diversity. We therefore
investigated the relationship between pathogen diversity and
individual climatic variables reflected in the composite
variable ‘‘latitude’’ (Table 2). Results show significant positive
correlations between pathogen species richness and the
maximum range of precipitation after Bonferroni multiple
corrections for all six of the PID taxa considered: bacteria (r
= 0.3545, df = 213, p , 0.0001), viruses directly transmitted
from person to person (r = 0.2350, df = 215, p , 0.0001),
viruses indirectly transmitted via a vector (r = 0.3575, df =
215, p , 0.0001), fungi (r = 0.3554, df = 216, p , 0.0001),
protozoa (r = 0.3744, df = 216, p , 0.0001), and helminths (r
= 0.4270, df = 215, p , 0.0001). On the other hand, the
relationship between PID species richness and monthly
temperature range was only significant for three groups of

Table 1. Minimal Models for Latitude Explaining PID Species
Richness of Etiological Groups

Etiological Group Latitude

Bacteria �
Viruses p = 0.0061; df = 156 ; slope (�)
Viruses directly transmitted �
Viruses indirectly transmitted p , 0.0001; df = 155 ; slope (�)
Helminths p = 0.0010; df = 150 ; slope (�)
Protozoa p = 0.0064; df = 221 ; slope (�)
Arthropods p = 0.0377; df = 221 ; slope (�)
Fungi �
Microparasites p = 0.0002; df = 155 ; slope (�)
Macroparasites p , 0.0001; df = 208 ; slope (�)

Of all factors included as potential predictors of PID species richness (see Materials
and Methods), Table 1 focuses on the emergence of latitude as a possible
explanatory variable in minimal models. When significant, the probability value (p),
the degrees of freedom (df), and the sign of slope (þ/�) are given.
DOI: 10.1371/journal.pbio.0020141.t001

Figure 1. The Spatial Organization of Species

Letters represent different PID species. Numbered rectangles
represent different countries or areas.
(A) Nested organization of species. Applying Diamond’s theory, we
here distinguish (1) ‘‘high-S’’ species, like species E, which are
exclusively confined to the most species-rich communities; and (2)
‘‘tramps,’’ like species A, which occur mostly in richer communities
but also in species-poor communities (e.g., measles, which is found in
virtually every country). Thus, this nested pattern implies that some
pathogens are restricted to the tropics, while others, more ubiquitous
species, are widely and regularly distributed all over the world.
(B) Random distribution of species, where no spatial organization
occurs (see also Materials and Methods).
DOI: 10.1371/journal.pbio.0020141.g001
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pathogens: bacteria (r = 0.3016, df = 213, p , 0.0001),
directly transmitted viruses (r = 0.2142, df = 214, p =
0.0015), and helminths (r = 0.2590, df = 213, p = 0.0001). In
contrast to previous results (Allen et al. 2002), we found no
significant relationship between PID species richness and
mean annual temperature. Finally, only the relationship
between bacteria species richness and mean annual precip-
itation was significant (r= 0.1987, df= 213, p= 0.0034). Very

little difference was observed among hemispheres concerning
these relationships (data not shown).

Taken together, these findings indicate that the species
richness of human pathogens, their spatial distribution and
organization on a large scale, the maximum range of
precipitation, and, to a lesser extent, monthly temperature
might be intimately connected in generating the observed
pattern of disease diversity.

Figure 2. The Latitudinal Gradients of PID Species

(A) Relationship between PID species richness and latitude across the two hemispheres. Linear relationships between PID species richness and
latitude (dotted lines) are highly significant (F = 12.29, df = 29, p = 0.0015 and F = 18.01, df = 130, p , 0.0001 for Southern and Northern
hemispheres, respectively). No difference in disease species richness with latitude across the two hemispheres was observed (interaction: F =
2.68, df = 159, p = 0.1036). Residuals of PID species richness on the y axis were extracted from minimal models controlling for the effects of
confounding factors on PID species diversity estimates (see Materials and Methods). Locally weighted regression (tension 0.5) did not change the
general linear shape. Latitude is expressed in minute degrees.
(B) Presence/absence matrix for the 229 distinct PID species across the hemispheres. The figure was generated by the Nestedness Temperature
Calculator (see Atmar and Patterson 1995). The distribution is nonsymetrical because of the 224 studied countries, 172 countries are found in
the Northern hemisphere versus only 52 in the Southern one. (B) indicates that PID species diversity decreases as one moves northwards or
southwards from the equator. The black exponential curves are the occurrence boundary lines (see Materials and Methods). The color scale
indicates the nonuniform probability of state occupancy among all of the cells of the matrix, i.e., the probability of encountering a species as
function of its position in the matrix. Black cells are highly predictable presences, whereas red cells are unexpected presences.
(C) Monte Carlo–derived histogram after 1,000 permutations. The histogram represents the 1,000 values obtained after Monte Carlo
permutations. The average theoretical value under the null hypothesis is compared to our real value, to assess the likelihood that the parent
matrix was nonrandomly generated. The probability is highly significant (p , 0.0001), confirming that the spatial organization of PID species
richness on the largest scale matches the nested species subset hierarchy illustrated in Figure 1A. The symmetrical Gaussian distribution
indicates that 1,000 permutations are enough to obtain reliable variance estimates for probability calculations.
DOI: 10.1371/journal.pbio.0020141.g001
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Discussion

To our knowledge, this is the most comprehensive report
of how PID species richness varies with latitude and the
ecological factors behind observed trends. Our results
support previous studies in showing that species diversity
increases as one proceeds from the poles to the equator
(Pianka 1966; Stevens 1989; Rohde 1992; Brown 1995; Rosen-
zweig 1995; Chown and Gaston 2000). This similarity in the
patterns of PID species and free-living organisms suggests
that common mechanisms are at work. Regardless of whether
PID richness simply tracks host diversity or, rather, is
determined to a greater extent by exogenous factors, our
analyses indicate that the most likely explanation for these
patterns is the climatically-based energy hypothesis, i.e., that
energy availability generates and maintains species richness
gradients (Rohde 1992; Gaston and Blackburn 2000; Allen et
al. 2002; Hawkins et al. 2003). Many studies have identified
correlations between gradients in species diversity and
variation in climate (Hill et al. 1999). Climate, in turn, largely
determines the species of plants and animals that live in those
areas. According to our results—and in contrast to the results
of Allen and colleagues (2002), who showed that environ-
mental temperature was the best predictor of species
diversity for terrestrial, freshwater, and marine ectotherm
taxa—the maximum range of precipitation is highly corre-
lated with the latitudinal gradient of pathogen species, with
diversity significantly increasing with this climate-based
factor. Interestingly, the annual variation of precipitation
around the mean (and not the mean itself) was the best
predictor overall of pathogen species distribution. This
suggests that pathogen species, their vectors, or their hosts

tend to be adapted to regions having more contrasted
wetness and dryness conditions through the year (i.e., in
tropical regions). Many parasites obviously require water or
humid conditions to complete their life cycle, e.g., vector-
borne diseases. So, the physical factor of precipitation
variation may affect parasitic and infectious microorganism
diversity, if the biological cyclicity of a variety of parasitic and
infectious stages have adapted to the variability of precip-
itation. This might be why ‘‘latitude’’ does not appear in the
minimal generalized linear models (GLIMs) for explaining the
richnesses of bacteria, directly transmitted viruses, and fungi,
these taxa being ‘‘internal’’ to the host, so less directly
affected by environmental variability. Moreover, these taxa
may more readily spread over longer distances via their hosts,
and this should minimize the impact of environmental
conditions. In contrast, taxa with ‘‘external’’ stages, like
helminths or vector-transmitted pathogens, are more influ-
enced by their environment. Nevertheless, other causes might
explain why certain taxa do not conform to the general
pattern, notably (1) the absence of possible explanatory
variables in the GLIMs, (2) missing or imprecise information
due to the large scale of our study, or (3) the real absence of
correlations between the spatial distributions of certain
taxonomic groups and the variables considered here.
All three nestedness models (see Materials and Methods)

explained some of the variation in pathogen species across
latitudes. Distance and isolation from pathogen species–rich
regions in the tropics may sort PID species by their
extinction–colonization dynamics (Lomolino 1996). In addi-
tion, the availability of new hosts and reservoirs, passive
sampling, and probabilistic filters screening species with
particular characteristics (local habitat suitabilities, differ-

Table 2. Relationship Between PID Species Richness by Etiological Group and Four Bio-Climatic Factors

Etiological Group Mean Annual
Temperature

Monthly Temperature
Range

Mean Annual
Precipitation

Maximum Range
of Precipitation

Bacteria
r = 0.0301 (þ)
p = 0.6602
df = 213

r = 0.3016 (þ)
p , 0.0001
df = 213

r = 0.1987 (�)
p = 0.0034
df = 213

r = 0.3545 (þ)
p , 0.0001
df = 213

Viruses directly transmitted
r = 0.0796 (�)
p = 0.2450
df = 213

r = 0.2142 (þ)
p = 0.0015
df = 214

r = 0.0721 (�)
p = 0.2927
df = 213

r = 0.2350 (þ)
p = 0.0005
df = 215

Viruses indirectly transmitted
r = 0.1585 (þ)
p = 0.0200 *
df = 213

r = 0.1267 (þ)
p = 0.063
df = 214

r = 0.0319 (�)
p = 0.6416
df = 213

r = 0.3575 (þ)
p , 0.0001
df = 215

Helminths
r = 0.0244 (þ)
p = 0.7225
df = 213

r = 0.2590 (þ)
p = 0.0001
df = 213

r = 0.0463 (�)
p = 0.4998
df = 213

r = 0.4270 (þ)
p , 0.0001
df = 215

Protozoa
r = 0.1762 (þ)
p = 0.0096 *
df = 213

r = 0.0679 (þ)
p = 0.3218
df = 213

r = 0.1025 (�)
p = 0.1341
df = 213

r = 0.3744 (þ)
p , 0.0001
df = 216

Fungi
r = 0.0502 (þ)
p = 0.464
df = 213

r = 0.1037 (þ)
p = 0.1296
df = 213

r = 0.0231 (�)
p = 0.7364
df = 213

r = 0.3554 (þ)
p , 0.0001
df = 216

Pearson’s correlation (r), sign of slope (þ/�) and significance levels (p) are given. * indicates significance levels which become nonsignificant after the Bonferroni correction
(k = 6 multiple comparisons).
DOI: 10.1371/journal.pbio.0020141.t002
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ential colonization capacities of species, and sustainability of
viable populations within their environment) may further
limit PID species (Wright et al. 1998) and thus strongly affect
the spatial organization of PID species. Nestedness might in
fact be an inevitable second-order consequence of the same
factors that cause variation in species richness and range size
(Gaston and Blackburn 2000).

In addition, our results suggest that total species diversity
on the planet might be substantially underestimated, espe-
cially because inventories generally focus attention on the
most charismatic groups (Shaw and Hochberg 2001), and
little is known about the biodiversity of microorganisms
associated with each considered group of organisms, i.e.,
hosts (Ashford and Crewe 1998; Ashford 2000; Nee 2003).
Based on a single host species, humans, we estimate that true
tropical pathogen species diversity is greater than current
estimates by a factor of about 22 in the Northern Hemisphere
and about 37 in the Southern Hemisphere. If our work is
representative of other (host) species, diversity may be
currently underestimated by more than an order of magni-
tude, and based on our findings, this differential should
increase as one goes from temperate to tropical latitudes.
Our work quantitatively demonstrates that parasitic and
pathogenic organisms, as representatives of biotic interac-
tions, strongly amplify the general latitudinal gradient in
species richness. The smallest organisms that have been
neglected by science could very well be the biggest in
generating the observed diversity pattern.

The demonstration that parasitic and infectious organisms
in humans do not constitute random assemblages at large
spatial scales, but rather that many types of microorganisms
show a predictable geographical distribution over the planet,
could have important implications for public health policies.
Our results show that climatic factors are of primary
importance in explaining the occurrence and diversity of
human pathogens, suggesting that global climate change
might have cascading effects regarding the risks of PIDs. For
instance, if specific temperate areas were to become more
tropical, our results suggest that PID species and their
associated vectors/reservoirs would be likely to colonize these
changed areas. This would imply a progressive dissolution of
the latitudinal effect and of the nested hierarchical structure
as observed in the present study as pathogen species became
more globally distributed. There is some recent evidence for
this hypothesis (see Lindgren and Gustafson 2001).

Other variables are indeed important in explaining global-
scale patterns of human pathogens (e.g., modernization,
urbanization, and pauperization, especially in developing
countries). Thus, we do not mean to imply that latitude and
surrogate variables are the only ones affecting PID species
richness. Nevertheless, our results challenge the conventional
wisdom that socio-economic conditions are of preponderant
importance in controlling or eradicating diseases. These
considerations indicate that a better understanding of PID
species diversity and community dynamics in a changing
world will be one of the major challenges in environmental
epidemiology in the future.

Materials and Methods

Presence/absence matrix.We compiled data on PID occurrence for
a total of 332 different human pathogens, including bacteria, viruses,

fungi, protozoa, and helminths distributed across 224 nations.
Epidemiological data on PID species were extracted from the Global
Infectious Diseases and Epidemiology Network database (http://
www.cyinfo.com).The presence/absence matrix for the 229 distinct
PIDs (after elimination of 103 unavailable values) across the Northern
and Southern hemispheres was organised employing the Nestedness
Temperature Calculator (Atmar and Patterson 1995). One hundred
seven ubiquitous pathogen species were eliminated from the database
because the information they contained was entirely redundant with
that of the most ubiquitous species already present in the matrix. The
matrix of species presence/absence provides distributional informa-
tion about which species occurs in which countries.

GLIMs. We employed GLIMs (Crawley 1993; Venables and Ripley
1999) from the S-Plus statistical package (Venables and Ripley 1999)
to identify and characterize the effects of potential independent
parameters and their interaction terms on PID species richness,
which is the total number of human diseases known within the
boundary limits of each country. It has been argued that species
richness increases with increasing area sampled (Hawkins and Porter
2001; but see Rohde 1997). Therefore, we included total surface area
per country (in square kilometers) in our analyses, in order to control
for its effect in the multivariate analysis. Similarly, we considered
human population size and human population density per country
(in persons per square kilometer), both highly colinear with surface
area, as possible explanatory factors, since the number and density of
human hosts may also influence parasite species richness (Anderson
and May 1991; Guégan et al. 2001). In addition, we considered a
variety of environmental, demographic, and economical factors.
Variables selected as environmental factors for each country were (1)
continent, (2) hemisphere, (3) whether the country was insular or
continental, (4) percentages of arable land, permanent pastures,
permanent crops, irrigated lands, forest woodlands, and ‘‘other,’’ (5)
mean latitude coordinate, centered at the country barycenter (in
minute degrees), and (6) mean longitude (in minute degrees) from the
Greenwich Meridian.

Variables selected as demographic factors were (1) human
population size, (2) human population density (persons per square
kilometer), (3) human birth rate (births/1,000 people/year), (4) human
death rate (deaths/1,000 people/year), and (5) annual population
growth rate (average annual percent change in the population,
resulting from a surplus or deficit of births over deaths and the
balance of migrants entering and leaving a country).

We employed the gross national product (per capita in United
States dollars) as the economic factor, which is the value of all
final goods and services produced within a nation in a given year,
plus income earned by its citizens abroad, minus income earned
by foreigners from domestic production. We also selected a few
other variables linked to particular landscape practices (percen-
tages of arable land, permanent pastures, permanent crops,
irrigated lands, forest woodlands, and ‘‘other’’), which were
supposed to interact with the production of the nation. Data
were collected from The World Factbook 2001 on the Internet
(http://www.cia.gov/cia/publications/factbook) and from the appen-
dix of Scott and Duncan (1998).

To relate richness to environmental factors, we employed a GLIM
with a Poisson error and a log link function (see Wilson and Grenfell
1997). Factors and their interaction terms were selected by a
backward stepwise elimination procedure from the general model
according to the Akaike criterion (Crawley 1993; Burnham and
Anderson 2002). Deviances were compared using v2 statistics.

Spatial autocorrelation analysis. When data suggested nonlinear
trends, explanatory variables were transformed and fitted again to
improve their contribution to the models. Since close geographical
neighbors (i.e., two countries sharing a boundary) probably also share
common PID species, simple cross-country comparisons could
include spatial autocorrelation artefacts (Manly 1991). To test
whether this influenced our regressions, we employed Monte Carlo
simulations to calculate Moran’s index (I) between the matrix of PID
species richness and the matrix of distances across the 224 countries
(Manly 1991; Guégan and Hugueny 1994). The I value is bound
between�1 andþ1, with 0 indicating no spatial autocorrelation, and
þ1/�1 indicating a strong positive/negative autocorrelation, respec-
tively. We first computed the correlation coefficient based on all pairs
of neighboring countries, and we randomly estimated 99 coefficients
each time, permuting the matching countries. The decision rule,
ensuring significance at a = 0.01, consisted in rejecting the null
hypothesis of the absence of spatial correlation if the correlation
coefficient obtained for nonpermuted data was maximum among all
100 coefficients. The calculation of I using Monte Carlo simulations
indicated no strong spatial autocorrelation (I0 = 0.08 equals Is = 0.11
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at a= 0.01), suggesting that the close similarities between PID species
richness and composition observed between neighboring countries
conforms to the latitudinal diversity gradient.

Nestedness analysis. We also employed Monte Carlo simulations
(Manly 1991; Guégan and Hugueny 1994) to evaluate PID spatial
organization at the largest scale. We used the data matrix of presence/
absence values for 229 different pathogen species of the total dataset
comprising 224 countries. We assessed the degree of nestedness of the
system using two different, but complementary, analysis programs: (1)
Nestedness (Guégan and Hugueny 1994) and (2) Nestedness Temper-
ature Calculator (Atmar and Patterson 1995). Nested diversity
patterns are identified when species found in depauperate commun-
ities represent nonrandom subsets of progressively richer commun-
ities (Gaston and Blackburn 2000; Poulin and Guégan 2000). In
procedure 1, pathogen species were either selected with uniform
probability (null model R0) or with a probability proportional to their
incidence (R1) (Guégan and Hugueny 1994), whereas in procedure 2
we tested the null model R00 (Poulin and Guégan 2000; see also Cook
and Quinn 1998; Wright et al. 1998; Gaston and Blackburn 2000).
Nestedness Temperature Calculator generates simulated null ma-
trices without either row or column constraints (hence ‘‘00’’); only the
total number of presences is fixed at the observed value. All three null
hypotheses assume that sites are independent of one another (Wright
et al. 1998).

According to the procedure adopted by the Nestedness Temper-
ature Calculator (see Atmar and Patterson 1995), the matrix is first
‘‘packed’’ into a state of maximum nestedness, reordering rows and
columns. By convention, the most species-rich country is placed
along the top row, and the most widely distributed species is placed in
the leftmost column, so as to concentrate presences in a corner of the
matrix, and to minimize unexpected species absences and presences
as in theoretical Figure 1A. This will make differences in PID species
distribution across countries readily perceivable. Moreover, not all
unexpected species presences and absences are of equal informa-
tional value, and this must be taken into account. As we move away
from the corner, where cells are most likely to be occupied,

unexpected absences and presences begin to appear. The occurrence
boundary lines (black exponential curves in Figure 2B) are based on
the distribution of unexpected species’ presences and absences within
the matrix. These curves determine the hypothetical boundary
between the occupied area of the matrix and the unoccupied area.
A color scale indicates the probability of a cell’s occupancy.
Nestedness Temperature Calculator also includes a Monte Carlo
component to assess the statistical assurance that the parent data
matrix was not randomly generated. To assess that probability, 1,000
randomized permutations were drawn to determine a baseline
expectation. The result is a histogram representing the 1,000
‘‘temperature’’ values obtained after permutations (Figure 2C). A
black arrow indicates the ‘‘temperature’’ value observed with our
master matrix. Lastly, the probability of obtaining this value by
random is calculated.
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