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Abstract: We develop an effective 1+1D model describing nonlinear propagation in mul-

timode graded-index fibers. The model is able to quantitatively reproduce recently observed

phenomena like geometric parametric instability and broadband dispersive wave emission.

OCIS codes: (060.4370) Nonlinear optics, fibers; (060.5530) Pulse propagation and temporal solitons; (190.4420)

Nonlinear optics, transverse effects in.

Nonlinear pulse propagation in multimode fibers (MMFs) is focusing a tremendous research interest [1]. The ex-

perimental observations of multimode solitons generating ultrabroadband dispersive waves [2], geometric parametric

instability (GPI) [3], and beam self-cleaning [4], are striking examples of the incredibly rich and complex scenario

offered by nonlinear propagation in GRIN fibers. The two models exploited for the mathematical description of prop-

agation in MMFs, nalemy the 3+1D Generalized Nonlinear Schrödinger Equation (GNLSE) [3], and the multi-mode

GNLSE (MM-GNLSE) [5], are computationally very expensive. We describe here an efficient and accurate model for

the description of nonlinear pulse propagation in parabolic GRIN fibers. It consist in a 1+1D GNLSE with a periodic

nonlinear coefficient, which can be solved in an extremely efficient way by standard split-step methods and requires

very modest computational resources. Our model accurately reproduces different phenomena peculiar to parabolic

GRIN fibers, like geometric parametric instability and broadband dispersive wave emission [7]. The starting point of

our investigations is the following 3+1D GNLSE [3]
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is the self-steepening time. The propagation of a continuous wave beam in a parabolic GRIN fiber experiences self-

imaging, due to the equal spacing of the propagation constant of the modes [1]. If the injected field is a Gaussian beam,

the field remains approximately Gaussian. The amplitude of the solution takes the following form [6]:
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number measuring the distance from beam collapse. We write the solution of Eq. (1) as E(x,y,z, t) = A(z, t) ·Fs(x,y,z),
where we have approximated the stationary self-imaging field with its linear shape [p ≈ 0, C ≈ 1/(β 2

0 a4
0g) in Eq. (2)],

and accounted for all the temporal and nonlinear effects in the envelope A(z, t). By inserting this Ansatz into Eq. (1),

after multiplication by F∗
s , and integration over the transverse plane x,y, we get:

i∂zψ + d(i∂ t)ψ + γ(z) fNL(ψ) = 0, γ(z) =
ω0n2

cAe f f (z)
=

ω0n2

2πca2(z)
, (3)

where ψ(z, t) = A(z, t)
√

S is the envelope normalized to the area S =
∫ ∫ |Fs(x,y,z)|2dxdy = πa2

0, so that |ψ |2
represents the optical power expressed in Watts, and a2(z) is given by Eq. (2). The effective area is obtained through

the standard definition Ae f f =
(
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)2
/
∫ ∫ |Fs(x,y,z)|4dxdy. Equation (3) constitutes a 1+1D GNLSE

where the spatial effects are summarized by the periodic nonlinear coefficient γ(z). Physically, the self-imaging pattern



generates a z-varying effective area Ae f f (z), due to the periodic beam focusing, which thus couples the spatial evolution

to the temporal envelope ψ(z, t). Equation (3) perfectly reproduces complex spatiotemporal phenomena like GPI [3,6]

and ultrabroadband dispersive wave emission [2], and agrees quantitatively with 3+1D GNLSE [7].

In order to test the accuracy of our model on the field, we performed experiments in a 2 meters long commercial

parabolic GRIN fiber (Draka 50/125). We pumped the fiber by a microchip laser, delivering 425 ps pulses at 1064 nm

with the repetition rate of 1 kHz. The Gaussian pump beam was focused at the input face of the fiber with a FWHMI

diameter of 12 microns and a peak power of 30 kW. Figure 1 shows the measured output spectrum (blue curve), which

is perfectly reproduced by numerical solution of Eq. (3) (dashed red curve). For the numerical simulation we used

the full dispersion curve of 0.1% Germanium doped silica, and the parameters reported in the caption of Fig. 1. The

perfect agreement between simulation and experiment allow us to unambiguously identify the different spectral peaks.

The two main peaks at ±130 THz are the first GPI bands (band number 1, green lines). The first GPI band turns out to

be phase-matched also at 180 THz through higher order dispersion (band number 2, cyan line). The line at 235 THz

(band number 3, magenta line) is due to the cascaded GPI [8] generated by the intense spectral component at 130 THz.

The peak at 260 THz derives from the four-wave mixing between the pump and the first GPI band (band number 4,

grey line). The peak at 80 THz is not generated by nonlinear effects, and is a residue of the diode pumping the laser.
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Fig. 1. Measured (blue curve) and simulated (red dashed curve) spectrum after the propagation in

2 meters of a commercial GRIN fiber. Simulation parameters: P =30 kW, pulse duration 40 ps

(supergaussian), rc = 26 µm, ∆ = 0.0091, n2 = 3.2 ·10−20 m2/W, a0 = 10 µm.

To conclude, we have derived a new model for the description of nonlinear propagation in parabolic GRIN fibers,

which quantitatively reproduces experiments on GPI. In general, it is able to describe all the scenarios where a stable

self-imaging pattern is generated inside the fiber. Given the drastic reduction of computational time with respect to the

full 3+1D equation, we expect that our model will become a workhorse for the description of nonlinear dynamics in

MMFs.
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Photonics 11, 237241 (2017).

5. F. Poletti and P. Horak, J. Opt. Soc. Am. B 25, 1645 (2008).

6. S. Longhi, Opt. Lett. 28, 2363 (2003).

7. M. Conforti, C. Mas Arabı́, A. Mussot, and A. Kudlinski, Opt. Lett. 42, 4004 (2017).

8. R. Dupiol, A. Bendahmane, K. Krupa, A. Tonello, M. Fabert, B. Kibler, T. Sylvestre, A. Barthélémy, V. Couderc,
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