Chao Lyu 
  
Yann Capdeville 
  
Liang 
  
Lyu Chao 
  
Capdeville Yann 
  
Zhao Liang 
  
Lyu & Al 
  
Efficiency of the spectral element method with very high polynomial degree to solve the elastic wave equation

come    

Efficiency of the spectral element method with very high polynomial degree to solve the elastic wave equation

INTRODUCTION

Solving the acoustic and elastic wave equations numerically is a critical step for many research based on seismic data. It is especially important for most seismic imaging methods, from the exploration scale to the global Earth scale. Even though the Finite Difference (FD) Efficient high degree spectral element method still dominates in the seismic exploration community, the spectral element method (SEM) [START_REF] Maday | Spectral element methods for the incompressible navierstokes equations: State-of-the-art surveys on computational mechanics[END_REF][START_REF] Seriani | Spectral element method for acoustic wave simulation in heterogeneous media[END_REF][START_REF] Komatitsch | The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures[END_REF][START_REF] Komatitsch | Introduction to the spectral-element method for 3-D seismic wave propagation[END_REF][START_REF] Chaljub | Spectral element analysis in seismology[END_REF] has been gaining more and more popularity, especially in the academic community. It is often the chosen method for global or regional Earth scale seismic imaging developments based on adjoint methods and full waveform inversion method [START_REF] Capdeville | Towards global earth tomography using the spectral element method: a technique based on source stacking: Geophysical Efficient high degree spectral element[END_REF][START_REF] Tromp | Seismic tomography, adjoint methods, time reversal and banana-doughnut kernels[END_REF][START_REF] Fichtner | Full seismic waveform Efficient high degree spectral element tomography for upper-mantle structure in the australasian region using adjoint methods[END_REF][START_REF] Zhu | Structure of the European upper mantle revealed by adjoint tomography[END_REF][START_REF] Monteiller | Three-dimensional full waveform inversion of short-period teleseismic wavefields based upon the SEM-DSM hybrid method[END_REF][START_REF] Wang | The deep roots of the western pyrenees revealed by full waveform inversion of teleseismic p waves[END_REF][START_REF] Beller | Lithospheric architecture of the south-western alps revealed by multiparameter teleseismic full-waveform inversion[END_REF][START_REF] Trinh | Efficient time-domain 3D elastic and viscoelastic full-waveform inversion using a spectral-element method on flexible cartesian-based mesh[END_REF].

SEM is a finite element type method and, as such, is based on the weak form of the wave equation. Two versions of the SEM exist, one based on Chebyshev polynomials and one based on Legendre polynomials. In the following, we only use the Legendre version, which is the basis for many available programs. Compared to classical low-degree finite elements, the Legendre SEM is based on a tensorised high-degree polynomial approximation per element combined with a precise numerical quadrature associated with the so-called Gauss-Lobatto-Legendre (GLL) points. It has a spectral convergence with the element polynomial degree, thus leading to a low spatial dispersion. Moreover, its tensorial formulation leads to a diagonal mass matrix, which is a strong advantage for explicit time schemes. It can naturally and accurately handle free surface and material discontinuities. This capability to accurately model interface waves such as surface waves is one of the main reasons for its popularity.

Despite its quality, the SEM has one critical drawback: to warrant the accuracy of the method, each material discontinuity interface has to be explicitly meshed. Moreover, because this method is based on a tensorial formulation, the mesh needs to be based on quadrilateral (in 2-D) or hexahedron (in 3-D) elements. The meshing difficulty can strongly limit the applicability of the method, especially in 3-D. Note that some examples of SEM based on triangles exist but their efficiency is lower and with a limited polynomial degree range [START_REF] Komatitsch | Wave propagation in 2-D elastic media using a spectral element method with triangles and quadrangles[END_REF][START_REF] Mercerat | Triangular spectral element simulation of two-dimensional elastic wave propagation using unstructured triangular grids[END_REF][START_REF] Afanasiev | Modular and flexible spectral-element waveform modelling in two and three dimensions[END_REF]. Efficient high degree spectral element One of the key parameters when using SEM is the polynomial degree N used in each tensorial direction for each element. In seismology, N = 4 is often chosen [START_REF] Komatitsch | The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures[END_REF][START_REF] Komatitsch | Introduction to the spectral-element method for 3-D seismic wave propagation[END_REF] and sometimes N = 8 [START_REF] Chaljub | Solving elastodynamics in a solid heterogeneous 3-Sphere: a spectral element approximation on geometrically non-conforming grids[END_REF][START_REF] Capdeville | Coupling the spectral element method with a modal solution for elastic wave propgation in global earth models[END_REF]. Although it depends on the desired accuracy, the propagated distance and on how the minimum wavelength is estimated, the commonly admitted number of grid points per minimum wavelength (G) to obtain sufficient accuracy in a constant velocity medium is approximately G = 5 ∼ 6 for N = 4 and G = 4 ∼ 5 for N = 8 [START_REF] Priolo | A numerical investigation of Chebyshev spectral element method for acoustic wave propagation[END_REF][START_REF] De Basabe | Grid dispersion and stability criteria of some common finite-element methods for acoustic and elastic wave equations[END_REF][START_REF] Seriani | Dispersion analysis of spectral element methods for elastic wave propagation[END_REF]. A low G is obviously an advantage as it lowers the required computer memory and maybe the computing cost of a modeling. In particular, a low G can be important in the full waveform inversion (FWI) context. Indeed, FWI schemes operate on the forward and adjoint wavefield. To do so, some methods rely on the partial or compressed storage [START_REF] Komatitsch | Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion[END_REF][START_REF] Boehm | Wavefield compression for adjoint methods in full-waveform inversion[END_REF] or even full storage to avoid backward propagation [START_REF] Fichtner | Full seismic waveform Efficient high degree spectral element tomography for upper-mantle structure in the australasian region using adjoint methods[END_REF]. In 3-D, dividing G by 2 implies a storage requirement divided by 8, which is significant. In the 1-D case, it has been shown, for N = 60, G can be as low as about 2 ∼ 2.5 [START_REF] Priolo | A numerical investigation of Chebyshev spectral element method for acoustic wave propagation[END_REF]. Nevertheless, the most widely used degree N is still 4 not 60, which is for two reasons:

• Taking advantage of a large N and a low G imposes being able to use very large elements. For example, an element for N = 60 needs to be about 15 times larger than an element for N = 4 (assuming a constant G(N ) for the sake of simplicity).

In most realistic situations, this is not possible because of the necessity to mesh mechanical discontinuities and the domain geometry;

• The GLL points are not evenly spaced. They cluster toward the edges of the elements and this clustering is stronger with large N as shown in Figure 1 stability condition is governed by the minimum value of the ratio between the size of the grid cells and the P-wave velocity expressed as:

dt ≤ C dx min V P , ( 1 
)
where C is the courant constant and V P is P-wave velocity. In the following, we refer to dt CFL as the largest stable time step of the Newmark scheme for a given test case.

As a consequence, the possibility to use very high degree spectral elements has not been considered as a valid option and has not been studied yet unlike for finite differences method [START_REF] Liang | Determining finite difference weights for the acoustic wave equation by a new dispersion-relationship-preserving method[END_REF]. Nevertheless, in the forward modeling context, the recent Efficient high degree spectral element introduction of the non-periodic homogenization [START_REF] Capdeville | 2-D non-periodic homogenization to upscale elastic media for P-SV waves[END_REF][START_REF] Cupillard | Non-periodic homogenization of 3-D elastic media for the seismic wave equation[END_REF] has solved many of the meshing difficulties and opens the door to the use of very high degree N . In the inverse problem context, models are generally smooth and using very high degree elements has always been an option.

The non-periodic homogenization is an asymptotic method designed to compute effective media in the case of deterministic media with no scale separation such as geological media. For a given maximum source frequency and a complex "true" medium, this method computes a smoothly varying effective medium in which the computed waveform is the same as a reference solution computed in the true medium, up to a controllable error. This is true for all type of waves, including surface, refracted, backscattered, etc, waves. In the forward modeling context, homogenization can be seen as a preprocessing step upscaling original media to the wavelength scale.

Regarding SEM, homogenization solves some aspects of the meshing issue: indeed, after homogenization, there is no more mechanical discontinuity to honor, except for the free surface. This makes the option of using very large elements with a high degree N possible, opening the door to a lower G than for the classical degree N = 4 and therefore allowing a lower memory. Nevertheless, about the computing cost, the fact that GLL points cluster toward the edges of the elements is still true and will go against the advantages of a lower G. The objective of this work is, therefore, to determine if using very high degree N can be an advantage, for both memory and computing time aspects for SEM and if so, to find if there is an optimal degree N .

The paper is organized as follows: we first give information about the different SEM codes, the criteria for the different test configurations and the methodology we use to address the paper's objective. We then perform our tests in 2-D and 3-D homogeneous media.

Finally, we perform the same test in simple heterogeneous media before concluding our work. For each program, we limit ourselves to the standard order 2 Newmark scheme for Efficient high degree spectral element the explicit time marching.

SEM CONSIDERATION AND NUMERICAL EXPERIMENTS

SETUP

SEM complexity consideration

As shown in the Appendix A, for a given accuracy, if the maximum time step allowed by the CFL condition given in equation 1 can be reached, the complexity C(N ), that is the number of operations of any SEM program, as a function of the degree N , is scaling as

C(N ) ∝ G d+1 (N )N 2 , ( 2 
)
where d is the dimension of the problem. If the maximum time steps cannot be reached (typically for long time series for which the time step error can be large), the complexity scales as

C(N ) ∝ G d (N )N . (3) 
In both cases, it shows that the decreasing G as a function of N is competing with the increasing N . Knowing that the decrease of G as a function of N is non-linear and cannot go below 2, it is already clear that there is a limit after which increasing N will not be efficient. But before that, an optimal N exists and needs to be determined numerically, which is the purpose of the next sections.

SEM codes

For a given source maximum frequency f max , geometry, elastic properties, and signal duration t max , there are two aspects in assessing whether using the very high degree in SEM Efficient high degree spectral element can be a good idea. First, we consider the amount of computer memory required to perform the simulation. This is directly related to the number of points per wavelength G and does not depend much on the particular code implementation of SEM. Second, we consider the computing time needed to perform the simulation. This is strongly related to code implementation. To mitigate a possible bias in our results, we use three different programs:

• SPEC2DY. This program has originally been written by G. Festa [START_REF] Festa | The newmark scheme as velocity-stress time-staggering: an efficient implementation for spectral element simulations of elastodynamics[END_REF] and has been widely modified over the years, but the philosophy and the core of the original program are still the same. In particular, its efficiency has not been seriously optimized.

• SEM3D: This program is a 3-D version of the above 2-D program. It has been originally written by G. Festa and E. Delavaud [START_REF] Delavaud | Simulation numérique de la propagation d'ondes en milieu géologique complexe: application à l'évaluation de la réponse sismique du bassin de caracas (venezuela)[END_REF]. In contrast to its 2-D version, its efficiency has then been optimized by a team of the CEA (Commissariat  l'nergie atomique, France);

• SPECFEM (2D and 3D). These two programs are from the popular SPECFEM program suites, both the 2-D and 3-D versions are well maintained and optimized [START_REF] Komatitsch | The spectral element method: an effective tool to simulate the seismic response of 2D and 3D geological structures[END_REF][START_REF] Komatitsch | Introduction to the spectral-element method for 3-D seismic wave propagation[END_REF].

Each of these three codes uses an order 2 Newmark time marching scheme.

Numerical experiments setup and models

In order to measure the numerical efficiency of SEM with degree N , we set up a series of 2-D and 3-D numerical experiments in homogeneous and heterogeneous elastic models. To make the efficiency measurements meaningful, we need to perform our experiments for a fixed accuracy. There are many ways to measure accuracy and we choose one that is close to many realistic situations: a rectangular domain Ω with a free surface on the top, shallow sources and shallow receivers with recorded waveforms in the time domain. Efficient high degree spectral element

We perform our tests in three different models: 2-D homogeneous, 3-D homogeneous and 2-D heterogeneous. We did not test the 3-D heterogeneous case because of large computing resources necessary to obtain an accurate reference solution in that case, but we believe that this does not detract from the main conclusion of this work. For the 2-D and 3-D homogeneous cases, we use V P = 3.4 km/s and V S = 2.0 km/s for the P and S wave velocities and ρ = 2000 kg/m 3 for the density. For the heterogeneous case, a monochromatic oscillatory heterogeneity is added on top of the homogeneous model. The detailed heterogeneity is defined in the 2-D heterogeneous experiment section below.

In the homogeneous case, the maximum frequency and S-wave velocity makes it possible to define the minimum wavelength of the propagating wavefield in the far-field as

λ min = V S f max . (4) 
In the following, we measure each spatial distances as a function of λ min and time as a function of

t min = 1 f max . ( 5 
)
The source is a vertical point force located at a 3 λ min distance below the free surface and its time wavelet is a Ricker function (second derivative of a Gaussian) of central frequency f 0 = 10 Hz with maximum frequency f max ≃ 3f 0 . This estimation of the maximum frequency is important because it determines the minimum wavelength and therefore G(N ).

This estimate can be changed and it will change the obtained G(N ) and it implies the absolute value of G must be taken with caution. Nevertheless, this estimate does not affect the relative results between different degrees.

To measure the error, we rely on two bins of receivers at two different epicentral distances, a short one (20λ min ) and a long one (200λ min ). Each bin is wide enough to contain at least one element, even for the largest degree N that we tested. The main reason for doing Efficient high degree spectral element so is that error is not constant within an element and depends on where exactly the receiver is located [START_REF] Moczo | 3-D finite-difference, finite-element, discontinuous-Galerkin and spectral-element schemes analysed for their accuracy with respect to P-wave to S-wave speed ratio[END_REF]. To average out this effect, we use many receivers within at least one element.

The boundary conditions are free normal stress conditions all around the domain to fully exclude the influence of absorbing boundaries. The chosen domain is wide enough to ensure that no reflecting waves from boundaries affect the results. The time duration of the signal is long enough to ensure that the full waveforms include P, S and the Rayleigh wave phases.

2-D homogeneous experiments

For the 2-D tests, Ω is a 900×450 λ 2 min rectangular domain. Each of the different epicentral 20 λ min and 200 λ min receiver bin has a size of 15 × 15 λ 2 min and contains 2601 receivers. Ω

and an example of energy snapshot of the wavefield at t = 270 t min is displayed in Figure 2.

The recorded signal at each receiver last for 60 t min for the 20 λ min distance receiver bin and 300 t min for the 200 λ min distance receiver bin.

3-D homogeneous experiment

For the 3-D test, we use a homogeneous media with the same elastic properties as in the 2-D homogeneous case above. Here, because of computing resources limitation, we only use a relatively small model and a short distance receiver bins (20 λ min ). For this test, Ω is 300 × 300 × 150 λ 3 min parallelogram. The receiver bin is a 15 3 λ 3 min cube, just below the surface, 20 λ min away from the source (see Figure 3), containing 1331 receivers. The 200 λ min receiver bin case has not been studied in 3D because the computing resources required to do so are beyond our capacity (indeed, to avoid domain border reflections, for the 200 λ min case an even larger domain is required). Efficient high degree spectral element In order to further analyze the efficiency of SEM as a function of the degree N in the heterogeneous 2-D case, we use the same geometry as for the 2-D homogeneous test and only focus on the long epicentral distance bin (200 λ min ). To keep our analysis simple, the heterogeneous mechanical properties have been chosen with the following form:

                       λ(x) = λ 0 f (x) µ(x) = µ 0 f (x) f (x) = 1 + a cos( 2π λ h k x • x) + cos( 2π λ h k z • x) k x = (cos(t 1 π/180 • ), sin(t 1 π/180 • )) k z = (cos(t 2 π/180 • ), sin(t 2 π/180 • )) (6)
where λ and µ are the Lamé elastic coefficients for the heterogeneous models, λ 0 and µ 0 the constant Lamé coefficients corresponding to V P = 3.4 km/s, V S = 2.0 km/s, ρ = 2000 kg/m 3 . The density is kept constant. We use a = 0.05, t 1 = 45 • , and t 2 = 135 • , corresponding to two orthogonal directions shown in Figure 4. In the following, only three values for λ h are tested, λ h = 2λ min , λ min and λ min /2. Note that a real model, once homogenized, has a continuous spectrum of heterogeneity, not just a single wavelength as here. In general, geological media lead to amplitude spectrum of heterogeneities that decreases as 1/λ. λ h = λ min /2 in equation 6 correspond to a strongly heterogeneous case, Efficient high degree spectral element 

SEM mesh

We base our experiments on a trivial regular mesh made of n x × n z square elements of size L e in each direction. We keep n x = 2n z and the domain size constant. The element size L e can only be tuned by changing the number of horizontal elements n x . In each element, the polynomial expansion of degree N is used in each direction. The mesh is fully characterized by the (L e , N ) quantities. For a given mesh (L e , N ), we can compute dx min , Efficient high degree spectral element the minimum distance between two GLL points:

dx min (L e , N ) = L e 2 dξ N min . (7) 
The number of grid points per minimum wavelength G in one direction is defined as follows:

G(L e , N ) = (N + 1) λ min L e . ( 8 
)

Error measurement

There are several ways to measure the error of a given modeling with respect to a reference solution. One could for example compute the L 2 norm of the difference between computed and reference wavefield all over the domain for the final time step. Here, our choice is more closely related to situations faced in geophysics: receivers are located on the free surface or at shallow depths (in boreholes), with relatively long time series and for different epicentral distances. For a set of N r receivers, located in {x r , r ∈ {1..N r }}, the error E is computed as

E 2 = r=1,Nr tmax 0 (u -u ref ) 2 (x r , t) dt r=1,Nr tmax 0 (u ref ) 2 (x r , t) dt , ( 9 
)
where u is the computed displacement including all the components, u ref is the reference solution.

The numerical error for a given model and receiver bin is jointly affected by the mesh design (L e , N ) and the time step dt:

E = E(L e , N, dt) .
(10) Efficient high degree spectral element

Reference Waveforms

The reference solution u ref should ideally be an analytical solution. Unfortunately, such analytical solutions are only available for simple models. In many cases, we need to rely on "converged" numerical solutions computed with a very small time step and spatially over-sampled numerical solution. Here, for the sake of completeness, we first show the equivalence of analytical and "converged" numerical solutions for 2-D and 3-D homogeneous half spaces. Afterward, we assume this equivalence holds for all our tests and all the reference waveforms are "converged" numerical solutions.

We first perform a 2-D comparison between a converged SEM solution and an analytical solution for the short distance receiver bin. The analytical solution was obtained using the program "EX2DDIR" (the source code can be found in www.spice-thn.org), which is based on the Caniard-de Hoop technique [START_REF] De Hoop | A modification of cagniard's method for solving seismic pulse problems[END_REF][START_REF] Johnson | Green's function for Lamb's problem[END_REF]. For the SEM solution, a 180×90 λ 2 min domain with a structural 100×50 spectral elements with degree 12 is designed. The resulting G value is about twice that recommended by [START_REF] Priolo | A numerical investigation of Chebyshev spectral element method for acoustic wave propagation[END_REF]. We finally use a very small time step, dt ≈ 1 250 dt CFL . The agreement between the two solutions is displayed in Figure 5 for a representative receiver. The total misfit, computed according to equation 9, is E = 1.5 × 10 -6 .

We then perform a similar test, but in 3-D. For the analytical solution, we use the program "CANHFS" (personal communication) which calculates the Green function and is also based on the Caniard-de Hoop technique. For the SEM solution, a 180×180×90 λ 3 min domain with a structural 100×100×50 spectral elements mesh with degree 12 is designed.

The resulting G value is once again about twice that recommended by [START_REF] Priolo | A numerical investigation of Chebyshev spectral element method for acoustic wave propagation[END_REF]. We finally use a very small time step, dt ≈ 1 100 dt CFL . The agreement between the two solutions is displayed in Figure 6 for a representative receiver. The total misfit is here, is E = 2.2 × 10 -3 . From these two tests, we conclude that we can replace the analytical solutions by con-Efficient high degree spectral element The residual (×500) is displayed in dotted line. The receiver is a typical receiver from the short distance bin (20 λ min distance). Efficient high degree spectral element verged numerical solution in our analysis. Indeed, our misfit threshold is 1%, and the misfit between converged and analytical solutions is much smaller than 1%. For the rest of the paper, we assume that we can use converged numerical solutions as reference solutions.

Finally, note the fact that the agreement between numerical and analytical solutions is not as good in 3-D than in 2-D is more related to our difficulty to accurately use the analytical solution, rather than related to a larger error in the 3-D numerical modeling. The 3-D misfit is nevertheless still much smaller than 1% and we did not investigate the code problems any further.

G AS A FUNCTION OF THE DEGREE N

Here, we study the minimum number of GLL points per wavelength G required to reach the 1% error threshold. To do so, we start by choosing a time step dt small enough so that the error due to the time marching scheme can be ignored. The error is then dominated by the spatial error and only depends on L e and N (E = E(L e , N )). Knowing that a fixed size domain is used, the elements size L e is controlled by the number of elements n z in the z direction (the number of elements in the x direction is tied to n z by the relation n x = 2n z ).

For given degree N , receiver bin (20λ min or 200λ min ) and model, we proceed as follow to determine G so that the error E = 1%:

• we start with a large n z so that the error is below 1%;

• we then gradually decrease n z until we find its values so that the error is just below and just above 1%;

• we compute G for each n z available (discrete) values and we finally obtain the G to reach exactly 1% using a quadratic interpolation.

An example of the procedure for N = 40 is given in Figure 7. Efficient high degree spectral element Following this procedure, we compute the 1% error G for a set of degree N (4, 8, 12, 16, 20, 24, 30 and 40), in our four 2-D models (homogeneous, heterogeneous with λ h = 2λ min , λ min and 0.5λ min ) and the 3-D homogeneous model for the two receiver bins. The results are given in Figure 8, Figure 9 and Table 1.

For the homogeneous case, it can be noted that, for N = 40, G ≃ 2.5 is reached in 2-D as well as in 3-D and for both short and long-distance bins. For the long-distance bin, it corresponds to twice fewer points per wavelength for N = 40 than N = 4. This implies that factor of 4 in 2-D and 8 in 3-D of computer memory can be saved using high degrees compared to low degrees. As expected, G is lower for short distance than for long, but this difference is significant only for low degree. For the heterogeneous case, Figure 9 displays a comparison of the G obtained in the three heterogeneous models versus the one obtained in the homogeneous case. It is worth noting that the sampling rule of thumbs used in homogenization [START_REF] Capdeville | Residual homogenization for elastic wave propagation in complex media[END_REF] is

G ε 0 ≃ G homo (1 + 1 2ε 0 ) , (11) 
where G homo is G in the homogeneous case, G ε 0 is G in the heterogeneous case and ε 0 = λ h /λ min . Here we have ε 0 = 2, 1 and 0.5 , which leads to a G ε 0 /G homo ratio of 1. 

OPTIMAL TIME STEP AS A FUNCTION OF THE DEGREE N

In this work, we only use the standard second-order explicit Newmark scheme. The error is therefore a quadratic function of dt. The time step is always subject to the CFL condition equation 1: dt ≤ dt CFL .

For a given degree N , we proceed in a similar way to the previous section to find the maximum time step dt c such that the error remains just below 1%. We first choose a large G (twice the optimal G) so that the spatial error is much smaller than 1%. In that case, the error is only dependent upon dt. We then find dt c by the method of trial and error and a quadratic interpolation. We finally check that the obtained dt c leads to an error indeed just below 1%. An example is given in Figure 10 for N = 4. However, this procedure is limited by the CFL condition. Indeed, for high degrees, the error cannot reach 1% even for dt = dt CFL . In that case, dt c cannot be determined and is set to dt CFL . For low degrees, it appears that dt c is almost independent of the degree and that it only depends on the receiver Efficient high degree spectral element It can be seen from Figure 10 that, for N = 4, dt = dt CFL leads to an error of 4.5%, which is large. In such a case, a higher order time scheme would be necessary to take advantage of a large time step.

From this section, we can conclude that the error in time and space are almost independent.

GLOBAL COMPUTING TIME AS A FUNCTION OF DEGREE N

We finally evaluate the computing time as a function of the degree N for the optimal sampling G and time step dt determined in the two previous sections. If the gain in memory For each case, we choose as reference the computing time obtained using SPECFEM2D or 3D programs with N = 4, normalized to one. In this section, the gains or losses in computing time are always in comparison to this reference. Each computing time measurement is obtained using the optimal G and dt, performing five runs and averaging the obtained elapsed computing time. We used 40, 280 and 100 computing cores for the 2D homogeneous, 3D homogeneous model and 2D heterogeneous models respectively. Efficient high degree spectral element 

2-D homogeneous model case results

Figures 12 and 13 show the results for the homogeneous 2-D case, for the short and long distance bins respectively. For the short distance receiver bin, it can be seen that the computing time decreases with the increasing degree for both programs until degree 16 or 20 and then increases again. To its maximum, the high degree computing time gain compared to the low degree one is about a factor of 2. For the long distance bin, a similar pattern can be observed. Nevertheless, the computing time does not increase much after a degree 16. The pattern is slightly different for each program, but the overall result is similar: 

3-D homogeneous model case results

For the 3-D case, we performed only the short distance bin case, because of computing resources limitation. The computing time as a function of N obtained for the two programs is displayed in Figure 14. First, it can be noted that there is no fundamental difference in computing time between the two programs. Next, the trend is very similar to the 2-D homogeneous short distance receiver case: first a decrease of the computing time with the degree and then an increase after a minimum. The minimum computing time is obtained in the 12-16 degree range.

For the 3-D long range case, we can only speculate that the results would be similar to the 2-D results. The short distance bin results are similar, and there is no specific reason to expect a difference for the long distance. It is nevertheless unfortunate that we can not check this point. 

2-D heterogenous case results

We finally perform a test in the heterogeneous models described earlier. This test is only performed in 2-D for the long distance bin using the SPEC2DY program. We did not test the 3-D model because of computing resource limitation. We also did not test SPECFEM2D in that test because there is no simple way to input oscillating models in this program.

In Figure 15 the computing times as a function of the degree N for three 2-D heterogeneous models are shown (for λ h = 0.5λ min , λ min and 2λ min ) for the long distance bin. In Figure 13, it can be noted that the cases λ h = λ min and λ h = 2λ min display little differences compared to the homogeneous long distance case. The remaining differences are mostly due to the fact that the heterogeneous models have a smaller dt CFL (because of a denser mesh) compared to the long receiver homogeneous case. The case λ h = 0.5λ min is similar, but the minimum computing time occurs for lower degrees, 16-20, compared to 20-24 for the previous cases. Efficient high degree spectral element

DISCUSSION

In this work, to assess if using very high degree (N > 8) in SEM is of any interest, we had to make several choices. This first one is the error threshold that we chose to 1%. Obviously, one could have made a different choice and this would have affected the optimal G, dt and measured computing time results. For example, for the short distance bin, using a threshold to 5% moves the optimal G for N = 40 from 2.4 to 1.97. Nevertheless, it does not change either the observed trend or the conclusions of this work. The way of estimating the source maximum frequency f max has the same effect on G, but does not change the conclusions either. The second one is about the chosen programs to perform the computing time measurements. This aspect is problematic as different programs and different hardware can potentially significantly affect the computing time results. For example, we did not try the GPU spectral element implementations for which the behavior can be different. This work

shows that very high degree SEM can be interesting, but one should keep in mind that, for a significantly new or different SEM implementation, or significantly different hardware, a benchmark should be run to determine which degree is the best from the point of view of computing time. Nevertheless, the memory gain results would remain unchanged.

Using very high degree SEM implies using very large elements, much larger than for low degrees. In a forward modeling context, the interest of very high degree SEM therefore strongly relies on the homogenization technique. It is the key to remove mechanical discontinuities: it allows to release the mesh constraints and thus allows the use of large elements. In the inversion context, the models are smooth anyway and it is usually simple to use very large elements. In both cases, the elastic properties are not constant per pieces but continuous and oscillatory with space. In this work, we did not test any realistic homogenized model such as the Marmousi model in [START_REF] Capdeville | 2-D non-periodic homogenization to upscale elastic media for P-SV waves[END_REF]. Such models make it difficult to draw any general conclusion because results are then strongly dependent on the source and receiver locations. Instead, we tested single wavenumber heterogeneity Efficient high degree spectral element models in order to obtain a reference G as a function of the degree N for three different model roughness. Because realistic geological elastic models amplitude spectra decrease with the wavenumber, these periodic tests can be seen as what can be expected at worst.

The test model λ h = λ min /2 is an upper bound and a realistic geological model is expected to behave more like the λ h = λ min case. In the context of inversion, models are rather smooth and we expect they behave like the λ h = 2λ min case. Finally, let us mention that homogenization cannot remove free-surface or solid-fluid interface topographies, even if they can be homogenized [START_REF] Capdeville | A non-periodic two scale asymptotic method to take account of rough topographies for 2-D elastic wave propagation[END_REF]. This can be a complication, but it can be handled generally by deforming the elements in the vertical direction to match the topography. This comes at the price of a high degree element transformation (where a linear or quadratic element are classically used).

Regarding the number of points per wavelength G, our work confirms that it can be as low as 2.5 using N = 40 for both 2-D and 3-D homogeneous or smooth media. Note that our G is an average number meaning that, for example, it is possible to cast about 16 λ min within one degree 40 element direction. For rough heterogeneous media, G increases more or less following the rule of thumb of equation 11. Compared to a degree 4, a high degree G can be twice smaller. This implies that a factor up to 4 in 2-D and 8 in 3-D in memory can be gained by using a very high degree. This aspect can be particularly interesting in the adjoint inversion context where storing the wavefield on hard disks can be necessary either partially [START_REF] Komatitsch | Anelastic sensitivity kernels with parsimonious storage for adjoint tomography and full waveform inversion[END_REF] or fully to avoid backward propagation [START_REF] Fichtner | Full seismic waveform Efficient high degree spectral element tomography for upper-mantle structure in the australasian region using adjoint methods[END_REF].

It is well known that the GLL points cluster near the edge of the elements for high degrees. This fact a priori implies a dramatically small time step to respect the CFL stability condition. Nevertheless, this effect is not that dramatic because G also decreases for high degrees and this partly compensates the clustering of the GLL points. For example, even if the closest distance between two GLL points is 77 smaller in the reference element for N = 40 compared to N = 4, the time step is only 4.4 times smaller. Then, a low G Efficient high degree spectral element also implies a lower number of degrees of freedom and therefore less computation.

Finally, it is important to note that G(N ) strongly depends on the Poisson's ratio [START_REF] Seriani | Dispersion analysis of spectral element methods for elastic wave propagation[END_REF]. For a fixed degree N , G is degraded (larger) for Poisson's ratio close to 0.5 (in this work, we used a Poisson's ratio of 0.24). [START_REF] Seriani | Dispersion analysis of spectral element methods for elastic wave propagation[END_REF] also have shown that G is less degraded for large degrees than for low degrees. It implies that high degree element is even more interesting compared to low degrees for Poisson's ratio close to 0.5.

CONCLUSIONS

In the end, high-degree SEM is often more effective than lower degrees and when it is not, the losses in computing time is not dramatic whereas the gain in memory is significant. For example, the memory needed for a degree 20 is about a quarter that necessary for a degree 4 in 2-D and about one eighth in 3-D in our numerical experiments. The computation time with degree 12 to 24 can be up to twice faster than the classical degree 4. To conclude, considering using SEM with a significantly higher degree than usual is a good idea in some situations such as full waveform inversion. Efficient high degree spectral element complexity C(N ) scales as

C(N ) ∝ G d+1 (N )N 2 . (A-2)
This formula has a limit: it doesn't account for the fact that, in order to reach a given accuracy, it may happen that the maximum time steps allowed by the CFL cannot be reached.

In that case, SEM numerical complexity C(N ) scales as

C(N ) ∝ G d (N )N .
(A-3) Efficient high degree spectral element 

Figure 1 :

 1 Figure 1: Minimum distance dξ N min between two GLL points for the 1-D reference element Λ = [-1, 1] as a function of the degree N with logarithmic scales.

Figure 2 :Figure 3 :

 23 Figure 2: The 2-D homogeneous domain used in this work. The source (black star) is located about 3λ min below the surface. The short and long distance receiver bins (black square) are represented. The kinetic energy snapshot for t = 270 t min and a 60×30 elements mesh, associated to a polynomial degree N = 40, are also displayed.

Figure 4 :

 4 Figure 4: Same as Figure 2 but for the 2-D heterogeneous media with λ h = λ min . The lower left zoom displays a 14.1λ min ×14.1λ min area of V S . The 100×50 elements mesh associated to the degree N = 40 is displayed.

Figure 5

 5 Figure5: 2-D homogeneous model waveform displacement comparison between the analytical solution (gray line), the spectral element simulated solution (dashed line) for the horizontal (top plot) and vertical components (bottom plot). The residual (×10 4 ) is displayed in dotted line. The receiver is a typical receiver from the short distance bin (20 λ min distance).

Figure 6 :

 6 Figure 6: 3-D homogeneous model waveform displacement comparison between the analytical solution (gray line) and the spectral element simulated solution (dashed line) for the horizontal (top plot) and vertical component (bottom plot). The residual (×500) is displayed in dotted line. The receiver is a typical receiver from the short distance bin (20 λ min distance).

Figure 7 :

 7 Figure 7: Error (see equation 9) as a function of G (dotted line) for the short distance receiver bin and for degree N = 40 and a very small dt. The triangles are measured values and the dashed line shows the quadratic interpolation estimation of G to obtain a 1% error. Here, G ≃ 2.35.

Figure 8 :

 8 Figure 8: G as a function of the degree N for the 2-D and 3-D homogeneous models and for the 20 and 200 λ min epicentral distance receiver bins.

Figure 9 :

 9 Figure 9: Heterogeneous models G ratio with the corresponding homogeneous model G as a function of the degree N . Three different heterogeneity roughness are displayed (λ h = {0.5, 1, 2}λ min ).

Figure 10 :

 10 Figure 10: Error (see equation 9) as a function of the time step dt (dotted line), for a large G (spatially over sampled), N =4 in the 2-D homogeneous model and for the long distance receiver bin (200λ min ). The 1% error threshold and its corresponding time step (here dt c = 4.7 × 10 -4 s) are displayed (dashed line).
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 1112 Figure11: Error as a function of the time step dt with the optimal G(N ) (in Figure7). Three different degrees are displayed (N = 4, 8 and 40). The optimal dt c = 4.7 × 10 -4 s is displayed (dashed line). For N = 40, the dt CFL is reached before the optimal dt c .

Figure 13 :

 13 Figure 13: Computing time as a function of the degree N for the 2-D homogeneous case, for the long distance bin (200 λ min ) and for the SPEC2DY and SPECFEM2D programs. Symbols with an extra black circle correspond to measurements done with dt = dt CFL .

Figure 14 :

 14 Figure 14: Computing time as a function of the degree N for the 3-D homogeneous case, for the short distance bin (20 λ min ) and for the SEM3D and SPECFEM3D programs. Symbols with an extra black circle correspond to measurements done with dt = dt CFL .

Figure 15 :

 15 Figure 15: Computing time as a function of the degree N for the 2-D heterogeneous cases for the long distance bin (200 λ min ) and for the SPEC2DY program. Symbols with an extra black circle correspond to measurements done with dt = dt CFL .

Table 1 :

 1 The number of N s, nz (number of elements in z direction), minimum dx ratio and maximum dt ratio in 2-D homogeneous half space case for the 200 λ min epicentral distances case. Efficient high degree spectral element

			Information for 200λ min distance			
	N	4	8	12	16	20	24	30	40
	nz	505.9 186.2 111.7 79.9 61.9 50.3 39.5 28.9
	dx ref min,4 /dx ref min,N 1	3.45 7.40 12.85 19.82 28.28 43.81 77.20
	G N /G N =4	1	0.662 0.574 0.537 0.514 0.497 0.484 0.469
	dt N =4 /dt	1	1.270 1.634 2.028 2.426 2.812 3.419 4.413

Table Caption Table 1 :

 Caption1 The number of N s, nz (number of elements in z direction), minimum dx ratio and maximum dt ratio in 2-D homogeneous half space case for the 200 λ min epicentral distances case.
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APPENDIX A COMPUTATIONAL COMPLEXITY ANALYSIS OF CODE-INDEPENDENT FEATURES FOR SEM

In this appendix, we estimate the theoretical scaling of the numerical complexity of a SEM simulation as a function of the element degree N . The overall numerical complexity of such a simulation is the product of the cost at the element level times the number of elements times the number of time steps. At the element level, the numerical complexity is dominated by the stiffness matrix multiplication, which scales as N d+1 . This is usually where the main optimization effort is mainly put into, following matrix-matrix multiplication strategy [START_REF] Deville | High-order methods for incompressible fluid flow[END_REF]. We have numerically checked that the calculation of the internal forces (the product between elemental stiffness matrix and displacement vector) indeed behaves in N d+1 for the SEM code used in this work. Regarding the number of elements N e , assuming a domain size of L d , we have L d = (N λ λ min ) d , where N λ is the number of the minimum wavelength. We also have λ min = G(N )∆ x where ∆ x the average distance between GLL points within each spectral element. The element size in one direction is L e = N ∆ x and therefore

The number of time steps is controlled by equation 1 and therefore by 1/dx min . Because of the GLL points cluster near the element edges, dx min scales as ∆ x /N (see Figure 1)

and therefore as (N G(N )) -1 . Gathering those estimates, one finds the SEM numerical Efficient high degree spectral element
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