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Abstract. DL-Lite is a tractable family of Description Logics that underlies the
OWL-QL profile of the ontology web language, which is specifically tailored for
query answering. In this paper, we consider the setting where the queried data are
provided by several and potentially conflicting sources. We propose a merging
approach, called “Assertional Removed Sets Fusion” (ARSF) for merging DL-
Lite assertional bases. This approach stems from the inconsistency minimization
principle and consists in determining the minimal subsets of assertions, called
assertional removed sets, that need to be dropped from the original assertional
bases in order to resolve conflicts between them. We give several merging strate-
gies based on different definitions of minimality criteria, and we characterize the
behaviour of these strategies with respect to rational properties. The last part of
the paper shows how to use the notion of hitting sets for computing the assertional
removed sets, and the merging outcome.

1 Introduction

In the last years, there has been an increasing use of ontologies in many application
areas including query answering, Semantic Web and information retrieval. Description
Logics (DLs) have been recognized as powerful formalisms for both representing and
reasoning about ontologies. A DL knowledge base is built upon two distinct compo-
nents: a terminological base (called TBox), representing generic knowledge about an
application domain, and an assertional base (called ABox), containing assertional facts
that instantiate terminological knowledge. Among Description Logics, a lot of attention
was given to DL-Lite [12], a lightweight family of DLs specifically tailored for appli-
cations that use huge volumes of data for which query answering is the most important
reasoning task. DL-Lite guarantees a low computational complexity of the reasoning
process.

In many practical situations, data are provided by several and potentially conflicting
sources, where getting meaningful answers to queries is challenging. While the avail-
able sources are individually consistent, gathering them together may lead to inconsis-
tency. Dealing with inconsistency in query answering has received a lot of attention
in recent years. For example, a general framework for inconsistency-tolerant seman-
tics was proposed in [4, 5]. This framework considers two key notions: modifiers and
inference strategies. Inconsistency tolerant query answering is seen as made out of a
modifier, which transforms the original ABox into a set of repairs, i.e. subsets of the



original ABox which are consistent w.r.t. the TBox, and an inference strategy, which
evaluates queries from these repairs. Interestingly enough, such setting covers the main
existing works on inconsistency-tolerant query answering (see e.g. [2, 9, 22]). Pulling
together the data provided by available sources and then applying inconsistency-tolerant
query answering semantics provides a solution to deal with inconsistency. However, in
this case valuable information about the sources will be lost. This information is in-
deed important when trying to find better strategies to deal with inconsistency during
merging process.

This paper addresses query answering by merging data sources. Merging consists
in achieving a synthesis between pieces of information provided by different sources.
The aim of merging is to provide a consistent set of information, making maximum use
of the information provided by the sources while not favoring any of them. Merging
is an important issue in many fields of Artificial Intelligence [10]. Within the classical
logic setting belief merging has been studied according different standpoints. One can
distinguish model-based approaches that perform selection among the interpretations
which are the closest to original belief bases. Postulates characterizing the rational be-
haviour of such merging operators, known as IC postulates, which have been proposed
by Revesz [25] and improved by Konieczny and Pino Pérez [21] in the same spirit as the
seminal AGM [1] postulates for revision. Several concrete merging operators have been
proposed [26, 23, 21, 11, 20]. In contrast to model-based approaches, the formula-based
approaches perform selection on the set of formulas that are explicitely encoded in the
initial belief bases. Some of these approaches have been adapted in the context of DL-
Lite [13]. Falappa et al. [14] proposed a set of postulates to characterize the behaviour
of belief bases merging operators and concrete merging operators have been proposed
[6, 8, 19, 24, 17, 14, 8]. Among these formula-based merging approaches, Removed Sets
Fusion approach has been proposed in [17, 18] for merging propositional belief bases.
This approach stems from removing a minimal subset of formulae, called removed set,
to restore consistency. The minimality in Removed Sets Fusion stems from the operator
used to perform merging, which can be the sum (Σ), the cardinality (Card), the maxi-
mum (Max), the lexicographic ordering (GMax). This approach has shown interesting
properties: it is not too cautious and satisfies most rational IC postulates when extended
to belief sets revision.

This paper studies DL-Lite Assertional Removed Sets Fusion (ARSF). The main
motivation in considering ARSF is to take advantage of the tractability of DL-Lite for
the merging process and the rational properties satisfied by ARSF operators. We con-
sider in particular DL-LiteR as member of the DL-Lite family, which offers a good
compromise between expressive power and computational complexity and underlies
the OWL2-QL profile. We propose several merging strategies based on different defini-
tions of minimality criterion, and we give a characterization of these merging strategies.
The last section contains algorithms based on the notion hitting sets for computing the
merging outcome.



2 Background

In this paper, we only consider DL-LiteR, denoted by L, which underlies OWL2-QL.
However, results of this work can be easily generalized for several members of the
DL-Lite family (see [3] for more details about the DL-Lite family).
Syntax. A DL-Lite knowledge base K = 〈T ,A〉 is built upon a set of atomic concepts
(i.e. unary predicates), a set of atomic roles (i.e. binary predicates) and a set of individ-
uals (i.e. constants). Complex concepts and roles are formed as follows:

B −→ A|∃R, C −→ B|¬B, R −→ P |P−, E −→ R|¬R,
where A (resp. P) is an atomic concept (resp. role). B (resp. C) are called basic (resp.
complex) concepts and roles R (resp. E) are called basic (resp. complex) roles. The
TBox T consists of a finite set of inclusion axioms between concepts of the form:
B v C and inclusion axioms between roles of the form: R v E. The ABox A consists
of a finite set of membership assertions on atomic concepts and on atomic roles of the
form: A(ai), P (ai, aj), where ai and aj are individuals. For the sake of simplicity, in
the rest of this paper, when there is no ambiguity we simply use DL-Lite instead of
DL-LiteR.
Semantics. The DL-Lite semantics is given by an interpretation I = (∆I , .I) which
consists of a nonempty domain ∆I and an interpretation function .I . The function
.I assigns to each individual a an element aI ∈ ∆I , to each concept C a subset
CI ⊆ ∆I and to each role R a binary relation RI ⊆ ∆I × ∆I over ∆I . More-
over, the interpretation function .I is extended for all constructs of DL-LiteR. For
instance: (¬B)I=∆I\BI , (∃R)I={x ∈ ∆I |∃y ∈ ∆I such that (x, y) ∈ RI} and
(P−)I={(y, x) ∈ ∆I ×∆I |(x, y) ∈ P I}. Concerning the TBox, we say that I satis-
fies a concept (resp. role) inclusion axiom, denoted by I |= B v C (resp. I |= R v E),
iff BI ⊆ CI (resp. RI ⊆ EI). Concerning the ABox, we say that I satisfies a con-
cept (resp. role) membership assertion, denoted by I |= A(ai) (resp. I |= P (ai, aj)),
iff aIi ∈ AI (resp. (aIi , a

I
j ) ∈ P I ). Finally, an interpretation I is said to satisfy

K=〈T ,A〉 iff I satisfies every axiom in T and every assertion inA. Such interpretation
is said to be a model of K.
Incoherence and inconsistency. Two kinds of inconsistency can be distinguished in
DL setting: incoherence and inconsistency [7]. A knowledge base is said to be incon-
sistent iff it does not admit any model and it is said to be incoherent if there exists at
least a non-satisfiable concept, namely for each interpretation I which is a model of T ,
we have CI=∅. In DL-Lite setting a TBox T ={PIs,NIs} can be viewed as composed of
positive inclusion axioms, denoted by (PIs), and negative inclusion axioms, denoted by
(NIs). PIs are of the form B1 v B2 or R1 v R2 and NIs are of the form B1 v ¬B2 or
R1 v ¬R2. The negative closure of T , denoted by cln(T ), represents the propagation
of the NIs using both PIs and NIs in the TBox (see [12] for more details). Important
properties have been established in [12] for consistency checking in DL-Lite: K is con-
sistent if and only if 〈cln(T ),A〉 is consistent. Moreover, every DL-Lite knowledge
base with only PIs in its TBox is always satisfiable. However when T contains NI ax-
ioms then the DL-Lite knowledge base may be inconsistent and in an assertional-based
approach only elements of ABoxes are removed to restore consistency [13].



3 Assertional Removed Sets Fusion

In this section, we study removed sets fusion to merge a set {A1, · · · , An} of n asser-
tional bases, representing different sources of information, linked to a DL-lite ontology
T . As representation formalism, we considerMK = 〈T ,MA〉, an MBox knowledge
base whereMA = {A1, . . . ,An} is called an MBox. An MBox is simply a multi-set
of membership assertions, where eachAi is an assertional base linked to T . We assume
thatMK is coherent, i.e. T is coherent and for each Ai, 1 ≤ i ≤ n, 〈T ,Ai〉 is consis-
tent. However, the MBoxMK may be inconsistent since the assertional bases Ai may
be conflicting w.r.t. T . We define the notion of conflict as a minimal inconsistent subset
of A1 ∪ . . . ∪ An, more formally:

Definition 1. LetMK=〈T ,MA〉 be an inconsistent MBox DL-Lite knowledge base. A
conflict C is a set of membership assertions such that i) C ⊆ A1∪ · · ·∪An, ii) 〈T , C〉
is inconsistent, iii) ∀C ′, if C ′ ⊂ C then 〈T , C ′〉 is consistent.

We denote by C(MK) the collection of conflicts inMK. SinceMK is assumed to be
finite, ifMK is inconsistent then C(MK) 6= ∅ is also finite.

Within the DL-Lite framework, in order to restore consistency, the following defini-
tion introduces the notion of potential assertional removed set.

Definition 2. Let MK=〈T ,MA〉 be a MBox DL-Lite knowledge base. A potential
assertional removed set, denoted by X , is a set of membership assertions such that
i) X ⊆ A1 ∪ · · · ∪ An, ii) 〈T , (A1 ∪ · · · ∪ An)\X〉 is consistent,
iii) ∀X ′, if X ′ ⊂ X ⊆ A1 ∪ · · · ∪ An then 〈T , (A1 ∪ · · · ∪ An)\X ′〉 is inconsistent.

We denote by PR(MK) the set of potential assertional removed sets ofMK. IfMK is
consistent then PR(MK) = {∅}. The concept of potential assertional removed sets is
to some extent dual to the concept of repairs (maximally consistent subbase). Namely,
if X is a potential assertional removed set then (A1 ∪ · · · ∪ An)\X is a repair, and
conversly.
Example 1. Let MK=〈T ,MA〉 be an inconsistent MBox DL-Lite knowledge base
such that T ={A v ¬B,C v ¬D} andMA = {A1,A2,A3}whereA1 = {A(a), C(a)}
A2 = {A(a), A(b)} and A3 = {B(a), D(a), C(b)}. By Definition 1, C(MK) =
{{A(a), B(a)}, {C(a), D(a)}}. Hence, by Definition 2, PR(MK) = {{A(a), C(a)},
{A(a), D(a)}, {B(a), C(a)}, {B(a), D(a)}}.

In order to cope with conflicting sources, merging aims at exploiting the comple-
mentarity between the sources providing the ABoxes, so merging strategies are neces-
sary. These merging strategies are captured by total pre-orders on potential assertional
removed sets. Let X and Y be two potential assertional removed sets, for each strategy
P a total pre-order ≤P over the potential assertional removed sets is defined. X ≤P Y
means that X is preferred to Y according to the strategy P . We define <P as the strict
total pre-order associated to ≤P (i.e. X <P Y if and only if X ≤P Y and Y 6≤P X).

Definition 3. LetMK=〈T ,MA〉 be a MBox DL-Lite knowledge base. An assertional
removed set according to the strategy P , denoted by X , is a set of membership asser-
tions such that i) X is a potential assertional removed set ofMK ; ii) there does not
exist any Y such that Y is a potential assertional removed set ofMK and Y <P X .



We denote by RP (MK) the set of assertional removed sets according to the strat-
egy P ofMK. IfMK is consistent thenRP (MK) = {∅}. The usual merging strategies
sum-based (Σ), cardinality-based (Card), maximum-based (Max) and lexicographic
ordering (GMax) are captured by the following total pre-orders. We denote by s(MA)
the ABox obtained from MK where every assertion expressed more than once is re-
duced to a singleton.

(Σ) : X ≤Σ Y if
∑

1≤i≤n | X ∩ Ai |≤
∑

1≤i≤n | Y ∩ Ai | .

(Card) : X ≤Card Y if |X ∩ s(MA)| ≤ |Y ∩ s(MA)|.

(Max) : X ≤Max Y if max1≤i≤n | X ∩ Ai |≤ max1≤i≤n | Y ∩ Ai | .

(GMax) : For every potential assertional removed set X and every ABox Ai, we de-
fine pAi

X =| X ∩ Ai |. Let LMA
X be the sequence (pA1

X , . . . , pAn

X ) sorted by de-
creasing order. Let X and Y be two potential assertional removed sets of MK,
X ≤GMax Y if LMA

X ≤lex LMA
Y

1.

TheΣ strategy minimizes the number of assertions to remove fromMA. TheCard
strategy attempts, similarly to Σ, to minimize the number of removed assertions. But it
does not take into account assertions which are expressed several times. Note that the
Σ and Card strategies only differ if there are redundant assertions. The Max strategy
tries to distribute to the best the assertions to be removed among to ABoxes. It tries
to do so by removing the less possible assertions in the most hit ABox. The GMax
strategy is a lexicographic refinement of theMax strategy. Note that when there is only
one source, all strategies become equivalent.

We now present assertional-based DL-LiteR merging operators. A merging oper-
ator is a function that maps an MBox DL-LiteRMK=〈T ,MA〉 to a knowledge base
∆(MK)= 〈T , ∆(MA)〉, where the function ∆ defined from L× . . .×L to L, merges
according to a strategy a multiset of assertionsMA into a set of assertions denoted by
∆(MA). In the DL-Lite language, it is not possible to find a set of assertions which
represents the disjunction of such possible merged sets of assertions. If we want to keep
the result of merging in DL-Lite, several options are possible. The first one is to con-
sider the intersection of all possible merged set of assertions however this option may
be too cautious since it could remove too many assertions and contradicts in some sense
the minimal change principle. Another option is to define a selection function which al-
lows us to define the family of ARSF operators. In this paper we consider the family of
selection functions that select exactly one assertional removed set as follows.

Definition 4. A selection function f is a mapping from RP (MK) to A1 ∪ . . . ∪ An
such that i) f(RP (MK)) = X with X ∈ RP (MK), ii) f({∅}) = ∅

Definition 5. Let MK=〈T ,MA〉 be a MBox DL-Lite knowledge base, f be a se-
lection function, and P be a strategy, the merged DL-Lite knowledge base, denoted
by ∆arsf

P (MK), is such that ∆arsf
P (MK)=

〈
T , ∆arsf

P (MA)
〉

where ∆arsf
P (MA)=

(A1 ∪ . . . ∪ An)\f(RP (MK)).
1 (X1, · · · , Xn) ≤lex (Y1, · · · , Yn) if ∃i, 1 ≤ i ≤ n, i)Xi ≤ Yi, ii) ∀j, 1 ≤ j < i Xi = Yi.



LetMK=〈T ,MA〉 be a MBox DL-Lite knowledge base,and q(x) a query. Query-
ing multiple data sources is performed by querying merged data sources and 〈T ,MA〉 |=
q(x) amounts to

〈
T , ∆arsf

P (MA)
〉
|= q(x).

Example 2. LetMK=〈T ,MA〉 be the MBox of Example 1. The potential assertional
removed sets are X1 = {A(a), C(a)}, X2 = {A(a), D(a)}, X3 = {B(a), C(a)}
and X4 = {B(a), D(a)}. As illustated in the table below 2, we have RΣ(MK) =
{X3, X4}. Suppose the selection function f is such that f(RΣ(MK)) = X4 we have
∆arsf
Σ (MA) = {A(a), C(a), A(b), C(b)}. We have RCard(MK) = {X1, X2, X3,

X4}. Suppose the selection function f is such that f(RCard(MK)) = X1 we have
∆arsf
Card(MA) = {A(b), B(a), D(a), C(b)}. We have RMax(MK) = {X2, X3}. Sup-

pose the selection function f is such that f(RCard(MK)) = X2 we have∆arsf
Max(MA) =

{C(a), A(b), B(a), C(b)}. We have RGMax(MK) = {X3} and ∆arsf
GMax(MA) =

{A(a),D(a),A(b), C(b)}.

Xi |Xi ∩ A1| |Xi ∩ A2| |Xi ∩ A3| Σ Card Max GMax
X1 2 1 0 3 2 2 210
X2 1 1 1 3 2 1 111
X3 1 0 1 2 2 1 110
X4 0 0 2 2 2 2 200

4 Logical properties

Within the context of propositional logic, postulates have been proposed in order to
classify reasonable belief bases merging operators [16, 15, 14]3. In order to give logi-
cal properties of ARSF operators, we first rephrase these postulates within the DL-Lite
framework, and then analyse to which extent the proposed operators satisfy these pos-
tulates for any selection function.

Let MK = 〈T ,MA〉 and MK′ = 〈T ,M′A〉 be two MBox DL-Lite knowledge
bases, let ∆ be an assertional-based merging operator and 〈T , ∆(MA)〉 be the DL-Lite
knowledge base resulting from merging, where ∆(MA) is a set of assertions. Let σ be
a permutation over {1, . . . n}, and MA = {A1, . . . ,An} be a multiset of assertions,
σ(MA) denotes the set {Aσ(1), . . . ,Aσ(n)}. We rephrase the postulates as follows:

2 On each column the assertional removed sets are in bold
3 We do not consider the IC postulates [21] since they apply to belief sets and not to belief bases.



Inclusion ∆(MA) ⊆ A1 ∪ . . . ∪ An.
Symmetry For any permutation σ over {1, . . . n}, ∆(σ(MA)) = ∆(MA).
Consistency 〈T , ∆(MA)〉 is consistent.
Congruence If A1 ∪ . . . ∪ An = A′1 ∪ . . . ∪ A′n then ∆(MA) = ∆(MA′).
Vacuity If 〈T ,MA〉 is consistent then ∆(MA) = A1 ∪ . . . ∪ An.
Reversion If 〈T ,MA〉 and 〈T ,MA′〉 have the same minimal inconsistent sub-

-sets then (A1 ∪ . . . ∪ An)\∆(MA) = (A′1 ∪ . . . ∪ A′n)\∆(MA′).
Core-retainment If α ∈ A1 ∪ . . . ∪ An and α 6∈ ∆(MA) then there exists A′ s. t.

A′ ⊆ A1 ∪ . . . ∪ An, A′ is consistent but A′ ∪ {α} is inconsistent.
Relevance If α ∈ A1 ∪ . . . ∪ An and α 6∈ ∆(MA) then there exists A′ s. t.

∆(MA) ⊆ A′ ⊆ A1 ∪ . . . ∪ An, A′ is consistent
but A′ ∪ {α} is inconsistent.

Inclusion states that the union of the initial ABoxes is the upper bound of any merging
operation. Symmetry establishes that all ABoxes are considered of equal importance.
Consistency requires the consistency of the result of merging. Congruence requires that
the result of merging should not depend on syntactic properties of the ABoxes. Vacuity
says that if the union of the ABoxes is consistent w.r.t. T then the result of merging
equals this union. Reversion says that if ABoxes have the same minimal inconsistent
subsets w.r.t. T then the assertions erased in the respective ABoxes are the same. Core-
retainment and Relevance express the intuition that nothing is removed from the original
ABoxes unless its removal in some way contribute to make the result consistent.

Proposition 1. LetMK = 〈T ,MA〉 be a MBox DL-Lite knowledge base. For any se-
lection function, ∀P ∈ {Σ,Card,Max,GMax}, ∆arsf

P satisfies the Inclusion, Sym-
metry, Consistency, Vacuity, Core-retainment and Relevance. ∆arsf

Card satisfies Congru-
ence and Reversion, but ∀P ∈ {Σ,Max,GMax}, ∆arsf

P does not satisfy Congruence
nor Reversion.

(sketch of the proof) For any selection function, by Definitions 4 and 5 , ∀P ∈ {Σ,Card,
Max,GMax}, ∆arsf

P satisfies Inclusion, Symmetry, Consistency ,Vacuity and Core-
retainment.
Relevance: By Definition 5, for any selection function f , ∀P ∈ {Σ,Card,Max,GMax},
if α ∈ A1 ∪ . . . ∪ An and α 6∈ ∆arsf

P (MA) then α ∈ f(RP (MK)). Let A′ =
∆arsf
P (MA), A′ is consistent and A′ ∪ {α} is inconsistent since α ∈ f(RP (MK))

and f(RP (MK) is an assertional removed set. By Definition 5, ∆arsf
Card satisfies Con-

gruence and Reversion since every assertion expressed more than once is reduced to a
singleton.
We provide a counter-example for ∆arsf

P , ∀P ∈ {Σ,Max,GMax}. Let MK =
〈T ,MA〉 be an inconsistent MBox DL-Lite knowledge base such that T = {A v ¬B}
and A1 = {A(a)}, A2 = {A(b), B(a)} , A3 = {B(a), A(b)}. The potential asser-
tional removed sets are PR(MK) = {X1, X2, X3, X4} with X1 = {A(a), A(b)},
X2 = {A(a), B(b)}, X3 = {B(a), A(b)}, X4 = {B(a), B(b)} and the sets of as-
sertional removed sets are RΣ(MK) = {X1, X2}, RMax(MK) = {X1, X2} and
RGMax(MK) = {X1, X2}.



Xi |Xi ∩ A1| |Xi ∩ A2| |Xi ∩ A3| Σ Max GMax
X1 1 1 0 2 1 110
X2 1 0 1 2 1 110
X3 0 2 1 3 2 210
X4 0 1 2 3 2 210

Besides, letMK′ = 〈T ,M′A〉 be an inconsistent MBox DL-Lite knowledge base such
that T = {A v ¬B} and A′1 = {A(a), B(b)}, A′2 = {B(a)} , A′3 = {A(a), A(a)}.
We have (A1∪A2∪A3) = (A′1∪A′2∪A′3) and PR(MK) = PR(MK′), and the sets
of assertional removed sets are RΣ(MK′) = {X3, X4}, RMax(MK′) = {X3, X4}
andRGMax(MK′) = {X3, X4}.

Xi |Xi ∩ A′1| |Xi ∩ A′2| |Xi ∩ A′3| Σ Max GMax
X1 1 0 2 3 2 210
X2 2 0 1 3 2 110
X3 0 1 1 2 1 110
X4 1 1 0 2 1 110

∀P ∈ {Σ,Max, GMax} we have RP (MK) 6= RP (MK′), and there is no selection
function such that f(RP (MK)) ∈ RP (MK′) therefore∆arsf

P (MA) 6= ∆arsf
P (MA′).

5 Computing ARSF Merging Outcome

We first show the one to one correspondence between potential assertional removed sets
and minimal hitting sets w.r.t. set inclusion [28]. We recall that a set H is a hitting set
of a collection of sets C iff ∀C ∈ C, C ∩H 6= ∅.

Proposition 2. Let X be such that X ⊆ ∪1≤i≤nAi. X is an potential assertional
removed set ofMK if and only ifX is minimal hitting set w.r.t. set inclusion of C(MK).

The proof is straightforward following Definition 2. Notice that the algorithm for the
computation of the set of conflicts C(MK) is done in polynomial w.r.t. the size ofMK.
This can be found e.g. in [7]. In the following, we provide a single algorithm to compute
the potential assertional removed sets and the assertional removed sets according to the
strategiesCard,Σ,Max andGmax. We give explanations on the different use cases of
this algorithm hereafter. For a given assertional baseMK, the outcome of Algorithm 1
depends on the value of the parameter P : if P ∈ {Card,Σ,Max,Gmax}, then the
result isRP (MK). Otherwise the result is PR(MK).

Let us first focus on the computation of PR(MK). The algorithm is an adaptation
of the algorithm for the computation of the minimal hitting sets w.r.t. set inclusion of
a collection of sets described in [28]. It relies on the breadth-first construction of a
directed acyclic graph called an HS-dag. An HS-dag T is a dag with labeled nodes and
edges such that : (i) The root is labeled with ∅ if C(MK) is empty, otherwise it is labeled
with an arbitrary element of C(MK) ; (ii) for each node n of T , we denote by H(n) the
set of edge labels on the path from n to the root of T ; (iii) The label of a node n is any
set C ∈ C(MK) such that C ∩ H(n) = ∅ if such a set exists. Otherwise n is labeled



Algorithm 1 Computes the elements of RP (MK) or the elements of PR(MK) de-
pending on the P parameter value.
1: function COMPUTE-ASSERTIONAL-RS(MK, P )

. P : strategy
2: MK = 〈T ,MA〉,MA = {A1, · · · ,An}
3: level← 0
4: label(root)← an element C ∈ C(MK) . root is the root node
5: PrevQ← {root} . Queue of nodes in the previous level
6: if P ∈ {Σ,Max,Gmax} then
7: MinNodes← ∅ . set of optimal nodes
8: MinCost←∞ .∞ forΣ andMax, (∞, . . . ,∞)︸ ︷︷ ︸

n times

forGMax

9: mincard← false . used by Card strategy
10: while PrevQ 6= ∅ and notmincard do
11: level← level + 1
12: CurQ← ∅
13: for all no ∈ PrevQ do
14: if label(no) 6= ∅ and label(no) 6= � then
15: label(no) = {α, β}
16: label(left_branch(no))← α
17: label(right_branch(no))← β
18: left_child(no)←PROCESSCHILD(α, no, CurQ,MK ,MinCost,MinNodes, P )
19: right_child(no)←PROCESSCHILD(β, no, CurQ,MK ,MinCost,MinNodes, P )
20: if label(left_child(no)) = ∅ or label(right_child(no)) = ∅ and P = Card then
21: mincard← true
22: PrevQ← CurQ

23: if P /∈ {Σ,Max,Gmax} then
24: MinNodes← all nodes labelled with ∅
25: returnMinNodes

Algorithm 2 Process a child branch of a node. Return a node (new or recycled).
1: function PROCESSCHILD(b_label, pa, CurQ,MK,MinCost,MinNodes, P )

. b_label: label of the branch to the new node
. pa: the parent node

. CurQ: queue of nodes already processed at the current level (input/output parameter)
.MinCost: current minimum cost (input/output parameter)

.MinNodes: set of current minimum cost nodes (input/output parameter)
. P : strategy

2: MK = 〈T ,MA〉
3: MA = {A1, · · · ,An}
4: if ∃n′ ∈ CurQ such thatH(n′) = H(pa) ∪ {b_label} then
5: child_node← n′ . no new node creation
6: else if ∃n′ ∈ T such thatH(n′) ⊂ H(pa) ∪ {b_label} and label(n′) = ∅ then
7: child_node← a new node
8: label(child_node)← � . this is a closed node
9: else if P ∈ {Σ,Max,Gmax} and COST(P,H(pa) ∪ {b_label})> MinCost then

10: child_node← a new node
11: label(child_node)← � . this is a closed node
12: else
13: child_node← a new node
14: label(child_node)← an element C ∈ C(MK) such that C ∩ (H(pa) ∪ {b_label}) = ∅
15: CurQ← CurQ ∪ {child_node}
16: if P ∈ {Σ,Max,Gmax} and label(child_node) = ∅ then
17: if COST(P,H(pa) ∪ {b_label})< MinCost then

. Close current level nodes which are no more optimal
18: for all nopt ∈MinNodes do
19: label(nopt)← �
20: MinNodes← ∅
21: MinCost←COST(P,H(pa) ∪ {b_label})
22: MinNodes←MinNodes ∪ {child_node}
23: return child_node



with ∅. Nodes labeled with ∅ are called terminal nodes ; (iv) If n is labeled by a set C,
then for each α ∈ C, n has a successor nα, joined to n by an edge labeled by α.

In our case, the elements of C ∈ C(MK) are such that |C| = 2 (see [12]), so the
HS-dag is binary. Algorithm 1 computes the potential assertional removed sets by com-
puting the minimal hitting sets w.r.t. set inclusion of C(MK). It builds a pruned HS-dag
in a breadth-first order, using some pruning rules to avoid a complete development of
the branches. We move the processing of the left and right children nodes in a separate
function (described in Algorithm 2), as it first permits to keep the algorithm short and
simple, and second facilitates the extension of this algorithm to the computation of the
assertional removed sets according to the different strategies.

PrevQ andCurQ are sets containing respectively the nodes of the previous and the
current level. label(n) denotes the label of a node n. In a similar way, if b is a branch,
label(b) represents the label of b. left_branch(n) (resp. right_branch(n)) denotes
the left (resp. right) branch under the node n. left_child(n) (resp. right_child(n))
represent the left (resp. right) child node of the node n. The algorithm iterates the nodes
of a level and tries to develop the branches under each of these nodes. The central
property is that the conflict C labeling a node n is such that C ∩H(n) = ∅.

Pruning rules are applied when trying to develop the left and right branches of
some parent node pa (lines 4–22 in function PROCESSCHILD, Algorithm 2). Let us
briefly describe them: (i) if there exists a node n′ on the same level as the currently
developped child branch such that H(n′) = H(pa) ∪ {b_label} (b_label being the
label of the currently developed child branch), we connect the child branch to n′, and
there is no node creation (line 4); (ii) if there exists a node n′ in the HS-dag such
that H(n′) ⊂ H(pa) ∪ {b_label} and n′ is a terminal node, then the node connected
to the child branch is a closed node (which is marked with �) (line 6); (iii) other-
wise the node connected to the child branch is labelled by a conflict C such that
H(pa) ∪ {b_label} ∩ C = ∅. This new node is added to the current level queue.

Now we explain the aspects of the computation of the assertional removed sets
according to each strategy P . Card strategy. The Card strategy is the simplest one
to implement. First, observe that the level of a node n in the HS-dag is equal to the
cardinality of H(n). This means that if n is an end node (a node labeled with ∅), the
cardinality of the corresponding minimal hitting set is H(n). Thus, there is no need
to continue the construction of the HS-dag, as we are only interested in hitting sets
which are minimal w.r.t. cardinality. In the light of the preceding observation, The only
modification of the algorithm is the use of a boolean flag mincard which halts the
computation at the end of the level where the first potential assertional removed set has
been detected. Σ, Max and GMax strategies. As regards these strategies, we have
no guarantee that the assertional removed sets reside in the same level of the tree, as
illustrated by the following example for the Σ strategy.

Example 3. LetMK = 〈T ,MA〉 be an inconsistent MBox DL-Lite knowledge base
such that T = {A v ¬B,C v ¬B}, andA1 = {A(a)},A2 = {C(a)},A3 = {B(a)},
A4 = {B(a)}, A5 = {B(a)}. We have PR(MK) = {{A(a), C(a)}, {B(a)}} and
RΣ(MK) = {{A(a), C(a)}}. Thus the only assertional removed set is found at level
2, while the first potential assertional removed set is found at level 1.



Similar examples can be exhibited for the Max and GMax strategies. The search
strategy and associated pruning techniques forΣ,Max andGmax are located in lines 9
and 16 of algorithm 2. They rely on a cost function which takes as parameters a strategy
and a set S of ABox assertions. The different cost functions are defined according to
the strategies, that is, given an MBox MA = {A1 ∪ . . . ∪ An}: For the Σ strategy
COST(Σ,S) computes |S∩A1|+ . . .+ |S∩An|. For theMax strategy COST(Max, S)
computes max(|S∩A1|, . . . , |S∩An|), For theGMax strategy, using pAi

X = |X∩Ai|,
COST(GMax, S) computes LMA

X , which is the sequence (pA1

X , . . . , pAn

X ) sorted by
decreasing lexicographic order.

The variableMinCostmaintains the current minimal cost. In line 9 of algorithm 2,
if the cost of the current node is greater than MinCost, then the node is closed,
as is cannot be optimal. Otherwise we create a new node, labelled with a conflict
which does not intersect H(pa) ∪ {b_label}. If such a label cannot be found (line 16),
i.e. the current node is a terminal node then, at this point: (i) we are assured that
COST(P,H(pa) ∪ {b_label}) ≤ MinCost, so we add the new node to the set of cur-
rently optimal nodes (line 22); (ii) if the cost of the current node is strictly less than
MinCost, then we close all nodes currently believed to be optimal, empty the set con-
taining them, and update MinCost (lines 18– 21).

Example 4. We illustrate the operation of the algorithm with the computation of the
assertional removed sets of example 2. Figure 1 depicts the HS-dag built by algorithm 1.
Circled numbers shows the ordering of nodes (appart from root which is obviously the
first node).

{A(a), B(a)}

{C(a), D(a)}

∅ (1)
Σ = 3

Max = 2

GMax = (2, 1, 0)

C(a)

∅ (2)
Σ = 3

Max = 1

GMax = (1, 1, 1)

D(a)

A(a)

{C(a), D(a)}

∅ (3)
Σ = 2

Max = 1

GMax = (1, 1, 0)

C(a)

∅ (4)
Σ = 2

Max = 2

GMax = (2, 0, 0)

D(a)

B(a)

1 2

3 4 5 6

Fig. 1. Computing the removed sets of example 2.

In order to facilitate the description, we denote byMinNodesP the variableMinNode
when considering strategy P . The same applies for MinCost. At the end of the execu-
tion of the processing of a node (PROCESSCHILD function), a state of these variables
is given.

root The root is labelled with a conflict.
level 1

– Left and right branches of root node are labelled respectively with A(a) and
B(a), the members of the root label (lines 16– 17 of algorithm 1).



– PROCESSCHILD(α, no, CurQ,MK ,MinCost,MinNodes, P ) is called. None
of the pruning conditions in lines 4, 6 and 9 apply, so node 1© is created, and
labelled with a conflict not intersectingH( 1©) = A(a), namely {C(a), D(a)}.
The same processing leads to the creation of node 2©.
State: MinNodes = ∅, MinCost =∞ for any strategy

level 2
– Left and right branches of node 1© are labelled respectively with C(a) and
D(a), the members of the label (lines 16–17 of algorithm 1).

– PROCESSCHILD(α, no, CurQ,MK ,MinCost,MinNodes, P ) (left branch
of node 1©) is called. None of the pruning conditions in lines 4, 6 and 9 apply,
so node 3© is created. As there is no conflict C such that C ∩H( 3©) = ∅, the
new node is labelled with ∅. Whatever the strategy is, its cost is necessarily
less than MinCost which has been initialized to ∞. Thus MinCost is up-
dated to the cost of node 3© depending on the strategy and node 3© is added to
the MinNodes set.
State:MinNodes = { 3©},MinCostΣ = 3,MinCostMax = 2,MinCostGMax =
(2, 1, 0).

– PROCESSCHILD(β, no, CurQ,MK ,MinCost,MinNodes, P ) (right branch
of node 1©) is called. None of the pruning conditions in lines 4, 6 and 9 apply,
so node 4© is created. As there is no conflict C such that C ∩H( 4©) = ∅, the
new node is labelled with ∅. For strategy Σ, the cost of node 4© is equal to
MinCost, thus node 4© is added to the MinNodes set. For strategies Max
and GMax, the cost of node 4© is less than MinCost: node 3© is closed
(line 18), set MinNodes is emptied, and MinCost is updated.
State:MinNodesΣ = { 3©, 4©},MinNodesMax = { 4©},MinNodesGMax =
{ 4©}, MinCostΣ = 3, MinCostMax = 1, MinCostGMax = (1, 1, 1).

– Left and right branches of node 2© are labelled respectively with C(a) and
D(a), the members of the label (lines 16–17 of algorithm 1).

– PROCESSCHILD(α, no, CurQ,MK ,MinCost,MinNodes, P ) (left branch
of node 2©) is called. None of the pruning conditions in lines 4, 6 and 9 apply,
so node 5© is created. As there is no conflict C such that C ∩H( 5©) = ∅, the
new node is labelled with ∅. For strategyΣ, The cost of node 5© (2) is less than
MinCost. The same applies for GMax
State:MinNodesΣ = { 5©},MinNodesMax = { 4©, 5©},MinNodesGMax =
{ 5©}, MinCostΣ = 2, MinCostMax = 1, MinCostGMax = (1, 1, 0).

– PROCESSCHILD(β, no, CurQ,MK ,MinCost,MinNodes, P ) (right branch
of node 2©) is called. None of the pruning conditions apply, so node 6© is cre-
ated. As there is no conflict C such that C ∩ H( 6©) = ∅, the new node is
labelled with ∅. For strategy Σ, The cost of node 6© (2) is equal to MinCost.
State:MinNodesΣ = { 5©, 6©},MinNodesMax = { 4©, 5©},MinNodesGMax =
{ 5©}, MinCostΣ = 2, MinCostMax = 1, MinCostGMax = (1, 1, 0).

6 Conclusion

In this paper, we proposed new family of assertional-based merging operators, called
Assertional Removed Sets Fusion (ARSF) operators, following several merging strate-



gies (Σ, Card, Max, GMax). We studied the behaviour of ARSF operators with re-
spect to a set of logical postulates (initially stated for propositional formula-based merg-
ing), which we rephrased within the DL-Lite framework. From a computational point of
view, we proposed algorithms, stemming from the notion of hitting set, for computing
the potential assertional removed sets as well as the assertional removed sets according
to the different used strategies.

Belief change has been investigated within the framework of DL-Lite. Calvanese
and al. [13] adapted formula-based and model-based approaches of ABox and Tbox
belief revision and update, however they did not consider belief merging. Wang and al.
[27] addressed the problem of TBox DL-Lite KB merging by adapting classical model-
based belief merging to DL-Lite. This approach differs from the one we propose since
we extend formula-based merging to DL lite.

In a future work we plan to conduct a complexity analysis of the proposed algo-
rithm for the different used merging strategies. Moreover, we also want to focus on
the implementation of ARSF operators and on an experimental study on real world ap-
plications, in particular 3D surveys within the context of underwater archaeology and
handling conflicts in dances’ videos. Furthermore, the ARSF operators stem from a
selection function that selects one assertional removed set, we also plan to investigate
operators stemming from other selection functions as well as other strategies and other
approaches than ARSF for performing assertional-based merging.
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