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1 Introduction and summary of results

Three dimensional Conformal Field Theories (CFTs) display a rich variety and range of
applications. While some of them were introduced a long time ago in order to describe
long known phase transitions in condensed matter and statistical models, in recent years
the zoo of renormalization group (RG) fixed points has vastly grown.

The numerical conformal bootstrap represents a powerful tool to shed some light on
the intricate world of three dimensional CFTs. After its revival a decade ago [1–5], it
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has been successfully used to extract the most precise prediction of critical exponents
in key examples [6–12]. Moreover, interesting studies also displayed hints of novel (and
yet unclassified) CFTs [13, 14]. Many other great results have been achieved in three
dimensions [15–29]. See also [30, 31] for recent reviews on the subject.

When examining the results obtained in the last few years, it appears evident that
bootstrap methods in presence of a global symmetry seem to be less powerful when com-
pared to simpler systems like the Ising model or its supersymmetric extension. One possible
argument is that, given that the theory is more involved, one simply needs to consider cor-
relators involving more than two scalars. In particular, relevant scalar operators seem to
play a crucial role.

A second explanation could reside in how the presence of a global symmetry is imposed.
In past studies, the existence of a global symmetry was injected by declaring that operators
entering a correlation function transform according to irreducible representations of the
global symmetry group. In addition, selection rules were imposed on the operator product
expansion (OPE) of these operators. A complementary approach was also initiated in [32],
where the presence of a global symmetry was enforced by studying the correlation function
of the associated conserved spin-1 current. The latter method is definitively preferable, but
comes at the expense of considering spinning operators and thus complicating the analysis.
As a plus side, however, it does not introduce any new parameter to scan over, since
conserved currents have fixed dimensions. In this work we push this approach one step
further, and explore the constraints arising from the mixed system of correlation functions
involving one conserved current, associated to a U(1) global symmetry, together with a
scalar field charged under it.

One should be careful with the latter statement: without further assumptions, includ-
ing a conserved current in the bootstrap does not give us the right to identify it with the
generator of the global symmetry under which the scalar is charged. A trivial counter
examples is the tensor product of a generalized free scalar field φ and a generalized free
vector field Jµ. In order to impose that the external scalar and current couple non trivially,
one should force the correct global symmetry Ward identity, namely that the three point
function 〈φφ̄Jµ〉 is non vanishing.1 In this work we use this assumption in our studies of
the O(2) model. We plan to systematically make use of this assumption in more general
future explorations.

Among the obvious targets of our investigation one can list the O(2) vector model, the
Gross Neveu Yukawa model with N = 2 fermions, and QED3, both fermionic or bosonic,
where one identifies the global symmetry with the topological U(1)T . Although in principle
our set up could be used to analyze any system possessing a U(1) symmetry, we found that
our numerical bounds are subject to the same limitations as the single scalar correlator
analysis, namely they lose constraining power as the dimension of the scalar grows. For this
reason we mostly focus on the O(2) model where the charge-1 scalar has dimension close
to the free value. We also explored more general bounds and did not find other evidences
of CFTs saturating them.

1In the numerical bootstrap framework this is equivalent to impose a finite current central charge CJ ,
see section 2.1.
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1.1 New data for the O(2) model

In this section we collect the most important constraints obtained in the present work.
The interested reader can find all the technical details and proper definitions in the next
sections. Additional and more general plots can be found in section 3.

As mentioned in the previous section, we mostly focused on the O(2) model. In this
case we identify our scalar φ with the order parameter of the Landau Ginzburg description
of the phase transition, while Jµ is the current associated to the global O(2) symmetry.
According to recent bootstrap results [10], this model is confined to live on a narrow island
in the plane (∆φ,∆S), where S here is the unique neutral relevant scalar operator. Previous
bootstrap studies also constrained the dimension of the unique relevant traceless symmetric
operator tij , the central charge CT and the current central charge CJ ,2 [8, 15]. A few OPE
coefficients have also been determined in [10], such as λφφ̄S and λSSS .

When bootstrapping a mixed system of scalars, one can impose gaps in various scalar
sectors and exploit the existence of few relevant operators to create islands in parameter
space. In our setup, however, the same strategy does not work.3 Our strategy will then be
to identify a new set of assumptions that allow to create an island and use them to extract
constraints on CFT-data that have never been bound before, such as the parameter γ and
the OPE coefficients λJJS . While the latter is self explanatory, the former is related to
the three point function of two currents and the stress tensor —see section 2.1. As dis-
cussed in [33, 34], the conformal collider bounds require the parameter γ to range between
[−1/12, 1/12], with the extremes corresponding to free theories. Numerical evidences of
these bounds were also found by [32]. The value of this parameter in the O(2) model was
not known, although strong numerical evidences supported a negative value, which was
also confirmed by [32] under somewhat strong assumptions on the spectrum of the theory.4

In our explorations we found that a discriminant characteristic of the O(2) model is
the presence of a rather large gap between the stress tensor and the next spin-2 neutral
operator, let us call it T ′. This property translates in a sharp peak in the bound on ∆T ′

as a function of ∆φ and γ, as shown in figure 1(b). Intuitively this happens because fake
solutions of crossing or non-local theories do not require a stress tensor but usually possess
a spin-2 operator close to the unitarity bound; hence the bound on T ′ is effectively a bound
on the first spin-2 operator and only for local theories (which have a conserved stress tensor)
it becomes a bound on the second spin-2 operator. This property was also exploited in [25]
to create isolated regions in single correlator bootstrap.5

2These are defined respectively as the normalization of the two-point function of the stress tensor Tµν
and the U(1) current Jµ.

3Because of Ward identities, the charge-1 sector does not contain scalars, besides φ itself. Gaps in the
other scalar sectors are not sufficient to create islands.

4In particular we checked that the assumption that all parity-odd operators have twist τ = ∆− ` ≥ 2.5
is inconsistent for the O(2) model. The milder assumption τ ≥ 2 is still consistent.

5Indeed we checked that a sharp peak in the (∆φ,∆T ′ ) plot appears also using a single correlator. This
can be used to bound ∆φ assuming a gap in ∆T ′ . However, even pushing the value of Λ, the single correlator
setup is not very powerful in excluding values of ∆φ close to free theory. On the other hand the mixed
correlator setup is able to carve out the left side of the bound even at low number of derivatives. Apart
from this, we would like to stress that the most important feature of figure 1(b) is that the peak persists in
the γ direction, allowing us to constrain the value of this elusive parameter.
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Figure 1. On the left: allowed region in the plane (∆φ, γ) assuming that the first spin-2, parity-even
and neutral traceless symmetric tensor T ′ after the conserved stress energy tensor has dimension
∆T ′ ≥ 3.8, 4, 4.5, 4.8, 5. As the gap increases the allowed region shrinks to an island. On the right:
bound on ∆T ′ as a function of γ and ∆S . The bounds have been obtained at Λ = 13.

In figure 1(a) we show the allowed region in the plane (∆φ, γ) with increasing gaps on
T ′. By raising the gap ∆T ′ , the allowed region shrinks to a very small island, with a ∆φ

value centered around the expected value of the O(2) model. By making the conservative
assumption ∆T ′ ≥ 4, we are able to create an isolated region, with the parameter γ confined
close to the lower extreme of its interval.

The above analysis shows that, in order to isolate the O(2) model, we can impose
a mild gap between the stress tensor operator and the next operator in the same sector.
In order to make this assumption rigorous one could consider the island created by the
mixed correlator bootstrap of scalars as in [10] and then derive a rigorous upper and lower
bound on ∆T ′ by moving inside the island. In what follows we then use two assumptions
to isolate the O(2) model, one more conservative and one more realistic: ∆T ′ ≥ 4, 4.5. A
refined analysis [35] of the O(2) model involving three external scalar operators, φ, S and
the unique relevant charge two scalar t, has found ∆T ′ ≥ 4.6, which is consistent with both
our assumptions.

Since in this section we are focusing on the O(2) model, in addition to the gap on T ′

we will also input information from previous bootstrap analysis and use this assumptions
to determine bounds on new quantities.

Let us begin by γ and the OPE coefficient λJJS . We remind that, due to our framework,
the unique relevant neutral scalar S appears in two OPEs, schematically:

J × J ∼ 1 + λJJSS + . . . ,

φ× φ̄ ∼ 1 + λφφ̄SS + . . . . (1.1)

Let us define the ratio of OPE coefficients,

tan θ = λJJS
λφφ̄S

. (1.2)
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Λ = 13, ΔT'≥4

Λ = 19, ΔT'≥4

Λ = 19, ΔT'≥4.5
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Figure 2. Allowed region in the plane (γ, θ) assuming the known O(2) constraints shown in table 1
and ∆T ′ ≥ 4, 4.5. The lighter region has been computed at Λ = 13. The two smaller regions instead
have been computed at Λ = 19.

O(2) assumptions
∆φ = 0.5191
∆S ∈ [1.509, 1.514]
∆S′ > 3
∆t ∈ [1.204, 1.215]
∆t′ > 3
∆Q=0

0,− > 3
CJ < 0.9066CJ free

Table 1. List of assumptions used in our analysis. The bound for ∆S is taken from [10]. The
bound for ∆t and CJ are taken from [8]. S′ and t′ are respectively the first operators appearing
after S and t. Evidences for the gap on ∆Q=0

0,− were presented in [32].

We can then inspect what values of γ and the angle θ are consistent with the O(2) model
information we know. Figure 2 shows the allowed region in the (γ, θ) plane once we input
the best determination for ∆φ and ∆S from [10] as well as other known O(2) constraints
shown in table 1.6 Notice that in figure 2 and in the following plots we fixed the external
dimension to a precise value. Given the small size of the allowed range for ∆φ [10, 35],
moving this value would not alter the figure in a noticeable way.

6We demand positivity for a scan over the allowed intervals for ∆S and ∆t. Instead for ∆φ we pick a
central value in the allowed island.
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Figure 3. Upper and lower bound on the central charge CT normalized to the free value assuming
the constraints shown in table 1 and ∆T ′ ≥ 4.5. The bounds have been computed at Λ = 13.
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Δ
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Figure 4. Bound on the dimension of the first neutral parity-odd scalar assuming the known O(2)
constraints shown in table 1 and ∆T ′ ≥ 4.5. The bounds terminate because γ is confined in an
interval, see figure 2.

Using the value determined in [10] for λφφ̄S and (1.2) we then conclude (for ∆T ′ ≥ 4):

γ = −0.0808(5),
|λJJS | = 0.645(4) . (1.3)

Similarly, we can extract upper and lower bounds on the central charge CT . These are
shown in figure 3 and allow us to conclude:

CT
C free
T

= 0.9442(6) . (1.4)

Finally, using the same set of assumptions, we can extract upper bounds on low lying
operators. We stress that these are bona fide upper bounds and are not obtained by the
extremal functional method. As an example we show in figure 4 the upper bounds on the
first neutral parity-odd scalar as a function of γ for fixed ∆φ. Again changing the value
of ∆φ within its allowed range does not affect the results in a noticeable way. Notice that
passing from Λ = 13 to Λ = 19 makes the bound stronger by a 5%, suggesting that the
bound is still not converged.

We repeated a similar analysis in other channels and we obtained the bounds summa-
rized in table 2.
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` P Q Λ = 13 Λ = 19
0 − 0 7.45 7.13
1 − 1 10.14 8.59
2 − 1 4.47 4.47
1 + 1 2.96 2.95

Table 2. Upper bounds on operators in the O(2) models.

1.2 Conductivity at finite temperature

CFTs also play an important role in the description of certain quantum critical points. It
was observed in [36] that transport properties of systems near a quantum critical point
can be expressed in terms of CFT-data. There, the conductivity of a global symmetry
current in a (2+1) CFT non-zero temperature was computed in terms of the OPE J × J
and compared with a quantum Monte Carlo simulation (QMC) of the O(2)-model in the
limit of high frequencies, w � T .

The imaginary frequency conductivity is related to the thermal expectation value of
the current two point function by the expression

σ(iw)
σQ

= − 1
|w|
〈J̃µ=2(−w)J̃ν=2(w)〉T + (contact terms) , (1.5)

where σQ = e2/~ is the conductance quantum unit and J̃µ(w) denotes the Fourier transform
of the current Jµ(x).7

When using the OPE, the left-hand side receives contributions to all operators that
acquire a thermal expectation value.8 The leading term comes from the identity exchange
and corresponds to a constant value, usually called σ∞, identified with the conductivity
at T = 0. Next, for each primary operator O entering the J × J OPE, the conductivity
receives a contribution scaling as (T/w)∆O . As pointed out in [36], in the O(N) model,
the leading term in the expansion is the unique O(N) singlet relevant scalar, followed by
the stress tensor and then irrelevant operators.

In order to compare our bootstrap prediction with the quantumMonte Carlo simulation
for the O(2) model, we first need to express the conductivity defined in (1.5) in terms of
the CFT-data. After a brief calculation,9 summarized in appendix A, we obtain:

σ(iw)
σQ

= CJ
32 + CJλJJS

4π
Γ(∆S + 1) sin

(
π∆S

2

)
2−∆S

Υ−1
(
T

w

)∆S

+ 72γCJ
CT

Hxx

(
T

w

)3
. . .

= σ∞ + b1

(
T

w

)∆S

+ b2

(
T

w

)3
+ . . . , (1.6)

7The conductivity is defined only on Matsubara frequencies wn = 2πnT , but can be analytically contin-
ued to intermediate values.

8Only primary operators acquire a thermal expectation value.
9See also [37] for a similar expression.
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where ∆S is the dimension of the relevant singlet in the O(2) model, Υ−1 measures the
normalized thermal expectation value of S, and Hxx is the thermal one-point function of
the stress tensor xx component, see appendix A for a precise definition. The parameter
λJJS is the OPE coefficient determined in (1.3). The central charges CJ and CT measure
the normalization of the conserved current Jµ and the stress tensor Tµν . Our conventions
are such that in the theory of a single complex scalar one has

C free
J = 2 , C free

T = 3 . (1.7)

By fitting the quantum Monte Carlo data, [36] obtained the values σQMC
∞ = 0.5662(5),

bQMC
1 = 1.43(5), bQMC

2 = −0.4(1), ∆QMC
S = 1.526(65). In addition, they independently

determined Υ = 1.18(13), by fitting different observables, namely the one- and two-point
function of the operator S. Using (1.6) and the bounds on CJ obtained in [8], we can test
the consistency of the results:

Bootstrap + QMC conductivity fit: Υ = 1.257(60) ,
QMC Υ direct fit: Υ = 1.18(13) .

We see that the two determinations of the parameter Υ are in agreement within their errors.
In particular the one using the bootstrap results for λJJS and ∆S is more accurate.10

Plugging (1.3) and (1.4) in expression (1.6) we could also extract the value of the stress
tensor thermal one-point function. Unfortunately the fit of the conductivity performed
in [36] is marginally sensitive to the sub-leading terms and the value determined for b2 has
a large uncertainty.11 Nevertheless, we can estimate:

Bootstrap + QMC conductivity fit: Hxx = 0.105(30) .

It would be nice to use the analytic bootstrap at finite temperature [39–41] to compute the
values of Υ and Hxx and compare them with the predictions given in this work.

2 Setup

In this section we explain our setup. We first discuss which are the possible operators ex-
changed in the OPEs and we enumerate their associated OPE coefficients. In subsection 2.2
we explain how to write the crossing equations of the mixed J-φ sector (the two sectors
with only currents or only scalars were already studied in the literature, e.g. [15, 32]). In
subsection 2.3 we sketch which are the relevant conformal blocks and how we computed
them. Finally in subsection 2.4 we summarize the full set of bootstrap equations in the
form of sum rules.

Before entering the details of the setup, let us introduce the embedding space formal-
ism [42], which will be useful to classify conformal invariant tensor structures. The idea

10Notice however that the value extracted for σQMC
∞ from the fit of the conductivity is quite off compared

to latest bootstrap and Monte Carlo determinations, which could be caused by systematic errors estimated
of order 5–10% in [38]. The value of ∆QMC

S has instead larger uncertainties.
11Notice also that the next correction would come from the second neutral scalar S′, which has dimension

slightly above 3, and should therefore be treated on equal footing as the stress tensor.
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is to uplift each coordinate to a null cone in Rd+1,1, namely x ∈ Rd → P ∈ Rd+1,1 such
that P 2 = 0. This is very convenient since the conformal group SO(d + 1, 1) acts linearly
on Rd+1,1 thus trivializing the problem of finding conformal invariants —in fact the scalar
product P1 ·P2 of two embedding points is conformal invariant. In order to define correla-
tion functions in embedding space we uplift primary operators. We shall focus on primary
operators O(x, z) = zµ1 · · · zµ`Oµ1...µ`(x) in a traceless and symmetric representation of
SO(d), which are conveniently contracted with null polarization vectors zµ. Each operator
O(x, z) with dimension ∆ and spin ` is associated to a field O(P,Z), which satisfies the
condition

O(λP, αZ + βP ) = λ−∆α`O(P,Z) , (2.1)

where Z ∈ Rd+1,1 is an uplifted polarization vector. In the following we often classify con-
formal invariant tensor structures by using the embedding space building blocks introduced
in [42],

Hij ≡
(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)

(Pi · Pj)
,

Vi,jk ≡
(Zi · Pj)(Pi · Pk)− (Zi · Pk)(Pi · Pj)√

−2(Pi · Pj)(Pi · Pk)(Pj · Pk)
. (2.2)

For example the two-point function of a primary operator O with dimension ∆ and
spin ` is defined as follows

〈O(P1, Z1)O(P2, Z2)〉 = H`
12

P∆
12
, (2.3)

where Pij ≡ −2Pi · Pj . The central charges of a theory are defined from the two point
functions of canonically normalized currents and stress tensors,

〈J(P1, Z1)J(P2, Z2)〉 = CJ
(4π)2

H12

P d−1
12

, 〈T (P1, Z1)T (P2, Z2)〉 = CJ
(4π)2

H2
12

P d12
. (2.4)

However we keep these operators to be unit normalized according to (2.3). Therefore in
our conventions J and T are rescaled as follows

J → J(4π)/
√
CJ , T → T (4π)/

√
CT . (2.5)

2.1 3pt functions

One of the features that makes the scalar-current bootstrap richer and more involved is
the presence of various different OPEs:

J × J, J × φ, φ× φ, φ̄× φ . (2.6)

Imposing the equality of operators in J × J and φ × φ and asking for conservation of the
currents we can enumerate the allowed OPE tensor structures as indicated in table 3. The
operators are written in the form OQ` p, where ` is the SO(3) spin, p is the parity and Q is

– 9 –
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JJOQ=0
`+ JJOQ=0

`− JφOQ=1
`+ JφOQ=1

`− φφ̄OQ=0
`+ φφOQ=2

`+

` = 0 1 1 1 0 1 1
` = 1 0 0 1 1 1 0
` > 0, even 2 1 1 1 1 1
` > 1, odd 0 1 1 1 1 0

Table 3. Summary of the number of allowed tensor structures for each three point function
in our setup. The labels `,±, Q respectively correspond to spin, parity and U(1) charge of the
exchanged operator.

the charge under the U(1) global symmetry. In the following we may drop some of these
labels for the sake of brevity.

For most of the three-point functions considered in table 3 there exists a unique tensor
structure. We will refer to the associated OPE coefficient as λ, i.e.

λJJO`=0+ , λJJO− , λJφO± , λφφO+ , λφφ̄O+
. (2.7)

Conversely there are two distinct OPE coefficients in the three-point functions of two
currents and a parity even operator OQ=0

`+ with even ` 6= 0 which we will define as

λ
(1)
JJO+

, λ
(2)
JJO+

. (2.8)

The explicit basis used to define OPE coefficients will not play an important role for the
understanding of the results. For this reason we decided to keep this definition implicit in
the main text and collect all the conventions in appendix B.

Next we use Ward identities to relate some OPE coefficients to the central charges CJ
and CT of equation (2.4). Using the Ward identities for J , we fix the OPE λφφ̄J in terms
of CJ . For concreteness, in our normalization this relation takes the form12

λφφ̄J = 4π√
CJ

. (2.9)

From the Ward identities of T the OPE coefficients λφφ̄T can be fixed in terms of CT
and ∆φ. Similarly the OPE coefficients λ(1)

JJT , λ
(2)
JJT are fixed in terms of CT and an extra

parameter that we call γ. In our normalization:

λφφ̄T =
√

3
2 ∆φ

√
CTfree

CT
, (2.10)

λ
(1)
JJT =

√
3

8 (1− 12γ)
√
CTfree

CT
, (2.11)

λ
(2)
JJT =

√
3

4 (5− 12γ)
√
CTfree

CT
, (2.12)

12We always assume that the external scalar has charge Q = 1 under the global U(1).
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where CTfree ≡ 3 is the central charge of a free complex scalar. The coefficient γ is further
constrained by the conformal collider bounds [33] to lie in the following interval

− 1
12 ≤ γ ≤

1
12 . (2.13)

The two extremes correspond to complex free scalar (γ = − 1
12) and free fermion theory

(γ = 1
12).

2.2 Crossing equations

In this section we want to obtain all the crossing equations relevant for our setup. Fortu-
nately a big part of this goal is already solved in previous papers. For the scalar correlators
the situation is the standard one discussed for example in [15]. For the case of four currents
we exactly use the same setup detailed in [32]. What is left to discuss is the case of mixed
correlators of two scalars and two conserved currents. In the rest of the section we focus
on detailing this case.

Tensor structures. We start by considering four point functions of two scalars φi and
two (so far non conserved) vectors Ji. In order to classify the different tensor structures in
their four point functions it is convenient to write the correlation functions in embedding
space [42],

〈J1(P1, Z1)φ1(P2)J2(P3, Z3)φ2(P4)〉 ≡ K(Pi)
5∑
s=1

fs(u, v)Q(f)
s ({Pi, Zi}) , (2.14)

〈J1(P1, Z1)J2(P2, Z2)φ1(P3)φ2(P4)〉 ≡ K(Pi)
5∑
s=1

gs(u, v)Q(g)
s ({Pi, Zi}) , (2.15)

〈φ1(P1)J1(P2, Z2)J2(P3, Z3)φ2(P4)〉 ≡ K(Pi)
5∑
s=1

hs(u, v)Q(h)
s ({Pi, Zi}) , (2.16)

where u ≡ P12P34/(P13P24) and v ≡ P23P14/(P13P24) are the usual conformal cross ratios.
The function K is a fixed kinematical factor

K(Pi) ≡ κ(v)

(
P24
P14

)∆1−∆2
2

(
P14
P13

)∆3−∆4
2

(P12)
∆1+∆2

2 (P34)
∆3+∆4

2

, κ(v) ≡ v−
∆2+∆3

2 . (2.17)

The factor κ(v) is introduced to get nicer definitions for the crossing equations. The tensor
structures Qs are the s-th component of the vectors ~Q defined below

~Q(f) = {H13, V1,23V3,21, V1,23V3,41, V1,43V3,21, V1,43V3,41} ,
~Q(g) = {H12, V1,23V2,14, V1,23V2,34, V1,43V2,14, V1,43V2,34} ,
~Q(h) = {H23, V2,14V3,21, V2,14V3,41, V2,34V3,21, V2,34V3,41} ,

(2.18)

where the structures Hij and Vi,jk are the building blocks of [42] defined in (2.2). So
far the structures Qs are fixed only by scaling. Extra constraints will be imposed in the
following by requiring that the two currents Ji are equal and conserved and by imposing
that ∆φ1 = ∆φ2 .
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Crossing equations. Now that the tensor structures are classified, we are ready to write
the crossing equations. Crossing equations are obtained by demanding the invariance of the
four point functions under the permutations 1↔ 3 (i.e. of the operators inserted at point
P1 and P3). This implies relations between different functions fs and relates the functions
gs and hs. The resulting equations can be diagonalized by introducing the following change
of basis,

fs ≡
1√
2

5∑
s′=1

(Mf )ss′ f̂s′ , gs ≡
1√
2

5∑
s′=1

(Mg)ss′ ĝs′ , hs ≡
1√
2

5∑
s′=1

(Mh)ss′ ĥs′ , (2.19)

where Mf,g,h are 5× 5 matrices defined as follows

Mf ≡


0 0 0

√
2 0

0 1 0 0 −1
1 0 1 0 0
1 0 −1 0 0
0 1 0 0 1

 , Mg ≡


0 0 0

√
2 0

0 1 −1 0 0
1 0 0 0 1
1 0 0 0 −1
0 1 1 0 0

 , Mh ≡


0 0 0

√
2 0

1 0 0 0 −1
0 1 1 0 0
0 1 −1 0 0
1 0 0 0 1

 .

(2.20)
With these definitions the permutation 1↔ 3 in (2.14) and (2.15) results in the following
set of crossing equations

f̂s(u, v) = f̂s(v, u) , s = 1, 2, 4, 5 , f̂3(u, v) = −f̂3(v, u) ,
ĝs(u, v) = ĥs(v, u) , s = 1, 2, 3, 4 , ĝ5(u, v) = −ĥ5(v, u) .

(2.21)

Equality. When the two vectors and the two scalars are equal (i.e. Ji = J , φi = O) we
can use extra crossing relations (for example a JOJO is invariant under (1, 2) ↔ (3, 4))
which constrain the functions f̂ , ĝ, ĥ,

f̂5(u, v) = 0 , ĝ5(u, v) = 0 , ĥ5(u, v) = 0 . (2.22)

However, we are interested in the case of different scalar operators with the same scaling di-
mension ∆φ1 = ∆φ2 . In this case we are not allowed to use the crossing relation above, how-
ever (2.22) still holds. Indeed we could show that for ∆φ1 = ∆φ2 the conformal blocks which
decompose the functions f̂5, ĝ5, ĥ5 exactly vanish. Thus, the functions must vanish too.

Conservation. Conservation of the two operators Ji gives four independent partial dif-
ferential equations (of the first order) for the functions f̂s (similarly for ĝs and ĥs),

5∑
s=1

[
(M (f)

u )s′s∂u + (M (f)
v )s′s∂v + (M (f)

0 )s′s
]
f̂s(u, v) = 0 , s′ = 1, 2, 3, 4,

5∑
s=1

[
(M (g)

u )s′s∂u + (M (g)
v )s′s∂v + (M (g)

0 )s′s
]
ĝs(u, v) = 0 , s′ = 1, 2, 3, 4,

5∑
s=1

[
(M (h)

u )s′s∂u + (M (h)
v )s′s∂v + (M (h)

0 )s′s
]
ĥs(u, v) = 0 , s′ = 1, 2, 3, 4,

(2.23)

where Mu,Mv,M0 are 4× 5 matrices which depend on u, v.
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Two of the four differential equations in (2.23) (for example s′ = 3, 4) involve only the
fifth functions f̂5 (similarly for ĝ5 and ĥ5). These two equations are therefore not important
in our setup since, as we argued above, the functions f̂5, ĝ5, ĥ5 must vanish when J1 = J2
and ∆φ1 = ∆φ2 .13

The remaining two differential equations, s′ = 1, 2, involve non zero functions. For the
case J1φ1J2φ2 one can use them to evolve the crossing equations of f̂3(u, v) = −f̂3(v, u)
and f̂4(u, v) = f̂4(v, u) from the line u = v to the plane. The crossing equation for f̂4
is trivially satisfied on the line therefore we do not need to impose extra equations. On
the other hand to ensure crossing symmetry for f̂3 we need to impose the extra condition
f̂3(u, u) = 0. For the case of JJφφ̄ the conservation equations can be used to evolve the
equations ĝ3(u, v) = ĥ3(v, u) and ĝ4(u, v) = ĥ4(v, u) from the line u = v to the full plane.
One can in fact explicitly check that the evolution equations for ĝ3(u, v) and ĝ4(u, v) are
exactly equal to the ones of ĥ3(v, u) and ĥ4(v, u). In summary the final set of crossing
equations for two conserved equal currents and two scalars with equal dimensions are

f̂s(u, v) = f̂s(v, u) , ĝs(u, v) = ĥs(v, u) , (s = 1, 2) (2.24)

with the following constraint on the line

f̂3(u, u) = 0 , ĝ3(u, u) = ĥ3(u, u) , ĝ4(u, u) = ĥ4(u, u) . (2.25)

2.3 Conformal blocks

In the previous section we explained how to write the crossing equations. The basic idea of
the bootstrap is to require the compatibility of the crossing equations with the conformal
block decomposition. In this section we explain which are the relevant conformal blocks
for our setup.

Let us consider a four point functions 〈O1O2O3O4〉 of operators Oi with dimensions
∆i and spin `i. By taking the OPE O1×O2 and O3×O4 we obtain the following conformal
block decomposition

〈O1O2O3O4〉 = K
∑
p,q

λ
(p)
O1O2Oλ

(q)
O3O4O

∑
s

g
(p,q)O1O2O3O4
O,s (u, v)Qs , (2.26)

whereK is the prefactor defined in (2.17), Qs are the four-point function conformal invariant
tensor structures (E.g. (2.18)) and λ(p), λ(q) are the left and right OPE coefficients. The
conformal blocks g(p,q)O1O2O3O4

O,s (u, v) are functions of the cross ratios u and v, built out of
13As a curiosity we would like to report that, when the conformal dimensions of the two scalars is ∆φ

and the one of the currents is ∆J , we could solve these two differential equations, finding

f̂5(u, v) = c1
(
1− 2u+ (u− v)2 − 2v

)−∆J
2 (uv)

∆φ
2 + ∆J

2 ,

ĝ5(u, v) = c2 u
∆J+ 1

2 v
∆φ
2 + ∆J

2
(
1− 2u+ (u− v)2 − 2v

)−∆J
2 ,

ĥ5(u, v) = c3 u
∆φ
2 + ∆J

2 v∆J+ 1
2
(
1− 2u+ (u− v)2 − 2v

)−∆J
2 ,

where ci are constants of integration. Compatibility with the conformal blocks decomposition requires
ci = 0.
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the insertions of the four operators. They depend on the representation of the exchanged
operator O which is labelled by ∆, ` and ±. The dependence on the external operators Oi
is twofold. Firstly, they depend on their conformal dimension ∆i, through the combinations
∆12 and ∆34, where ∆ij ≡ ∆i −∆j . Most importantly they depend on the spins `i of Oi
which are responsible for the presence of different tensor structures both for the OPE and
for the four point function. This affects the possible values of the conformal block labels
p, q and s.

There are different strategies to compute conformal blocks. In this paper we mostly
used a recurrence relation [15, 43] which builds the blocks as a power series in the radial
coordinates r ≡ |ρ|, η ≡ (ρ+ ρ̄)/(2|ρ|) of [44], where

ρ = z

(1 +
√

1− z)2 , ρ̄ = z̄

(1 +
√

1− z̄)2 , (2.27)

and u = zz̄ and v = (1 − z)(1 − z̄). The recurrence relation is defined by studying the
analytic structure of the conformal blocks as functions of ∆. It takes the form

h
(p,q)O1O2O3O4
∆`,s (r, η) = h

(p,q)O1O2O3O4
∞`,s (r, η) +

∑
A

(4r)nA (RA)pp′qq′
∆−∆?

A

h
(p,q)O1O2O3O4
∆A`A,s

(r, η) ,

(2.28)
where h(p,q)

∆`,s(r, η) ≡ (4r)−∆g
(p,q)
∆`,s (r, η). There are a few ingredients that enter this formula:

h∞, RA and the labels ∆?
A,∆A, `A, nA. The latter are known from representation theory

for any conformal block in generic dimensions, while h∞, RA can be computed by some
standard computations [43, 45, 46]. Moreover, recently the paper [47] appeared with a
closed form solution for h∞ and RA for any conformal block in d = 3. This will be a very
useful tool to implement the conformal bootstrap in more complicated situations involving
mixed correlators with spinning operators.

For our setup we need to compute five different kinds of conformal blocks

gφφφφO (u, v) , gJφJφO,s (u, v) , gφJJφO,s (u, v) , g
(p) JJφφ
O,s (u, v) , g

(p,q) JJJJ
O,s (u, v) , (2.29)

where φ here stands for any scalar operator of dimension ∆φ. In the following we discuss
how we computed these conformal blocks and some of their features.

φφφφ: The scalar block is a single function of the cross ratios which we computed, as
customary, by means of the recurrence relation (2.28).

JφJφ: The mixed blocks gJφJφO,s (u, v) were computed in [45] using the recurrence rela-
tion (2.28). We used the ancillary file that was included in the publication. Notice
that in [45] the blocks are defined for generic spacetime dimension d and also
for generic non conserved vectors J1, J2 and different scalars φ1, φ2. The package
generates g(p,q) JφJφ

O,s (u, v) for s = 1, . . . 5 and for O belonging both to traceless
symmetric representation of spin ` (in this case p, q = 1, 2) and to the mixed
symmetric representation (`, 1) of SO(d) (in this case p, q = 1). For our setup
we need to consider φ1 = φ2 and J1 = J2 conserved in dimension d = 3 —their
normalization is discussed in appendix C.2. This implies that we do not need to
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compute the 5 structures labelled by s but only the three combinations useful to
decompose (2.24) and (2.25) (one of these combinations is computed only in the
u = v line). Finally, we stress that the (`, 1) representation of SO(d) is identified
as a parity odd spin ` representation of SO(3).

φJJφ: The blocks gφJJφO,s (u, v) have the same exact features as gJφJφO,s (u, v). Indeed they
can be computed from the latter by using permutation of the operators 1↔ 2 as
explained in appendix C.3. In particular one can compute the blocks gφJJφO,s (u, v) at
some order in the r expansion by knowing the blocks gJφJφO,s (u, v) at the same order
(provided that the complete dependence in the variable η is known at that order).
However we decided to compute these blocks by using the differential operators
of [48] to test if this algorithm was as effective as the recurrence relation. In our
implementations, the recurrence relation was faster.

JJφφ: We computed gφJJφO,s (u, v) using the recurrence relation (2.28) as we detail in ap-
pendix C.1. Our program works in arbitrary dimensions and for generic vector and
scalar operators. For a generic setup p and s take values from 1 to 5. In our case,
due to conservation, p only runs over 1 and 2 and we only require s = 1, 2, 3, 4
(two on the u, v plane plus two at the u = v line) which are enough to expand the
crossing equations (2.24) and (2.25).

JJJJ : The g(p,q) JJJJ
O,s (u, v) blocks were computed in [32] using a recurrence relation valid

for generic vectors in d = 3. Of the 41 values of s, only 11 combinations are useful
to expand the crossing equation for conserved equal currents (5 on the full u, v
plane, 5 on the u = v line and 1 at the point u = v = 1/4). Moreover, for the
conserved blocks, the values of p, q again run only from 1 to 2. In this work we
re-used the blocks generated for the paper [32].

Generating the five ingredients is not trivial. The JJJJ blocks are the hardest task which
was already done. However, computing the blocks φJJφ and JφJφ is also very expensive
because they both depend on the value of ∆φ. We decided to generate these functions at
low derivative order with an explicit dependence on ∆φ. This enabled us to perform some
exploratory scans in the dimension of φ. We then computed them at higher derivatives for
some fixed values of ∆φ compatible with the O(2) model. Finally, the computation of the
JJφφ and φφφφ blocks is reasonably fast.

2.4 Sum rules

The bootstrap equations are obtained by combining the crossing equations of subsection 2.2
with the conformal block decomposition of subsection 2.3. They take the form of sum rules
for some functions F [±] which are defined in terms of combinations of conformal blocks,

F [±]O1O2O3O4 ≡ κ(v)gO1O2O3O4
O (u, v)± (u↔ v) , κ(v) ≡ v−

∆2+∆3
2 . (2.30)

In what follows we write down the sum rules for all the considered correlators. The goal is
to reach a single vectorial bootstrap equation that can be analyzed by means of semidefinite
programming.
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The scalar sector. Let us start by reviewing how the scalar bootstrap equations arise.
By equating the OPE channels (12)(34) = (13)(24) of the correlation function 〈φφ̄φφ̄〉, we
get the following equation ∑

OQ=0
∆ `+

(−1)`|λφφ̄O|
2F

[−]φφ̄φφ̄
O (u, v) = 0 . (2.31)

The same strategy applied to 〈φ̄φφφ̄〉 generates two equations∑
OQ=0

∆ `+

|λφφ̄O|
2F

[±]φ̄φφφ̄
O (u, v)∓

∑
OQ=2

∆ `+

|λφφO|2F
[±]φφφ̄φ̄
O (u, v) = 0 , (2.32)

parametrized by the label ±.

The mixed sector. As we explain in subsection 2.2, the crossing equations for the mixed
correlators take a simpler form in the hatted basis (2.19). It is therefore convenient to define
new functions F [±] which are rotated accordingly,

F
[±]JφJφ̄
O,s (u, v) ≡ κ(v)−1∑5

s′=1(M−1
f )ss′g

[JφJφ̄]
O,s′ (u, v)± (u↔ v) ,

F
(q)[±]JJφφ̄
O,s (u, v) ≡ κ(v)−1∑5

s′=1(M−1
g )ss′g

(q)[JJφφ̄]
O,s′ (u, v)± (u↔ v) ,

F
[±]φJJφ̄
O,s (u, v) ≡ κ(v)−1∑5

s′=1(M−1
h )ss′g

[φJJφ̄]
O,s′ (u, v)± (u↔ v) ,

(2.33)

In this notation it is easy to write the bootstrap equations. From 〈JφJφ̄〉 we get two
equations on the plane and one on a line∑

OQ=1
∆ `±

σO|λJφO|2F
[−]JφJφ̄
O,s (u, v) = 0 , s = 1, 2 , (2.34)

∑
OQ=1

∆ `±

σO|λJφO|2F
[+]JφJφ̄
O,s (u, u) = 0 , s = 3 . (2.35)

Here σ is a sign which depends on the normalization of the three point functions.14 In our
case

σO =
{

1 if O = φ̄

(−1)`+p+1 if O 6= φ̄
, (2.36)

where p = 0, 1 and ` are respectively the parity and the spin of the exchanged operator O.
From 〈φJJφ̄〉 we get four equations on a plane (labelled by s = 1, 2 and [±]) and two

on the line (s = 3, 4),

∑
OQ=0

∆`+

2∑
q=1

λ
(q)
JJOλφφ̄OF

(q)[±]JJφφ̄
O,s (u,v)∓

∑
OQ=1

∆`±

σO|λJφO|2F
[±]φJJφ̄
O,s (u,v) = 0 , s= 1,2 , (2.37)

∑
OQ=0

∆`+

2∑
q=1

λ
(q)
JJOλφφ̄OF

(q)[+]JJφφ̄
O,s (u,u)−

∑
OQ=1

∆`±

σO|λJφO|2F
[+]φJJφ̄
O,s (u,u) = 0 , s= 3,4 . (2.38)

14This is due to the fact that we need rewrite the OPE coefficients in a positive combination,

λφJφ̄λφJφ̄ = λJφφ̄λφJφ̄ = |λJφφ̄|
2 ,

λφJOλŌJφ̄ = λJφOλŌJφ̄ = (−1)`+p+1|λJφO|2 (l > 0) .
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The current sector. Finally we review the sum rules for 〈JJJJ〉 as obtained in [32]. In
that case conservation and equality of the currents produced a set of 5 crossing equations
valid on the plane, 5 on a line and a single one at a point. In terms of opportune functions
F [±],15 the equations are casted into the following sum rules

2∑
p=1

2∑
q=1

∑
OQ=0

∆`+

λ
(p)
JJO+

λ
(q)
JJO+

F
[−](p,q)JJJJ
O+,s

(u,v)+
∑
OQ=0

∆`−

|λJJO− |2F
[−]JJJJ
O−,s (u,v) = 0 , s= 13,15,16,17

2∑
p=1

2∑
q=1

∑
OQ=0

∆`+

λ
(p)
JJO+

λ
(q)
JJO+

F
[+](p,q)JJJJ
O+,s

(u,v)+
∑
OQ=0

∆`−

|λJJO− |2F
[+]JJJJ
O−,s (u,v) = 0 , s= 7

2∑
p=1

2∑
q=1

∑
OQ=0

∆`+

λ
(p)
JJO+

λ
(q)
JJO+

F
[+](p,q)JJJJ
O+,s

(u,u)+
∑
OQ=0

∆`−

|λJJO− |2F
[+]JJJJ
O−,s (u,u) = 0 , s= 1,2,4,5,6

2∑
p=1

2∑
q=1

∑
OQ=0

∆`+

λ
(p)
JJO+

λ
(q)
JJO+

F
[+](p,q)JJJJ
O+,s

(1
4 ,

1
4

)
+
∑
OQ=0

∆`−

|λJJO− |2F
[+]JJJJ
O−,s

(1
4 ,

1
4

)
= 0 , s= 3

In the equations above we explicitly show the parity of the exchanged operator since the
number of OPE coefficients depends on this quantum number.

The bootstrap equation. Since λ(p)
JJO+

λ
(q)
JJO+

and λ
(p)
JJOλφφ̄O are not ensured to be

positive quantities, it is necessary to rearrange the equations into a single expression that
can be studied using the standard semidefinite programming techniques,

~λT1 ~V
Q=0

0,0,+
~λ1+

∑
OQ=0
`=0,+


λφφ̄O+

λ
(1)
JJO+


T

·~V Q=0
∆,0,+·


λφφ̄O+

λ
(1)
JJO+

+
∑

OQ=0
`>0 even,+


λφφ̄O+

λ
(1)
JJO+

λ
(2)
JJO+


T

·~V Q=0
∆,`,+·


λφφ̄O+

λ
(1)
JJO+

λ
(2)
JJO+


+

∑
OQ=0
` odd,+

|λφφ̄O|
2~V Q=0

∆,`,++
∑
OQ=0
` 6=1,−

|λJJO− |2~V
Q=0

∆,`,−+
∑
OQ=1
`≥1,+

|λJφO|2~V Q=1
∆,`,++

∑
OQ=1
`≥1,−

|λJφO|2~V Q=1
∆,`,−

+
∑

OQ=2
` even,+

|λφφO|2~V Q=2
∆,`,++|λJφφ̄|

2 ~V Q=1
∆φ,0,+ = 0 . (2.39)

where ~λ1 = (1, 1). Here we have separated the case of OQ=0
`=0,+ from the other ` > 0, since in

former case there is no OPE coefficient λ(2)
JJO. In appendix D we write explicitly all the vec-

tors ~V Q
∆,`,±, where ∆ is the conformal dimension, ` is the spin, ± is the parity and Q = 0, 1, 2

is the charge of the exchanged operator. By construction all the vectors ~V are 23 dimen-
sional. The 23 components of the vector ~V Q=0

∆,`,+ are 3×3 matrices for ` > 0, and 2×2 matrices
for ` = 0. The components of all the other vectors ~V do not have any matrix structure.

In the next sections we use the following convention to denote the gaps of the exchanged
operators

∆Q
`,± ≡ Gap for operators with spin `, parity ± and charge Q . (2.40)

15The exact meaning of the functions F [±] is defined in [32], where it is used the notation F [+] → H̃ and
F [−] → F̃ .
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Figure 5. Bound on the dimension of the first neutral parity-even scalar operator as a function of
∆φ. For ∆φ . 1.5 the bound is driven by the scalar bound. The plateau for larger values of ∆φ

corresponds to the bound from the current bootstrap. The bound displays a kink corresponding to
the O(2) model. The bounds have been obtained at Λ = 13.

In this notation the bootstrap equations (2.39) depend on the following five infinite families
of gaps,

∆Q=0
`,+ , ∆Q=0

`,− , ∆Q=1
`,+ , ∆Q=1

`,− , ∆Q=2
`,+ . (2.41)

For brevity we sometimes refer to the gap of important operators by their name, e.g.
∆S = ∆Q=0

`=0,+, ∆φ2 = ∆Q=2
`=0,+, ∆T = ∆Q=0

`=2,+, and so on. We assume that the CFT is
unitarity, namely that all gaps in (2.39) are consistent with the unitarity bounds,

∆Q
`=0,± ≥

d

2 − 1 , ∆Q
`>0,± ≥ `+ d− 2 . (2.42)

If we increase enough some of the gaps ∆Q
`,±, we may find that the equations (2.39) cannot

be satisfied. In this case we say that the corresponding CFT is excluded. We can thus think
of ∆φ and the gaps (2.41) as the knobs which can turn to generate bounds. Equation (2.39)
can also be used to compute upper bounds on OPE coefficients. In the following we show
some interesting bounds obtained in this setup. All semi-definite problems have been solved
using SDPB [9] with parameters as in [32].

3 Results

3.1 Bounds on operator dimensions

Scalar operators. We begin by studying the bound on the first parity-even scalar, neu-
tral under the global U(1) symmetry. We denote its dimension by ∆S . As shown in figure 5
the bound coincides with the constraint one would get by bootstrapping only the scalar
correlator 〈φφ̄φφ̄〉, until it reaches the maximal value allowed by the current bound [32]. At
that point the bound becomes flat and independent on the external dimension. Although
no new interesting features appears, this bound represents a validation of our methods and
shows how the different crossing relations interplay.
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Figure 6. Bound on the dimension of the first charge-2 parity-even scalar operator as a function
of ∆φ. The bound displays a kink in corresponding to the O(2) model. The continuous line was
obtained using the mixed system of bootstrap equations at Λ = 13; the blue dashed line only uses
the scalar correlator at Λ = 27. The grey dotted line is the generalized free theory line. The red
(black) dots correspond to the dimension of the monopoles with charge q = 1/2 and q = 1 in bosonic
(fermionic) QED3 computed in large-N expansion [49, 50]. Here we show respectively N = 10, 12
and N = 4, 6.

Next we consider a bound on the dimension of the first parity-even charge-2 scalar t.
We denote its dimension by ∆t. This operator only appears in the φ × φ OPE, thus it
is natural to expect that the bound is completely driven by the scalar crossing equations
only. We show this plot in figure 6, together with the same bound obtained using only
scalar correlators at higher Λ.16 The bound only shows a kink in corresponding to the O(2)
model, nevertheless it allows to make contact with another set of CFTs that must obey
our exclusion plots.

The infrared fixed point of fermionic and bosonic QED3 contains a topological global
U(1) symmetry: we can then interpret φ as a scalar monopole operator with topological
charge q = 1/2 under this symmetry and identify Jµ with the associated current; then
the bound on ∆t is interpreted as the bound on the smaller monopole with charge q = 1.
Interestingly the dimension of these operators have been computed in a large N expan-
sion [49], where N is the number of copies of fermions or bosons in the gauge theory. The
predictions are shown in figure 6: although they do not saturate the bound, they seem to
get close for small values of N (where however the large-N expansion is not accurate).

The only other sector containing scalars in the mixed system of J and φ is the neutral
parity-odd one. We do not show its bound here, since it coincides exactly with the one
obtained in [32], except that it has a termination point dictated by the maximal value of
∆S allowed as a function of ∆φ.

Operators with spin. We now move to bounds on operators with spin. We have already
pointed out in section 2 the advantages of bounding the dimension of T ′µν —the first neutral
parity-even spin-2 operator after the stress tensor— to pinpoint the O(2) model. Let us
now review this statement by exploring the bound on ∆T ′ on a broader range of parameters.
In figure 7 we show its upper bound as a function of the external dimension ∆φ and the
parameter γ ∈ [−1/12, 1/12] defined in (2.12).

16Given the numerical complexity of our setup we could not push the mixed correlator analysis to the
same value of Λ.
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Figure 7. Bound on the dimension of the first neutral parity-even spin-2 operator after the stress
tensor as a function of ∆φ. Different curves corresponds to different values of the parameter γ
defined in (2.12). The dashed curves correspond to the function min(4, 2∆φ + 2). The bounds have
been obtained at Λ = 13.

We observe two interesting features at the extremes of the γ interval. Close to the
γ ∼ −1/12 the upper bound on ∆T ′ develops a sharp peak corresponding to a somewhat
large gap in the spin-2 sector.17 We interpret this gap as the signal of the existence of a
local CFT. Non-local theories or fake solutions of the crossing equations do not require a
conserved spin-2 primary. As a result for those theories the bound on ∆T ′ is actually a
bound on the first spin-2 operator. In section 1 we exploited this peak to create an island
in the (∆φ, γ) plane and provide the first precise determination of γ for the O(2) model.18

In the proximity of the other extreme the bounds shows instead a clear kink around
∆φ ∼ 0.91. Although it would be nice to interpret this feature as an existing CFT, we
are not aware of obvious candidates. The value γ ∼ 1/12 suggests that the putative
CFT should admit a description in terms of fermions: in that case the scalar φ could
be a fermion bilinear with a large anomalous dimension. Another possibility is that φ
is a monopole operator of a QED3-like theory.19 Unfortunately the parameter γ for the
topological current has never been computed. We leave the investigation of this kink for
future studies. It is also plausible that this is a reminiscence of the trivial solution in
which φ is a generalised free field and J is a decoupled conserved current. In this case one
has ∆T ′ = min(4, 2∆φ + 2). This solution is shown by a black dashed curve in figure 7.
We observe indeed that for values of γ outside the conformal collider interval the bounds
approaches this solution.

We also notice that all the curves in figure 7 eventually reach a plateau. We checked
that at this point the ∆φ-independent constraints from 〈JJJJ〉 take over.

17An alternative way to achieve a sharp peak in the bounds, is to impose a gap on J ′, the next spin-
1 neutral operator after the conserved current J . Indeed the peak appears even in the single correlator
setup [25]. Unfortunately our setup is not very sensitive to this gap, since J ′ only appears in the OPE of
φ× φ̄ in the scalar correlator. The resulting bounds are thus similar to the single correlator ones. For this
reason the gap on J ′ will not play a major role in this work.

18One can show the peak persist once additional information about the O(2) model is injected, such as
the presence of a single relevant neutral scalar.

19For instance large-N computation and bootstrap studies suggest that the smallest monopole in fermionic
QED3 with 4 flavours has dimension ∆M ∼ 1.034. Bosonic QED3 is instead believed not to have a fixed
point at small N . In principle U(1) Chern-Simons theories with non vanishing κ must also obey our bounds.
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Figure 8. On the left: bound on the dimension of the first charge-1 parity-even spin-1 operator as
a function of ∆φ. Assuming a gap of 4 in the charge-1 parity-even spin-2 sector removes the fake
primary effect. On the right: same bound with and without the assumption of no relevant neutral
vectors besides J . The bounds have been obtained at Λ = 13.

So far we have considered bounds on operators that were accessible both using the
scalar correlator alone or the four current correlator alone. Let us now move to operators
in theQ = 1 sector, i.e. appearing in the OPE J×φ. We recall that, due to conservation, the
only scalar allowed in the OPE is φ itself. Moving to spin-1 operators, we find parity-even
and parity-odd charge-1 vectors.

In figure 8(a) we plot the bound on the dimension of the first parity-even vector charged
under the global U(1). With no additional assumption the bound displays the characteristic
fake-primary effect discussed in [51] due to a contamination from charge-1 spin-2 operators
at threshold. By imposing a gap in the latter sector, the fake-primary effect is removed.
In addition to the jump, the bound also displays a kink approximatively in correspondence
with the O(2) model. However we observed that, injecting additional information, the
height of the kink changes substantially.20 For instance, by imposing the existence of a
single relevant spin-1 neutral current, the bound drops as shown in figure 8(b). We checked
that imposing extra assumptions does not substantially improve the bound further.21

We conclude the section by presenting in figure 9(a) and figure 9(b) bounds on the first
parity-odd charge-1 vector and tensor. Also in this case we must remove the fake primary
effect by imposing a finite gap in the spin-2 and spin-3 charge-1 parity-odd sector. In the
former case, however, the bound turns out to be heavily dependent on the gap. With a gap
smaller that 4.1 the bound seems to diverge when approaching the O(2) model, however
increasing the gap to 4.5, changes drastically the shape of the bound. We should point out
that further investigations show that a gap in the spin-2 charged parity-odd sector of 4.5
is inconsistent with additional assumptions about the O(2) model.

Notice also that the bound in figure 9(a) stops existing as ∆φ approaches 0.96. A
similar phenomenon was observed in [52]. Also in our case, the point where the bound
stops existing shifts as we increase Λ. We believe this is a numerical artifact which could
be cured by imposing ad hoc gaps in the spectrum.

20It could be that the kink observed without further assumptions corresponds to another CFT.
21See also the upper bound presented in table 2 found under additional constraints.
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Figure 9. On the left: bound on the dimension of the first charge-1 parity-odd spin-1 operator as a
function of ∆φ. The dashed red line corresponds to the value of ∆φ of the O(2) model. The two lines
corresponds to different gaps in the charge-1 spin-2 parity-odd sector to remove the fake primary
effect. On the right: bound on the dimension of the first charge-1 spin-2 parity-even operator as
a function of ∆φ. When the bound reaches 5 it jumps to a much higher value. The bounds have
been obtained at Λ = 13.

3.2 Bounds on central charges

Among the OPE coefficients appearing in the conformal block decomposition of our cor-
relation functions, the one associated to the exchange of the stress tensor plays a special
role. It is indeed related to the central charge CT by conformal Ward identities. As shown
in (2.12), the precise relation involves the parameter γ, which due to the collider bounds is
constrained in the interval [−1/12, 1/12]. Using the bootstrap, we can then place a lower
bound on the central charge as a function of the external dimension ∆φ and the parameter
γ. Lower bounds on the central charge for theories with O(2) symmetry have also been com-
puted using the scalar correlator [15] or the current correlator only [32]. In the former case
the bound decreases with ∆φ and is always weaker than the free theory value C free

T , with
a change of slope in proximity of the O(2) model.22 In the latter case the bound remains
below the free theory value for the allowed range of γ and rapidly increases outside.23

In figure 10 we show the results of our analysis. For values of ∆φ close to unitarity, the
bound displays a minimum in correspondence with the free scalar theory values of γ and
CT (the red dot in the picture). Increasing ∆φ to 0.5192 the bound gets slightly weaker
to accommodate a smaller central charge, as expected in the O(2) model (dashed line in
figure 10(b)). Interestingly one can already observe that CT ≤ C free

T requires a negative γ.
Increasing further the value of ∆φ makes the bound relax to the bounds obtained using
currents alone, figure 10(d).

We conclude this section by studying the constraints imposed on the central charge
CJ . Due to Ward identities, this quantity is related to the inverse of the OPE coefficient
λφφ̄J according to (2.9). Notice that the latter OPE coefficient appears both in the scalar

22The discontinuity appeared to be slightly off in ∆φ.
23Assuming a mild gap after the stress tensor make the collider bounds more manifest and the bounds

rapidly grows for |γ| > 1/12.
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Figure 10. Lower bound on the central charge CT /CT free as a function of γ for ∆φ = 0.505,
0.5192, 0.605, 1.05. The shaded region is allowed. The bounds have been obtained at Λ = 13.

correlator and in the mixed channel, schematically:

φ× φ̄ ∼ 1 + λφφ̄J J + . . . ,

J × φ ∼ λφJφ̄ φ+ . . . . (3.1)

There is however an important difference between the above expressions: in the first line
the block associated to the exchange of a conserved current is continuously connected to
non conserved spin-1 blocks; on the contrary, in the mixed channel, the block associated to
the exchange of φ̄ itself plays a special role and is, in fact, isolated. In practice this means
that this block cannot be mimicked by an operator arbitrarily close in dimension and one
can hope to place also an upper bound on CJ under suitable assumptions. We will come
back to this shortly.

Let us begin by exploring lower bounds on CJ . This is shown in figure 11 as a function
of ∆φ. By comparison we also show the bound obtained using the scalar correlator with
higher numerical power. The shape is substantially similar and the only distinguishable
feature is in correspondence with the O(2) model, as already observed in [53].24

24The fact that the bound decreases for large external dimensions is expected: if one interpret J as a topo-
logical U(1) current in QED3 and φ as a monopole operator then one has the asymptotic behavior [49, 54]:

∆φ ' 0.265Nf − 0.0383 +O

(
1
Nf

)
,

CJ
Cfree
J

' 3.2423
Nf

(
1− 0.1423

Nf
+O

(
1
N2
f

))
,

where Nf is the number of fermions in the UV theory. Unfortunately our bound is still far from these values.
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Figure 11. Lower bound on CJ as a function of ∆φ. The solid line is computed at Λ = 13 using
the mixed system of J-φ correlators, while the dashed line is computed at Λ = 27 using only the
scalar correlator. Both lines show a feature corresponding to the O(2) model.

γ= -0.081

γ= -0.0805

γ= -0.08

γ= -0.06

γ= -0.04

γ= -0.083

γ= -0.082

0.52 0.54 0.56 0.58 0.60

Δϕ

1

2

3

4

5

6

CJ/CJ
free

Figure 12. Upper bound on CJ normalized to the central charge of a free complex boson as a
function of ∆φ at fixed values of the parameter γ assuming CT ≤ 0.95Cfree

T . The bounds have been
obtained at Λ = 13.

As mentioned earlier, in a pure scalar bootstrap setup, extracting bounds on CJ would
require to isolate the current conformal block by assuming a gap on the next spin-1 operator.
In the present framework, however, the isolated nature of the φ-conformal block in the
mixed channel can be exploited to compute such a bound. Notice that a finite value of CJ
implies that the scalar is indeed charged under the external current J . Despite the fact
that we would like to focus on those cases, it is perfectly legitimate to have a correlation
function of a conserved current associated to a U(1) under which the complex scalar φ is
neutral.25 Thus, we do not expect an upper bound to exist without further assumptions.

In our investigations we found that assuming a small value of the central charge CT
forces a finite value of CJ . This is shown in figure 12, where we computed an upper bound
on CJ as a function of ∆φ for several values of γ. This is the first numerical evidence
that the existence of a local stress tensor, together with a set of selection rules, implies the
presence of conserved current in the scalar OPE.

We could go one step further and ask for what values of the central charge such a
bound exists. This question can also be recast as a lower bound on CT , assuming CJ →∞.

25The simplest case is a tensor product of a generalized free vector field and a generalized free scalar
theory. Alternatively one can consider for instance the O(4)-vector model identify φ ≡ φ1 + iφ2 and J as
the generator of rotations in the 3–4 direction.

– 24 –



J
H
E
P
1
2
(
2
0
2
0
)
1
5
6

-
1

12
-

1

24

1

24

1

12

γ
0.9

1.0

1.1

1.2

1.3

1.4

CT /CTfree

Δϕ=0.505

Δϕ=0.5192

Δϕ=0.54

Δϕ=0.605

Figure 13. Lower bound on the central charge normalized to the central charge of a free complex
boson as a function of the parameter γ at fixed values of ∆φ assuming that the scalar φ is neutral
under the symmetry generated by the current J . The bounds have been obtained at Λ = 13.

Figure 13 answer precisely this question. We observe that if the central charge is below
the bound for given γ and ∆φ, the scalar must be charged under the external current J .
Intuitively this result can be restated as: in order to have an extended symmetry, one needs
enough degrees of freedom. While this statement is obvious in free theories, it interesting
to show that it can be extended to interacting CFTs, although at present the bound on CJ
only exists for small CT and ∆φ close to the unitarity bound.26

4 Conclusions

In this work we studied the impact of considering correlation functions involving a spin-1
conserved current and a scalar operator charged under the associated global U(1). Using
numerical bootstrap techniques we have explored the space of constraints. We found that
only the O(2) model seems to stand out, appearing as kinks in several operators bounds
and as a sharp peak in the bound on the first spin-2 operator after the stress tensor. By
using these features we manage to constrain several observables that are not accessible
by the scalar bootstrap, such as dimensions of certain operators and three-point functions
coefficients involving two currents and a third operator. In particular, we determined with
some accuracy the OPE coefficient λJJS , where S is the unique relevant neutral deformation
in the O(2) model. This parameter controls the leading correction to the conductivity σ in
the O(2) model at finite temperature and high frequencies. We expressed the dependence
of σ in terms of the CFT data and compared it to the QMC simulations of [36] to extract
the expectation value of the operator S at finite temperature. Our determination agrees
with the direct QMC determination and is more accurate.

We also accurately determined two more quantities, γ and the central charge CT ,
appearing in the next-to-leading correction of σ. Their knowledge allowed to extract the
thermal expectation value of the stress tensor from the fit of the conductivity. In order
to improve the sensitivity to sub-leading corrections, the precision of the QMC simulation
should be increased, with particular attention to systematic errors.

26Indeed for larger values ∆φ, the bounds of figure 13 are on top of the bounds with no assumptions on
CJ shown in figure 10.
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Recently a QMC study of the Gross-Neveu model was performed in [55], together with
a fit of the conductivity. It would be interesting to repeat our bootstrap analysis and
extract the relevant CFT-data to compare with those results.27 In order to focus on the
Gross-Neveu model one should presumably consider external fermions.

Part of the motivation of this work was to establish whether it is worthwhile to include
conserved currents in the bootstrap. For certain questions we observed that the presence of
the spin-1 current was not determinant. On the other hand, when scanning over parameters
such as γ and θ, we observed interesting interplay of the crossing equations. To make a
conclusive statement one should consider an even more complicated system and include the
neutral scalar S as an external operator. That analysis, in conjunction with new algorithms
to cheaply scan over the OPE parameter space [35] could represent the correct approach
to deal with CFTs with global symmetries.
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A Conductivity in terms of CFT data

We begin by defining the two point function of the U(1) current:

〈J(x1)J(x2)〉 ≡ 〈J(x1, z1)J(x2, z2)〉 = CJ
(4π)2

1
x4

12

[
z1 · z2 − 2(x12 · z1)(x12 · z2)

|x12|2
]
. (A.1)

In the above expression all polarizations zi and ccordinates are three dimensional and,
as usual xµ12 = (x1 − x2)µ. With this normalization the current Jµ satisfies the global
symmetry Ward identity and in the case of a free scalar field C free

J = 2.
We are interested in the leading terms in the OPE expansion of Jµ × Jν , with a

particular interest in the contribution of the smallest dimension scalar operator, let us call
it S, which is normalized according to

〈S(x)S(0)〉 = A

|x|2∆S
. (A.2)

This can be obtained by matching with the leading term in the x1 → x2 expansion of the
three-point function [32]:

〈J(x1)J(x2)S(x3)〉 = CJ
√
A

(4π)2 λ̂JJS
(∆S − 2)Ĥ12 + ∆SV̂1,23V̂2,31
|x12|4−∆S |x13|∆S |x23|∆S

, (A.3)

27We thank William Witczak-Krempa for bringing this work to our attention.
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where as usual we are working in three dimensions. The prefactor CJ
√
A/(4π)2 has been

added so that the three-point function coefficient λ̂JJS is defined for unit-normalized cur-
rent and scalar. The three point function coefficient is related to the one used in the main
text and appendix B simply by

λ̂JJS = −∆SλJJS . (A.4)

The structures Ĥ and V̂ —which correspond to the physical space projection of the H and
V of (2.2)— are written as follows,

Ĥ12 = z1 · z2 − 2(x12 · z1)(x12 · z2)
|x12|2

,

V̂1,23 = (x12 · z1)|x13|
|x12||x23|

− (x13 · z1)|x12|
|x13||x23|

, (A.5)

V̂2,31 = (x23 · z2)|x12|
|x23||x13|

+ (x12 · z2)|x23|
|x12||x13|

.

By matching with the OPE expansion we get:

J(x1)×J(x2)∼ CJ
(4π)2

[
Ĥ121+ λ̂JJS

|x12|4−∆S
×

×
(

(∆S−2)(z1 ·z2)−(∆S−4)(x12 ·z1)(x12 ·z2)
|x12|2

)
S(x2)√
A

+. . .
]
.

(A.6)

Next, let us consider the contribution to the OPE of the stress tensor Tµν . Follow-
ing [32], we can write this term as

J(x1)× J(x2) ∼ CJ
(4π)2

3
32π

(4π)2

CT

(
t1(x12, z1, z2)αβ + 12 γ t2(x12, z1, z2)αβ

)
Tαβ(x2) , (A.7)

where

t1(x12, z1, z2)α′β′(x) = zµ1 z
ν
2P

α′β′

αβ (6x̂(µδ
α
ν)x̂

β + 2δαµδβν + 3x̂µx̂ν x̂αx̂β − 5δµν x̂αx̂β) ,

t2(x12, z1, z2)α′β′(x) = zµ1 z
ν
2P

α′β′

αβ (2x̂(µδ
α
ν)x̂

β − 2δαµδβν − 3x̂µx̂ν x̂αx̂β − 3δµν x̂αx̂β) ,
(A.8)

and we explicitly introduced the projector on traceless symmetric indices

Pα
′β′

αβ = 1
2

(
δα
′

α δ
β′

β + δα
′

β δ
β′
α −

2
3ηαβη

α′β′
)
. (A.9)

In order to compute the conductivity we need to take the Fourier transform at point x1,2
of the expressions (A.6) and (A.7). Using standard formulas, see for instance appendix B
of [56], we obtain:∫

d3x1d
3x2e

ip1·x1eip2·x2J(x1, z1)× J(x2, z2) ∼

∼
(
zµ1 Ĩµν(p1)zν2

)−|p1|
π3CJ

4 δ3(p1 + p2)− λJJS
4π|p1|∆S−1

Γ(∆S + 1) sin
(
π∆S

2

)
2−∆S

S̃(p2)√
A

+

+ CJ
CT

1
|p|

(
t̃1(p1, z1, z2)αβ + 12γt̃2(p1, z1, z2)αβ

)
T̃αβ(p1 + p2) + . . . , (A.10)
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where

t̃1(p1, z1, z2)αβ = 3zµ1 zν2 (ηανηβµ + ηαµηβν − ηαβηµν + p̂µp̂νηαβ − p̂β p̂νηαµ
−p̂αp̂νηβµ − p̂β p̂µηαν − p̂αp̂µηβν + p̂αp̂βηµν + p̂αp̂β p̂µp̂ν) , (A.11)

t̃2(p, z1, z2)αβ =
(
zµ1 Ĩµν(p)zν2

)
(ηαβ − 3p̂αp̂β) ,

with Ĩµν(p) = (ηµν − p̂µp̂ν) and p̂µ = pµ/|p|. By choosing the polarizations along the 2nd
direction zi = (0, 1, 0), the momenta

p1 = w , p2 = −w + p , w = (Ω, 0, 0) , (A.12)

and taking the expectation value of the previous expression at finite temperature, we obtain:

〈J2(−w)J2(w+p)〉T ∼ (2π3)δ3(p)|Ω|×

×

−CJ32 −
CJλJJS

4π
Γ(∆S+1)sin

(
π∆S

2

)
2−∆S

Υ−1
(
T

|Ω|

)∆S

−72CJγ
CT

Ω2

|Ω|2Hxx

(
T

|Ω|

)3
. . .

 ,

(A.13)

where we defined

〈S(0)〉T = BT∆S , Υ =
√
A

B
, 〈T22(0)〉T = 〈T33(0)〉T = −1

2〈T11(0)〉T = HxxT
3 .

(A.14)
Finally, given the relation [36],

σ(iw)
σQ

(2π)3δ3(p) = − 1
|w|
〈J2(−w)J2(w + p)〉T , (A.15)

we obtain equation (1.6) shown in the main text.

B Three point functions

B.1 Scalar-scalar OPE

We start by normalizing the OPE of two scalars O1 ×O2 such that

O(x, z)O1(0) ∼ λ12O
(−x · z)`

(x2)
∆+∆12+`

2

O2(0) , (B.1)

where zµ is a null polarization vector. The operator O is a parity even operator of spin
` and λ is the OPE coefficient. The symbol ∼ means that we consider only one primary
operator exchange, in this case O2. We are therefore omitting the contribution of all the
other primaries and all the descendants in the OPE of O×O1. We use this normalization
for both the cases O1 = O2 = φ and O1 = φ,O2 = φ̄. Notice however that for φ × φ, the
equality of the operators forces ` to be even.
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B.2 Current-scalar OPE

We normalize the scalar current OPE J × φ as

O`,+(x, z)J(0, z1) ∼ 1
√
a`

φ(0)
(x2)α λJφO+

2∑
p=1

ωp t
(p)
+ (x, z, z1) ,

O`,−(x, z)J(0, z1) ∼ 1√
b`

φ(0)
(x2)α λJφO− t−(x, z, z1) ,

(B.2)

where O`,± is a parity even/odd operator of spin ` and charge one, and λ are OPE co-
efficients and α ≡ ∆+∆J−∆φ+`+1

2 . The coefficients a` and b` are defined to match the
conventions of [45],

a` ≡
(−2)`−1(d/2)`−1
`2(d− 1)`−1

, b` ≡
a`

−2`(d+ `− 3) . (B.3)

The leading OPE tensor structures are defined as follows

t
(1)
+ (x, z, z1) = (x · z)`(x · z1) ,

t
(2)
+ (x, z, z1) = (x · z)`−1x2(z · z1) ,
t−(x, z, z1) = |x|(x · z)`−1ε(x, z1, z) .

(B.4)

When ` = 0 only t(1)
+ survives. In (B.2) a single combination of t(p)+ is used. This is written

in terms of the vector ω = {2(α− 1),−2α+d+ `}/`, determined by imposing conservation
of J . Finally we set d = 3 in all formulae above.

B.3 Current-current OPE

The normalization of the current-current OPE is as follows

O±(x, z)J1(0, z1) ∼ J2(0, ∂z2)
(x2)α±

∑
q

c
(q)
12O± t

[JJ ] (q)
± (x, z, z1, z2) , (B.5)

where α+ ≡ 1
2 + α− ≡ ∆+∆1−∆2+`+2

2 . In (B.5) q runs from one to five for parity even
operators. The correspondent OPE structures take the form

t
[JJ ] (1)
`+ (x, z, z1, z2) ≡ (x · z)`(z1 · z2)x2 ,

t
[JJ ] (2)
`+ (x, z, z1, z2) ≡ (x · z)`(x · z1)(x · z2) ,

t
[JJ ] (3)
`+ (x, z, z1, z2) ≡ (x · z)`−1(z · z1)(x · z2)x2 ,

t
[JJ ] (4)
`+ (x, z, z1, z2) ≡ (x · z)`−1(z · z2)(x · z1)x2 ,

t
[JJ ] (5)
`+ (x, z, z1, z2) ≡ (x · z)`−2(z · z1)(z · z2)x4 .

(B.6)

By imposing equality and conservation of the currents Ji we find only two linearly inde-
pendent structures

5∑
p=1

(m+)p̃p t[JJ ] (p)
`+ (x, z, z1, z2) , (p̃ = 1, 2) , (B.7)

where

m+ =
(

(2−∆)(`+ ∆) (∆− `)(`+ ∆) 2`(∆− 2) 0 −`(∆− 2)
`−∆ + 2 0 −`+ ∆− 2 ∆− ` `−∆ + 1

)
. (B.8)
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For parity odd operators there are four possible tensor structures

t
[JJ ] (1)
`− = ε(x, z1, z2)(x · z)`

t
[JJ ] (2)
`− = ε(x, z, z1)(x · z2)(x · z)`−1

t
[JJ ] (3)
`− = ε(x, z, z2)(x · z1)(x · z)`−1

t
[JJ ] (4)
`− = [ε(x, z, z1)(z · z2) + ε(x, z, z2)(z · z1)](x · z)`−2x2 .

(B.9)

For conserved equal currents we obtain just one structure which takes a different form for
` even or odd, ∑

p

(m−)p t[JJ ] (p)
`− (x, z, z1, z2) , (B.10)

with
m− =

{
(∆− 3, `, `, 0) ` even,
(0,∆− `− 3,∆ + `+ 1, 1−∆) ` > 1, odd.

(B.11)

When ` = 1 there are no allowed tensor structures, while for ` = 0 there is one.

C Conformal blocks

C.1 JJφφ̄

The blocks for JJφφ̄ are computed using the recurrence relation (2.28). We first consider
correlators of two vectors V1, V2 and two scalars φ1, φ2, we finally restrict to the equal,
conserved case. In order to use (2.28), we have to compute the coefficients RA and the
functions h∞.

As described in [43], RA are obtained as the product of three terms,

(RA)pp′ = (M (L)
A )pp′ QAM

(R)
A , (C.1)

where QA and MA are respectively related to the two- and three-point functions with
primary-descendants operators. For our case the three terms in (C.1) were already com-
puted in the literature. Indeed QA and M (R)

A are the same as for the scalar blocks of [43],
while (M (L)

A )pp′ are the same of [32]. Thus, the only missing computation is that of h(p)
∞ `,s.

These functions are obtained by solving the Casimir differential equation at leading order
in large ∆ [15, 43]. The Casimir equation mixes the five structures resulting in a system
of 5 coupled differential equations. We introduce the ansatz

h(s′)
s (r, η) ≡ A(r, η)P (s′)

s (r, η) , A(r, η) ≡
(
1− r2)1−h√

r2 − 2ηr + 1 (r2 + 2ηr + 1)3/2 . (C.2)

The resulting differential equations for P (s′)
s (r, η) are then easily solved using Mathematica.

The solution is given by

P =



(
r2 − 1

)2 (2rη +A3) 0 0 0 0
0 A1A

2
3 −2r2ηA1A3 −2r2ηA1A3 4r4η2A1

0 −2rA1A3 −A1A2A3 4r3ηA1 2r2ηA1A2
0 −2rA1A3 4r3ηA1 −A1A2A3 2r2ηA1A2
0 4r2A1 2rA1A2 2rA1A2 A1A

2
2

 , (C.3)
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with A1 = (1 + r2 − 2rη), A2 = (−1 + r2 − 2rη), A3 = (1 + r2). Hence the functions h∞
can be written as a linear combination of the five h(s′)

s as follows

h
(p)
∞`+,s(r, η) =

5∑
s′

h(s′)
s (r, η)f (p)

`+,s′(η) , (C.4)

where the functions f are constants of integration that can be fixed by imposing the correct
initial conditions f (p)

`+,s(η) = h
(p)
∞`+,s(0, η). We then determine these constants by studying

the OPE limit x2 → x1, x4 → x3 of the four point function [43],

lim
x2→x1
x4→x3

43∑
s=1

f
(p)
`±,s(η)Qs =

t
(p)
`+ (x̂12, I(x24) ·Dz, I(x12) · z1, z2)(−x34 · z)`

`!(h− 1)`
. (C.5)

Here (−x34 · z)` comes from the scalar OPE (B.1) and t(p)`+ are the OPE structures defined
in (B.6). Here we also introduced the differential operator Dµ

z ≡ (d/2− 1 + z · ∂z) ∂µz −
1
2z
µ∂2

z and the reflection matrix I(x)µν = δµν − 2xµxν/x2. Finally, the conserved blocks
for JJφφ̄ are obtained from the contraction (m+)pqh(q), where m+ is defined in (B.8).

C.2 JφJφ̄

As we mention in section 2.3, we compute the conformal blocks of JφJφ̄ by using the an
improved version of the ancillary file of [45]. The code produces a single block for the
parity-odd exchanges and four blocks g(p′,q′)

∆`+,s (for p, q = 1, 2) for the parity-even exchanges.
To be consistent with the OPE basis defined in appendix B.2, we write the parity-even
conserved block as follows,

g∆ `+,s =
2∑

p′,q′=1
(ω̃(L))p′(ω̃(R))q′g

(p′,q′)
∆ `+,s , (C.6)

where
ω̃(L) = {`(`+ 1),∆−∆φ} , ω̃(R) = {−`(`+ 1),∆−∆φ} . (C.7)

C.3 φJJφ̄

The conformal blocks for the φJJφ̄ can be obtained from the ones of JφJφ̄ by using crossing
symmetry 1↔ 2. Indeed it is easy to see that the functions ĥs of (2.19) are related to the
f̂s as follows,

ĥ1(u, v) = −v∆φ+∆J+ 1
2

[
f̂2

(
u

v
,

1
v

)
+
√
u

(
f̂1

(
u

v
,

1
v

)
+ f̂3

(
u

v
,

1
v

))]
,

ĥ2(u, v) = 1
2v

∆φ+∆J

[
(u+ v + 1)f̂1

(
u

v
,

1
v

)
+ 2
√
uf̂2

(
u

v
,

1
v

)
+ (u+ v − 1)f̂3

(
u

v
,

1
v

)]
,

ĥ3(u, v) = 1
2v

∆φ+∆J

[
(−u+ v − 1)f̂1

(
u

v
,

1
v

)
− 2
√
uf̂2

(
u

v
,

1
v

)
+ (−u+ v + 1)f̂3

(
u

v
,

1
v

)]
,

ĥ4(u, v) = v∆φ+∆J f̂4

(
u

v
,

1
v

)
,

ĥ5(u, v) = −v∆φ+∆J+ 1
2 f̂5

(
u

v
,

1
v

)
. (C.8)
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∆, ` 1
2 , 0

5
2 , 1

7
2 , 2

9
2 , 3

11
2 , 4

13
2 , 5

15
2 , 6

17
2 , 7

19
2 , 8

p∆`+
1
2

3
8 − 1

42
1

1056 − 12
25025

137
4534920 − 367

24025386
4859

3893984640 − 5669
9546570900

Table 4. OPE coefficients for parity even operators in the conformal block decomposition of JφJφ̄
and φJJφ̄.

∆, ` 9
2 , 2

11
2 , 3

13
2 , 4

15
2 , 5

17
2 , 6

19
2 , 7

21
2 , 8

23
2 , 9

p∆`−
1
15 − 1

182
1

510 − 107
373065

17
198835 − 193

12606300
2969

695987820 − 1319
1564192575

Table 5. OPE coefficients for parity odd operators in the conformal block decomposition of JφJφ̄
and φJJφ̄.

In terms of radial coordinates the equations above relate ĥs(r, η) to f̂s(r,−η). Therefore,
by means of (C.8), we can reconstruct ĥs(r, η) to some order O(rn) by knowing f̂s(r,−η)
to the same order. In particular, since f̂s is evaluated at −η, its complete dependence in
η has to be known at that order. This would require extra computations. Indeed, we only
need some derivatives at η = 1 of the JφJφ̄ blocks and their full dependence in η was
not computed. For this reason, instead of using (C.8), we built the φJJφ̄ blocks using the
differential operators of [48]. The final conserved blocks are then put in a basis compatible
with (C.8). This allows to have the same definition for the OPE coefficients that multiply
the JsJs and the sJJs blocks.

C.4 Conformal block decomposition

As an example, let us compute the conformal blocks decomposition of φJJφ̄ and JφJφ̄ for
the theory of a free complex boson. We use the unit normalized current Jµ ≡ −i√

2(φ∂µφ̄−
φ̄∂µφ) and compute the correlators by Wick contractions,

fs(u, v) =
{

1
2u

3/4
(√

u

( 1√
v

+ 2
)

+ 1
)
, 0, 1

2
4√u
√
v,
u7/4

2v , 0
}
, (C.9)

hs(u, v) =
{
u3/4 (

√
u (
√
v + 2) +

√
v)

2v2 ,−u
3/4

2v ,
4
√
u

2
√
v
,
u5/4 + u7/4

2v3/2 ,−u
3/4

2v

}
. (C.10)

Here the functions fs and hs are the ones defined in (2.14) and (2.16). Because of the nor-
malization explained in appendix C.3, the conformal block decomposition of the functions
fs and hs give the same OPE coefficients pO. These are exemplified in tables 4 and 5 for
O being respectively a parity even and a parity odd operator.
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D Vectors for the bootstrap equations

In this appendix we detail the form of the 23-dimensional vectors in (2.39). The vector
V Q=0

∆,`,+ takes a different form for ` = 0 and ` > 0 (even),

(
V Q=0

∆,`,+
` even

)
1

=F
[−]φφ̄φφ̄
O+

(u,v)

 1 0 0
0 0 0
0 0 0

 ,

(
V Q=0

∆,`,+
` even

)
2

=F
[+]φ̄φφφ̄
O+

(u,v)

 1 0 0
0 0 0
0 0 0

 ,

(
V Q=0

∆,`,+
` even

)
3

=F
[−]φ̄φφφ̄
O+

(u,v)

 1 0 0
0 0 0
0 0 0

 ,

(
V Q=0

∆,`,+
` even

)
7

=S+
1 (u,v) ,(

V Q=0
∆,`,+
` even

)
8

=S−1 (u,v) ,(
V Q=0

∆,`,+
` even

)
9

=S+
2 (u,v) ,(

V Q=0
∆,`,+
` even

)
10

=S−2 (u,v) ,(
V Q=0

∆,`,+
` even

)
11

=S+
3 (u,u) ,(

V Q=0
∆,`,+
` even

)
12

=S+
4 (u,u) ,(

V Q=0
∆,`,+
` even

)
13

=R−13(u,v) ,(
V Q=0

∆,`,+
` even

)
14

=R−15(u,v) ,(
V Q=0

∆,`,+
` even

)
15

=R−16(u,v) ,(
V Q=0

∆,`,+
` even

)
16

=R−17(u,v) ,(
V Q=0

∆,`,+
` even

)
17

=R+
7 (u,v) ,(

V Q=0
∆,`,+
` even

)
18

=R+
1 (u,u) ,(

V Q=0
∆,`,+
` even

)
19

=R+
2 (u,u) ,(

V Q=0
∆,`,+
` even

)
20

=R+
4 (u,u) ,(

V Q=0
∆,`,+
` even

)
21

=R+
5 (u,u) ,(

V Q=0
∆,`,+
` even

)
22

=R+
6 (u,u) ,(

V Q=0
∆,`,+
` even

)
23

=R+
3

(1
4 ,

1
4

)
,(

V Q=0
∆,`,+
` even

)
i
= 0 , i=4,5,6,

(
V Q=0

∆,0,+

)
1

=F
[−]φφ̄φφ̄
O+

(u,v)
(

1 0
0 0

)
,

(
V Q=0

∆,0,+

)
2

=F
[+]φ̄φφφ̄
O+

(u,v)
(

1 0
0 0

)
,

(
V Q=0

∆,0,+

)
3

=F
[−]φ̄φφφ̄
O+

(u,v)
(

1 0
0 0

)
,(

V Q=0
∆,0,+

)
7

=S+
1 (u,v) ,(

V Q=0
∆,0,+

)
8

=S−1 (u,v) ,(
V Q=0

∆,0,+

)
9

=S+
2 (u,v) ,(

V Q=0
∆,0,+

)
10

=S−2 (u,v) ,(
V Q=0

∆,0,+

)
11

=S+
3 (u,u) ,(

V Q=0
∆,0,+

)
12

=S+
4 (u,u) ,(

V Q=0
∆,0,+

)
13

=R−13(u,v) ,(
V Q=0

∆,0,+

)
14

=R−15(u,v) ,(
V Q=0

∆,0,+

)
15

=R−16(u,v) ,(
V Q=0

∆,0,+

)
16

=R−17(u,v) ,(
V Q=0

∆,0,+

)
17

=R+
7 (u,v) ,(

V Q=0
∆,0,+

)
18

=R+
1 (u,u) ,(

V Q=0
∆,0,+

)
19

=R+
2 (u,u) ,(

V Q=0
∆,0,+

)
20

=R+
4 (u,u) ,(

V Q=0
∆,0,+

)
21

=R+
5 (u,u) ,(

V Q=0
∆,0,+

)
22

=R+
6 (u,u) ,(

V Q=0
∆,0,+

)
23

=R+
3

(1
4 ,

1
4

)
,(

V Q=0
∆,0,+

)
i
= 0 , i=4,5,6.

(D.1)
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The matrices R and S are 3 × 3 and they can be written in terms of the functions F as
follows,

R±s (u, v) ≡


0 0 0
0 F [±](1,1)JJJJ
O+,s

(u, v) F [±](1,2)JJJJ
O+,s

(u, v)
0 F [±](2,1)JJJJ
O+,s

(u, v) F [±](2,2)JJJJ
O+,s

(u, v)

 , (D.2)

S±s (u, v) ≡ 1
2


0 F

[±](1)JJφφ̄
O+,s

(u, v) F [±](2)JJφφ̄
O+,s

(u, v)
F

[±](1)JJφφ̄
O+,s

(u, v) 0 0
F

[±](2)JJφφ̄
O+,s

(u, v) 0 0

 . (D.3)

The matrices R and S are their 2× 2 counterparts,

R±s (u, v) ≡
(

0 0
0 F [±](1,1)JJJJ
O+,s

(u, v)

)
, S±s (u, v) ≡ 1

2F
[±](1)JJφφ̄
O+,s

(u, v)
(

0 1
1 0

)
. (D.4)

All the other vectors do not have any matrix structure,(
V Q=0

∆,`,+
` odd

)
1

= −F [−]φφ̄φφ̄
O+

(u, v) ,(
V Q=0

∆,`,+
` odd

)
2

= F
[+]φ̄φφφ̄
O+

(u, v) ,(
V Q=0

∆,`,+
` odd

)
3

= F
[−]φ̄φφφ̄
O+

(u, v) ,(
V Q=0

∆,`,+
` odd

)
i

= 0 , (i 6= 1, 2, 3)

(
V Q=2

∆,`,+

)
2

= −F [+]φφφ̄φ̄
O (u, v) ,(

V Q=2
∆,`,+

)
3

= F
[−]φφφ̄φ̄
O (u, v) ,(

V Q=2
∆,`,+

)
i

= 0 , (i 6= 2, 3) .

(D.5)

(
V Q=0

∆,`,−

)
13

= F
[−](1,1)JJJJ
O−,13 (u, v) ,(

V Q=0
∆,`,−

)
14

= F
[−](1,1)JJJJ
O−,15 (u, v) ,(

V Q=0
∆,`,−

)
15

= F
[−](1,1)JJJJ
O−,16 (u, v) ,(

V Q=0
∆,`,−

)
16

= F
[−](1,1)JJJJ
O−,17 (u, v) ,(

V Q=0
∆,`,−

)
17

= F
[+](1,1)JJJJ
O−,7 (u, v) ,(

V Q=0
∆,`,−

)
18

= F
[+](1,1)JJJJ
O−,1 (u, u) ,(

V Q=0
∆,`,−

)
19

= F
[+](1,1)JJJJ
O−,2 (u, u) ,(

V Q=0
∆,`,−

)
20

= F
[+](1,1)JJJJ
O−,4 (u, u) ,(

V Q=0
∆,`,−

)
21

= F
[+](1,1)JJJJ
O−,5 (u, u) ,(

V Q=0
∆,`,−

)
22

= F
[+](1,1)JJJJ
O−,6 (u, u) ,(

V Q=0
∆,`,−

)
23

= F
[+](1,1)JJJJ
O−,3 (1/4, 1/4) ,(

V Q=0
∆,`,−

)
i

= 0 , otherwise ,

(
V Q=1

∆,`,±

)
4

= σOF
[−]Jφ̄Jφ
O±,1 (u, v) ,(

V Q=1
∆,`,±

)
5

= σOF
[−]Jφ̄Jφ
O±,2 (u, v) ,(

V Q=1
∆,`,±

)
6

= σOF
[+]Jφ̄Jφ
O±,3 (u, u) ,(

V Q=1
∆,`,±

)
7

= −σOF [+]φ̄JJφ
O±,1 (u, v) ,(

V Q=1
∆,`,±

)
8

= σOF
[−]φ̄JJφ
O±,1 (u, v) ,(

V Q=1
∆,`,±

)
9

= −σOF [+]φ̄JJφ
O±,2 (u, v) ,(

V Q=1
∆,`,±

)
10

= σOF
[−]φ̄JJφ
O±,2 (u, v) ,(

V Q=1
∆,`,±

)
11

= −σOF [+]φ̄JJφ
O±,3 (u, u) ,(

V Q=1
∆,`,±

)
12

= −σOF [+]φ̄JJφ
O±,4 (u, u) ,(

V Q=1
∆,`,±

)
i

= 0 , otherwise.

(D.6)

Recall that the sign sigma is defined in (2.36).
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