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ABSTRACT
The goal of blinding is to hide an experiment’s critical results – here the inferred cosmological
parameters – until all decisions affecting its analysis have been finalized. This is especially
important in the current era of precision cosmology, when the results of any new experiment are
closely scrutinized for consistency or tension with previous results. In analyses that combine
multiple observational probes, like the combination of galaxy clustering and weak lensing
in the Dark Energy Survey (DES), it is challenging to blind the results while retaining the
ability to check for (in)consistency between different parts of the data. We propose a simple
new blinding transformation, which works by modifying the summary statistics that are input
to parameter estimation, such as two-point correlation functions. The transformation shifts
the measured statistics to new values that are consistent with (blindly) shifted cosmological
parameters while preserving internal (in)consistency. We apply the blinding transformation
to simulated data for the projected DES Year 3 galaxy clustering and weak lensing analysis,
demonstrating that practical blinding is achieved without significant perturbation of internal-
consistency checks, as measured here by degradation of the χ2 between the data and best-fitting
model. Our blinding method’s performance is expected to improve as experiments evolve to
higher precision and accuracy.

Key words: methods: data analysis – methods: numerical – methods: statistical – cosmology:
observations; large-scale structure of Universe.

1 IN T RO D U C T I O N

The practice of blinding against human bias in data analysis
is standard in many areas of science. The goal is to prevent

� E-mail: jlmuir@stanford.edu

the scientists from biasing their analysis toward results that are
theoretically expected or, more generally, deemed to be likely or
correct. In experimental particle physics, strategies for blinding
are manyfold and have been honed since their earliest application
decades ago (Arisaka et al. 1993). Blinding strategies in particle
physics include hiding the signal region, offsetting parameters
in the analysis by a hidden constant, and adding or removing

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/494/3/4454/5820237 by guest on 20 June 2022

http://orcid.org/0000-0002-7579-770X
http://orcid.org/0000-0002-1838-7288
mailto:jlmuir@stanford.edu


Multiprobe cosmological experiments 4455

events from the analysis (for a review, see Klein & Roodman
2005).

Blinding started to be applied to astrophysics and cosmology
only relatively recently. The first application to cosmology was
described in Conley et al. (2006), which reports on an analysis of
magnitude-redshift data of Type Ia supernovae (SNe Ia). In that
study, the full analysis was performed with unknown offsets added
to the key cosmological parameters, �M and ��, until unblinding
revealed final parameter values. Many SN Ia analyses have adopted
some variation of this blinding approach since (e.g. Kowalski et al.
2008; Suzuki et al. 2012; Betoule et al. 2014; Rubin et al. 2015;
Zhang et al. 2017; Abbott et al. 2019). More recently, blinding has
been regularly applied to analyses involving strong gravitational
lensing (Suyu et al. 2013, 2017), as well as cosmological inferences
from weak gravitational lensing observations (e.g. Heymans et al.
2012; von der Linden et al. 2014; Kuijken et al. 2015; Blake et al.
2016; Hildebrandt et al. 2017; Troxel et al. 2018; Hamana et al.
2020).

For cosmological analyses in general, direct application of blind-
ing techniques from experimental particle physics is not feasible
due to numerous differences between cosmological observations
and particle-physics experiments. First, there is no clear division
of the data space into a ‘signal’ region that can be hidden versus a
‘control’ region that can be used for all validation tests. A second
significant challenge arises from the fact that many cosmological
inferences are now produced by combination of multiple ‘probes’,
i.e. summary statistics of diverse forms of measurement of different
classes of objects in the sky. For example, Abbott et al. (2018)
present a combined analysis of an observable vector d composed of
three two-point correlation functions (2PCFs) measured from the
first year of Dark Energy Survey (DES) data: the angular correlation
of galaxy positions via w(θ ), the angular correlation of weak lensing
shears via ξ±(θ ), and the cross-correlation between galaxy positions
and shears via γ t(θ ). There is much degeneracy in how these diverse
measurements contain cosmological information, which means that
a simple blinding operation applied to one measured quantity can
transform valid data into blinded data that are readily recognized as
inconsistent with any viable cosmology.

The simplest form of blinding, which was used in the DES Year
1 galaxy clustering and weak lensing analysis, is to hide from users
the values of the cosmological parameters that arise from the final
inference, e.g. by shifting all values in any human-readable results.
The risk of accidental revelation of the true parameter estimates
is high, however, if the blinding code is mistakenly omitted. The
temptation for experimenters to peek at the true results is also
high when the ‘curtain’ is so thin. Furthermore, in this scenario,
the blinding can potentially be compromised if anyone plots a
theoretical model on top of the measured summary statistics. It
is therefore an advantage to apply a blinding transformation at an
earlier stage, when more steps are required to produce unblinded
results in a form that an experimenter can recognize as conforming
to their biases or not.

In this paper, we propose a method for blinding multiprobe
cosmological analyses by altering the summary statistics which
are used as input for parameter estimation. The technique is very
simply described by equation (7). This technique has the advantages
of being applicable to observable vectors of arbitrary complexity
while preserving internal consistency checks, and also of insuring
that the inference code never even produces the true cosmologi-
cal parameters until the collaboration agrees to unblind. We are
specifically developing and testing the performance of this blinding
scheme for the DES Year 3 combined probe analysis, but the ideas

we present could, in principle, be applied to any cosmological
analysis. Accordingly, we frame our discussion in terms of a generic
experiment, beginning in Section 2 with a discussion of general
considerations for blinding and how to assess whether a blinding
scheme can be successful. This is followed by Section 3 where
we introduce our summary-statistic-based blinding transformation.
Then, Section 4 describes the transformation’s application within
the DES analysis pipeline as well as the results of our tests of its
performance for a simulated DES Year 3 galaxy clustering and weak
lensing analysis. We conclude in Section 5. The data associated with
the tests described below are available upon request.

2 PR I O R A N D P R E J U D I C E :
C O N S I D E R AT I O N S F O R B L I N D I N G

Broadly speaking, the goal of blinding is to change or hide the
output of an analysis in a way that still allows experimenters to
perform validation checks on the analysis pipeline and data. Thus,
in order to be effective, a given blinding scheme must fulfill these
requirements: it must be capable of altering the analysis’ output
enough to overcome biases, and, additionally, must preserve the
properties of the data that are to be used in validation tests. Below
we present three criteria that can guide the determination of whether
a given transformation of data can successfully blind an analysis.

2.1 Criterion I: concealing the true results

Let us assume that the experiment produces a vector d̂ of observed
quantities, and we wish to constrain the parameters 	 of a model
d(	) for these data. The parameters can include astrophysical
and instrumental nuisance parameters as well as the cosmological
parameters of interest. There will always be some prior probability,
π (	), that expresses the physical bounds of our model (e.g.
�m > 0) and results of trusted previous experimentation. In a
Bayesian view, the purpose of the experiment is to produce a
likelihood function L(d̂|	), which is combined with the prior
to produce a posterior measure of belief across the model space
M spanned by parameter vector �, P (	|d) ∝ L(d̂|	)π (	). One
easily visualized variant of the prior is to have M be uniform
over some range of parameter values and zero elsewhere, i.e. M
is the parameter space encompassing all parameters 	 considered
feasible.

The experimenters may additionally harbour prejudices about
the ‘correct’ values of the parameters; for instance, that they should
agree with some theoretical framework such as a flat Universe, or
that they should agree with some previous experiment that one is
trying to confirm. We can express these prejudices with another
(albeit, difficult to quantify) probability function Prej(	). It could
for example be a uniform distribution over some region MPrej ⊂
M. Note that in this framing, one must make a decision regarding
previous experiments’ results: either we accept them as true and
place them in π; or we are using their comparison to our results as
a test of our model, in which case we must be wary of confirmation
bias and should place them in Prej.

The danger of experimenter bias arises when choices about the
analysis process are made, consciously or otherwise, on the basis
of whether the experiment’s results conform to the prejudices, i.e.
whether 	 ∈ MPrej. To confound the experimenter bias, a blinding
procedure will apply a transformation

d̂ → d̂bl = B(d̂) (1)

MNRAS 494, 4454–4470 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/494/3/4454/5820237 by guest on 20 June 2022



4456 J. Muir et al.

Figure 1. Cartoon of model and data spaces that we consider when thinking
about how to blind an analysis, as discussed in Section 2.1. M is the space
of all viable model parameter sets 	, which projects on to the observable-
vector space Dπ ⊂ D, where D is the space of all possible observable
vectors. MPrej is a region in parameter space associated with what we refer
to as the ‘prejudice’ distribution, describing experimenters’ preconceived
expectations for where 	 is likely to be. This subset of parameter space
projects on to DPrej ⊂ Dπ . An effective blinding transformation must have
the possibility of moving the observable vector d̂ in or out of DPrej without
moving it out of the prior space Dπ .

to the data before the experimenters perform analyses. The first
critical property of B is therefore that it must confound the
experimenter’s ability to know whether the data are consistent
or inconsistent with their prejudices. For example, if we take the
maximum-posterior parameter values for blinded and unblinded
data

	unbl = argmax
	

{
P

(
	|d̂

)}
,

	bl = argmax
	

{
P

(
	|B(d̂)

)}
, (2)

then there must be a non-negligible chance that either

Prej(	unbl) � Prej(	bl) or Prej(	unbl) � Prej(	bl). (3)

A graphical illustration is given in Fig. 1: If we define DPrej as the
region of data space D produced by parameter values within the
prejudice region MPrej, then the blinding transformation must be
able to move data into and out of this region. The experimenters
should believe that this is possible, but not know for certain whether
it has happened. Because we are dealing with human psychology
and prejudices which may not be quantifiable, we usually cannot
create a strict numerical requirement to satisfy this criterion.

2.2 Criterion II: preserving the ability to check for errors

In addition to obscuring the true parameter output of an analysis, an
effective blinding scheme must still allow experimenters to examine
the data d̂, before unblinding, to uncover errors in their analysis
procedure. A validation test is one whose failure indicates that data
could not have been produced by any allowed parameters 	 ∈ M.
A blinding transformation B should not alter the conclusions of
validation tests.

There are a number of ways of stating this requirement. Some-
times the validation tests are expressed as some projection of the
data on to a ‘null test’ T (d̂) such that

T (d̂) = 0 ∀	 ∈ M. (4)

Many kinds of validation tests fall into this paradigm. For example,
if T projects on to the B mode (divergence-free component) of
weak lensing, it should be zero within errors. Another example is
that a properly extinction-corrected galaxy survey should exhibit

no statistically significant correlation between galaxy positions
and star positions, so T in this case would be the angular star–
galaxy correlation function. Or, T can measure the difference
between observable vectors split by some property presumed to
be uncorrelated with extra-galactic signals, such as seeing or the
season when the data were collected. Another very generic test is
to run the parameter inference on two subsets of the observable
vector and check that the results are consistent with common 	.
Allowances must of course be made for the expected noise in the
null test output at fixed 	. Generally speaking, a useful blinding
transformation must yield

T (d̂bl) ∼ 0 if and only if T (d̂) ∼ 0 (5)

where the ∼ sign implies consistency with zero within measurement
errors.

More generally, B(d̂) should map the allowed region Dπ on
to itself, and, likewise for its complement, the disallowed region
D̃π . Equivalently, the maximum-posterior values from equations (2)
should obey

L
(

d̂bl|	bl

)

L
(

d̂unbl|	unbl

) ≈ 1. (6)

In other words, blinding transformation should not significantly
change the maximum likelihood in the parameter space. A trans-
formation satisfying this requirement will ensure that blinding will
not alter experimenters’ judgment about whether there are flaws in
the data.

2.2.1 Model dependence of validation tests

It is important to note that defining validation tests requires one to
make implicit modeling choices, and defining a blinding procedure
that preserves the result of those tests can only produce shifts in
parameter space that respects those choices. When constructing an
analysis pipeline, it is therefore important to carefully consider what
measurements will be considered results and which can be used as
checks on the performance of the analysis pipeline. In other words,
defining validation criteria and a blinding scheme that preserves
them requires one to specify the space of models that are considered
viable.

The only case in which a purely internal validation comparison
can be made without reference to a model is if the exact same
observable is measured twice [e.g. the amplitude of a particular
cosmic microwave background (CMB) harmonic measured at a
particular frequency]. Any time two distinct quantities enter the
observable vector, a model is required to constrain their joint
distribution. For example, suppose we compare the high- and low-
redshift halves of a supernova Hubble diagram. If both halves
are fit with a Lamba cold dark matter (�CDM) model and the
data truly are from a �CDM universe, then analysing the two
halves separately should produce consistent cosmology results,
making this comparison a useful validation test. If, however, the
universe is not described by �CDM, then the high/low-z split can
yield inconsistent results even in the absence of processing errors.
(Note that the original discovery of dark energy was effectively a
demonstration that fitting supernovae data with � = 0 produced
this kind of mismatch.)

More subtly, a closer examination of the B-mode null test
described above (below equation 4) is another demonstration of how
even nominally ‘simple’ tests can be model-dependent. Though it
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is true that at leading-order weak lensing in GR should have no
divergence-free component, B modes can, in fact, be created by
galaxy intrinsic alignments (IA) or modifications to GR. Thus, the
test requiring measured B modes to be zero within errors can be
more accurately rephrased as the requirement that the measured B
modes be consistent with allowed IA and gravity models.

2.3 Criterion III: feasible implementation

Before we can begin determining the effectiveness of a blinding
transformation B, we must first choose what data will be trans-
formed. As a concrete example, for imaging surveys like DES the
data start as pixel values, which are converted into catalogued galaxy
fluxes, shapes, etc. Those catalogues are, in turn, converted into
summary statistics such as the photometric redshift distributions
n(z) and tomographic weak lensing correlation functions ξ±(θ ).
The summary statistics are then finally used to obtain the parameter
estimates 	̂ themselves.

The simplest case is simply for B to operate on the 	̂. As noted in
Section 1, this ‘parameter shift’ method has been used frequently,
but it has the drawback of being a very thin cover over the truth.
It fails, for example, if the experimenters become familiar with the
relation between the observables and the cosmological parameters
and are viewing how changes to the analysis impact the observables.
It can also be difficult to employ this method while insuring that
multiple probes are consistent with a common model. There is
incentive to move the blinding transformation to an earlier stage
of the analysis, where the scientists are less likely to be able to
recognize whether their prejudices have been confirmed.

Blinding by alteration of the pixel data is probably impossible,
apart from substituting an entire set of simulated data for the real
one. Blinding at the catalogue level is possible in some cases, namely
when a change in a cosmological parameter maps directly into
a change in some catalogued galaxy property. For the DES Year
1 shear-only analyses (Troxel et al. 2018), all galaxy ellipticities
(and hence all inferred weak lensing shears) were scaled by an
unknown multiplicative factor. This is approximately equivalent to
a rescaling of σ 8, though only in the linear regime. The possibility
of catalogue-level transformations becomes remote, however, as we
conduct multiprobe experiments with many correlated summary
statistics, and as multiple model parameters require blinding. We
have not been able to find a catalogue transformation that preserves
the validity of the data for the DES combined galaxy clustering
and weak lensing analysis. This has motivated us to develop an
approach to blinding, which relies on a transformation of the
summary statistics, described in more detail below.

Recently, Sellentin (2020) proposed a likelihood-level blinding
via modifications of the full covariance matrix of the observable
vector. It will be of interest to see if this alternative blinding method
robustly satisfies criterion II from above – preserving the results of
all validation tests – given that Sellentin’s (2020) alteration to the
covariance matrix is dependent on the observed data.

3 PRO POSED M ETHOD: BLINDING BY
MOD IFYIN G SUMMARY STATISTICS

Here we propose a method for consistently blinding cosmological
analyses by transforming the summary statistics used as input for
parameter estimation. Because parameter estimation is done by
comparing measured summary statistics to theoretical predictions,
the software infrastructure for an experiment will naturally include
tools for computing model predictions at various points in parameter

space. Our blinding transformation makes use of those tools to
translate shifts in parameter space to changes in the summary
statistics.

The blinding transformation works as follows. Let d̂i be element
i of a measured observable vector, and let di(	) be the theoretically
computed (noiseless) value of that same element for model param-
eters 	. We choose a known reference model 	ref and a blinding
shift �	 in the cosmological parameters. The blinding operation
is then a simple modification of each element d̂i of the observable
vector,

B(d̂i) = d̂i + f
(add)
i ,

f
(add)
i = di (	ref + �	) − di (	ref ) . (7)

If the expected noise level on d̂ does not vary much across the
parameter shift �	, then it is true by construction that B will map
data generated at 	obs into viable data for �bl = �obs + �	 if the
truth (	obs) is sufficiently close to the reference cosmology (	ref).
However, because 	obs is not known (in fact, this whole exercise
is designed to obscure it!) and because the observable vector
generally is not actually linear in parameters, it is not guaranteed
that this blinding transformation will satisfy the necessary criteria
for successful blinding. Its application to a given observable vector
and parameter space thus requires numerical validation.1

3.1 Procedure for blinding at the level of summary statistics

An overview of the procedure for summary-statistic blinding is as
follows:

(i) Choose a reference cosmology (and nuisance parameters) 	ref

in the middle of the range of models considered feasible truths.
(ii) Select a (blind) shift �	 from a distribution broader than

the preconceptions causing the confirmation bias. For example, if
there is a theoretical prejudice that the dark energy equation of state
parameter is w = −1, then �w should be capable of shifts four to
five times the experiment’s forecasted uncertainty in w.

(iii) For each summary statistic di being used for cosmological
inference, calculate the blinding factor fi using equation (7).

(iv) Hide the real data d̂i and give experimenters the shifted
values B(d̂i) as per equation (7) with which to conduct all validation
tests.

(v) After passing validation tests, unblind by using the original
unblinded data d̂ to repeat the inference of 	.

3.2 Evaluating performance

The blinding technique that we propose is fully described by equa-
tion (7). In practice, the implementation of our blinding algorithm
depends on the choice of the summary statistic to which the blinding
factors f(add) are applied, the reference parameters 	ref, as well as the
probability distribution from which parameter shifts �	 are drawn.
In order to test the performance for a given set of these choices, we
must show the following:

1For some observables, it might be possible to blind using a multiplicative
transformation, multiplying the observable vector entries i by f

(mult)
i =

di (	ref + �	) /di (	ref ) . Our tests show, however, that this would rescale
the noise in the observable vector as well as the signal, and would lead to
unpredictable behaviour if any components di are close to zero. Thus, in
most cases equation (7)’s additive transformation will be preferable.
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(1) the blinding transformation is able generate shifts in best-
fitting model parameters large enough to overcome experimenters’
potential biases, as described in Section 2.1, and

(2) the blinded observable vector d̂bl is consistent with data that
could be produced by some set of allowed model parameters, as
discussed in Section 2.2.

We can test both of these requirements by analysing simulated
data according to the procedure below.

(i) We choose a reasonable reference cosmology 	ref as well as an
ensemble of ‘true’ parameters associated with observed unblinded
data {	(a)

obs}, where a labels the realization. For these realizations,
we also select an ensemble blinding shifts {�	(a)}. For example,
we may choose to use the reference cosmology with the dark energy
equation of state wref = −1, and in some realizations of our blinding
test, we could choose w

(a)
obs = −0.875 and �w(a) = −0.031.

(ii) For each realization, we generate a noiseless synthetic mea-
sured observable vector by computing the theory prediction for the
data at the input cosmology:

d̂
(a) = d

(
	

(a)
obs

)
. (8)

In our representative example above, this corresponds to, for
example, a predicted weak lensing shear 2PCF evaluated at w

(a)
obs =

−0.875.
(iii) We then blind that data vector using 	ref and �	(a) accord-

ing to the transformation equation (7) to obtain d̂
(a)
bl . That is, we

evaluate

d̂
(a)
bl = d

(
	

(a)
obs

)
+ d(	ref + �	(a)) − d(	ref ). (9)

In our example, this corresponds to the sum of the 2PCF for w
(a)
obs =

−0.875 and one for wref + �w(a) = −0.906, minus the 2PCF for
wref = −1.

(iv) By performing parameter estimation on d̂
(a)

, we can find
associated unblinded best-fitting parameters 	

(a)
unbl. (For noiseless

data, we expect 	
(a)
unbl = 	

(a)
obs.) Likewise, we can find the blinded

best-fitting parameters 	
(a)
bl by performing parameter estimation on

d̂
(a)
bl .

Studying the distribution of these best-fitting parameters for such
a simulated analyses allows us to assess the performance of the
blinding transformation. Point (i) from above (that blinding must be
able to produce large enough shifts in parameter space) is straight-
forward to check. Generally, we expect that the input blinding shift
will determine the shift in output best-fitting parameters:

	bl − 	unbl ≈ �	. (10)

If this is true, we can ensure the blinding transformation satisfies
this requirement simply by drawing �	 from a wide enough prob-
ability distribution in M. By analysing an ensemble of simulated
observable vectors, we can explicitly check the extent to which
equation (10) holds. It is worth noting here that it does not matter
if the relation in equation (10) strictly holds: Blinding can still be
effective as long as the output shifts 	bl − 	unbl and input shifts
�	 span a comparable region of parameter space.

For point (2), we propose using the quantity �χ2, defined below,
as a metric for testing whether the blinding transformation defined in
equation (7) preserves the results of validation tests.2 This statistic is

2Of course, if one is considering applying this blinding procedure to an
analysis which will use specific null or consistency tests as unblinding

defined as the difference between the minimum χ2 for the model’s
fit to blinded data and that of the fit to unblinded data:

�χ2 ≡
{

−2 lnL
(
B(d̂)|	bl

)}
−

{
−2 lnL

(
d̂|	unbl

)}
. (11)

It is a measure of the extent to which blinding preserves the internal
consistency of the different components of the observable vector.
In other words, it quantifies how much of the error in the model’s
fit to blinded data comes from the blinding procedure itself. If we
can confirm that �χ2 is sufficiently small for all realizations in our
ensemble of simulated observable vectors, we can ensure that the
blinding transformation satisfies equation (6) for the set of input
parameters and blinding shifts considered.

3.3 Leading-order performance

In the context of the evaluation metric described above, a perfect
blinding technique can shift the inferred parameters by the bias-
defeating amount with �χ2 = 0, i.e. no change in the degree to
which data obey the model. It is clear that equation (7) will be
perfect if the data depend on the model in a purely linear fashion.
Furthermore, the parameter shift will be simple, i.e. equation (10)
will attain equality.

Indeed, in this linear regime with fixed covariance, blinding via
equation (7) guarantees the more general statement that

χ2
[
B(d̂)|	obs + �	

]
= χ2(d̂|	obs), (12)

which, in turn, will lead to the Bayesian evidence

p(d̂) =
∫

d	L(d̂|	)p(	) (13)

being invariant under the blinding transformation to the extent that
the prior p(	) is invariant under shift by �	. In this limit of fixed
multivariate Gaussian noise and linear parameter shifts, the additive
blinding yields data that are fully indistinguishable from a shift in
the truth cosmology.

The blinding technique of Sellentin (2020) differs in that the
measured observable vector d̂ is left unchanged, but the covariance
matrix undergoes a data-dependent transformation Cd → C̆d (d̂)
such that the blinded χ̆2(d̂|	) is guaranteed to satisfy

χ̆2(d̂|	ref + �	) = χ2(d̂|	ref ). (14)

This is not quite the same condition as demanding �χ2 = 0 in
equation (11), since the latter operates at the best-fitting 	 in both
the blinded and unblinded cases. The basic construction for C̆d does
not guarantee that the analogous property to equation (12) will hold,
i.e. we can have

χ̆2(d̂|	 + �	) 
= χ2(d̂|	) if 	 
= 	ref, (15)

even in the linear regime. We can expect that Sellentin’s (2020)
blinding is functionally perfect by the definition of �χ2 in
equation (11) being small, for the true 	 sufficiently close to
	ref. Numerical investigations will be of interest to see whether
covariance-matrix blinding yields sufficiently small �χ2 over the
full range of 	 allowed by any particular experiment.

Moving beyond the linear regime, in Appendix A, we calculate
the parameter shifts and �χ2 induced by a quadratic dependence
of data on parameters. The result is that the shift in best-fitting

criteria, one should additionally check that the results of those tests are
preserved.
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parameters is no longer equal to �	, but rather acquires a leading
term that is linear in the product �	 × (	obs − 	ref). In other
words, we should not expect equality in equation (10). Keep in
mind though, as we noted above, fulfilling this equality is not a goal
of blinding.

The more important result is the scaling

�χ2 ∼ |�	|2 |	obs − 	ref |2 / |C| , (16)

where C is the covariance describing measurement errors on the
parameters.

We can therefore expect that the blinding will succeed (by having
insignificant �χ2) within some sufficiently small region around the
origin in the plane of blinding shift �	 and ‘truth shift’ 	obs −
	ref. This region must be large enough to allow the blinding shift
to span MPrej and for the truth shift to span M. Below, we will test
whether this condition is met for the DES Year 3 analysis.

An important consequence of the scaling relations is that this
blinding transformation will improve as our knowledge and exper-
imental precision evolve. Let us assume that future experiments
reduce measurement errors by a factor α < 1 (C → α2C). To
the extent that statistical rather than systematic uncertainties limit
constraining power, the blinding shift necessary to defeat prejudices
will shrink in concert (�	 → α�	) as will the width of the priors
to future experiments (	obs − 	ref → α(	obs − 	ref)). Under
equation (16), we see that �χ2∝α2 under this evolution. Hence, to
the extent that these trends hold, future experiments will, in fact,
become easier to blind, given the same models and observables.3

4 A P P LIC ATION: DARK ENERGY SURV EY
A NA LY S I S O F G A L A X Y L E N S I N G A N D
CLUSTER ING

Using the discussions in Sections 2 and 3 as a guide, we will
now test the summary-statistic blinding transformation for the DES
Year 3 galaxy clustering and weak lensing combined analysis.
The goal of this exercise is twofold. First, it will serve as a
concrete demonstration of how summary-statistic blinding can be
implemented, and, secondly, we will validate the transformation’s
performance for use in the DES Year 3 analysis.

DES is an imaging survey that, over the course of six years, has
measured galaxy positions and shapes in a 5000 deg2 footprint
in the southern sky. It is designed to use multiple observable
probes to study the properties of dark energy and to otherwise test
the standard cosmological model, �CDM. Those probes include
galaxy clustering, weak lensing, supernovae, and galaxy clusters.
Though the blinding transformation presented in this paper could
be potentially useful for all of these cosmological observables, our
focus in this paper is on the combined analysis of galaxy clustering
and weak lensing shear.

3This scaling may not hold if, for example, tensions between previous
experiments provoke prejudices which are large compared to the projected
errors of the experiment. This would motivate blinding and truth shifts
that shrink more slowly than measurement errors. If this shrinking is slow
enough, preserving χ2 could actually get more difficult. On the other hand,
this would mean that we are in the fortunate position of having an experiment
whose power is more than sufficient to resolve the tension. Generally though,
we expect that future experiments will restrict us to regions of parameter
space where we can more accurately model the observables as linear in
parameters, and thus where our blinding transformation’s performance
improves.

For conciseness, we will refer to this as the 3 × 2pt analysis,
so named because in it three types of 2PCF are used as summary
statistics. These 2PCFs are galaxy position–position, shear–shear,
and position–shear angular two-point correlations measured from
DES galaxy catalogues. Additionally, we will use Year 1 (Y1) to
refer to the analysis of the first year of DES data, which covers a
footprint of roughly 1300 deg2 and for which results are reported in
Abbott et al. (2018), and Year 3 (Y3) to refer to the ongoing analysis
of the first three years of data, which will cover the full 5000 deg2

footprint at a similar depth.
Below, we first briefly motivate the need for blinding in

DES combined-probe analyses (Section 4.1) before describing the
3 × 2pt data and analysis pipeline in Sections 4.2 and 4.3. Then,
Section 4.4 introduces our procedure for testing the performance of
the 2PCF blinding transformation. Sections 4.5 and 4.6 present the
results.

4.1 The need for blinding in DES analyses

Two of the most powerful ways DES data can test the �CDM
model are via the constraints it can place on the dark energy
equation-of-state parameter w and on the amplitude of matter
density fluctuations σ 8. The equation-of-state parameter describes
the ratio of pressure and density of a fluid description of dark
energy in wCDM, an extension of �CDM, which describes dark
energy as a fluid. If dark energy behaves as a cosmological constant
(as in �CDM), this parameter will take the value w = −1, while
w 
= −1 means that the dark energy density evolves with time.
The matter density fluctuation amplitude σ 8 is of interest because
it and �m are the mostly precisely constrained parameters for
DES’ measurements of structure in the z � 1 Universe. Comparing
DES constraints in the σ 8–�m plane to those extrapolated under
�CDM from Planck CMB measurements thus tests the ability of
�CDM to describe the evolution of the large-scale properties of the
universe from early and late times. Given these tests, whether or not
DES observables are consistent with the special value w = −1 in
wCDM parameter space or with Planck �m–σ 8 results in �CDM
are questions of particular interest for DES analyses.

The Y1-3 × 2pt wCDM constraints are consistent with w = −1,
while the �CDM results showed a suggestive offset from Planck
in the �m–σ 8 plane, with the DES preferring a lower value of σ 8.4

As the Y3-3 × 2pt analysis will use three times the sky area, that
increased statistical power will cause DES constraints to tighten, and
the community will be closely watching how the results compare to
w = −1 and to the Planck �m–σ 8 constraints. Thus, the parameters
that we are particularly interested in blinding are w and σ 8. In the
tests below, for simplicity, we focus on blinding transformations
shifting only those two parameters. This is sufficient to blind the
DES analysis, but we do note that one could easily and reasonably
adjust the transformation to include shifts in any other parameter(s)
– �m, for example – in order to further confound the DES-Planck
comparison.

4.2 Observable vector and likelihood

Because the DES Y3-3 × 2pt pipeline was not finalized when the
blinding investigations presented in this paper were conducted, we

4In Abbott et al. (2018), this offset is reported to be statistically insignificant,
though exactly how such a tension should be quantified is a subject of some
discussion (Handley & Lemos 2019).
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Figure 2. The n(z) redshift distributions for lens and source galaxies in the
DES Y1-3 × 2pt analysis from Abbott et al. (2018). The vertical coloured
bands show the nominal redshift range of each bin, while the lines show the
estimated true redshift distribution when galaxies are binned in photometric
redshift. The black lines show the unbinned total distribution. We adopt
these same redshift distributions for our Y3 blinding tests.

approximate the Y3 observable vector and likelihood by using the
Y1 modelling choices, prior ranges, and scale cuts. This section
will briefly describe them, but we refer the reader to Abbott et al.
(2018) and Krause et al. (2017) for a more detailed description of
the associated measurements and calculations.

The DES 3 × 2pt analysis is based on observations of two
populations of galaxies. Positions are measured for a set of lens
galaxies which have been selected to have small photometric
redshift (photo-z) errors and which have been carefully checked for
residual systematics. In the Y1 analysis, this population consisted
of 650 000 bright red-sequence galaxies which are selected as part
of the redMaGiC catalogue (Elvin-Poole et al. 2018). Their redshift
distribution is shown in the upper panel of Fig. 2. Cosmic shears
are measured from a larger population of source galaxies. For
the Y1 analysis the source galaxies included 26 million objects
selected from the Y1 Gold catalogue (Drlica-Wagner et al. 2018)
and their shapes are measured as described in Zuntz et al. (2018).
The lens (source) galaxies are divided into five (four) redshift bins,
respectively; see Fig. 2.

The 3 × 2pt observable vector consists of three kinds of 2PCF
measured from the lens and source catalogues. The galaxy–galaxy
correlations are measured as autocorrelations within each lens
bin, producing a set of functions wi(θ ) for i = 1–5. Shear-shear
correlations are measured for all auto and cross-correlations of the
source bins, producing functions ξ

ij
+ (θ ) and ξ

ij
− (θ ) for i = 1–4

and 1 ≤ j ≤ i. The galaxy-shear cross-correlations are measured
between all combinations of the five lens bins and four source bins,
producing γ

ij
t (θ ) for i = 1–5 and j = 1–4. All of these 2PCFs are

measured for twenty logarithmically spaced angular bins between
2.5 and 250 arcmin. Further scale cuts are applied in order to
prevent modeling uncertainties associated with non-linear structure
formation, baryonic physics, and other small-scale effects from
biasing the final cosmological results (Krause et al. 2017). The
resulting 3 × 2pt observable vector has 457 entries.

The likelihood of the DES 3 × 2pt observable vector is modelled
as a multivariate Gaussian. Its covariance Cd has significant off-
diagonal contributions, since many elements of the observable
vector can share dependence on the realization of the mass and
galaxy distributions in the survey volume (also known as sample
variance). We adapt the covariance matrix that was previously
analytically computed for the Y1 analysis as described in Krause
et al. (2017) using COSMOLIKE (Krause & Eifler 2017). To approx-
imate the Y3 covariance, we simply scale the Y1 covariance by a
factor of 0.27 = 1350/5000 to account for Y3’s increased survey
area. This survey-area scaling correctly modifies the Gaussian
parts of the covariance, but it does not properly scale the non-
Gaussian contributions (Joachimi, Schneider & Eifler 2007). Thus,
this is only a rough approximation for the Y3 covariance, but it
is sufficient for our testing purposes. Though, in principle, the
3 × 2pt covariance depends on the model parameters, it has been
shown (Eifler, Schneider & Hartlap 2009) that the covariance’s
cosmology dependence can be neglected without significantly
affecting parameter constraints. In the DES Y1-3 × 2pt analysis
and in this work, we do not vary the data covariance matrix when
performing parameter searches.

4.3 Modelling

The parameter estimation procedure for the DES Y1-3 × 2pt
analysis, and therefore also our simulated Y3-3 × 2pt analysis,
involves a search over 27 free parameters for wCDM. This includes
seven cosmological parameters5 (�m, σ 8, w, h, �b, ns, and �νh2)
and 20 nuisance parameters used to account for various systematic
uncertainties. These nuisance parameters include a constant linear
galaxy bias bi for each of the five lens redshift bins. Additional
nuisance parameters are introduced to model the effects of uncer-
tainties in photo-z estimation: for each lens and source bin, we
introduce a parameter �zi that describes a redshift offset of that
bin’s n(z) distribution. To model shear calibration, we assign one
multiplicative shear calibration parameter mi per source galaxy bin.
Following the Y1 analysis, we impose tight Gaussian external priors
on all shear calibration and photo-z nuisance parameters. The last set
of nuisance parameters model how intrinsic (as opposed to lensing-
induced) alignments between galaxy shapes affect their observed
2PCF. We use a linear alignment model with parameters AIA, αIA,
and z

(IA)
0 . The calculations we use to compute predictions for the

3 × 2pt observable vector, given this set of model parameters, are
described in Appendix B and in more detail in Krause et al. (2017).

The fiducial values for all of these nuisance parameters, as well as
cosmological parameters, are shown in Table 1, as are the Gaussian
priors used for the photo-z shifts �zi and shear calibrations mi.
During parameter estimation, the number of neutrinos Nmassiveν and
Nmasslessν (chosen to sum to the standard model effective number of
neutrinos Neff), the optical depth of the CMB τ , and z

(IA)
0 are fixed,

while the rest of the parameters shown in the table were varied with
flat priors.

4.4 Evaluating performance for DES blinding

Our goal is to test the performance of 2PCF-based blinding for Y3-
3 × 2pt. We do this by analysing an ensemble of 100 noiseless

5Note that while for the purposes of this blinding study we sample over σ 8

as an input model parameter, Abbott et al. (2018) and other DES analyses
typically sample over As and measure σ 8 as a derived parameter.

MNRAS 494, 4454–4470 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/494/3/4454/5820237 by guest on 20 June 2022



Multiprobe cosmological experiments 4461

Table 1. Fiducial values and prior ranges for the DES 3 × 2pt analysis pipeline studied in this work along with the range from which parameters are drawn
for the blinding tests performed in this study.

Parameter estimation Distribution for blinding tests
Parameter 	ref Search bounds Prior 	ref + �	 	obs [fid.] 	obs [Nuis.]C

Cosmology parameters σ 8 0.834 [0.1, 2.0] Flat [0.734, 0.954] Y3 Fisher Matches fid.
w −1.0 [−2.0, −0.0] Flat [−1.5, 0.5] Y3 Fisher Matches fid.
�m 0.295 [0.1, 2.0] Flat – Y3 Fisher Matches fid.
h 0.6882 [0.2,1.0] Flat – Y3 Fisher Matches fid.

�b 0.0468 [0.03, 0.07] Flat – – –
ns 0.9676 [0.87, 1.07] Flat – – –

�νh2 6.155 × 10−4 [0.0006, 0.01] Flat – – [0.0006,0.00322]
Nmassiveν 3 – Fixed – – –
Nmasslessν 0.046 – Fixed – – –

τ 0.08 – Fixed – – –

Lens galaxy bias b1 1.45 [0.8, 2.5] Flat – Y3 Fisher Full prior
b2 1.55 [0.8, 2.5] Flat – Y3 Fisher Full prior
b3 1.65 [0.8, 2.5] Flat – Y3 Fisher Full prior
b4 1.8 [0.8, 2.5] Flat – Y3 Fisher Full prior
b5 2.0 [0.8, 2.5] Flat – Y3 Fisher Full prior

Shear calib. m1–4 0.012 [−0.1, 0.1] N (0.012, 0.023) – – [−0.57,0.081]

Intrinsic alignments AIA 0.0 [−5, 5] Flat – – [0,1]
αIA 0.0 [−5, 5] Flat – – [−4, 4]
z

(IA)
0 0.62 – Fixed – – –

Source galaxy photo-z bias �zsource
1 −0.002 [−0.1,0.1] N (−0.001, 0.016) – – [−0.05, 0.046]

�zsource
2 −0.015 [−0.1,0.1] N (−0.019, 0.013) – – [−0.054, 0.024]

�zsource
3 0.007 [−0.1,0.1] N (0.009, 0.013) – – [−0.026, 0.04]

�zsource
4 0.018 [−0.1,0.1] N (−0.018, 0.022) – – [−0.048, 0.84]

Lens galaxy photo-z bias �zlens
1 0.002 [−0.05, 0.05] N (0.008, 0.007) – – [−0.022, 0.026]

�zlens
2 0.001 [−0.05, 0.05] N (−0.005, 0.007) – – [−0.020, 0.022]

�zlens
3 0.003 [−0.05, 0.05] N (0.006, 0.006) – – [−0.018, 0.024]

�zlens
4 0.0 [−0.05, 0.05] N (0.0, 0.01) – – [−0.03, 0.03]

�zlens
5 0.0 [−0.05, 0.05] N (0.0, 0.01) – – [−0.03, 0.03]

Notes. Fiducial values and priors are chosen to be similar to the settings for the DES Y1-3 × 2pt analysis (with the exception of w, which uses a wider range
here than in Abbott et al. 2018), and the fact that for these tests, we search over σ 8 rather than As. The columns labelled ‘Distribution for blinding tests’ display
the range from which parameters are drawn to create the realizations of synthetic data and blinding factors used for the blinding tests and are described in
Sections 4.4.1 and 4.4.1. The ‘Y3 Fisher’ label in the 	obs column refers a multivariate Gaussian, distribution with the parameter covariance estimated using a
Fisher forecast, centred on the fiducial parameter values. For �νh2, the upper bounds of its prior range and the upper bound of its ‘Nuis.’ range correspond to
∑

mν = 0.93 and 0.3 eV, respectively.

synthetic 3 × 2pt observable vectors. For each realization, we
draw �	 (which determines the blinding transformation) and
	obs (which determines the ‘truth’) from probability distributions
centred on a reference cosmology 	ref. That reference cosmology
is fixed to the fiducial parameter values listed in Table 1. The
synthetic ‘observed’ data d̂ are then generated by computing a
theory prediction for the 3 × 2pt observable vector at parameters
	obs, so

d̂i = di(	obs). (17)

That data are then transformed according to equation (7) to
produce a blinded observable vector

B(d̂i) = d̂i + di (	ref + �	) − di (	ref ) . (18)

We then search for parameters 	bl and 	unbl that maximize the
likelihood (minimize χ2) for the blinded and unblinded data. The
change �χ2 induced by applying the blinding transformation to the
data will be our measure of success for the blinding transformation,
since the blinded data should look compatible with some model in
the parameter space. For select realizations, we additionally study
the impact of blinding on the parameter estimation posteriors, as is

shown in Fig. 4. The following subsections describe the technical
details of this procedure.

4.4.1 Parameter selection: fiducial test

The �	 distribution is chosen to satisfy criterion I from Section 2.1
above, while 	obs will be drawn from a range that reasonably
reflects potential offsets between the true Y3-3 × 2pt cosmology
and 	ref. We blind the two cosmological parameters that are at the
greatest risk of experimenters’ bias in the DES 3 × 2pt analysis: the
amplitude of matter clustering σ 8 and the dark energy equation-of-
state parameter w. We draw �σ 8 from a flat distribution centred on
zero with bounds −0.12 < �σ 8 < +0.12 chosen to be roughly equal
to the ±3σ errors expected from Y3-3 × 2pt.6 We draw w from
a flat distribution −0.5 < �w < +0.5, chosen to span half of the
flat prior being used for parameter estimation. All other parameters
have no input blinding shift.

6For comparison, the �CDM constraints on σ 8 reported in Abbott et al.
(2018) are 0.817+0.045

−0.056.
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Figure 3. Values (off-diagonal panels) and the distribution (diagonal
panels) of parameters σ 8, w, and �m in the 100 realizations used for the
fiducial test of our blinding procedure. The blue circles are the observed
(that is true, unblinded) parameter values. The red circles are the shifted
values used to blind the data. The dashed lines denote the reference model
used for blinding.

For our fiducial test, we vary 	obs over a subset of the 27 3 × 2pt
wCDM parameters: σ 8, w, �m, h, and the five lens galaxy bias
parameters bi for i ∈ {1, . . . , 5}. It is drawn from a truncated
multivariate Gaussian distribution in those parameters centred on
	ref. The covariance of that distribution is obtained from Fisher
forecast for our Y3-3 × 2pt pipeline fixing all unvaried parameters.
Any realization for which 	obs falls outside of the flat prior ranges
in Table 1 is discarded and redrawn. Fig. 3 shows the resulting 100
realizations of 	ref + �	 and 	obs for a subset of parameters.

4.4.2 �χ2 threshold

The blinded data should appear fully consistent with having been
generated by some model within M (here, wCDM within the priors
shown in Table 1), if and only if the unblinded data are consistent
with the true model. Since χ2 is our measure of data-model
consistency, this means that we would ideally like the blinding
of the data to result in �χ2 = 0. A finite �χ2 is tolerable, however,
if it is smaller than the expected statistical variation in the unblinded
χ2, i.e. �χ2 will not influence acceptance or rejection of the data.

We choose �χ2 = 30 as a threshold for acceptable contributions
from blinding to the error in the fit. This is within a few per cent
of the standard deviation σχ2 ≈ √

2ν for the number of degrees of
freedom ν being considered in our analyses. For comparison, in the
DES Y1-3 × 2pt analysis of Abbott et al. (2018), an unblinding
criterion was that χ2/ν < 1.4. Our �χ2 = 30 threshold corresponds
to �χ2/ν = 0.07.

4.4.3 Finding the maximum likelihood

To find the best-fitting parameters, we use the MAX-
LIKE sampler in COSMOSIS, which is a wrapper for the

scipy.optimize.minimize function using the Nelder–Mead
Simplex algorithm (Nelder & Mead 1965). This routine can fail
to find the true maximum likelihood in high-dimensional spaces,
biasing χ2 high. For our noise-free tests, we know χ2 = 0 for
the unblinded data, hence the measured �χ2 values are strict
upper bounds on the true contributions of blinding to χ2. To more
accurately characterize this bound, we re-run the χ2 minimization
search for all realizations with �χ2 > 30 using the MULTINEST

sampler7 (Feroz & Hobson 2008; Feroz, Hobson & Bridges 2009;
Feroz et al. 2013) (as implemented in COSMOSIS). MULTINEST is
more computationally costly than MAXLIKE, but because it more
thoroughly explores the parameter space, it is less susceptible to get-
ting stuck in local minima. We perform the MULTINEST searches over
the full 27-dimension wCDM parameter space using the same low-
resolution settings used for DES Y1-3 × 2pt exploratory studies8

and substitute the MAXLIKE results with those from MULTINEST

results in cases where the minimum χ2 reported from MULTINEST

is smaller.9

4.5 Results for fiducial test

Fig. 4 shows an example of how the parameter contours shift in
response to a large blinding shift of (�σ 8 = −0.117, �w =
+0.314). For this realization, the change in goodness of fit is
small, �χ2 = 1.86, and we can see that the location of the 68
and 95 per cent confidence contours change in a way consistent
with the input blinding shift.

More quantitatively, Fig. 5 contains the primary results for our
test of the 2PCF-based blinding for the DES Y3-3 × 2pt analysis.
It shows a histogram of the �χ2 values for the 100 blinded and
unblinded pairs of synthetic observable vectors analysed. We see
that in all realizations �χ2 is well below our �χ2 = 30 cut-off. This
means that the blinded data are indistinguishable from unblinded
data at different input parameters.

In Section 3.3, we suggested that the performance of the blinding
transformation should worsen (higher �χ2) when both the blinding
shift �	 and the truth shift 	obs − 	ref become significantly non-
zero. Fig. 6 plots the �χ2 of each fiducial realization (as the colour)
versus the size of the blinding shift and the truth shift. To quantify
the size of these shifts, we extract a parameter covariance C from
a fiducial MULTINEST chain and use it to compute distances in
parameter space:

|	obs − 	ref |/σ	 =
√

(	obs − 	ref )T C−1(	obs − 	ref ), (19)

|�	|/σ	 =
√

(�	)T C−1(�	). (20)

For the blinding shift, we compute this distance in the marginalized
two-dimensional σ 8−w plane (that is, we use a 2 × 2 C containing
only the entries for those parameters). We evaluate the truth shift in
the full 27-dimensional parameter space. For ease of interpretation,
these distances are then converted into an equivalent deviation for
a one-dimensional Gaussian normal distribution by equating the

7ccpforge.cse.rl.ac.uk/gf/project/multinest/.
8These MULTINEST settings are: 250 live points, efficiency 0.8, tolerance 0.1.
9Because MULTINEST is designed to map the posterior distribution rather than
find the best-fitting point in parameter space, its accuracy will be limited by
the density of samples in the high likelihood region. Based on MULTINEST

fits to unblinded observable vectors (where we know the true minimum is
χ2 = 0), we estimate that the MULTINEST results tend to overestimate the
minimum χ2 by ∼5.
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Figure 4. The 68 and 95 per cent confidence intervals for blinded (green)
and unblinded (blue) synthetic DES Y3-3 × 2pt data. As an illustrative
example, results are shown for a realization of the fiducial blinding test with
a large input blinding shift of (�σ 8 = −0.117, �w = +0.314) and a low
�χ2 = 1.86. Dashed grey lines show the input parameters used to simulate
the unblinded data 	obs = (σ 8 = 0.826, w = −0.912, �m − 0.29). The
black, thick arrow shows the points from 	ref to 	ref + �	 to show the
input blinding shift, and the red, thin arrow points from 	unbl = 	obs to 	bl

to show the change in best-fitting parameters.

Figure 5. Fiducial blinding test results for �χ2. The top axis shows �χ2

in units of the degrees of freedom associated with the DES Y3-3 × 2pt
wCDM analysis, ν = 430.

probability-to-exceed value: we solve for N such that

P (χ2 > N2, ν = 1) = P (χ2 > (|�	|/σ	) , ν = 2) (21)

and likewise for the truth shift (but with ν = 27 on the right).
For example, a truth shift of |	obs − 	ref |/σ	 = √

30 � 5.5 that
corresponds to χ2 = 30 in 27-dimensional parameter space has the
same probability-to-exceed as a χ2 = 1 signal in a one-dimensional
Gaussian, so we would plot this as a ‘1σ ’ blinding shift in the metric
of the parameter covariance matrix.

Fig. 6 confirms the behaviour derived in Section 3.3 that the larger
�χ2 values appear only when both 	ref + �	 and 	obs move

Figure 6. Dependence of �χ2 on the magnitude of the truth shift |	obs −
	ref|/σ	 (vertical axis) and of the blinding shift |�	|/σ	 (horizontal axis)
for the observable vectors generated using the fiducial 100 realizations of
true cosmology 	obs. These distances are evaluated in the two-dimensional
σ 8−w plane for the blinding shift and in the full 27-dimensional parameter
space for the truth shift. In both cases the distance is scaled according to
expected parameter uncertainties and are shown in units of the number
of standard deviations for a one-dimensional Gaussian distribution with
equivalent probability-to-exceed. The colours of the points represent the
�χ2 value of those realizations.

significantly away from 	ref under the metric of the experimental
posterior. This trend is non-monotonic because the performance of
blinding depends somewhat on the direction in parameter space of
the vector 	obs − 	ref in addition to its magnitude. Furthermore,
there is noise in our �χ2 evaluation from imperfect optimisation.

Fig. 7 shows the relationship between the input blinding shifts
in σ 8 and w and the resulting shift in their best-fitting values.
We generally find the behaviour expected from the leading-order
analysis, which is for 	bl − 	unbl to be roughly equal to the
parameter shift �	 used to generate the blinding factors, although
with some deviation that grows roughly linearly with �	. The
scatter is expected because unplotted parameters, as well as the
truth shift 	obs − 	ref, also influence the deviation. The fact that the
range of the points along the veritical axes of Fig. 7 is comparable
to that along the horizontal axis does confirm that this blinding
transformation is capable of altering the experiment’s results enough
to overcome experimenters’ potential biases. Having satisfied all of
the desired criteria described in Section 2, we consider the blinding
transformation of equation (7) to be successful for this fiducial
analysis.

Fig. 7 can give us additional insight into the performance of our
blinding transformation. In that figure, the colour of each point
corresponds to the �χ2 value for that realization. We note that
the strong outlier points are also the points with largest �χ2. This
is the expected behaviour. We saw in Fig. 6 that these high-�χ2

realizations have large truth shifts, and we expect that larger truth
shifts should induce larger differences in 	bl − 	obs, mediated
by the non-linear portions of the data model as indicated by
equation (A6). Those differences are expected to occur for all
parameters, not just those we choose to blind. We confirm from our
MAXLIKE results that, for such outlier realizations of 	obs, blinding
induces large changes in the best-fitting values of several nominally
unblinded parameters.
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Figure 7. Relationship between the input blinding shifts (horizontal axes) in σ 8 (left-hand panel) and w (right-hand panel) and the output shifts in best-fitting
values of those same parameters. The colour scale shows �χ2 and the diagonal grey line shows the case where the output shifts are exactly equal to the input
shifts. Both plots show data from the same 100 realizations for noiseless simulated data.

To further investigate this, we additionally ran MULTINEST chains
for those realizations. We found that in two of these realizations the
68 or 95 per cent confidence intervals of posterior are pushed into
the hard-prior boundary for some of the galaxy bias parameters.
Such behaviour could be problematic, since checking that posterior
distributions have not hit prior bounds is a standard part of data
validation, and the blinding could trigger a false alarm for this.
This issue not necessarily prohibitive: Since we know that this kind
of unpredictable shift is occurring for realizations with large truth
offsets 	obs − 	ref, one could imagine workarounds in the blinding
procedure to account for, or protect against, this possibility. For
example, the collaboration could ask a single member to confirm
whether the collision with the prior bound is, in fact, due to the
blinding shift or, as discussed in Section 5 below, one could make
use of several distinct blinding shifts defined at different 	ref values.

4.5.1 Impact of noise

As an additional check, we perform this analysis on a version of
these same 100 synthetic observable vectors with Gaussian noise
added using a Cholesky decomposition of the covariance Cd. Results
from this test are shown in Appendix C. Compared to the noiseless
results shown above, there is slightly more scatter in the input-
versus-output parameter shift relationship, and in the relationship
between �χ2 and the various input parameters. These differences
are expected and do not change the conclusions that the blinding
transformation is effective.

4.6 Follow-up test: varying nuisance parameters

As a stronger test of 2PCF-based blinding for the DES Y3-3 × 2pt
analysis, we analyse a second set of synthetic observable vectors
for which more parameters of 	obs are allowed to deviate from 	ref.
This is a more rigorous test because it allows for larger differences
between the truth model and the reference model; recall that we
noted in Section 3.3 that we expect the performance of the blinding
method to degrade as the magnitude of the difference 	obs − 	ref

increases. We use the same 100 blinding factors as in the fiducial
test. For the 100 realizations of 	obs, the values of σ 8, w, �m, h

match those used in the fiducial test, but we additionally vary �νh2,
reselect values of galaxy bias b1–5, and vary all remaining nuisance
parameters over flat probability distributions with ranges shown
in the rightmost column of Table 1. For the nuisance parameters
with Gaussian priors in the 3 × 2pt analysis, the ranges are ±3σ

for that prior. The galaxy bias parameters are drawn from their
full prior range, while the ranges for neutrino mass and intrinsic
alignment parameters are chosen by eye based on the DES Y1-
3 × 2pt posteriors in Abbott et al. (2018). In the text and plots
below, we will refer to results from this test as the ‘nuisance’ test
(as opposed to fiducial test).

After searching for best-fitting parameters10 on the pairs of
blinded and unblinded observable vectors of the nuisance test, we
can study the same results discussed in Section 4.5. Fig. 8 shows a
histogram of the �χ2 values. Although the majority of realizations
remain below �χ2 < 30, the distribution is broader than in the
fiducial test and four realizations exceed that threshold.

To understand the nature of the failures, we examine how �χ2

depends on the blinding shifts and truth shifts of each realization.
Fig. 9 plots the distribution of �χ2 values for the nuisance test in
the space of blinding shifts applied to σ 8 and w. Here it is apparent
that larger blinding shifts, particularly those that reduce σ 8, are
associated with higher �χ2. A more revealing picture is given in
Fig. 10, where it is clear that the unacceptable �χ2 trials are those
with larger blinding shifts and extremely large distances between
	obs and 	ref (under the posterior parameter metric). Note that
change of scale on the y-axis from Fig. 6.

10When we run MULTINEST for select realizations of the nuisance test, we
fit over the likelihood rather than the posterior. We do this because for many
realizations, the prior is very small at the true cosmology 	obs, causing
significant differences between the maxima of the posterior and likelihood.
This procedure is specific to the synthetic data study presented here where
we are purposefully drawing 	obs from a wide range of nuisance parameter
values, and where we are trying to minimize χ2 rather than maximize the
posterior. For the analysis of real data, nuisance parameter priors should
reflect our knowledge of what values they are likely to take, and one should
maximize the posterior.
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Figure 8. Same as Fig. 5, but for the ‘nuisance test’ ensemble of unblinded
observable vectors: histogram of �χ2 values. The vertical dashed line shows
our �χ2 = 30 threshold, which is now exceeded by 4 of the 100 trials.

Figure 9. For the ‘nuisance test’ ensemble, we plot the �χ2 induced by
the blinding process as the colour of each point, versus the blinding shifts
applied to the two cosmological parameters of greatest interest. Points with
�χ2 > 30 are shown in red and are circled.

Figure 10. Same as Fig. 6, but for the ‘nuisance test’ ensemble of unblinded
observable vectors: dependence of �χ2 on the parameter-space distances
associated with 	obs − 	ref and �	. Circled points shown in red are
realizations with �χ2 > 30.

In interpreting these results, we emphasize that this is by design
a conservative test of the blinding transformation. The fact that the
true cosmologies 	obs are drawn from a flat probability distribution
in a large number of nuisance parameters means that the distances
shown on the vertical axis of Fig. 10 are very large relative to
projected Y3-3 × 2pt uncertainties. In other words, all of the
realizations studied for the nuisance test have truth parameters that
are collectively highly unlikely under the priors that have been
assigned to them,11 and even more unlikely under the expected
posterior probability. To put this in perspective, note that a more
realistic simulation of the blinding transformation’s performance
could be done by drawing 	obs from the DES Y1-3 × 2pt posterior
probability distribution, which might be considered an appropriate
prior for Y3. The resulting ensemble of 	obs − 	ref separations
would be significantly smaller than those used here, we would
expect better performance in our �χ2 test. However, especially
given the limited number (100) of realizations, sampling 	obs from
the Y1 posterior would result in few realizations with large 	obs

− 	ref , which might test the limits of this approach to blinding.
In contrast, our nuisance test’s flat probability distributions and
resulting extremely large truth shifts let us probe regions of param-
eter space where the blinding transformation breaks down. We then
check that those regions are highly unlikely for the application we
are considering. We conclude that, although the nuisance test has
failed blinding Criterion 2 of Section 2.2 in 4 per cent of our trials,
this only occurs for realizations with true parameters that are much
farther from our reference parameters than they would realistically
be for DES Y3-3 × 2pt.

Fig. 11 shows how blinding shifts relate to output shifts in the
best-fitting parameters for the nuisance test. Compared to similar
results from the fiducial test (Fig. 7), there is more scatter in
this relationship and the high-�χ2 points depart further from
the trends. These behaviours are consistent with what we expect
from expanding the 	obs space. There is some curvature present
in these relations at low w, which suggests that the model is
extending to regions where the quadratic approximation assumed
in Appendix A is inadequate. Nonetheless, we still confirm that
the output parameter shifts are large enough to defeat observer
prejudice.

5 D I SCUSSI ON AND C ONCLUSI ONS

This paper presents and demonstrates an effective blinding strategy
for multiprobe cosmological analyses at the summary-statistic level,
with the principal requirement that such a strategy allows for robust
validation checks (e.g. inspection of the blinded observable vector
for obvious systematics) while hiding the cosmological-parameter
values which are eventually to be inferred.

The blinding transformation is described in equation (7): One
simply adds the difference between two theoretically-calculated
observable vectors to the measured data. The ‘blinding shift’ is
the prediction for a reference cosmology 	ref subtracted from the
prediction for shifted cosmology 	ref + �	. In the limit where the
measurement noise is invariant and the summary statistics are linear
functions of the parameters 	, this transformation will generate
blinded summary statistics that are completely indistinguishable
from real data generated by the same experiment at an altered set

11The Gaussian nuisance prior probabilities π evaluated at input truth values
	obs fall in the range 10−40 < π (	obs) < 10−10 for all nuisance test
realizations.
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Figure 11. Same as Fig. 7 but for the ‘nuisance test’ ensemble of unblinded observable vectors: the relationship between input blinding shifts �	 and output
shifts in best-fitting parameters 	bl − 	unbl. Realizations with �χ2 > 30 are shown with circled red points. The grey lines correspond to equal input and
output shifts.

of parameters 	obs + �	, i.e. a perfect blinding. This limit may or
may not hold in the region spanned by the reference parameters, the
shifted parameters, and the true-sky parameters 	obs. In practice,
the model d(	) for the summary statistics will have non-linearity
over the parameter range of interest, and one must check that the
blinded data are close (in a χ2 sense) to data that could be generated
by some valid set of parameters 	bl. Therefore, most of this paper
is devoted to verifying that this is the case for the forecasted DES
Year 3 galaxy clustering and weak lensing, or Y3-3 × 2pt, analysis.
We also check that this blinding transformation is capable of hiding
the true results of the analysis, i.e. that this transformation can
change the results enough so that that knowing 	bl does not allow
experimenters to know how the data compare to their prejudices.

These results serve both as a concrete example of the blinding
transformation and as verification that it is reliable enough to use
for the real DES Y3-3 × 2pt analysis. We focus on blinding shifts
in σ 8 and w, and performed this test by finding the best-fitting
parameters for blinded and unblinded versions of 100 realizations
of noiseless synthetic measured observable vectors. (See Fig. 4
for an illustrative example.) In order to mimic the fact that the
true cosmology will not match our fiducial 	ref, we vary the
input parameters 	obs for those simulations. For a proof-of-concept
fiducial test, we select a subset of cosmologial parameters from a
Fisher-forecast-based multivariate Gaussian distribution, and for a
more conservative follow-up ‘nuisance test’, we additionally draw
the values of nuisance parameters from flat probability distributions,
resulting in very large 	obs − 	ref offsets. The change in goodness-
of-fit �χ2 due to blinding serves as our principle metric for
successful blinding, as it measures the extent to which blinding
preserves the internal consistency of the individual observable
vector components.

For the fiducial test, the impact of blinding on the goodness of
fit was below the expected rms statistical fluctuations in χ2 for
all realizations (Fig. 5), and the change in best-fitting parameters
was generally well predicted by the input blinding shift (Fig. 7).
As expected from the leading-order analysis for non-linear models
(Section 3.3), the �χ2 figure of merit for blinding scales as a
power of the product of the sizes of the blinding shift �	 and the
‘truth shift’ 	obs − 	ref. We also verified that those results are not

significantly affected when Gaussian noise is added to the simulated
data (Appendix C). We noted one potential cause for concern, in
that for a small number of realizations with large truth offset 	obs

− 	ref, the blinding transformation resulted in large changes to the
best-fitting values of nominally unblinded parameters, which were
large enough to push the posterior into a prior boundary.

When we stress the blinding transformation with the nuisance-
parameter test case, the typical �χ2 performance worsened some-
what (Figs 8–10). The majority of realizations in this latter test
still fall below the criterion �χ2 < 30 (i.e. less than the standard
deviation of χ2), but 4 out of 100 realizations exceeded that value,
indicating a poor fit of our model to the blinded data. These
realizations are found, however, to have input parameters 	obs that
are very far from the reference parameters 	ref assumed for blinding,
both in the sense that they would have low probability under the
priors on nuisance parameters, and that they are the equivalent of
≈50σ unlikely for the Y3-3 × 2pt parameter errors at 	ref. An
appropriate choice of 	ref will preclude the appearance of these
high-�χ2 cases in the real Y3-3 × 2pt analysis.

While we have demonstrated that equation (7) defines a viable
blinding scheme for Y3-3 × 2pt wCDM analyses, it is possible that
other experiments will encounter cases where the non-linearities in
the data model generate unacceptably large �χ2 over the ranges of
�	 and 	obs , which are necessary for effective blinding over the
full parameter space allowed by priors. This issue is not necessarily
prohibitive, however: one can imagine additional steps in the
blinding procedure to account for it (and which could potentially
also be used to handle cases where prior-boundary collisions occur
even with acceptably small �χ2). For example, if all pipeline
checks pass on blinded data, but the resultant 	bl encroaches on the
boundaries of priors on nuisance parameters, a designated member
of the collaboration could look at how the posterior changes when
the data are blinded using a different randomly drawn blinding shift
�	. Alternatively, the person tasked with generating the blinding
shifts could generate two or more f(add) shifts that use 	ref values in
distinct parts of the parameter space. The collaboration’s criterion
could be that the data are accepted if any one of these blinded
data sets generate an acceptable χ2. This would allow valid data
to pass when its 	obs is sufficiently close to any one of the 	refs,
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while truly systematic errors would still be likely to fail the �χ2

criterion. Other strategies may be viable as well.
There are a number of considerations one should take into account

when deciding whether and how to adopt the summary-statistic
blinding transformation described in this paper. Summary-statistic
blinding has the advantage that there is relatively low overhead for
implementation: it can make use of existing analysis infrastructure,
since the blinding factors are computed using the same theory
prediction machinery needed for parameter estimation. To make
the blinding more robust, it should ideally be implemented as an
automatic step when summary statistics are measured from the
data. It is a trivial matter for a collaboration member to infer
the blinding shifts and unblind their data, if the blinding code is
freely available: All one needs to do is run a zero vector through
the blinding subroutine. Thus some level of self-control and trust
are still required for successful blinding – we are not proposing a
foolproof cryptographic system.

It is also worth considering whether multiple stages of blinding
should be adopted: Especially for a new blinding technique and
new analyses, having a step of parameter-level blinding (hiding
numbers on parameter constraint contours) even after unblinding the
summary statistics, can be useful. It is also worth considering how
to check or protect against spurious cases where this transformation
may lead to undesired behaviour, like pushing an acceptable
unblinded parameter values past its bound from the prior. It is also
important to keep in mind that blinding necessarily adds time to an
analysis and in particular that using this transformation will require
MCMC chains for parameter estimation to be re-run when it is time
to unblind. One can argue that this serves as a feature rather than
a bug: The barrier to unblinding can help force a collaboration of
busy people with divided attention to pause and consider the status
of an analysis before proceeding.

This summary-statistic blinding transformation is implemented
as part of the ongoing DES Y3-3 × 2pt analysis. In practice,
the blinding transformation is applied using a script that runs
automatically when the 2PCF are measured from galaxy catalogues.
This script uses a string seed to pseudo-randomly draw a blinding
shift in parameter space, which uses the same configuration files as
the parameter estimation pipeline to compute and apply blinding
factors to the measured 2PCF. The same transformation will also
be applied to the combined analysis of the 3 × 2pt data with CMB
lensing. Looking further forward, summary statistic blinding has
the potential for broad applicability to many kinds of multiprobe
cosmological analyses. It would be interesting to study its applica-
bility to summary statistics for observables beyond 2PCF, such as
supernovae, galaxy cluster number counts, or spectroscopic galaxy
clustering measurements.

Blinding to protect results against human bias is essential in mod-
ern observational cosmology, where complex analyses combining
data from multiple observables are leveraged to make increasingly
precise constraints. Whereas powerful blinding techniques had
already been devised in experimental particle physics, they do
not naturally translate to cosmology, particularly to multiprobe
analyses that can generally not be separated into distinct ‘signal’
and ‘background’ domains. The blinding transformation described
in this paper provides a new and promising method for blinding
such analyses, which we have demonstrated is applicable to current
multiprobe analyses like those being done for DES. An important
property of this blinding transformation is it becomes more effective
(lower �χ2, see Section 3.3) as experiments evolve to higher
precision and our priors and prejudices focus on smaller regions

of parameter space, and non-linear components of the model shrink
in comparison to the linear. This makes it a promising potential tool
for future cosmological analysis. Of course, one should explicitly
investigate how the performance of summary statistic blinding
changes as noise on the data decreases to levels like one might
expect for future surveys like DESI, LSST, Euclid, and WFIRST.
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A P P E N D I X A : L E A D I N G - O R D E R B E H AV I O U R
OF BLIN D ED O BSERVA BLE VECTORS

We can safely assume that the model d(	) is analytic and can be
expanded about the reference parameters 	ref in a Taylor series. We
can, without loss of generality, set 	ref = 0 and d(	ref) = 0 in this
section. The Taylor expansion becomes

di(	) = di,αθα + 1

2
di,αβθαθβ + O(θ3), (A1)

where we adopt the usual conventions that repeated indices within
a term indicate summation, and indices after the comma denote
derivatives taken at the reference parameters. For clarity, we will use
Latin indices to indicate dimensions in data space, and Greek indices

for parameter-space dimensions. We will also, in this section, define

s = �	

t = 	obs − 	ref,

the latter being the true cosmology for the observed Universe. In
the noise-free case, we can apply the quadratic approximation in
(A1) to the blinding equation (7) to obtain the blinded observable
vector

d̂bl
i = di,α(sα + tα) + 1

2
d,i,αβ (sαsβ + tαtβ ). (A2)

We seek the best-fitting parameters 	bl by minimizing the χ2 of the
solution

χ2(	bl) = [
d̂bl

i − di(	
bl)

]
Fij

[
d̂bl

j − dj (	bl)
]
, (A3)

where we define F = C−1
d to be the inverse of the observational

covariance matrix. We take F to be independent of the model
parameters. In the linear limit, it is easy to see that the blinding
shift is always exact, 	bl = s + t, so we introduce the correction
term θ̃ such that

θ̃ = 	bl − s − t. (A4)

With this definition, we can write the data differential to leading
order in each of θ̃ , s, and t as

d̂bl
i − di(	

bl) ≈ −di,αθ̃α − di,αβ

[
sαtβ + θ̃α(sβ + tβ ) + 1

2
θ̃α θ̃β

]
.

(A5)

Upon substituting this Taylor expansion back into (A3), we can find
the blinding shift adjustment θ̃ that yields the minimal χ2. Again,
retaining only leading-order terms in θ̃ , s, and t:

θ̃i ≈ −(DT FD)−1DT C−1
d q (A6)

�χ2 ≈ (P q)T C−1
d (P q)

≤ qT C−1
d q (A7)

where we have defined the first derivative matrix and the quadratic
data perturbation, respectively, as

Diα ≡ di,α

qi ≡ di,αβsαtβ .

P is a projection matrix that removes the portion of the non-linear
data shift q, which can be fitted by a shift in parameters:

P ≡ I − D(DT FD)−1DT C−1
d . (A8)

From these equations, several properties of the additive blinding
transformation are apparent. First, the transformation is exact, in
the sense that �χ2 = 0, in any of the following conditions:

(i) The blinding shift s = �	 is zero.
(ii) The true cosmology equals the reference cosmology, t = 	obs

− 	ref = 0.
(iii) The model is linear, di, αβ = 0.
(iv) The derivative matrix is invertible, in which case the projec-

tor matrix P = 0, because any point in data space can be fit exactly
with proper choice of parameters, at least locally.

Secondly, we see that a quadratic term in the data model leads
to a deviation θ̃ between the naive blinded cosmology parameters
estimate 	bl = 	obs + �	, which scales as the product of the
blinding shift s and the ‘truth shift’ t.
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Thirdly, the �χ2 in a quadratic approximation to the data model
will scale as the product of the squares of the two shifts, and in-
versely with the measurement covariance matrix Cd, �χ2∝s2t2/Cd.
The constant of proportionality will depend on the relations between
the directions of the blinding shift, the truth shift, the curvature of
the model, and the covariance matrix of the observations. If we
include terms beyond quadratic in the data model, we will find the
dependence of �χ2 is of even higher order in st.

A P P E N D I X B: MO D E L L I N G FO R 3 X 2 P T
O B S E RVA B L E V E C TO R

The theory predictions for the 3 × 2pt observable vectors are
computed as follows. First, the non-linear matter power spectrum
P(k, z) is computed using a combination of CAMB (Lewis, Challinor
& Lasenby 2000; Howlett et al. 2012) and HALOFIT (Takahashi
et al. 2012). Then, using the Limber approximation, we integrate to
obtain the angular power spectra between the sets of tracers we are
studying. For the correlation between the ith redshift bin of tracer
A and the jth bin of tracer B, the angular power spectrum is

C
ij

AB (�) =
∫

dz
H (z)

c χ2(z)
Wi

A(z)Wj

B (z)P (k, z)

∣∣∣∣
k=(�+ 1

2 )/χ(z)

, (B1)

where χ is the comoving radial distance, and the weight functions
for galaxy number density g and weak lensing convergence κ are
defined as

Wi
g(z, k) = ni(z) bi, (B2)

Wi
κ (z) =

(
3H 2

0 �m

2c

) (
χ (z)

a(z) H (z)

)

×
∫ ∞

z

dz′ni(z
′)

χ (z′) − χ (z)

χ (z′)
. (B3)

Here ni(z) is the normalized redshift distribution and bi is the galaxy
bias of galaxies in bin i. We then perform Fourier transformations
to convert these angular spectra into real-space angular correlation
functions, which can be compared to data. The galaxy–galaxy
correlation is

wij (θ ) =
∑

�

2� + 1

4π
P�(cos θ ) Cij

gg(�), (B4)

where P�(x) is a Legendre polynomial of order �. In the flat-
sky approximation, where sums over spherical harmonics are
converted to two-dimensional Fourier modes, the predicted angular
correlations between the shears of galaxies in tomographic bins i
and j are

ξ
ij
+ (θ ) =

∫
d� �

2π
J0(�θ ) Cij

κκ (�), (B5)

ξ
ij
− (θ ) =

∫
d� �

2π
J4(�θ ) Cij

κκ (�), (B6)

γ
ij
t (θ ) =

∫
d� �

2π
J2(�θ ) Cij

gκ (�), (B7)

where Jm(x) is a Bessel function of the first kind of order m.
In practice, these calculations are done using the function tp-
stat via hankel: from the NICAEA software13 (Kilbinger et al.
2009).

Nuisance parameters are included as follows. The photo-z bias

13www.cosmostat.org/software/nicaea

parameters �zx
i , where x = source or lens, have the effect of shifting

the redshift distributions of the samples of galaxies:

nx
i (z) → nx

i

(
z − �zx

i

)
. (B8)

Shear calibration parameters m are defined so the measured shear for
a galaxy is γ meas = (1 + m)γ true. They modify the 2PCF involving
source galaxies via

ξ
ij
± (θ ) → (1 + mi)(1 + mj )ξ ij

± (θ ), and (B9)

γ
ij
t (θ ) → (1 + mj )γ ij

t (θ ). (B10)

The linear intrinsic alignment model used in our analysis modifies
the shear convergence weight function (equation B3) via

Wi
κ (z) → Wi

κ (z) −
[
AIA

(
1 + z

1 + z0

)αIA C1ρm0

D(z)

]
dni

dz
, (B11)

where C1 = 0.0134/ρcrit is a normalization constant calibrated based
on previous observations (Bridle & King 2007).

Figure C1. Same as Fig. 5, but with Gaussian noise added to the fiducial
ensemble of unblinded observable vectors: histogram of �χ2 values.

Figure C2. Same as Fig. 6, but with Gaussian noise added to the ensemble
of unblinded observable vectors: dependence of �χ2 on the parameter-space
distances associated with 	obs − 	ref and �	.
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APP ENDIX C : A DDITIONA L R ESULTS FOR
NOISY DATA

We performed a variation of our fiducial test with noisy measured
observable vectors. Here we used the same true cosmology 	obs

and blinding shifts �	 as in Section 4.5. The only difference is
that after computing the theory prediction at 	obs to generate a
synthetic measured observable vector, we added a realization of
Gaussian noise produced using a Cholesky decomposition of the
covariance Cd.

Results for the noise-added version of our fiducial test are shown
here. Fig. C1 shows a histogram of the resulting �χ2 values.
Fig. C2 shows how �χ2 depends on the magnitude of the distances
in parameter space associated with the blinding shift �	 and
the difference between the true cosmology and that assumed for
blinding 	obs − 	ref. There is more scatter in the relations, but,
otherwise, the results for this test are not substantially different
from those shown for the noiseless test presented in Section 4.5.
We additionally confirmed for a few realizations that adding noise
to the observable vector does not significantly change how blinding
affects posterior contours like those shown in FIG. 4.
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