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GROUPOIDS AND WREATH PRODUCTS OF MUSICAL

TRANSFORMATIONS: A CATEGORICAL APPROACH FROM

POLY-KLUMPENHOUWER NETWORKS.

ALEXANDRE POPOFF, MORENO ANDREATTA, AND ANDRÉE EHRESMANN

Abstract. Transformational music theory, pioneered by the work of Lewin,
shifts the music-theoretical and analytical focus from the “object-oriented”

musical content to an operational musical process, in which transformations

between musical elements are emphasized. In the original framework of Lewin,
the set of transformations often form a group, with a corresponding group

action on a given set of musical objects. Klumpenhouwer networks have been

introduced based on this framework: they are informally labelled graphs, the
labels of the vertices being pitch classes, and the labels of the arrows being

transformations that maps the corresponding pitch classes. Klumpenhouwer

networks have been recently formalized and generalized in a categorical setting,
called poly-Klumpenhouwer networks. This work proposes a new groupoid-

based approach to transformational music theory, in which transformations
of PK-nets are considered rather than ordinary sets of musical objects. We

show how groupoids of musical transformations can be constructed, and an

application of their use in post-tonal music analysis with Berg’s Four pieces
for clarinet and piano, Op. 5/2. In a second part, we show how groupoids

are linked to wreath products (which feature prominently in transformational

music analysis) through the notion groupoid bisections.

1. Groupoids of musical transformations

The recent field of transformational music theory, pioneered by the work of Lewin
[Lew82, Lew87], shifts the music-theoretical and analytical focus from the “object-
oriented” musical content to an operational musical process. As such, transforma-
tions between musical elements are emphasized, rather than the musical elements
themselves. In the original framework of Lewin, the set of transformations of-
ten form a group, with a corresponding group action on a given set of musical
objects. Within this framework, Klumpenhouwer networks (henceforth K-nets)
[Lew90, Klu91, Klu98] have stressed the deep synergy between set-theoretical and
transformational approaches thanks to their anchoring in both group and graph
theory, as observed by many scholars [Nol07]. We recall that a K-net is informally
defined as a labelled graph, wherein the labels of the vertices belong to the set of
pitch classes, and each arrow is labelled with a transformation that maps the pitch
class at the source vertex to the pitch class at the target vertex. Klumpenhouwer
networks allow one to conveniently visualize at once the musical elements of a set
and the specific transformations between them. This notion has been later formal-
ized in a more categorical setting, first as limits of diagrams within the framework
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Key words and phrases. Transformational music theory, Klumpenhouwer network, category the-
ory, groupoid, wreath product.
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Figure 1. Diagrammatic representation of a PK-net (R,S, F, φ).

of denotators [MA06], and later as a special case of a categorical construction called
poly-Klumpenhouwer networks (PK-nets) [PAE15, PAAE16].

The goal of this paper is to propose a new groupoid-based approach to transfor-
mational music theory, in which transformations of PK-nets are considered rather
than ordinary sets of musical objects. The first section shows how groupoids of
musical transformations can be constructed, and how they can be applied to post-
tonal music analysis. The second section shows how groupoids are linked to wreath
products through the notion groupoid bisections. Wreath products feature promi-
nently in transformational music theory [Hoo02]. The work presented in this paper
thus shows how groupoids of musical transformations can be related to the more
traditional group-based approach of transformational music theory.

We assume that the reader is familiar with the basic notions of transformational
music analysis, in particular with the so-called T/I group and its action on the set
of the twelve pitch classes (see [FN11, FNS13] for additional information).

1.1. Introduction to PK-Nets. The groupoid-based approach to transforma-
tional music theory presented in this paper stems from the constitutive elements
of poly-Klumpenhouwer networks which have been introduced previously [PAE15,
PAAE16]. We recall the categorical definition of a PK-net, which generalizes the
original notion of K-nets in various ways.

Definition 1. Let C be a category, and S a functor from C to the category Sets
of (small) sets. Let ∆ be a small category and R a functor from ∆ to Sets with
non-empy values. A PK-net of form R and of support S is a 4-tuple (R,S, F, φ),
in which F is a functor from ∆ to C, and φ is a natural transformation from R to
SF .

A PK-net can be represented by the diagram of Figure 1. Among the constitutive
elements of a PK-net, the category C and the functor S : C→ Sets represent the
context of the analysis. Traditional transformational music theory commonly relies
on a group acting on a given set of objects: the most well-known examples are
the T/I group acting on the set of the twelve pitch classes, the same T/I group
acting simply transitively on the set of the 24 major and minor triads, or the PLR
group acting simply transitively on the same set, to name a few examples. From a
categorical point of view, the data of a group and its action on a set is equivalent to
the data of a functor from a single-object category with invertible morphisms to the
category of sets. However, this situation can be further generalized by considering
any category C along with a functor S : C→ Sets. The morphisms of the category
C are therefore the musical transformations of interest. The category ∆ serves
as the abstract skeleton of the PK-net: as such, its objects and morphisms are
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Figure 2. A Klumpenhouwer network (K-net) describing a major
triad. The arrows are labelled with specific transformations in the
T/I group relating the pitch classes in their domain and codomain.

abstract entities, which are labelled by the functor F from ∆ to the category C.
The objects of ∆ do not represent the actual musical elements of a PK-net: these are
introduced by the functor R from ∆ to Sets. This functor sends each object of ∆ to
an actual set, which may contain more than a single element, and whose elements
abstractly represent the musical objects of study. However, these elements are not
yet labelled. In the same way the morphisms of ∆ represent abstract relationships
which are given a concrete meaning by the functor F , the elements in the images
of R are given a label in the images of S through the natural transformation φ.
The elements in the image of S represent musical entities on which the category C
acts, and one would therefore need a way to connect the elements in the image of
R with those in the image of S. However, one cannot simply consider a collection
of functions between the images of R and the images of S in order to label the
musical objects in the PK-net. Indeed, one must make sure that two elements in
the images of R which are related by a function R(f) (with f being a morphism of
∆) actually correspond to two elements in the images of S related by the function
SF (f). The purpose of the natural transformation φ is thus to ensure the coherence
of the whole diagram.

1.2. Reinterpreting the constitutive elements of a PK-Net. Figure 2 shows
a basic Klumpenhouwer network describing a C major triad. The arrows of this
network are labelled with specific transformations in the T/I group which express
the fact that the major triad is made up of two notes, E and G, separated from
the tonic C by a major third and a fifth respectively.

In the terminology of PK-Nets, this network is described by

(1) a category ∆3 with three objects X, Y , and Z, and three non-trivial mor-
phisms f : X → Y , g : Y → Z, and g ◦ f : X → Z between them, and

(2) a category C taken here to be the T/I group, with its usual action S : T/I →
Sets on the set of the twelve pitch-classes, and

(3) a functor F : ∆3 → C such that F (f) = T4, F (g) = T3, and F (g ◦ f) = T7,
and

(4) a functor R : ∆3 → Sets sending each object of ∆3 to a singleton, and a
natural transformation φ sending these singletons to the appropriate pitch-
classes in the image of C by S.

Upon examination of these constitutive elements, it readily appears that the
nature of this chord, here a major triad, is entirely determined by the category ∆3

and the functor F : ∆3 → C. The images of the morphisms of ∆3 by F reflect the
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Figure 3. (a) Webern, Op. 11/2, bars 4-5. (b) PK-nets corre-
sponding to each of three-note segment of (a).

fact that a major triad is made up of a major third with a minor third stacked
above it. This observation is not specific to major triads. Consider for example
the chord {D,E,G}, which is a representative of the set class [0, 2, 5]. This chord
may be described by a PK-Net in which ∆3 is the same as above, and in which
we consider a different functor F ′ : ∆3 → C such that F (f) = T2, F (g) = T5, and
F (g ◦ f) = T7.

One may go further by considering pitch-class sets which are not necessarily
transpositionnally related. Figure 3 shows an excerpt of Webern’s Three Little
Pieces for Cello and Piano, Op. 11/2, at bars 4-5, along with a PK-net inter-
pretation of each three-note segment. These three-note segments are clearly not
related by transposition, yet the corresponding represented networks share the same
functor ∆3 → C.

By abstracting this observation, one can consider that these three-note pitch-
class sets belong to the same generalized chord type, which is defined by this par-
ticular functor ∆3 → C. The main point of this paper is to generalize further these
observations by considering functors F : ∆→ C as generalized musical classes.

Definition 2. Let C be a category, and ∆ be a small category. A generalized
musical class is a functor F : ∆ → C. When C is the particular case of the group
T/I, a functor F : ∆→ C is said to be a generalized chord class.
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Figure 4. An alternative Klumpenhouwer network describing a
major triad.

As is well-known in category theory, functors F : ∆→ C form a category, known
as the category of functors C∆.

Definition 3. The category of functors C∆ has

(1) functors F : ∆→ C as objects, and
(2) natural transformations η : F → F ′ between functors F : ∆ → C and

F ′ : ∆→ C as morphisms.

These natural transformations can be seen as generalized musical transforma-
tions between the corresponding generalized musical classes. The additional data of
functors R and S, and of a natural transformation φ : R→ SF , leads to individual
musical sets derived from the generalized musical class F : ∆ → C. The purpose
of this paper is to investigate the structure of C∆ and its action on Sets, and to
relate these constructions with known group-theoretical results in transformational
music analysis.

One may notice that different categories ∆ and functors F : ∆→ C may describe
the same musical sets. For example, the major triad of Figure 2 may also be
described using a category Γ with three objects X, Y , and Z, and only two non-
trivial morphisms f : X → Y , g : X → Z, between them, and a functor F ′′ : Γ →
C = T/I sending f to T4 and g to T7. This alternative description, shown in Figure
4, focuses on the major third and the fifth without referencing the minor third.
Instead of being a limitation, this possibility allows for various transformations
between chord types to be examined, as will be seen in the rest of the paper.

As stated in the previous subsection, the category C is often a group in musical
applications. The following proposition establishes the structure of the category
of functors C∆ when ∆ is a poset with a bottom element O and C is a group G
considered as a single-object category.

Proposition 1. Let ∆ be a poset with a bottom element O and G be a group
considered as a category. Then

(1) the category of functors G∆ is a groupoid, and
(2) for any two objects F and F ′ of G∆ the hom-set Hom(F, F ′) can be bijec-

tively identified with the set of elements of G.

Proof. Given two objects F and F ′ of G∆, i.e. two functors F : ∆ → G and
F ′ : ∆ → G, any natural transformation η : F → F ′ between them is invertible,
since the components of η are invertible morphisms of G. Thus, the category of
functors G∆ is a groupoid. Since ∆ is a poset with a bottom element O, the natural
transformation η is entirely determined by the component ηO, which can be freely
chosen in G. Thus the hom-set Hom(F, F ′) can be bijectively identified with the
set of elements of G. �
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Since in such a case the elements of the hom-set Hom(F, F ′) can be uniquely

identified with the elements of G, we will use the notation FF ′
g, with g ∈ G, to

designate an element of Hom(F, F ′) in G∆.
We now consider a functor R : ∆→ Sets and a functor S : G→ Sets. For any

object F of G∆, we denote by NF the set of all natural transformations φ : R→ SF .

Proposition 2. There exists a canonical functor PR,S : G∆ → Sets such that for
any object F of G∆, PR,S(F ) = NF .

Proof. We consider the functor PR,S : G∆ → Sets, which sends each object F of
G∆ to the set NF . Then, given two objects F and F ′ of G∆ and any morphism
η : F → F ′ between them, we can construct the image of η by PR,S as the map
PR,S(η) : NF → NF ′ sending a natural transformation φ of NF to the natural
transformation Sη ◦ φ of NF ′ . �

1.3. Transformations of generalized chord classes. We now consider the spe-
cific case where the category G corresponds to the T/I group. We wish here to
give examples of transformations of generalized chord classes, in the particular case
where ∆ is the category Γ introduced above, and with specific functors U : Γ→ G
and V : Γ→ G. Our goal is to detail the structure of the hom-sets Hom(U,U) and
Hom(U, V ).

We consider the following objects of (T/I)
Γ
:

• the functor U : Γ→ T/I sending f to T4 and g to T7, and
• the functor V : Γ→ T/I sending f to T2 and g to T5.

These functors model the set classes of prime form [0,4,7] (major triad) and

[0,2,5]. We now consider the hom-set Hom(U,U) in (T/I)
Γ
. Let η : U → U be a

natural transformation. It is uniquely determined by the component ηX , which is
an element of T/I. We can derive the components ηY and ηZ depending on ηX .

• If ηX = Tp, with p in {0 . . . 11}, then we must have ηY T4 = T4Tp, and
ηZT7 = T7Tp. This leads to ηY = ηZ = Tp.
• If ηX = Ip, with p in {0 . . . 11}, then we must have ηY T4 = T4Ip, and
ηZT7 = T7Ip. This leads to ηY = Ip+8, and ηZ = Ip+2.

The first type of transformation UUTp is well known as it is simply the usual
transposition of the set class. The second type of transformation UUIp can be seen
as a “generalized” inversion. Unlike the known action on triads of the inversions of
the T/I group, wherein the same inversion Ip operates on every pitch class of the
chord, the “generalized” inversion UUIp has different components for each object
of Γ. The Figure 5 illustrates the action of the morphism UUI8 on the PK-net
representing the F major chord, resulting in the E[ major chord (the constitutive
elements of the PK-net, namely the functor R, S, and the natural transformation
φ, have been omitted in this Figure for clarity).

In the same way, we can consider the hom-set Hom(U, V ) in (T/I)
Γ
. Let η : U →

V be a natural transformation. It is uniquely determined by the component ηX ,
which is an element of T/I. We can derive the components ηY and ηZ depending
on ηX .

• If ηX = Tp, with p in {0 . . . 11}, then we must have ηY T4 = T2Tp, and
ηZT7 = T5Tp. This leads to ηY = Tp+10, and ηZ = Tp+10.

• If ηX = Ip, with p in {0 . . . 11}, then we must have ηY T4 = T2Ip, and
ηZT7 = T5Ip. This leads to ηY = Ip+6, and ηZ = Ip.
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Figure 5. (a) Action of the morphism UUI8 of (T/I)
Γ

on the
PK-net representing the F major chord, resulting in the E[ major
chord. The constitutive elements of the PK-nets (the functor R,
S, and the natural transformation φ) have been omitted here for
clarity. (b) Graphical representation of the inversion components
of the morphism UUI8, and their action on the individual pitch
classes of the F major chord.

As before the morphisms of Hom(U, V ) have different components for each object
of Γ. The morphisms UV Tp can be considered similarly as before as “generalized”
transpositions, and morphisms UV Ip as “generalized” inversions between objects
U and V . The Figure 6 illustrates the action of these morphism on the PK-net
representing the F major chord, resulting in the {A[, B[,C]} chord (the constitutive
elements of the PK-net, namely the functor R, S, and the natural transformation
φ, have been omitted in this Figure for clarity).

1.4. An application to Berg’s Op. 5/2. To illustrate the above concepts, we
will focus on a small atonal example from Berg’s Four pieces for clarinet and piano,
Op. 5/2. Figure 7 shows a reduction of the piano right hand part at bars 5-6. To
analyse this progression, we consider the group G = T/I, the category Γ described
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Figure 6. (a) Action of the morphisms UV T3 and UV I1 of (T/I)
Γ

on the PK-net representing the F major chord, resulting in the
{A[, B[,C]} chord. The constitutive elements of the PK-nets (the
functor R, S, and the natural transformation φ) have been omit-
ted here for clarity. (b) and (c) Graphical representation of the
transposition and inversion components of the morphisms UV T3

and UV I1, and their action on the individual pitch classes of the F
major chord.
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Figure 7. Berg, Op. 5/2, reduction of the piano right hand part
at bars 5-6.
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Figure 8. (a) A PK-net interpretation of the first five chords of
the progression of Figure 7. (b) Analysis of the chord progression

using morphisms of (T/I)
Γ
.

above, and the corresponding groupoid of functors (T/I)
Γ
. In particular we consider

the following objects of (T/I)
Γ
:

• the functor U : Γ→ T/I sending f to I3 and g to I10,
• the functor U ′ : Γ→ T/I sending f to I7 and g to I3,
• the functor V : Γ→ T/I sending f to I4 and g to I10, and
• the functor W : Γ→ T/I sending f to I8 and g to I3.

We also consider the functor R : Γ→ Sets sending each object of Γ to a singleton,
and the functor S : T/I → Sets given by the action of the T/I group on the set
of the twelve pitch-classes. It can then easily be checked that the first five chords
of the progression of Figure 7 are instances of PK-nets using R and S, and whose
functor from Γ to T/I is either U or V , as shown in Figure 8(a). Similarly, the last
four chords of the progression of Figure 7 are instances of PK-nets whose functor
from Γ to T/I is either U ′ or W , as shown in Figure 9(a).

We now consider the hom-set Hom(U, V ) in (T/I)
Γ
. Let η : U → V be a nat-

ural transformation. It is uniquely determined by the component ηX , which is an
element of T/I. We can derive the components ηY and ηZ depending on ηX .

• If ηX = Tp, with p in {0 . . . 11}, then we must have ηY I3 = I4Tp, and
ηZI10 = I10Tp. This leads to ηY = T1−p, and ηZ = T−p.
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Figure 9. (a) A PK-net interpretation of the last four chords of
the progression of Figure 7. (b) Analysis of the chord progression

using morphisms of (T/I)
Γ
.

• If ηX = Ip, with p in {0 . . . 11}, then we must have ηY I3 = I4Ip, and
ηZI10 = I10Ip. This leads to ηY = I7−p, and ηZ = I8−p.

In a similar way, one can derive the structure of the hom-sets Hom(U,U),
Hom(V, V ), Hom(U ′,W ), etc. Returning to the PK-nets of Figure 8, it can readily
be seen that this progression can be analyzed through the successive application of
UV T−2, V V T−1, V UT2, and UUT1, as shown in Figure 8(b).

Similarly the progression of the chords represented by the PK-nets of Figure 9 can
be analyzed through the successive application of U

′WT−2, WU ′
T1, and U ′U ′

T1, as
shown in Figure 9(b). One should observe in particular that V UT2◦V V T−1 = V UT1,

which has the same components as WU ′
T1, evidencing the logic at work behind this

progression of chords.

1.5. Construction of sub-groupoids of G∆ and their application in music.
In the examples considered in subsections 1.3 and 1.4, for any object U of the

groupoid (T/I)
Γ
, the hom-set Hom(U,U) can be bijectively identified with elements

of the T/I group, and thus contains “generalized” transpositions and inversions.
For transpositionally-related chords however, it may be useful to consider only a

sub-category of (T/I)
Γ

wherein the hom-set Hom(U,U) only contains transposition-
like morphisms. The purpose of this subsection is to show how such a sub-category
can be constructed by exploiting the extension structure of the T/I group.

We consider the general case where G is an extension 1 → Z → G → H → 1.
This is the case for the T/I group for example, which is an extension of the form
1 → Z12 → T/I → Z2 → 1. The elements of G can then be uniquely written as
g = (z, h) with z ∈ Z, and h ∈ H.

Given a poset ∆, we define a functor Π: G∆ → H∆ induced by the homomor-
phism π : G→ H as follows.
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Definition 4. For a given poset ∆ with a bottom element, the functor Π: G∆ →
H∆ induced by the homomorphism π : G→ H, is the functor which

• is the identity on objects, and
• sends any morphism FF ′

g = FF ′
(z, h) in G∆ to FF ′

π(g) = FF ′
h in H∆.

By Proposition 1, we deduce immediately that the functor Π is full.

We now consider a sub-category H̃∆ of H∆ such that

• for any object U of H̃∆, End(U) is trivial, and

• the inclusion functor ι : H̃∆ → H∆ is the identity on objects.

It is obvious to see that for any objects U and V of H̃∆, the hom-set Hom(U, V )
is reduced to a singleton which can be identified with one element of H. The choice

of hom-sets Hom(U, V ) is not unique and determines the sub-category H̃∆.

We now arrive to the definition of the desired category G̃∆.

Definition 5. The category G̃∆ is defined as the pull-back of the following diagram.

G̃∆ H̃∆

G∆ H∆

ι

Π

The following propositions are immediate from the definition.

Proposition 3. For any object U of G̃∆, the endomorphism group End(U) is
isomorphic to Z.

Proposition 4. For any objects U and V of G̃∆, the hom-set Hom(U, V ) is in
bijection with a coset of Z in G.

In the specific case where G is the T/I group, there exists a projection func-

tor Π: T/I
∆ → Z2

∆ induced by the homomorphism π : T/I → Z2, and one can

select an appropriate subcategory Z̃2
∆. The subcategory T̃/I

∆
obtained by the

construction described above is then such that

• for any object U of T̃/I
∆

, the endomorphism group End(U) is isomorphic
to Z12 and its elements correspond to generalized transpositions as exposed
in section 1.3, and

• for any objects U and V of T̃/I
∆

, the elements of hom-set Hom(U, V )
correspond either to generalized inversions or to generalized transpositions
(but not both). Their nature depends on the choice of the subcategory

Z̃2
∆.

2. Groupoid bisections and wreath products

Wreath products have found many applications in transformational music theory
[Pec09, Pec10], most notably following the initial work of Hook on Uniform Triadic
Transformations (UTT) [Hoo02]. In this section, we show how groupoids are related
to wreath products through groupoid bisections, thus generalizing the work of Hook.
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A more general treatment of groupoid bisections, and their relation to groupoid
automorphisms can be found in the annex of this paper.

2.1. Bisections of a groupoid. Let C be a small groupoid. By convention, we
will index the objects of C by i ∈ {1, . . . , n}, where n is the number of objects in
C. We denote by Z the group of endomorphisms of any object i of C. We first
give the definition of a bisection of a groupoid. This notion, which has been studied
in the theory of Lie groupoids, is a particular case of the notion of a local section
of a topological category as introduced by Ehresmann [Ehr59], who later studied
the category of such local sections [Ehr66]. The word bisection is due to Mackenzie
[Mac87, Mac05].

Definition 6. A bisection of C is the data of a permutation σ ∈ Sn and a collection
of morphisms giσ(i) of C for i ∈ {1, . . . , n}. A bisection will be notated as

〈(. . . , giσ(i), . . .), σ〉.
Bisections can be composed according to:

〈(. . . , fiτ(i), . . .), τ〉 ◦ 〈(. . . , giσ(i), . . .), σ〉
= 〈(. . . , fσ(i)τσ(i)giσ(i), . . .), τσ〉,

and form a group Bis(C). The main result of this section is the following theorem,
which establishes the structure of Bis(C).

Theorem 1. The group Bis(C) is isomorphic to the wreath product Z o Sn.

Proof. We will first show that Bis(C) is isomorphic to the semidirect product Zno
Sn, and then construct an isomorphism from Zn o Sn to Z o Sn.

Let k be an object of G, and let {hki, i ∈ {1, . . . , n}} be the set obtained by
choosing a morphism hki of G for every object i of G. This defines a collection of
morphisms {hij = hkjh

−1
ki , i ∈ {1, . . . , n}, j ∈ {1, . . . , n}} such that for any objects

p, q, and r of G, we have hqrhpq = hpr.
Let N be the subgroup of Bis(C) composed of the bisections of G of the form

〈(. . . , nii, . . .), id〉. The subgroup N is obviously isomorphic to Zn.
Let H be the subgroup of Bis(C) composed of the bisections of G of the form

〈(. . . , hiσ(i), . . .), σ〉. By definition of the morphisms hij , H is obviously isomorphic
to Sn.

The intersection of the two subgroups N and H is the trivial subgroup composed
of the bisection 〈(. . . , idii, . . .), id〉.

Any bisection 〈(. . . , giσ(i), . . .), σ〉 can uniquely be decomposed as a product of
an element of N and an element of H, since any morphism gij of G can be written
as gij = hijnii.

Finally, we need to show that N is normal in Bis(C). Let n = 〈(. . . , nii, . . .), id〉
be an element of N and g = 〈(. . . , giσ(i), . . .), σ〉 be an element of Bis(C). We
have gn = 〈(. . . , giσ(i)nii, . . .), σ〉. Since for any morphisms gij and nii of G, the

morphism n′jj = gijniig
−1
ij is uniquely defined, it follows that gn is equal to n′g for

a suitable n′ of N , showing that N is normal in Bis(C).
For all the reasons above, the group Bis(C) is isomorphic to the semidirect

product Zn o Sn.
Observe that the morphisms hij induce automorphisms φij of Z given by n′jj =

hijniih
−1
ij , with the added property that for any objects p, q, and r, we have φqr ◦
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φpq = φpr. The isomorphism between Bis(C) and Zn o Sn can be formulated as
follows. An element

〈(. . . , giσ(i), . . .), σ〉 = 〈(. . . , hiσ(i)nii, . . .), σ〉

of Bis(C) can be bijectively identified with the element

〈(. . . , ni, . . .), σ〉
of Zn o Sn. The composition is given by:

〈(. . . ,mi, . . .), τ〉〈(. . . , ni, . . .), σ〉 = 〈(. . . , φσ(i)i(mσ(i))ni, . . .), τσ〉.
It can be checked that the property φjk ◦ φij = φik ensures that the associativity
condition is respected.

We now show that Bis(C) is isomorphic to the wreath product Z o Sn. Consider
the map χ : Bis(C) → G o Sn, which sends an element 〈(. . . ,mi, . . .), τ〉 of Bis(C)
to the element 〈(. . . , φi1(mi), . . .), τ〉 of Z o Sn. We claim that the map χ is an
isomorphism. It is obvious that χ sends the identity of Bis(C) to the identity of
Z o Sn. Let 〈(. . . ,mi, . . .), τ〉 and 〈(. . . , ni, . . .), σ〉 be two elements of Bis(C). We
have

χ(〈(. . . ,mi, . . .), τ〉) = 〈(. . . , φi1(mi), . . .), τ〉,
and

χ(〈(. . . , ni, . . .), σ〉) = 〈(. . . , φi1(ni), . . .), σ〉.
The product of these two elements in Z o Sn is equal to

〈(. . . , φσ(i)1(mσ(i))φi1(ni), . . .), τσ〉.
On the other hand, we have

χ(〈(. . . ,mi, . . .), τ〉〈(. . . , ni, . . .), σ〉) = χ(〈(. . . , φσ(i)i(mσ(i))ni, . . .), τσ〉),
which is equal to

〈(. . . , φi1(φσ(i)i(mσ(i))ni), . . .), τσ〉,
which, given the properties of the isomorphisms φij , is equal to

〈(. . . , φσ(i)1(mσ(i))φi1(ni), . . .), τσ〉,

thus showing that we have an isomorphism, and that Bis(C) is isomorphic to the
wreath product Z o Sn. �

2.2. Application to musical transformations. The following proposition shows
how can one pass from a groupoid action on sets to a corresponding group action.

Proposition 5. Let C be a small groupoid, with Z the group of endomorphisms
of its objects, and let S be a functor from C to Sets. There is a canonical group
action of Z o Sn on the disjoint union of the image sets S(i).

Proof. Let
⊔
S(i) =

⋃
{(x, i), x ∈ S(i), i ∈ {1, . . . , n}} be the disjoint union of the

image sets S(i) and let

〈(. . . , giσ(i), . . .), σ〉
be a bisection of C. The group action of Z o Sn on

⊔
S(i) is directly given by the

action defined as

〈(. . . , giσ(i), . . .), σ〉 · (x, i) = (S(giσ(i))(x), σ(i)).

�
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As a direct application to musical transformations, consider a subgroupoid T̃/I
∆

as constructed in section 1.5. Given a functor R : ∆→ Sets, we know from Propo-

sition 2 that there exists a canonical functor PR,S : T/I
∆ → Sets, which extends

to a functor P̃R,S : T̃/I
∆ → Sets. From Proposition 5, we thus deduce that there

exists a group action of Z12 o Sn on the disjoint union of the image sets P̃R,S(i), or
in other words the set of all PK-nets (R,S, i, φ). In the case R is representable and
n = 2, it is easy to see that one recovers Hook’s UTT group acting on two different
types of chords.
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Annex

This annex gives a more general presentation of groupoid bisections and their
relation to groupoid automorphisms. Let C be a groupoid. We denote by C0 the
collection of its objects, and by C1 the collection of its morphisms, the functions
s : C1 → C0 and t : C1 → C0 being the usual source and target maps. We denote
by Z the group of endomorphisms of any object e of C. A more general definition
of a bisection can be formulated as follows.

Definition 7. A bisection of C is a map b : C0 → C1, such that

• the map s ◦ b is the identity map, and
• the map t ◦ b : C0 → C0 is a bijection on C0.

Proposition 6. The bisections of C form a group Bis(C) for the composition
b′ ? b = b′(t ◦ b(e)) for each object e of C.

The inverse of b is b−1 : e → b((t ◦ b)−1
(e))−1 for each object e of C. The

bisections n such that t ◦ n is an identity form a subgroup N of Bis(C) which is
isomorphic to the product

∏
e Z of the groups Z for each object e of C.

Groupoid bisections are closely related to groupoid automorphisms, as shows the
next Proposition.

Proposition 7. There exists an homomorphism ξ from Bis(C) to the group Aut(C)
of automorphisms of C, which associates to a bisection b of C the automorphism
of C defined by ξ(b)(g) = b(e′)gb(e)−1 for any morphism g : e→ e′ in C.

The image of Bis(C) by ξ in Aut(C) is called the subgroup of internal automor-
phisms of C, notated Autint(C). If C is a group, we recover the usual notion of
internal automorphism of a group.

We now suppose given an object u of C, and a map h : C0 → C1 which associates
to each object e of C a morphism h(e) : e→ u such that h(u) = u. Then, for each
pair (e, e′) of objects of C, we denote by he,e′ the morphism he,e′ = h(e′)−1h(e).

These morphisms from a subgroupoid of C isomorphic to the groupoid C0
2 of pairs

of objects of C. The following proposition can be found in [Ehr59].

Proposition 8. Given the above data of an object u of C and a map h, the following
statements hold true.

• There exists an isomorphism from C to the groupoid P, product of the
groupoid of pairs C0

2 with the group Z = End(u). The isomorphism maps
g : e→ e′ on (e, e′, h(e′)gh(e)−1).
• To a bijection σ of C0, the map h associates the bisection hσ mapping e

to he,σ(e). The bisections of the form hσ form a subgroup H of Bis(C)
isomorphic to the group Bij(C0) of bijections of C0.

The structure of the group Bis(C) is explicited in the next theorem.

Theorem 2. The group Bis(C) is generated by its subgroups N =
∏
e Z and H '

Bij(C0). Moreover, H acts on N and Bis(C) is isomorphic to the corresponding
semidirect product.

Proof. Any bisection b in Bis(C) can be written as the composite b = htb ◦ nb,
where nb is an element of N defined by nb(e) = htb(e)

−1b(e) for each object e of C.
The action of H on N is given by the map (hσ, n) 7→ hσ · n, where we have

hσ · n(e) = hσ(e)−1n(σ(e))hσ(e).
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The group Bis(C) is isomorphic to the corresponding semidirect product NoH,
the isomorphism associating a bisection b to the pair (nb, htb). �

It follows immediately that the group Autint(C) is isomorphic to the semidirect
product (

∏
e Z) o Bij(C0).
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