Valérie Chavez-Demoulin 
  
Armelle Guillou 
email: armelle.guillou@math.unistra.fr
  
  
  
Extreme quantile estimation for β-mixing time series and applications

Keywords: Asymptotic normality, β-mixing, Extreme value index, GARCH models, High quantile, Market index, Return level, Value-at-Risk, Wind speed data

In this paper, we discuss the application of extreme value theory in the context of stationary β-mixing sequences that belong to the Fréchet domain of attraction. In particular, we propose a methodology to construct bias-corrected tail estimators. Our approach is based on the combination of two estimators for the extreme value index to cancel the bias. The resulting estimator is used to estimate an extreme quantile. In a simulation study, we outline the performance of our proposals that we compare to alternative estimators recently introduced in the literature. Also, we compute the asymptotic variance in specific examples when possible. Our methodology is applied to two datasets on finance and environment.

INTRODUCTION

Quantitative Risk Management (QRM) has become an inevitable field aimed at building models to understand the risks of financial portfolios and environmental hazards. For the most complete treatment of the theoretical concepts and modeling tools of QRM, we refer to the book by [START_REF] Mcneil | Quantitative Risk Management: Concepts, Techniques and Tools[END_REF]. Building such models is now a crucial task across the banking and insurance industries under the regulatory obligations of the Basel Committee on Banking Supervision and Solvency 2.

In financial risk management, research related to regulatory risk measures such as the Value-at-Risk (VaR) has received lot of attention over the last decades. In environmental risk management, and due to the increasing frequency of extreme events (SwissRe 2014, [START_REF] Embrechts | Space-time max-stable models with spectral separability', Probability, Analysis and Number Theory[END_REF] and their disastrous societal impact, estimating risk measures such as the return level is of vital importance.

Both these risk measures (VaR and return level) rely on high quantile estimation in the tail region of the observations distribution. In this context of tail modeling, extreme value theory (EVT) offers strong and adequate statistical tools. Classical EVT models are based on the independent and identically distributed (i.i.d.) assumption. This assumption is however very often violated in practice. Financial time series, for instance, show volatility clustering and environmental data typically exhibit serial dependence. Many EVT-related papers for time series address the modeling of such features (see, for instance, [START_REF] Mcneil | Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach[END_REF][START_REF] Chavez-Demoulin | Extreme-quantile tracking for financial time series[END_REF]. In this paper, we introduce a new asymptotically unbiased high quantile estimator for stationary time series such as the very commonly used autoregressive (AR), the moving average (MA) and the generalized autoregressive conditional heteroskedasticity (GARCH) models. More precisely, we propose a new estimator of high quantiles for β-mixing stationary time series with heavy-tailed distribution. The estimator is based on an asymptotically unbiased estimator of the extreme value index. The advantage of our estimator is twofold: first, it directly handles the serial feature of such β-mixing time series contrary to other methods that need a pre-filtering of the heteroskedasticity before applying the standard estimator. As an example, we refer to the two step-method of [START_REF] Mcneil | Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach[END_REF]. Second, it improves the alternative bias correction procedure proposed by [START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF] for β-mixing series.

Throughout the paper, we assume that pX 1 , X 2 , ...q is a β-mixing time series, that is, a series such that βpmq :" sup |PpC|B p 1 q ´PpCq| + ÝÑ 0, as m Ñ 8, where B j i denotes the σ´algebra generated by X i , ..., X j . Loosely speaking, βpmq measures the total variation distance between the unconditional distribution of the future of the time series and the conditional distribution of the future given the past of the series when both are separated by m time points. Let F be the common marginal distribution function of X i , i P N, which is assumed to belong to the Fréchet domain of attraction, that is, the tail quantile function U :" p1{p1 ´F qq Ð where Ð denotes the left continuous inverse function, satisfies lim tÑ8 U ptxq U ptq " x γ , @x ą 0.

(1)

The estimation of the extreme value index γ has been extensively studied in the case of i.i.d. random

variables, but only few papers consider this topic in case of time series with serial dependence features. We can mention, among others, [START_REF] Hsing | On tail index estimation using dependent data[END_REF], [START_REF] Drees | Weighted approximations of tail processes for β-mixing random variables[END_REF] and [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF] and very recently de [START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF]. As in the i.i.d. context, the simplest estimator for γ ą 0 is the Hill estimator [START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF]) defined as

p γ H k :" 1 k k ÿ i"1 log X n´i`1,n ´log X n´k,n ,
where X 1,n ď ¨¨¨ď X n,n denote the order statistics and k is an intermediate sequence, that is, a sequence such that k Ñ 8 and k{n Ñ 0 as n Ñ 8.

To prove the asymptotic normality of a tail parameter such as the Hill estimator, we need a second order condition which specifies the rate of convergence for the left-hand side in (1) to its limit. This condition can be formulated in different ways, below we state it in terms of the logarithm since it is this formulation that we will use later.

Second order condition pC SO q. Suppose that there exists a positive or negative function A with lim tÑ8 Aptq " 0 and a real number ρ ă 0 such that lim tÑ8 log U ptxq ´log U ptq ´γ log x Aptq " x ρ ´1 ρ , @x ą 0.

The rate of convergence for the function A to 0 is crucial if we want to exhibit the bias term of the estimator of a tail parameter. Under the assumption that the intermediate k´sequence is such that ? kApn{kq Ñ λ P R, and assuming the following regularity conditions on the β-mixing coefficients :

Regularity conditions pC R q. There exist ε ą 0, a function r and a sequence n such that, as n Ñ 8, (a) βp nq n n ` n log 2 k ? k ÝÑ 0;

(b) n nk Cov ´ř n i"1 1l tX i ąF Ð p1´kx{nqu , ř n i"1 1l tX i ąF Ð p1´ky{nqu ¯ÝÑ rpx, yq, @ 0 ď x, y ď 1 `ε;

(c) For some constant C:

n n k E » - ˜ n ÿ i"1 1l tF Ð p1´ky{nqăX i ďF Ð p1´kx{nqu
¸4fi fl ď Cpy ´xq, @ 0 ď x ă y ď 1 `ε and n P N, [START_REF] Drees | Weighted approximations of tail processes for β-mixing random variables[END_REF] has established the asymptotic normality of p

γ H k ? kpp γ H k ´γq d ÝÑ N ˆλ 1 ´ρ , σ 2 ˙, (2) 
where σ 2 depends on the covariance structure r, but has a simple expression in the i.i.d. context, where it is equal to γ 2 . In practice, the bias term of p γ H k can be important depending on whether ρ is close to zero or not, since under the second order condition pC SO q, the function |A| is regularly varying at infinity with index ρ. This explains all the literature spread on bias correction in the i.i.d. context, see, e.g., [START_REF] Feuerverger | Estimating a tail exponent by modelling departure from a Pareto distribution[END_REF], [START_REF] Beirlant | Tail index estimation and an exponential regression model[END_REF] and [START_REF] Gomes | Tail index estimation for heavy-tailed models: accomodation of bias in weighted log-excesses[END_REF], among others. On the contrary, in case of stationary β-mixing time series only the very recent paper by [START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF] deals with this problem and proposes a bias-corrected estimator for γ. Their method consists first in estimating the bias term of p γ H k and second in subtracting it from p γ H k . A similar approach is also used in their paper to estimate a high quantile x p " U p1{pq with p Ñ 0.

The procedure we propose in this paper is an alternative approach to construct bias-corrected tail estimators. First, we introduce a class of estimators for γ which can be viewed as statistical tail functionals, T pQ n q, where Q n is the tail quantile function defined as Q n ptq :" X n´rkts,n , 0 ă t ă n{k, and T is a suitable functional. Then, we combine two estimators for γ of this class to cancel the asymptotic bias term. The resulting unbiased estimator for γ can then be used to construct an asymptotically unbiased estimator of a high quantile.

The paper is organized as follows: our approach is described in details in Section 2. Section 3 presents, using some examples, the finite sample performance of our extreme value index and high quantile estimators based on simulation studies. Two real data applications illustrate the use of our estimator in Section 4: one in the financial context of market risk data and the other in the environmental situation of hourly wind speed data. We conclude in Section 5. All the related theoretical proofs are detailed in the appendix.

DESCRIPTION OF OUR METHODOLOGY

Goegebeur & Guillou (2013) introduced a class of weighted function estimators for the tail dependence coefficient η in the bivariate extreme value framework. Combining two of their estimators, they are able to construct an asymptotically unbiased estimator for η. In this paper, we adapt this methodology in the case of β-mixing sequences to estimate a tail parameter such as the extreme value index or an extreme quantile.

Estimation of the extreme value index

For any measurable function z : r0, 1s Ñ R, we consider the functional

T K pzq " $ ' & ' % ż 1 0 log zptq zp1q
dptKptqq if the right-hand side is defined and finite, 0 otherwise, where K is a function with support on p0, 1q. This leads to the following class of estimators for γ:

p γ k pKq " T K pQ n q " ż 1 0 log Q n ptq Q n p1q dptKptqq.
Some assumptions on K are required if we want to derive the asymptotic normality of our class of estimators. They can be formulated as:

Assumption pC K q. Let K be a function such that ş 1 0 Kptqdt " 1. Suppose that K is continuously differentiable on p0, 1q and that there exist M ą 0 and τ P r0, 1{2q such that |Kptq| ď M t ´τ . These conditions are not restrictive but are satisfied by the usual weight functions used in the literature, including the power kernel Kpuq " p1 `νqu ν , ν ě 0, and the log-weight function Kpuq " p´log uq ν {Γp1 `νq, ν ě 0. In particular, we note that the classical Hill estimator p γ H k can be viewed as a particular case of our power kernel-type estimator corresponding to ν " 0: p γ H k " p γ k pKq with

Kpuq " 1.

The aim of Theorem 1 is to provide the asymptotic normality of our class of estimators with the explicit bias term.

Theorem 1 Let pX 1 , X 2 , ...q be a stationary β-mixing time series with a continuous common marginal distribution function F and assume pC S0 q, pC R q and pC K q. Suppose that k is an intermediate sequence such that ? kApn{kq Ñ λ P R. We have

? k tp γ k pKq ´γu d ÝÑ λ ż 1 0 t ´ρK ptqdt `γ ż 1 0 " t ´1W ptq ´W p1q ‰ dptKptqq, (3) 
where pW ptqq tPr0,1s is a centered Gaussian process with covariance function r defined in pC R q.

In particular This result is similar to Theorem 1 in [START_REF] Goegebeur | Asymptotically unbiased estimation of the coefficient of tail dependence[END_REF] in the i.i.d. context, although in the latter the centered Gaussian process pW ptqq tPr0,1s is a standard Brownian motion.

Some remarks.

• If we assume that the X i s are i.i.d. and that Kptq " 1 for t P p0, 1q, then Theorem 1 gives the asymptotic normality of the Hill estimator (2) with σ 2 " γ 2 .

• If we assume that the X i s are i.i.d. but nothing on the function K (except that it satisfies condition pC K q), then the asymptotic variance given in Theorem 1 can be reduced to

AVpKq " γ 2 "ż 1 0 ż 1 0 minps, tq ts dptKptqqdpsKpsqq ´K2 p1q * .
Now, our aim is to propose an asymptotically unbiased estimator for γ. For this aim, we propose to use two functions K 1 and K 2 satisfying pC K q and to consider a mixture of them in the form K ∆ ptq " ∆K 1 ptq `p1 ´∆qK 2 ptq for ∆ P R. Clearly K ∆ also satisfies condition pC K q and hence by Theorem 1, the asymptotic bias of this new estimator p γ k pK ∆ q is given by

λ ? k ABpK ∆ q " λ ? k ż 1 0 t ´ρK ∆ ptqdt " λ ? k t∆ABpK 1 q `p1 ´∆qABpK 2 qu .
Equating the right-hand side of the above equation to zero leads to the value of ∆ eliminating the asymptotic bias

∆ ˚" ABpK 2 q ABpK 2 q ´ABpK 1 q provided ABpK 1 q " ABpK 2 q. ( 4 
)
This result is formalized in the next corollary where p γ k pK ∆ ˚q is shown to be asymptotically unbiased in the sense that the mean of its limiting distribution is zero, whatever the value of λ.

Corollary 1. Under the assumptions of Theorem 1 and assuming that K 1 and K 2 satisfy condition pC K q with ABpK 1 q " ABpK 2 q, we have

? ktp γ k pK ∆ ˚q ´γu d ÝÑ N p0, AVpK ∆ ˚qq .
An open problem is to determine whether among this class of unbiased estimators we can find the asymptotically unbiased estimator with minimum variance. This question is solved in the i.i.d. framework under a slightly stronger condition than pC K q (see Theorem 2 and Corollary 4 in [START_REF] Goegebeur | Asymptotically unbiased estimation of the coefficient of tail dependence[END_REF] where the "optimal" function is given by

K ∆ opt ptq " ˆ1 ´ρ ρ ˙2 ´p1 ´ρqp1 ´2ρq ρ 2 t ´ρ, t P p0, 1q. (5) 
Note that this function can be viewed as a mixture between K 1 ptq :" 1 and K 2,ρ ptq :" p1 ´ρqt ´ρ with t P p0, 1q and ∆ ˚as in (4). In that case, the minimal variance is given by

AVpK ∆ opt q " γ 2 ˆ1 ´ρ ρ ˙2 . (6) 
In our framework, the covariance structure r is unknown and thus we cannot show that this interesting property is preserved. However, we recommend to use this "optimal" function also in case of β-mixing sequences since it performs very well in practice as illustrated in Section 3.4. From a practical point of view, this cannot be done directly since ρ is unknown. To solve this issue, two natural options can be proposed, either to replace ρ by a canonical choice, or by an external estimator.

The aim of the next corollary is to give the asymptotic normality of our class of estimators for γ in case ρ is replaced by some fixed value r ρ.

Corollary 2. Let pX 1 , X 2 , ...q be a stationary β-mixing time series with a continuous common marginal distribution function F and assume pC S0 q and pC R q. Suppose that k is an intermediate sequence such that ? kApn{kq Ñ λ P R. We have

? ktp γ k pK r ∆ opt q ´γu d ÝÑ N ˆλ p1 ´r ρqpr ρ ´ρq r ρp1 ´ρqp1 ´r ρ ´ρq , AVpK r ∆ opt q ˙,
where K r ∆ opt is defined as K ∆ opt in (5) with ρ replaced by r ρ.

Although one clearly loses the bias correction, the extreme value index estimators are not very sensitive to such a misspecification and thus our estimator p γ k pK r ∆ opt q can still outperform the estimators that are not corrected for bias. Note also that, as expected, if r ρ " ρ, we recover Corollary 1. However, to keep the asymptotically unbiased property, we can also replace ρ by an external estimator p ρ kρ , consistent in probability, which depends on an intermediate sequence k ρ . This leads to the following general result.

Theorem 2 Let pX 1 , X 2 , ...q be a stationary β-mixing time series with a continuous common marginal distribution function F and assume pC S0 q and pC R q. Let p ρ kρ be an external estimator for A possible choice for p ρ kρ is that proposed by [START_REF] Gomes | Semi-parametric estimation of the second order parameter in statistics of extremes[END_REF], and also used in de Haan et al.

(2016):

p ρ k :" ´4 `6 S p2q k `b3 S p2q k ´2 4 S p2q k ´3 provided S p2q k P `2 3 , 3 4 ˘, (7) 
where

S p2q k :" 3 4 " M p4q k ´24 ´M p1q k ¯4 " M p2q k ´2 ´M p1q k ¯2 " M p3q k ´6 ´M p1q k ¯3 2 with M pαq k :" 1 k k ÿ i"1 plog X n´i`1,n ´log X n´k,n q α , α P N.
In that case, we have the following corollary.

Corollary 3. Let pX 1 , X 2 , ...q be a stationary β-mixing time series with a continuous common marginal distribution function F and assume pC S0 q and pC R q. Let p ρ kρ be the external estimator for ρ defined in (7) where the intermediate sequence

k ρ satisfies a k ρ A ´n kρ ¯Ñ 8. If k is another intermediate sequence such that ? kApn{kq Ñ λ P R, then we have ? ktp γ k pK p ∆ opt q ´γu d ÝÑ N ´0, AVpK ∆ opt q ¯.
Note that Theorem 4.1 in de Haan et al. ( 2016) states a similar result for their asymptotically unbiased extreme value index defined as

p γ k,kρ " p γ H k ´"M p2q k ´2pp γ H k q 2 ı " 1 ´p ρ kρ ‰ 2p γ H k p ρ kρ . (8) 
Compared to this theorem, the assumptions of our Corollary 3 are less constraining, in particular we do not need a third order condition and only a k ρ A ´n kρ ¯Ñ 8 is required on the intermediate sequence k ρ . This is due to the fact that we need only the consistency in probability for the 2016) in finite samples situations as illustrated in Section 3.4.

Estimation of an extreme quantile

The estimation of an extreme value index is in general only an intermediate goal. In practice, we are much more interested in the estimation of an extreme quantile

x p " U p1{pq, (9) 
p Ñ 0. As mentioned in Section 1, the VaR and the return level are extreme quantiles consisting of standard risk measures of finance and environment, respectively.

In this section, we illustrate the applicability of our methodology in the case of the estimation of an extreme quantile x p . To understand heuristically the construction of our estimator, as introduced in Matthys et al. ( 2004), we start with our second-order condition pC SO q, according to which

U ptxq U ptq » x γ exp " Aptq x ρ ´1 ρ * .
By setting tx " 1{p and t " Y n´k,n where Y i is a random variable from a standard Pareto distribution, since X n´k,n " U pY n´k,n q, we obtain the following approximation

x p » X n´k,n ˆ1 pY n´k,n ˙γ exp $ & % A pY n´k,n q ´1 pY n´k,n ¯ρ ´1 ρ , .
-

» X n´k,n ˆk np ˙γ exp # A ´n k ¯p k np q ρ ´1 ρ + ,
where the last step follows from replacing Y n´k,n by its expected value n{k. The first part on the right-hand side (except the exponential term) is exactly a Weissman-type estimator when γ is replaced by an estimator (see [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF]. Thus this exponential term can be viewed as a correcting term since Apn{kq tends to 0 (and thus the exponential to 1). To take this correcting factor into account, we need to estimate Apn{kq. For this aim, we use our Proposition 1 in the appendix according to which, for any ε ą 0, log

Q n ptq Q n p1q " log Q n ptq U p n k q ´log Q n p1q U p n k q " ´γ log t `γ ? k " t ´1W ptq ´W p1q ‰ `r A ´n k ¯t´ρ ´1 ρ `o ´t´1 2 ´ε? k ,
where r A " A. This implies that

? k " p γ k pK 1 q ´p γ k pK 2,ρ q `A ´n k ¯ρ2 p1 ´ρqp1 ´2ρq * d ÝÑ γ ż 1 0 " t ´1W ptq ´W p1q ‰ d pt r1 ´K2,ρ ptqsq
which is asymptotically normal Np0, AVpK 1 ´K2,ρ qq. Thus we can approximate

A ´n k ¯ρ2 p1 ´ρqp1 ´2ρq by ´rp γ k pK 1 q ´p γ k pK 2,ρ qs
which means that A `n k ˘can be estimated by

´p1 ´ξqp1 ´2ξq ξ 2 rp γ k pK 1 q ´p γ k pK 2,ξ qs
where ξ can be either a consistent estimator for ρ or a canonical negative value.

Our final extreme quantile estimator is then

p x p,ξ " X n´k,n ˆk np ˙p γ k pK x ∆ opt q exp $ ' & ' % ´p1 ´ξqp1 ´2ξq ξ 2 rp γ k pK 1 q ´p γ k pK 2,ξ qs ´k np ¯ξ ´1 ξ , / . / - . ( 10 
)
The aim of the next theorem is to prove that, under suitable assumptions, this estimator is asymptotically unbiased.

Theorem 3 Let pX 1 , X 2 , ...q be a stationary β-mixing time series with a continuous common marginal distribution function F and assume pC S0 q and pC R q. Let p ρ kρ be an external estimator for ρ, consistent in probability, which depends on an intermediate sequence k ρ . Consider now an intermediate sequence k such that ? kApn{kq Ñ λ P R and assume that p " p n such that k np Ñ 8, logpnpq ? k Ñ 0

and n ´a log p Ñ 0 for all a ą 0. Then, we have

? k log k np ˆp x p,ξ x p ´1˙d ÝÑ N ´0, AVpK ∆ opt q ¯,
where ξ is either a canonical negative value r ρ or an estimator p ρ consistent in probability such that |p ρ ´ρ| " O P pn ´εq for some ε ą 0.

Note that the assumption logpnpq{ ? k Ñ 0 is useful in order to ensure that the rate of convergence for our extreme quantile estimator tends to infinity. The other condition on p, that is, n ´a log p Ñ 0 for all a ą 0, is only technical and not binding. This is usual in the context of extreme quantile estimation, (see, for instance, [START_REF] Matthys | Estimating catastrophic quantile levels for heavy-tailed distributions[END_REF]). In the latter, an extreme quantile estimator in the context of i.i.d. censored observations has been proposed, and its asymptotic normality also requires the condition |p ρ ´ρ| " O P pn ´εq for some ε ą 0.

From the proof of Theorem 3, it becomes clear that the exponential term in (10) does not influence the limiting distribution. However, in finite samples situations, this factor typically leads to improved overall stability of the quantile estimates as a function of k. A similar idea has been pursued by de Haan et al. ( 2016), with another type of correcting factor than the exponential term, that is

p x k,kρ ppq " X n´k,n ˆk np ˙p γ k,kρ ¨1 
´"M

p2q k ´2pp γ H k q 2 ı " 1 ´p ρ kρ ‰ 2 2p γ H k p ρ 2 kρ « 1 ´ˆk np ˙p ρ kρ ff '. (11) 
Note that this estimator ( 11) is in fact slightly different from that included in the latter paper since a personal discussion with the authors allowed to identify an error in the proof of Theorem 4.2 in de Haan et al. ( 2016), precisely in their Assertion (A.6).

EXAMPLES AND SIMULATIONS

Our aim in this section is to compare our estimator with the one proposed by de [START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF].

Unfortunately, without specifying the covariance structure r in pC R q, it is impossible to compare our asymptotic variance AVpK ∆ opt q with that of the asymptotic unbiased estimator of de Haan et al. ( 2016) in its full generality. However, in the specific case of i.i.d. observations where we know that rps, tq " minps, tq, our asymptotic variance given in ( 6) is clearly smaller than the asymptotic variance of the extreme value index proposed by de Haan et al. ( 2016), which is

γ 2 ρ 2 `ρ2 `p1 ´ρq 2 ˘.
To complete this comparison, we consider below several models commonly found in practice, with an explicit expression of the covariance structure r for two of the models. This allows us to provide an explicit comparison between the two estimators.

Autoregressive (AR) model

Let ε i be i.i.d. variables with a positive Lebesgue density f ε which is L 1 ´Lipschitz continuous, that is, ż |f ε pε `uq ´fε pεq|dε " Opuq as u OE 0.

Assume that 1 ´Fε pεq " qε ´1{γ pεq and F ε p´εq " p1 ´qqε ´1{γ pεq as ε Ñ 8, for some slowly varying function and q P p0, 1q. Consider now the stationary solution of the AR(1) equation

X i " θX i´1 `εi , θ P p0, 1q. ( 12 
)
The regularity conditions pC R q hold with rpx, yq " minpx, yq `8 ÿ Direct but tedious computations lead to the following asymptotic variance for our estimator

AVpK ∆ opt q " γ 2 ˆ1 ´ρ ρ ˙2 rp1, 1q, (13) 
that is always smaller than that obtained by de Haan et al. ( 2016) under the same framework, which is

σ 2 pθ, γ, ρq :" γ 2 ρ 2 # " p1 ´ρq 2 `ρ2 ‰ rp1, 1q `2ρp1 ´ρq θ 1 γ log θ 1 γ p1 ´θ 1 γ q 2 + .
Note also that, compared with the i.i.d. case, our asymptotic variance AVpK ∆ opt q is increased by the factor rp1, 1q ą 1, see ( 6). In addition, if Kptq " 1 for t P p0, 1q, our estimator p γ k pKq reduces to the classical Hill estimator p γ H k and according to [START_REF] Drees | Weighted approximations of tail processes for β-mixing random variables[END_REF] (see also [START_REF] Stȃricȃ | On the tail empirical process of solutions of stochastic difference equations[END_REF], under serial dependence, the asymptotic variance of p γ H k is γ 2 rp1, 1q. The latter value is smaller than AVpK ∆ opt q, but p γ H k is not asymptotically unbiased.

Moving average (MA) model

Assume that ε i satisfies the same assumptions as for the AR(1) model and consider this time the stationary solution of the MA(1) equation

X i " θε i´1 `εi . ( 14 
)
In that case, the regularity conditions pC R q are also satisfied with

rpx, yq " minpx, yq `´1 `θ 1 γ ¯´1 ! min ´x, yθ 1 γ ¯`min ´y, xθ 1 γ ¯) .
Again tedious computations show that the same expression for AVpK ∆ opt q as that given in ( 13) 

is
σ 2 pθ, γ, ρq :" γ 2 ρ 2 # " p1 ´ρq 2 `ρ2 ‰ rp1, 1q `2ρp1 ´ρq θ 1 γ log θ 1 γ 1 `θ 1 γ + ,
which is clearly again larger than our asymptotic variance AVpK ∆ opt q.

Generalized autoregressive conditional heteroskedasticity (GARCH) model

We consider the GARCH model defined as

X t " σ t ε t (15)
where pσ t q is a function of the history up to time t´1 represented by H t´1 . The process of innovations ε t is a strict white noise with mean zero and variance one and is assumed to be independent of H t´1 .

In other words σ t is H t´1 -measurable, H t´1 being the filtration generated by pX s q sďt´1 and therefore varpX t | H t´1 q " σ 2 t . The sequence pX t q follows a GARCH(p, q) process if, for all t,

σ 2 t " α 0 `p ÿ j"1 α j X 2 t´j `q ÿ k"1 β k σ 2 t´k , α j , β k ą 0. ( 16 
)
This model also satisfies the regularity conditions pC R q but with a covariance structure r which cannot be explicitly computed. In that case the comparison between the different estimators can be done only by simulation.

In fact, in Section 3.4, we compare, in addition to the GARCH model, all the estimators for the three abovementioned models, through a simulation study. Actually, to be completely honest in the comparison, it is not sufficient to compare the constant in the variance. Rather, it is necessary to take the intermediate sequence into account as explained at the end of Section 2.1. Indeed, the variance of our estimator is AVpK ∆ opt q{k whereas that of de Haan et al. ( 2016) isσ 2 pθ, γ, ρq{ r k with r k of a larger order than k due to the different conditions imposed.

Simulation study

We proceed to a simulation study to assess our extreme value index estimator p γ k pK p ∆ opt q and our high quantile estimator (10) with p " 0.001 in five different model cases for which we can simulate the theoretical value of γ and of the true 99.9% quantile. The three first models are the independence, AR(1) and MA(1) models proposed by de Haan et al. ( 2016) and with ε following the distribution

F ε pεq " $ & % p1 ´qqp1 ´r F p´εqq if ε ă 0, 1 ´q `q r F pεq if ε ą 0,
where r F is the unit Fréchet distribution function, q " 0.75 so that F ε belongs to the max-domain of attraction with an extreme value index γ " 1. We generate N " 5000 time series of size n " 1000 based on i.i.d observations generated from F ε and we construct series from the three following models for which the theoretical value of γ is 1:

• Model 1: Independence model X i " ε i . The theoretical value of x 0.001 is 749.80.

• Model 2: AR(1) model ( 12) with θ " 0.3. The theoretical value of x 0.001 is 1072.26.

• Model 3: MA(1) model ( 14) with θ " 0.3. The theoretical value of x 0.001 is 972.85.

Note that the theoretical values are computed by Monte Carlo based on 1000 samples of size 10 6 .

We also consider two further models that are GARCH models with realistic parameters provided from our two real cases studied in Section 4. They are In both GARCH cases, the innovations being Student t, the distribution of X t belongs to the maxdomain of attraction with an extreme value index evaluated at 0.27 for Model 4 and 0.15 for Model 5. We simulate N " 5000 time series of size n " 1000 for Model 4 (corresponding to the sample size of our real financial data) and n " 4000 for Model 5 (corresponding to the size of the wind speed data considered in our application).

To compute our high quantile (10), we need to select the sequence k ρ . This has been done as follows

k ρ :" sup " k : k ď min ˆm ´1, 2m log log m ˙and p ρ k exists * ,
with m being the number of positive observations in the sample.

We compare our extreme quantile estimator p x p,p ρ kρ with the one proposed by de [START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF] and defined in (11) where p ρ kρ is again the consistent estimator (7) and p γ k,kρ is their new estimator of the index defined in (8). To this aim, we compute the absolute value of the mean of the bias (ABias) together with the root mean squared errors (RMSE) based on the N samples, and defined as ABiaspθ; kq :"

ˇˇˇˇ1 N N ÿ i"1 p θ piq θ ´1ˇˇˇˇˇa nd RMSEpθ; kq :" g f f e 1 N N ÿ i"1 ˜p θ piq θ ´1¸2 ,
where θ is either γ or x p , and p θ piq is the i-th value (i " 1, . . . , N ) of the estimator of γ or x p evaluated at k. Based on these simulations, we can draw the following conclusions:

• Our extreme value index performs similarly to de [START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF] estimator in terms of bias in Models 1, 2 and 3 with a longer stability as a function of k than the Hill estimator, but a minimal value of the RMSE similar. However, for the GARCH models, the Hill estimator performs very poorly, whereas our estimator is at least as good as de [START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF] estimator;

• Our high quantile estimator shows a lower bias than those of de Haan et al. ( 2016) and

Weissman especially for the GARCH models. The bias is also less variable than the two others for the lowest values of k. In terms of RMSE it is also very competitive when compared to the two alternative estimators. Both the bias and RMSE of our high quantile show a period of stability for a wider range of k; an important feature for practical applications. 

REAL DATA ANALYSIS

In this section, we illustrate the use of our estimator to calculate the daily VaR of a financial index series and the hourly return level of wind speed data. Both the VaR and return level are a high quantile (9) defined for a certain p-level. We use out-of-sample backtesting to assess the efficiency of our high quantile estimation.

Financial index data

The data in Figure 3 shows the daily negative log-returns X t for n " 1000 values of S&P500 Stylized features of financial series such as the S&P500 index returns are heavy tailedness; gaussianity assumption strongly violated; presence of heteroskedasticity or volatility clustering; absence of autocorrelations in returns (see [START_REF] Cont | Volatility clustering in financial markets: Empirical facts and agent-based models[END_REF], for more details). To model phenomenon with such characteristics, the GARCH(1,1) model ( 15) and ( 16) with p " q " 1 is specifically appropriate; see [START_REF] Mcneil | Quantitative Risk Management: Concepts, Techniques and Tools[END_REF], Chapter 4 for a review of GARCH models and Example 5.59, p. 235 for the GARCH fitting of financial time series. We fit a GARCH(1,1) model to our dataset with Student-t innovations. The estimated model is

σ 2 t " p α 0 `p α 1 X 2 t´1 `p β 1 σ 2 t´1 ,
with p α 0 " 4.49 ¨10 ´06 p1.34 ¨10 ´06 q, p α 1 " 0.195p0.0396q, p β 1 " 0.746p0.0440q and the parameter of the Student t is p ν " 5.99p1.143q where the value in parentheses is the standard deviation. The S&P500 log-returns being of a stationary β-mixing type, we can use our estimator to calculate the α-VaR for the horizon h " 1 day. We start to estimate the extreme value index γ of the loss returns using our estimator p γ k pK p ∆ opt q that we compare to the Hill estimator and the asymptotically unbiased The grey lines are the 95%-bootstrap confidence intervals.

Our estimator (full line), even if more variable, looks more stable than the two others. Both the Hill estimator (dotted line) and that of de Haan et al. (2016) (dashed line) increase with k. The grey lines are 95%-confidence intervals calculated using block bootstrap [START_REF] Bühlmann | Bootstraps for time series[END_REF][START_REF] Davison | Bootstrap Methods and Their Application[END_REF]. We use blocks of length 200 as suggested by de Haan et al. ( 2016) and we simulate 99 bootstrap samples. We therefore estimate the 99% (resp. 99.9%)-VaR shown in Figure 4 middle panel (resp. right panel) using our high quantile estimator (full line), de Haan et al. ( 2016) estimator (dashed line) and [START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] estimator (dotted line). Whereas the Weissman estimator is not stable for both levels of α, our estimator seems more stable than the one of de Haan et al.

(2016) which slightly decreases over k for the lowest value of α and increases over k for the highest α. The stability of the estimator is essential to decide a value of k which will be used to get the high quantile estimator. The selection of k is equivalent to the choice of the threshold in the EVT peaks-over-threshold method. We arbitrarily choose k " 80 that is a value within the window of stable values of k in Figure 4.

- q q qq q q q Figure 5: S&P500 index data: the straight line is the 99%-VaR estimate calculated using the historical period 2013-05-09 to 2015-09-23. The points are the times at which the realized log-return is higher than the estimated 99%-VaR.

To assess the efficiency of the VaR estimator, it is standard to use the so-called backtesting procedure [START_REF] Danielsson | Financial Risk Forecasting[END_REF] as suggested by the Basel Committee on banking supervision. The backtesting procedure is based on comparing the VaR with the realized value over a certain horizon. A violation is said to occur whenever the estimated VaR is lower than a realized value. As pointed out by [START_REF] Christoffersen | Evaluating interval forecasts[END_REF] an accurate VaR model satisfies two properties, namely the unconditional coverage property and the independence property. The first property states that a VaR for a 100 ˆp1 ´αq% coverage rate is valid if the expected frequency of observed violations is also equal to 100 ˆp1 ´αq%. Under the independence property, the violations are supposed to be distributed independently. Since three decades, a variety of tests have been proposed, testing on either the unconditional coverage hypothesis and on the independence hypothesis separately or on both hypotheses jointly. The latter tests are called conditional coverage tests [START_REF] Christoffersen | Evaluating interval forecasts[END_REF].

In our context assuming that the underlying data generating process is stationary over time, we proceed to the following backtesting procedure of our unconditional VaR estimate: we choose an estimating window of historical data corresponding to the period 2013-05-09 to 2015-09-23 from which we estimate the 99%-VaR. We compare this 99%-VaR estimate with the 400 realized values of the testing period 2015-09-24 to 2017-04-26 on which we count the number of violations. Figure 5 shows the 99%-VaR estimate (straight line 7 shows that autocorrelations of Arosa wind speeds are significant for a large number of lags but we can notice that the PACF plot (top right panel) has a significant spike only at lag 1, meaning that all the higher-order autocorrelations are effectively explained by the lag-1 autocorrelation. More formally, we fit different ARIMA models and the model selected according to AIC is an ARIMA(1,1,1) corresponding to a model with one AR term and one MA term and a first difference used to account for a linear trend in the data as follows

Y t " X t ´Xt´1 Y t " φ 1 Y t´1 `εt ´θ1 ε t´1 ,
where ε t is a random shock occurring at time t. Fitted to the data, the estimated parameters are p φ 1 " 0.819p0.0125q, p θ 1 " ´0.989p0.0050q. The ACF in the bottom left panel of Figure 7 shows no serial correlation remaining for the ARIMA residuals

e t " x t ´xt´1 ´p φ 1 x t´1 `p φ 1 x t´2 `p θ 1 e t´1 , t " 1, . . . , n. (17) 
However, from the ACF plot of the absolute values for the ARIMA residuals e 1 , . . . , e n , there is evidence of volatility clustering. The absence of autocorrelations for the residuals and the presence of volatility clustering clearly suggests a GARCH-type model. This is confirmed by a Ljung-Box test on the squared ARIMA residuals (17) providing a p´value lower than 10 ´5, rejecting the null hypothesis that the series is a strict white noise. We fit several GARCH models of different orders pp, qq on the ARIMA residuals e 1 , . . . , e n . The ARIMA residuals being heavy-tailed, we use Student t innovations. The GARCH form is given by ( 15) where here X t represents our residuals and σ t is the ARIMA wind speed residual volatility. We select the orders p and q using AIC. Figure 8 represents the AIC against the total number of parameters estimated for each model, that is p`q `1. The AIC is minimized for p `q `1 " 4. Not readable from the graph, the lowest AIC value for p `q `1 " 4 corresponds to the model GARCH(1,2) which is

σ 2 t " p α 0 `p α 1 e 2 t´1 `p β 1 σ 2 t´1 `p β 2 σ 2 t´2 ,
p α 0 " 0.0443p0.00946q, p α 1 " 0.202p0.0279q, p β 1 " 0.213p0.0764q and p β 2 " 0.467p0.0787q with standardized Student t innovations with degrees of freedom p ν " 5.66. With such data, a measure of q q q q q q q 3 4 5 extreme events of interest is the 1{p-hour return level rppq with p small. The return level is the value that has a p chance of being exceeded in a given hour. Our proposed estimator for high quantile (9) can be used on the series of the ARIMA residuals e 1 , . . . , e n being GARCH-type removed from seasonality and therefore satisfying the stationary β-mixing conditions. Note that to obtain a return level for the wind speed original data r xt ppq (in m/s) at time t one can use the ARIMA model and the 1{p-hour return level r et ppq estimate of the ARIMA residual e t at time t, that is

p r xt ppq " p r et ppq ´p θ 1 e t´1 `xt´1 `p φ 1 x t´1 ´p φ 1 x t´2 . (18) 
To estimate the high quantile of the ARIMA residuals r e ppq, we first estimate γ using our estimator

p γ k pK p ∆ opt q.
The full line of the left panel in Figure 9 which shows a slightly decreasing trend (resp. increasing trend).

From Figure 9, we can reasonably choose any value of k between 200 and 600 without leading much to variable results. We chose k " 450 for our estimator and as for the financial data, we proceed to an estimation and testing of the 100-hour return level. The straight line in Figure 10 (top panel) 10 shows the 100-hour return level for the original wind speed data (in m/s) calculated using (18). Confidence intervals are not shown in the plot for clarity sake. Because of the two-step method used (filtering the seasonality using ARIMA model and then applying our estimator on the residuals), a convenient way to get confidence intervals is by proceeding to a block bootstrap of the original data and applying the two-step method for each resample. q qq q q q q q q q q 0 2 4 q q q q q q q q q q q Figure 10: Wind speed data: the straight line of the top panel shows our 100-hour return level estimate calculated from the estimating period 2015.12.15 at 2am to 2016.04.05 at 7am of the ARIMA residuals. The dashed line of the bottom panel shows the high quantile estimate of the wind speed data in m/s. The points are the times at which the ARIMA residual (top) and wind speed value (bottom) is higher than the estimated return level.

CONCLUSION

In this paper we have introduced a new asymptotically unbiased estimator of high quantiles for βmixing stationary time series. Comparing the new procedure to the alternative proposed by de Haan et al. ( 2016), our high quantile estimator provides, in addition to lower ABias and RMSE in general, more stability over k, an important feature expected in this type of approach to be applicable in practice. In application, the new high quantile estimator can be proposed to any other stationary β-mixing heavy-tailed time series for which high quantiles needed to be calculated. This concerns heavy-tailed autoregressive data encountered in network traffic forecasting for instance and many other applications data in climate change.

APPENDIX: PROOFS OF THE RESULTS

Before establishing our Theorem 1, we need a result similar to Proposition A.1 in de Haan et al.

(2016) but under the weak assumptions of our Theorem 1, excluding pC K q. In particular, a third order condition is not assumed.

Proposition 1. Let pX 1 , X 2 , ...q be a stationary β-mixing time series with a continuous common marginal distribution function F and assume pC S0 q and pC R q. Suppose that k is an intermediate sequence such that ? kApn{kq " Op1q. For a given ε ą 0, under a Skorohod construction, there exist a function r A " A, and a centered Gaussian process pW ptqq tPr0,1s with covariance function r, such that, as n Ñ 8

sup tPp0,1s t 1 2 `ε ˇˇˇ? k ˆlog Q n ptq U p n k q `γ log t ˙´γt ´1W ptq ´?k r A ´n k ¯t´ρ ´1 ρ ˇˇˇÝ Ñ 0 a.s.
Proof of Proposition 1. It is similar to that of Proposition A.1 in de Haan et al. ( 2016) but assuming that ? kA `n k ˘" Op1q and without a third order condition, thus below we only give the main differences. In our context, the key inequality is the following: for all ε, δ ą 0, there exists some positive number u 0 " u 0 pε, δq such that for ux ě u 0 :

ˇˇˇˇl og U puxq ´log U puq ´γ log x r Apuq ´xρ ´1 ρ ˇˇˇˇď εx ρ max `xδ , x ´δ ˘, (19) 
see, for instance, Theorem B.2.18 in de [START_REF] De Haan | Extreme Value Theory. An Introduction[END_REF]. Now, using the representation X i " U pY i q where Y i follows a standard Pareto distribution, pY 1 , Y 2 , ...q is a stationary β-mixing series satisfying the regularity conditions pC R q. Then, according to [START_REF] Drees | Extreme quantile estimation for dependent data, with applications to finance[END_REF], since Q n ptq " U pY n´rkts,n q and under a Skorohod construction, there exists a centered Gaussian process pW ptqq tPr0,1s

with a covariance function r such that for ε ą 0, as n Ñ 8 sup tPp0,1s Choosing δ P p0, ´ρq, Proposition 1 then follows similarly as Proposition A.1 in de Haan et al.

(2016) since ε can be arbitrarily close to 0.

Proof of Theorem 1. From Proposition 1, we can easily infer that

? k "ż 1 0 log Q n ptq Q n p1q dptKptqq `γ ż 1 0 log t dptKptqq * " γ ż 1 0 " t ´1W ptq ´W p1q ‰ dptKptqq `?k r A ´n k ¯ż 1 0 t ´ρ ´1 ρ dptKptqq `op1q ż 1 0 t ´1 2 ´ε dptKptqq.
Using integration by parts, we have

ż 1 0 log t dptKptqq " ´1, and 
ż 1 0 t ´ρ ´1 ρ dptKptqq " ż 1 0 t ´ρK ptqdt,
from which (3) follows under pC K q by taking 0 ă ε ă 1 2 ´τ . The covariance structure r of the centered Gaussian process pW ptqq tPr0,1s now achieves the proof of Theorem 1. 

? k ´p γ k pK p ∆ opt q ´γ¯" ? k ´p γ k pK ∆ opt q ´γ¯`? k ´p γ k pK p ∆ opt q ´p γ k pK ∆ opt q ¯. (20) 
According to Corollary 1 we have

? k ´p γ k pK ∆ opt q ´γ¯d ÝÑ N ´0, AVpK ∆ opt q ¯.
To prove Theorem 2, it is thus sufficient to show that the second term in (20) is o P p1q. For this aim, note that

? k ´p γ k pK p ∆ opt q ´p γ k pK ∆ opt q " ? k "ż 1 0 log Q n ptq Q n p1q dptK p ∆ opt ptqq ´ż 1 0 log Q n ptq Q n p1q dptK ∆ opt ptqq * " ? k " p ∆ opt ż 1 0 log Q n ptq Q n p1q dt ´∆o pt ż 1 0 log Q n ptq Q n p1q dt `p1 ´p ∆ opt q ż 1 0 log Q n ptq Q n p1q dptK 2,p ρ kρ ptqq ´p1 ´∆o pt q ż 1 0 log Q n ptq Q n p1q dptK 2,ρ ptqq * " ? k ´p ∆ opt ´∆o pt ¯"ż 1 0 log Q n ptq Q n p1q dt ´ż 1 0 log Q n ptq Q n p1q dptK 2,ρ ptqq * `?k ´1 ´p ∆ opt ¯"ż 1 0 log Q n ptq Q n p1q dptK 2,p ρ kρ ptqq ´ż 1 0 log Q n ptq Q n p1q dptK 2,ρ ptqq * " ´p ∆ opt ´∆o pt ¯!? k pp γ k pK 1 q ´γq ´?k pp γ k pK 2,ρ q ´γq ) `´1 ´p ∆ opt ¯?k "ż 1 0 log Q n ptq Q n p1q dptK 2,p ρ kρ ptqq ´ż 1 0 log Q n ptq Q n p1q dptK 2,ρ ptqq * ": T 1 `T2 .
We will study the two terms separately.

Term T 1 . Using the consistency in probability of p ρ kρ and the convergences ? k pp γ k pK 1 q ´γq d ÝÑ N pλ{p1 ´ρq, AVpK 1 qq ? k pp γ k pK 2,ρ q ´γq d ÝÑ N pλABpK 2,ρ q, AVpK 2,ρ qq coming from Theorem 1, we have T 1 " o P p1q.

Term T 2 . For ε P p0, 1{2q, uniformly for t P p0, 1s:

log Q n ptq Q n p1q " γp´log tq `γ ? k " t ´1W ptq ´W p1q ‰ `r A ´n k ¯t´ρ ´1 ρ `op1q ? k t ´1 2 ´ε.
This implies that for any 0 ă δ ă ´ρ.

? k "ż 1 0 log Q n ptq Q n p1q dptK 2,p ρ kρ ptqq ´ż 1 0 log Q n ptq Q n p1q dptK 2,
Finally, to treat T 7 two cases have to be considered: either ξ is a canonical negative value r ρ or an estimator p ρ consistent in probability such that |p ρ ´ρ| " O P pn ´εq for some ε ą 0.

If a canonical negative value r ρ is used, then according to Theorem 1, two times applied, we have ? k rp γ k pK 1 q ´p γ k pK 2,r ρ qs " O P p1q.

This immediately implies that T 7 " o P p1q.

If an estimator p ρ consistent in probability is used, we consider the decomposition / -.

Note that

? k rp γ k pK 1 q ´p γ k pK 2,p ρ qs " ? k rp γ k pK 1 q ´γs ´?k rp γ k pK 2,ρ q ´γs ´?k rp γ k pK 2,p ρ q ´p γ k pK 2,ρ qs " O P p1q, where we use Theorem 1 for the two first-terms of the right-hand side and the proof of Theorem 2 (term T 2 ) for the last term. This implies that This entails T 7 " o P p1q and thus achieving the proof of Theorem 3.

  m px, yq `cm py, xqu where c m px, yq " min ´x, yθ m γ ¯.

  valid for the MA(1) model. Thus the comparison between our asymptotic variance and that obtained in the i.i.d. context and with the classical Hill estimator still remains valid. Concerning the estimator proposed by de Haan et al. (2016), they have obtained the asymptotic variance

Figure 1 ,

 1 Figure1, resp. Figure2, shows the results for the extreme value index, resp. extreme quantile, for each of the five models by row, and by column, the ABias (left) and RMSE (right). The full line corresponds to our estimator, the dotted line to the original[START_REF] Hill | A simple general approach to inference about the tail of a distribution[END_REF] or[START_REF] Weissman | Estimation of parameters and large quantiles based on the k largest observations[END_REF] estimator and the dashed line to the de[START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF] estimator. Note that in Figure2, it is not appropriate to compare our curves with that of[START_REF] De Haan | Adapting extreme value statistics to financial time series: dealing with bias and serial dependence[END_REF], Figures6, 7 and 8, because our curves are computed from their corrected estimator.

Figure 1 :

 1 Figure 1: Simulation study: By row, Models 1, 2, 3, 4, 5. By column, ABias (left) and RMSE (right). The full line corresponds to our estimator of the extreme value index, the dashed line to the de Haan et al. (2016) estimator and the dotted line corresponds to the Hill estimator.

Figure 2 :

 2 Figure 2: Simulation study: By row, Models 1, 2, 3, 4, 5. By column, ABias (left) and RMSE (right). The full line corresponds to our high quantile estimator, the dashed line to the de Haan et al. (2016) estimator and the dotted line corresponds to the Weissman (1978) estimator.

Figure 3 :

 3 Figure 3: S&P500 index data: daily negative log-returns from 2013-05-09 to 2017-04-27.

Figure 4 :

 4 Figure 4: S&P500 index data: estimated values of γ (left panel), 99%-VaR (middle panel) and 99.9%-VaR (right panel) against k using our estimator p γ k pK p ∆ opt q (left panel, full line), the de Haan et al. (2016) estimator (dashed line), the Hill estimator (left panel, dotted line) and the Weissman estimator (middle and right panels, dotted line).

Figure 6

 6 Figure6shows hourly wind speed (m/s) data X t , (t represents hour) measured in Arosa,Switzerland, from 2015Switzerland, from .12.15, 2am to 2016.05.29, 5pm, consisting .05.29, 5pm, consisting of n " 3895 hourly values. The data were provided by the Federal Office of Meteorology and Climatology, SwissMeteo. The data show evidence of seasonality confirmed by the ACF plot of the series in the top left panel of Figure 7. Several recent papers suggest that wind speed data are of an ARMA-GARCH-type. Lojowska et al. (2010), for instance, claim that artificial wind speeds simulated from ARMA-GARCH models are statistically indistinguishable from the real wind speed time series measurements under observation; Liu et al. (2013) use the ARMA-GARCH model to predict the time series mean and volatility of wind speed. The top left panel of Figure 7 shows that autocorrelations of Arosa wind speeds are

Figure 7 :

 7 Figure 7: Wind speed data: ACF (top left) and PACF (top right) of the wind speed series and ACF of the ARIMA residuals (bottom left) and of the absolute value of the ARIMA residuals (bottom right).

Figure 8 :

 8 Figure 8: Wind speed data: AIC against the GARCH number of parameters estimated.

  shows our estimated values of γ against different values of k. Compared to the Hill (dotted line) and the de Haan et al. (2016) (dashed line) estimators, our estimator looks more stable over k even if it seems more variable. The grey lines are the 95%-confidence intervals calculated using a block bootstrapping method with block length of size 200 and based on 99 bootstrap samples. For the high quantile estimation with p " 0.01 (resp. p " 0.001), corresponding to the 100-hour return level (resp. 1000-hour return level), our estimator (full line) stays very stable as shown in the middle panel of Figure 9 (resp. right panel) compared to the Weissman estimator (dotted line) and even to that of de Haan et al. (2016) (dashed line)

Figure 9 :

 9 Figure 9: Wind speed data: estimated values of γ (left panel), 100-hour return level (middle panel) and 1000-hour return level (right panel) against k using our estimator p γ k pK p ∆ opt q (left panel, full line), the de Haan et al. (2016) estimator (dashed line), the Hill estimator (left panel, dotted line) and the Weissman estimator (middle and right panels, dotted line). The grey lines are the 95%-bootstrap confidence intervals.

-

  

  γ k pK 1 q ´p γ k pK 2,p ρ qs log γ k pK 1 q ´p γ k pK 2,p ρ qs log

  ). The expected number of violations of the VaR is 4 and the observed number is 7. The VaR violations are represented by the points in Figure 5. The highest violation during this period happened on 2016-06-23 explained by the Wall Street reaction to Brexit (see, for instance, http://www.reuters.com/article/us-usa-stocks-idUSKCN0Z918E). The unconditional coverage Kupiec (1995) test we use is a variation of the Binomial test. It provides a p´value of 0.173. The conditional test of Christoffersen (1998) provides a p´value of 0.355. Both fail to reject the null hypothesis of an accurate VaR model. Wind speed data: hourly measurements in Arosa,Switzerland, from 2015Switzerland, from .12.15, 2am to 2016.05.29, 5pm. .05.29, 5pm. 
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  shows our 100-hour return level estimate for the ARIMA residuals calculated from the estimating period 2015.12.15 at 2am to 2016.04.05 at 7am. We compare this 99%-quantile estimate with the 1200 observed residuals of the testing period 2016.04.05 at 8am to 2016.05.29 at 4pm. The expected number of 100-hour return level violations is 12 and the observed number is 11. Both the Kupiec unconditional coverage test (p´value = 0.768) and the Christoffersen conditional test (p´value = 0.864) are not rejected. The bottom panel of Figure

  Proof of Corollary 1. It is a direct consequence of Theorem 1 since by construction the bias ofp γ k pK ∆ ˚q is null.Proof of Corollary 2. According to Theorem 1, we only need to check the bias term. Recall that

	K	r ∆ opt	ptq "	ˆ1 ´r ρ r ρ ˙2	´p1 ´r ρqp1 ´2r ρq r ρ 2	t ´r ρ ,
	from which we deduce that					
	ż 1 0	t ´ρK	r ∆ opt	ptqdt "	p1 ´r ρqpr ρ ´ρq ρp1 ´ρqp1 ´r ρ ´ρq r	.
	This achieves the proof of Corollary 2.	
	Proof of Theorem 2. Let ∆ opt :" ´1´ρ ρ ¯2 and p ∆ opt :"	´1´p ρ kρ

p ρ kρ ¯2. We consider the decomposition

  ˇˇt ´1W ptq ´W p1q ˇˇˇˇt ´p ρ kρ ´t´ρ ˇˇdt `|p ρ kρ ´ρ|p1 ´p ρ kρ ´ρq This achieves the proof of Theorem 2. Proof of Corollary 3. According to Theorem 2.1 in Gomes et al. (2002), p ρ kρ is consistent in probability as soon as the intermediate sequence k ρ satisfies a k ρ A ´n kρ ¯Ñ 8 and the second order condition pC SO q hold. Combining this result with our Theorem 2, Corollary 3 follows.For this aim, we will study the five terms separately. According to Theorem 2, we have

	ρ ptqq * 2 `εt ´1|W ptq| " Op1q a.s.. Similarly, we have 1 Now, according to Proposition 1, we have almost surely since sup tPp0,1s t
	" γ `γ "ż 1 ? k "ż 1 0 0 " t ´1W ptq ´W p1q p´log tqdptK 2,p ρ kρ ptqq ‰ dptK 2,p ρ kρ ptqq ´ż 1 0 p´log tqdptK 2,ρ ptqq ´ż 1 0 " t ´1W ptq ´W p1q * ‰ `?k r A ´n k ¯"ż 1 0 t ´ρ ´1 ρ dptK 2,p ρ kρ ptqq ´ż 1 0 t ´ρ ´1 * ' ˇˇˇż 1 0 " t ´1W ptq ´W p1q ‰ t " K 1 2,p ρ kρ ptq ´K1 2,ρ ptq ı ˇˇˇ? k log Q n p1q U p n k q ´γW p1q ˇˇď dt ˇˇď dptK 2,ρ ptqq * ż 1 0 ˇˇt ´1W ptq ´W p1q ˇˇt ˇˇK 1 2,p ρ kρ ptq ´K1 sup tPp0,1s t 1 2 `ε ˇˇˇ? k ˆlog Q n ptq U p n k q `γ log t ˙´γt ´1W ptq ´?k r A ´n k ¯t´ρ ´1 ˇˇˇ" op1q, ρ 2,ρ ptq ˇˇdt from which we deduce that dptK 2,ρ ptqq ż 1 ż 1 ρ `op1q ż 1 0 t ´1 2 ´εdptK 2,p ρ kρ ptqq `op1q ż 1 0 ď |p ρ kρ |p1 ´p ρ kρ q 0 ˇˇt ´1W ptq ´W p1q ˇˇdt T 4 P ÝÑ 0. 0 t ´1 2 ´εdptK 2,ρ ptqq " γ ? k " " ´t log t ´K2,p ρ kρ ptq ´K2,ρ ptq ¯ı1 0 `ż 1 0 K 2,p ρ kρ ptqdt * " o P p1q. Clearly, under our assumptions, we also have ´ż 1 0 K 2,ρ ptqdt T 5 ÝÑ 0.
	`γ "ż 1 0 Now, according to the inequality (19) " t ´1W ptq ´W p1q ‰ ´K2,p ρ kρ ptq ´K2,ρ ptq ¯dt	`ż 1 0	"	t ´1W ptq ´W p1q ‰	* 2,ρ ptq ¯dt 2,p ρ kρ ptq ´K1 t ´K1
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	`oP p1q. Now, note that for ε P p0, 1{4q and r ρ a random value between ρ and p ρ kρ , we have " ? k ´p γ k pK p ∆ opt q ´γ¯`? k log k np log Q n p1q U p n k q ´?k log k np # log p q U p n k q U p 1	´γ log	np k	+
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			tPp0,1s `|p ρ kρ ´ρ| ż 1 0 ˇˇt ´1W ptq ´W p1q ˇˇdt ? k rp γ k pK 1 q ´p γ k pK 2,ξ qs tPp0,1s ´p1 ´ξqp1 ´2ξq ξ 2 log k np	´k np ¯ξ ξ	0 ´1
		ď	4 1 ´4ε ": T 3 `T4 ´T5 ´T6 ´T7 . tPp0,1s ˇˇp ρ kρ ´ρˇˇp 1 ´p ρ kρ q sup ˇˇt 1 2 `ε "	t ´1W ptq ´W p1q	tPp0,1s ˇˇsup ‰ p´log tqt	1 4 ´r ρ
				ż 1	
			`|p ρ kρ ´ρ|		ˇˇt ´1W ptq ´W p1q ˇˇdt
		" o P p1q,	0	T 3

d

ÝÑ Np0, AVpK ∆ opt qq.

  Inspired by[START_REF] De Haan | On the estimation of high quantiles[END_REF], we study this integral by using the inequality

			T 7 " o P p1q `oP p1q	$ ' & ' %	´k np	¯p ρ ρ p	´1	np ¯ρ ´´k ρ	´1	, / . / -
									ż k{pnpq
			" o P p1q `oP p1q		s ρ´1 "	s p ρ´ρ ´1‰ ds.
									1
				ˇˇˇe	x ´1 x	´1ˇˇˇˇď	e |x| ´1, @x P R,
	from which we deduce that						
	ˇˇˇˇż	k{pnpq			ż k{pnpq			ˇˇˇď
		s ρ´1 "	s p ρ´ρ ´1‰ ds ´pp ρ ´ρq			s ρ´1 log s ds
	1			1				
			ˇˇˇˇp ρ ´ρq p	1 ż k{pnpq	s ρ´1 log s	"	exptpp ρ ´ρq log su pp ρ ´ρq log s	´1	´1*	ds	ˇˇˇď
			ż k{pnpq				
			|p ρ ´ρ|						
			" exp ˆ|p ρ ´ρ| log	k np	˙´1 *	ż k{pnpq 1	s ρ´1 log s ds
			" O P ˜pp ρ ´ρq 2 log	np k	1 ż k{pnpq	s ρ´1 log s ds "
			o P p1q.						
	This implies that						
		ż k{pnpq						ż k{pnpq
			s ρ´1 " s p ρ´ρ ´1‰ ds " pp ρ ´ρq	s ρ´1 log s ds `oP p1q " o P p1q.
			1							1

1 s ρ´1 log s texpp|p ρ ´ρ| log sq ´1u ds ď |p ρ ´ρ|
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