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Frédéric Fumeron,4,5,6,7 Pedro Marques-Vidal,8 Alain Ktorza,9 Werner Kramer,10 Anke Schulte,11 Hervé Le Stunff,3,12
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SUMMARY

Plasma metabolite concentrations reflect the activ-
ity of tissue metabolic pathways and their quan-
titative determination may be informative about
pathogenic conditions. We searched for plasma lipid
species whose concentrations correlate with various
parameters of glucose homeostasis and susceptibil-
ity to type 2 diabetes (T2D). Shotgun lipidomic anal-
ysis of the plasma of mice from different genetic
backgrounds, which develop a pre-diabetic state
at different rates when metabolically stressed, led
to the identification of a group of sphingolipids
correlated with glucose tolerance and insulin secre-
tion. Quantitative analysis of these and closely
related lipids in the plasma of individuals from two
population-based prospective cohorts revealed
that specific long-chain fatty-acid-containing dihy-
droceramides were significantly elevated in the
plasma of individuals who will progress to diabetes
up to 9 years before disease onset. These lipids
may serve as early biomarkers of, and help
identify, metabolic deregulation in the pathogenesis
of T2D.
Cell Rep
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INTRODUCTION

Type 2 diabetes mellitus (T2D) is diagnosed based on elevated

fasting glycemia and abnormal glucose tolerance tests. These

deregulations are caused by genetic and lifestyle factors, which

lead to the failure of beta cells to secrete enough insulin to

compensate for the insulin resistance of liver, fat, and muscles.

The specific pathogenic mechanisms that lead to the imbalance

between insulin secretion and insulin action are, however, poorly

understood. Nevertheless, it is known that initial defects in

specific metabolic, signaling, or differentiation pathways in

pancreatic beta cells or insulin target tissues may all induce

whole body functional deregulations that ultimately cause T2D.

This is exemplified by the various forms of maturity onset dia-

betes of the young (MODY) (Bonnefond and Froguel, 2015),

which are monogenic forms of diabetes affecting mostly pancre-

atic beta-cell function, or by numerous studies of mice with cell-

specific inactivation of genes involved in insulin signaling or

insulin secretion, which all develop T2D (Baudry et al., 2002).

Thus, T2D may have multiple initial causes and identifying

them before the onset of hyperglycemia may help develop pre-

ventative strategies or therapeutic approaches based on spe-

cific pathogenic mechanisms.

Identification of circulating biomarkers that could predict the

susceptibility to T2D and be used to monitor the progression of

the disease is important in developing better treatments and in
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designing innovative clinical trials. Plasma metabolomic studies

may identify such biomarkers. Indeed, it has been hypothesized

many years ago (Pauling et al., 1971) that quantitative determina-

tion of plasma metabolite concentrations could give precise in-

formation about the activity of specific metabolic pathways,

the functional state of the organs in which they operate, and their

deregulations in pathogenic conditions. Many studies have

searched for plasma metabolite biomarkers for T2D susceptibil-

ity (Ferrannini et al., 2013; Stancáková et al., 2012; W€urtz et al.,

2012; Zhao et al., 2010), but predictive biomarkers for T2D are

not yet available, in particular, because the combination of

several biomarkersmay be needed to obtain sufficient prediction

power (Cobb et al., 2015). Finding such biomarkers is critical to

identify the original metabolic deregulations that cause T2D.

These biomarkers can then be used to classify diabetes accord-

ing to the causal pathogenic mechanisms and develop personal-

ized treatment of the disease.

It would be advantageous to find biomarkers that are simi-

larly predictive of disease susceptibility in mouse and humans.

Indeed, animal studies are critical to (1) experimentally deter-

mine whether the circulating biomarker correlates with or in-

duces beta-cell dysfunction or insulin resistance in liver, fat,

or muscle and (2) identify the tissue that produces the

biomarker as this may become a therapeutic target. On the

other hand, population-based prospective cohorts are required

to validate the prognostic value of the biomarker, which may be

coupled, for instance, to already gathered genetic data to

potentially provide composite biomarkers of higher predictive

power.

It is well established that mice fed a high-fat (HF) diet develop

a form of pre-diabetes characterized by obesity, mild fasting hy-

perglycemia, hyperinsulinemia, insulin resistance, and glucose

intolerance (Burcelin et al., 2002; Surwit et al., 1988). However,

the metabolic deregulations induced by high-fat diet feeding are

largely influenced by the genetic background (Andrikopoulos

et al., 2005; Rossmeisl et al., 2003; Surwit et al., 1995). Thus,

studying adaptation of mice from diverse genetic backgrounds

to metabolic stress offers a powerful way to identify the

changes in plasma metabolites that are most relevant to assess

the risk of developing T2D. The availability of population-based

prospective cohorts such as data from an epidemiologic study

on the insulin resistance syndrome (DESIR) cohort (Balkau

et al., 2008) and Cohorte Lausannois (CoLaus) (Firmann et al.,

2008), which comprise hundreds of individuals who have pro-

gressed from a healthy state to T2D, provide a unique resource

for the validation of the biomarkers identified in pre-clinical

models.

In the present study, we report the identification of a group of

sphingolipids associated with impaired glucose tolerance and

altered insulin secretion in mice exposed to metabolic stress.

Targeted analysis of these sphingolipids in over 250 individuals

from two different prospective cohorts who developed T2D re-

vealed that the plasma concentrations of dihydroceramide and

ceramide species are significantly elevated as compared to con-

trol individuals up to 9 years before development of T2D. These

sphingolipids are therefore biomarkers for T2D susceptibility and

may help identify primary metabolic deregulation in the patho-

genesis of T2D.
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RESULTS

Plasma Levels of Certain Ceramides and Ceramide
Derivatives Correlate to Glucose Tolerance and Insulin
Secretion in Metabolically Challenged Mice
Mice from six genetically different mouse strains (C57BL/6J,

DBA/2J, 129S2/SvPas, AKR/J, A/J, and BALB/cJ) were fed a

high-fat, high-sucrose (HFHS) or regular chow (RC) diet for 2,

10, 30, or 90 days, after which time several phenotypic measure-

ments were performed, including glycemia, insulinemia, glucose

tolerance, and in vitro glucose-stimulated insulin secretion

(detailed study to be reported separately). At each time point

and for each mouse strain and diet, plasma samples were taken

from six different mice and analyzed using a combined shotgun

and targeted lipidomics strategy. In this strategy, 135 molecular

lipids of 19 different lipid classeswere quantified including sphin-

golipids [ceramides Cer(d18:1), dihydroceramides Cer(d18:0),

ceramide derivatives, and sphingosine] and triacylglycerides

(TAGs) (see Experimental Procedures). The plasma lipids

showed distinct profiles across samples, where both genetic

background and diet strongly influenced plasma lipid concentra-

tions. This can be seen by distinct patterns of high and low lipid

concentrations across the mouse strains on different diets and

different time points in the study (Figure S1). We next correlated

the lipids to each of the phenotypic traits in order to identify those

lipids that were potentially associated with mouse phenotypes

related to pancreatic dysfunction and diabetes. Figure 1 shows

a network representation of the strongest lipid trait correlations

(absolute Spearman correlation jrs jR0:4) with lipids and pheno-

typic traits as nodes and correlations as edges. Lipids were

selected for further investigation (marked with red borders in Fig-

ure 1) if they were (1) strongly correlated to glucose tolerance or

insulin secretion or both, which we regarded as the primary traits

of interest in mice, and (2) in addition to these to one or several of

HOMA-B, HOMA-IR, and fasting insulin. Correlation data that

were used to generate the network in Figure 1 are included in

Table S1. Three ceramides, one dihydroceramide, and two lac-

tosylceramides satisfied these criteria due to their correlations

with several traits including glucose intolerance and insulin

secretion and were selected for further investigation. Correlation

data for these selected lipids with the different phenotypic traits

are included as a separate sheet in Table S1. Scatterplots of

these lipids showing correlations with six mouse traits are shown

in Figure S2. Most of them are positively correlated to glucose

intolerance (area under the curve [AUC] of glycemia) and nega-

tively correlated to insulin sensitivity (AUC of insulinemia) as

well as positively correlated to fasting insulin, insulin secretion,

and HOMA-B, suggesting that they might be early markers of

the pre-diabetic phenotype induced by high-fat diet in mice.

The plasma levels of many of these sphingolipids were also

significantly increased by HFHS diet but to differing degrees in

the six mouse strains (Figure S3; Table S2). There are also

marked differences between certain strains. For example,

Cer(d18:1/22:0) (SwissLipids ID: SLM:000392149) plasma con-

centration increased over time in both RC and HFHS-fed mice

in DBA/2J, but started high and decreased over time in BALB/

cJ mice. BALB/cJ mice are interesting since they showed the

strongest early diabetic phenotype compared to the other



Figure 1. Ceramides Are Correlated to Glucose Intolerance and Insulin Sensitivity in Metabolically Challenged Mouse Strains

Lipid-trait network showing plasma lipid correlations with five measured phenotypic traits. Correlations are represented as edges between lipid nodes and trait

nodes. Only correlations with absolute valueR0.4 are shown. The graph was produced using the ForceAtlas2 layout inGephi 0.9.1with scaling = 10, gravity = 1,

and edge weight influence =1, and overlapping labels were adjusted using Label Adjust. Each trait node is depicted as a different color, and edges are colored

according to the correlated trait. Edge width is proportional to correlation strength from minimum 0.4 to maximum 0.65. Solid edge lines indicate positive

correlations; dashed lines indicate negative correlations. Node label size is proportional to degree (total number of connections). Ceramide lipids that were

chosen for further investigation based on their correlations to several mouse traits are boxed in red. (See Table S1 for the correlation data fromwhich the network

was constructed.)
strains (C.C.-G., J.D., N.F., R.L., L.W., I.U., I.X., H.L.S., B.T.,

C.M., M.I., L. Bellini, M. Oshima, P. Normandie-Levi, X.P.

Berney, N. Kassis, C. Rouch, J. Dairou, T. Gorman, D. Smith,

A. Marley, D. Kuznetsov, F. Burdet, A.-L. Lefèvre, I. Wehrle,

T. Hildebrandt, W. Rust, C. Bernard, A. Ktorza, G.A. Rutter,

and R. Scharfmann, unpublished data). It is therefore intriguing

that plasma levels of all six of the sphingolipid species on RC

diet were higher in BALB/cJ compared to the other strains (Fig-

ure S3), suggesting that plasma levels of these lipids might indi-

cate predisposition to high-fat-induced diabetes in mice.

A Class of Ceramides Is Elevated in Human Plasma 9
Years before Disease Diagnosis
The results in mouse prompted us to investigate whether the

same or similar sphingolipid species were associated with pre-

diabetes in humans. We therefore performed targeted ceramide

lipidomics on plasma samples from a longitudinal human cohort

(DESIR). Samples from this cohort were divided into a control

group and three groups of cases, corresponding to different

time durations from inclusion in the study to disease diagnosis:

group 1 contained individuals who were diagnosed with T2D at

3 years; group 2 were diagnosed at 6 years, and group 3 at

9 years. In each group, plasma samples were obtained every

3 years: for group 1, there were two sets of samples (baseline

and follow-up at 3 years, n = 81 and n = 82), for group 2 three

sets (baseline, 3 and 6 years (T2D diagnosis), n = 48, n = 49,
n = 48) and for group 3 four sets (baseline, 3, 6, and 9 years

(T2D diagnosis), n = 62, n = 62, n = 61, n = 61). For the control

group, there were also four sets (baseline, 3, 6, and 9 years,

n = 105, n = 102, n = 104, n = 97). Within each group, the number

of samples n available at each time point differed slightly due to

missing samples and samples excluded because of quality is-

sues. The definition of T2D diagnosis was that an individual either

had a fasting glucose level above 7 mmol/L or was under antidi-

abetic drug treatment at the time of sample collection. We per-

formed statistical comparisons correcting for age and sex,

comparing cases and controls at baseline, 3, 6, and 9 years for

the three groups (see Experimental Procedures). We found that

several of the ceramide species that were correlated to glucose

intolerance in mouse, namely, Cer(d18:1/18:0) (SwissLipids

ID: SLM:000392135), Cer(d18:1/20:0) (SLM:000392142), and

Cer(d18:1/22:0) (SLM:000392149), were significantly elevated

in the plasma of patients 3 years before T2D diagnosis (Figure 2),

but this was only observed in a single group of patients (group 1).

Remarkably, we found that the class of dihydroceramides,

Cer(d18:0), which are precursors of the ceramides and differ

from them by a single double bond (Aimo et al., 2015), were

significantly and reproducibly elevated in the plasma of all

groups of patients at all time points of the study compared to

controls (Figure 2). Dihydroceramide species Cer(d18:0) were

elevated in plasma samples of patients up to 9 years prior to

T2D diagnosis. Figure 3B shows details of the fold change and
Cell Reports 18, 2269–2279, February 28, 2017 2271



Figure 2. Dihydroceramides Are Elevated in

Plasma up to 9 Years before Incident Disease

Heatmap of t statistics calculated between diabetic

subjects and the control samples corrected for age

and sex. The mean lipid concentration from each

subject group at each time point was compared to

the mean lipid concentration from the control group

taken during the same sample collection period.

White, no difference between diabetic and control

group; red, higher value in diabetic group; blue,

lower value in diabetic group. Asterisks indicate

significance of differences between cases and

controls (*adjusted p < 0.05, **adjusted p < 0.01,

***adjusted p < 0.001, p values adjusted for multiple

correction across 37 lipids by the Benjamini-Hoch-

berg method).
significance for ceramide changes 9 to 3 years before diag-

nosis compared to controls for group 3, highlighting the

Cer(d18:0) class lipids. The fold change difference in mean dihy-

droceramide Cer(d18:0) concentrations observed between

cases and controls remains stable over time (Figure 3A). Addi-

tional correction for BMI or low-density lipoprotein (LDL) dimin-

ished the statistical significance of case-control differences,

but the overall pattern remained the same (Figure S4). Interest-

ingly, one of the dihydroceramides showing the most signifi-

cant differences between cases and controls, Cer(d18:0/22:0)

(SwissLipids ID: SLM:000392085), was also significantly posi-

tively correlated to glucose intolerance in mouse (Figures 1

and S2). These results suggest that dihydroceramide plasma

levels could be stably associated with T2D predisposition.

Dihydroceramides Are Elevated in Plasma 5 Years
before Disease Onset in an Independent Cohort
We sought to validate our findings from the DESIR cohort in an

independent cohort. We performed targeted lipidomics analysis

on plasma samples from the CoLaus cohort at baseline and

5 years (T2D diagnosis). The number of samples n in each group

was 150, less a small number of samples (up to three per group

and time point) that were either entirely missing or excluded after

the lipidomics analysis (for sample numbers, see Table S6). The

results (Figure 2) showed elevated plasma concentrations of the

same dihydroceramide Cer(d18:0) species that were signifi-

cantly elevated in the DESIR cohort at baseline and diagnosis,

thus confirming our previous results. Similar to the results ob-

tained for the DESIR cohort, Cer(d18:0) levels are elevated to

similar levels at both baseline and diagnosis, indicating that

this lipid class could be associated with T2D predisposition
2272 Cell Reports 18, 2269–2279, February 28, 2017
(Figure 4A). Interestingly, many of the

Cer(d18:1) lipids (ceramides) that were

significantly different between cases and

controls in group 1 of the DESIR cohort

(baseline 3 years before T2D diagnosis)

and in the mouse study (Figures 1 and

S2) were also significantly elevated in

CoLaus 5 years prior to diagnosis (Fig-

ure 2). Additional correction for BMI, LDL,

insulin or glycemia had little effect on the
significance of observed increases of ceramide Cer(d18:1) or

dihydroceramide Cer(d18:0) levels at baseline in CoLaus,

although insulin and glycemia had a larger effect on groups 2

and 3 of the DESIR cohort (Figures S4 and S5).

High Plasma Levels of Dihydroceramides May Be
Associated with an Increased Risk of Future Diabetes
Logistic regression models were performed on both the DESIR

and the CoLaus data in order to compute adjusted odds ratios

for Cer(d18:0) and Cer(d18:1) species. Results from the DESIR

cohort, from all three groups at all time points before diabetes

incidence, are shown in Table S7. The basic model included

age and sex as covariates besides the lipid concentration. Addi-

tional models included one further covariate (BMI, LDL, fasting

glucose, insulin, HOMA2-%B, HOMA2-%S, and waist circum-

ference). The odds ratios provided are ‘‘inter-quartile range

odds ratios’’; that is, they are calculated per increase of the lipid

concentration by an amount equal to the difference between the

top and bottom quartile. There are marked differences in the re-

sults from the three groups of study participants. Results from

group 1 (3 years before diabetes) show odds ratios greater

than 2 for the total dihydroceramides concentration and for the

three Cer(d18:1) ceramides, regardless of the other covariates

added to the model. In groups 2 and 3 (6 and 9 years before dia-

betes, respectively), dihydroceramides have lower but still signif-

icant odds ratios than for group 1 from the basic regression

model with age and sex, but, if glucose or insulin is added to

the model, the odds of belonging to the diabetic group are not

significantly increased in patients with higher lipid concentration

(confidence intervals of odds ratios tend to span 1 or come close

to 1). Similarly, except for Cer(d18:1/18:0) in group 2 at year 0,



A

B

Figure 3. Mean Lipid Concentration of Dihy-

droceramides Are Significantly Elevated at

All Time Points in the DESIR Study

(A) Mean plasma concentrations of dihydrocer-

amides plotted over time. The left two plots

show individual lipid species that represent well

the behavior of the class Cer(d18:0/22:0) and

Cer(d18:0/24:0). The rightmost plot represents the

class total for Cer(d18:0). The group means are

consistently higher in diabetes cases as compared

to control samples. x axis: time point of collection.

y axis: mean lipid concentration in each of the

groups. Error bars: SEM of the lipid concentration.

Asterisks at each time point represent significance

of the statistical test comparing cases to controls

(age- and sex-corrected linear model): *adjusted

p < 0.05, **adjusted p < 0.01, ***adjusted p < 0.001

(p values adjusted for multiple correction across 37

lipids by the Benjamini-Hochberg method).

(B) Volcano plots of statistical tests comparing 37

lipid species in each group of diabetic subjects

versus the control samples from the same

sample collection period (linear model, containing

factors for sex and age). A single lipid class is

robustly increased in all diabetic groups and at

all time points, before and after onset of dia-

betes: Cer(d18:0), dihydroceramides. Cer(d18:0/

22:0) (highlighted in red), which was identified in the

mouse study as strongly correlated to the AUC of

glycemia, was elevated at all time points shown.

x axis: log2 fold change between cases and con-

trols. y axis: log10 of the p value. Circles with blue

outlines: the five lipid species from class Cer(d18:0).

Solid blue circle: the class total from class

Cer(d18:0). The plots shown are from DESIR

group 3, at 9 (left), 6 (center), and 3 (right) years

before subjects were identified as diabetic.
none of the three ceramides from Cer(d18:1) show odds ratios

significantly different from 1 in groups 2 and 3.

Results from CoLaus are shown in Table 1. The same logistic

regression models were applied as for the DESIR cohort, except

that bioimpedance was also included (this was not available for

the DESIR cohort). For an individual whose plasma lipid concen-

tration was at the top quartile at baseline, the sex- and age-

adjusted odds of belonging to the group that became diabetic

were around two to 2.5 times higher than theywere for an individ-

ual at the bottom quartile, depending on lipid species [example:

Cer(d18:0/24:0), adjusted odds ratio 2.37, 95%CI, 1.69–3.33]. In

all tests, the lower limit of the 95% confidence interval remains

above 1. This suggests that a high plasma level of any of these

lipids is associated with an increased risk of future diabetes

compared to low plasma level. Inclusion of BMI, LDL, or fasting

glucose as covariates in the model results in smaller odds ratios

than the basic model, but the lower bound of the confidence in-

tervals remains above 1, indicating that the association remains

significant.

Decision curve analysis (Rousson and Zumbrunn, 2011; Vick-

ers and Elkin, 2006) was performed as described in Experimental

Procedures. Briefly, this analysis quantifies the predictive value

of a potential biomarker using a net benefit measure that can
be plotted as a curve for different probability cutoffs. Decision

curve results for CoLaus suggests that the Cer(d18:0) lipid class

is a better predictor (higher net benefit) for T2D outcome than

LDL, HOMA2-%B, and HOMA2-%S (Figure 5). Fasting glucose

by itself is the strongest predictor among the variables that

were tested. The combined model of the lipid class and fasting

glucose has about the same net benefit as themodel with fasting

glucose by itself. Adding the lipid does not appear to improve the

prediction above glucose alone (Figure 5). Similar results were

obtained from analysis of the DESIR cohort (data not shown).

On the other hand, the results also suggest that a combined

model of the lipid class and BMI is a better predictor than BMI

by itself. The same is true for waist circumference, bio-

impedance, and insulin (Figure 5), suggesting that Cer(d18:0)

lipids may constitute a plasma biomarker that could be used in

combination with other measures to help predict T2D.

DISCUSSION

In the present study, we first investigated the plasma lipidome of

mice from different genetic backgrounds exposed to ametabolic

stress for different periods of time. The rationale for these exper-

iments is that because of their diverse genetic architectures, the
Cell Reports 18, 2269–2279, February 28, 2017 2273
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Figure 4. Dihydroceramides Are Elevated in

Plasma 5 Years before Incident Disease in

an Independent Cohort

(A) Group means of dihydroceramides (Cer(d18:0)

are elevated in diabetic cases compared to con-

trols, both at baseline (5 years before) and at dia-

betes onset. Asterisks at each time point represent

significance of the statistical test comparing cases

to controls (age- and sex-corrected linear model):

*adjusted p < 0.05, **adjusted p < 0.01, ***adjusted

p < 0.001 (p values adjusted for multiple correction

across 37 lipids by the Benjamini-Hochberg

method).

(B) Volcano plots of statistical tests comparing 37

lipid species in each group of diabetic subjects

versus the control samples from the same sample

collection period (linear model, containing factors

for sex and age). The same Cer(d18:0) class of di-

hydroceramides is significantly increased in plasma

at 5 years before and at disease diagnosis. Lipids

highlighted in red were identified in the mouse study

as strongly correlated to AUC of glycemia and were

elevated at 5 years before [Cer(d18:1/22:0)] or both

at 5 years before and at diagnosis [Cer(d18:1/18:0),

Cer(d18:0/22:0)]. x axis: log2 fold change between

cases and controls. y axis: log10 of the p value.

Circles with blue outlines: the five lipid species from

class Cer(d18:0). Solid blue circle: the class total

from class Cer(d18:0).
selected mouse strains display different phenotypic adaptation

to HFHS feeding. Thus, if a group of lipids correlates strongly

with a given phenotype across strains, it is likely to represent a

general biomarker for susceptibility to develop T2D. The overall

goal of the mouse experiment was to select the most likely

biomarker candidates to follow up in human cohorts. Following

this approach, we identified a group of sphingolipids as being

correlated with insulin secretion and glucose intolerance.

Several of those were also found to be strongly associated

with the risk to develop T2D in both the DESIR and CoLaus

cohorts.

In mice, three ceramides [Cer(d18:1/18:0, 20:0 and 22:0)], two

lactosylceramides (LacCer18:1/22:0 and 24:1), and one dihydro-

ceramide [Cer(d18:0/22:0)] were found at a central interaction

point in a lipid-phenotype correlation network between glucose

intolerance, insulin secretion, fasting insulin, and HOMA-B. In

both human cohorts, the susceptibility to develop T2Dwas asso-

ciated with increased plasma levels of several ceramide and

dihydroceramide species, of which the ceramides Cer(d18:1/

18:0), Cer(d18:1/20:0), Cer(d18:1/22:0), and the dihydrocera-

mide Cer(d18:0/22:0) were also found in pre-diabetes in mice.
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The fact that the same group of sphingoli-

pids was associated with susceptibility

to T2D in two separate cohorts as well

as in mice strongly suggests that they

may represent reliable biomarkers. This is

further supported by the fact that a signifi-

cant association of these lipids, but, in

particular, the dihydroceramides in DESIR

group 1 and in CoLaus samples, with
T2D risk is conserved even after correction for LDL, BMI, or gly-

cemic levels as covariates. These observations also suggest that

in humans dihydroceramides may play a particular role in T2D

progression.

Dihydroceramides are produced in the third step of the

de novo ceramide biosynthetic pathway initiated by serine pal-

mitoyl transferase. They are converted into ceramides by cer-

amide desaturase, of which two isoforms exist, the ubiquitously

expressed Des1, and Des2 which is expressed mostly in the gut

and skin (Bikman and Summers, 2011). Despite being once

considered inert sphingolipid precursors, dihydroceramides

have recently been proposed as biomarkers of metabolic

dysfunction (Siddique et al., 2015). Circulating levels of dihydro-

ceramides were shown to be elevated in T2D in young adults

(Lopez et al., 2013) and have been associated with waist circum-

ference (Mamtani et al., 2014) and severity of insulin resistance

(Brozinick et al., 2013). At cellular levels, increased concentra-

tions of dihydroceramides can regulate autophagy, reactive

oxygen species production, cell proliferation, and apoptosis

(Rodriguez-Cuenca et al., 2015; Siddique et al., 2015). This has

been studied in detail in 3T3-L1 adipocytes where silencing of
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Des1 expression or its pharmacological inhibition decreases

adipocytes proliferation, differentiation, and function (Barbarroja

et al., 2015). Addition of fenretinide (N-(4-hydroxyphe- nyl)retina-

mide, FEN), an inhibitor of Des1 (Bikman et al., 2012), to human

cells leads to accumulation of dihydroceramides (Zheng et al.,

2006). Increased dihydroceramide levels in HFHS-fed mice

treated with FEN are associated with improvements in glucose

homeostasis (Mody and Mcilroy, 2014). However, FEN is also

an antagonist of retinoic acid receptor (RAR), and the effect of

this drug on metabolic diseases is complex and not restricted

to the increase in dihydroceramides (Mcilroy et al., 2013, 2016).

Thus, an increase in plasma levels of dihydroceramides may

have multiple effects on specific cellular functions, which may,

combinedwith the already well described role of ceramides in in-

duction of insulin resistance (Bikman and Summers, 2011;

Chaurasia and Summers, 2015), contribute to induce T2D. The

potential impact of elevated dihydroceramides on insulin secre-

tion and insulin action will need to be tested specifically; avail-

ability of relevant preclinical models will be important for these

purposes. It will also be important to determine which tissue

produces these sphingolipids. This could be investigated by

assessing the tissue expression of the six different ceramide

synthase (Cers) isoforms with a focus on Cers2, Cers3, and

Cers4, which preferentially catalyze the formation of very long-

chain fatty-acid-containing ceramides (Chaurasia and Sum-

mers, 2015). On the other hand, reduced expression of Des1

and Des2 may also explain the increased accumulation of dihy-

droceramides. Of note, the Des1 gene was found to be associ-

ated with increased fat mass accumulation in a genetic screen

in HFHS-fed recombinant inbred mice (Parks et al., 2013).

The fact that the identified ceramides and dihydroceramides

contain long-chain fatty acids of diverse desaturation levels

also suggests that beyond changes in ceramide biosynthetic

pathways, changes in fatty-acid-modifying pathways may

contribute to the chemical diversity of the ceramides. We know

from previous studies (Ding et al., 2013) that the NC diet does

not contain fatty acids with chain length R20 carbons. Thus,

the presence of sphingolipids with R20 carbon fatty acids of

diverse desaturation levels most likely reflects contribution of

elongases and desaturases acting on ingested or newly synthe-

sized fatty acids (Guillou et al., 2010).

Collectively, our data show that combining lipidomic analysis

in preclinical models and in human prospective cohorts allows

identifying robust biomarkers for susceptibility to develop T2D,

up to 9 years before the disease is diagnosed. Future studies

should aim at evaluating the potential role of these sphingolipids

on insulin secretion and insulin action and whether they can be

combined with other biochemical or genetic biomarkers to

improve their prediction power.

EXPERIMENTAL PROCEDURES

Animal Housing and Diet

Male mice from six different strains (C57BL/6J, DBA/2J, AJ, Balb/cJ, AKR/J,

and 129S2/SvPas) were housed on a 12-hr light/dark cycle and were fed a

standard rodent chow (SAFE A04) or HFHS diet (SAFE 235F, with 46% fat

and 38.5% carbohydrates expressed in Kcal/kg), ad libitum for 2, 10, 30,

and 90 days. At each time point, mice were phenotyped for body weight,

pancreas weight, fasting glycemia and insulinemia, glucose and insulin
Cell Reports 18, 2269–2279, February 28, 2017 2275



Figure 5. High Plasma Levels of Dihydroceramides May Be Associated with an Increased Risk of Future Diabetes

Decision curves, based on predicted probabilities from logistic regression tests. Standard net benefit is plotted against probability thresholds. Each plot

compares three models: model with Cer(d18:0), model with a clinical variable, model with both. All models are adjusted for age and sex. Higher net benefit over a

range of probability thresholds means that the model performs better as a predictor of T2D (as long as a threshold in that range is used for classifying individuals

as susceptible).
tolerance, as well as glucose-stimulated insulin secretion assessed using pu-

rified islets. Mice were fasted for 5 hr before the different tests were performed.

The details of this study will be reported separately. The experimental protocol

was approved by the institutional animal care and use committee of the Paris

Diderot University (CEEA40, reference CERFE 2009-033).

Study Populations

Samples from the DESIR Cohort

The DESIR study (Balkau et al., 2008) was a population-based longitudinal

study on male and female volunteers between 30 and 65 years of age, con-

ducted in ten health examination centers in western France between 1994

and 2004. Study participants visited a center four times between 1994 and

2004, with an interval of approximately 3 years between visits. The time points

of the four visits are labeled year 0 (Y0), year 3 (Y3), year 6 (Y6), and year 9 (Y9).

The visits took place in the following time intervals: Y0: 07/1994–02/1996; Y3:

09/1997–11/1998; Y6: 10/2000–11/2001; Y9: 10/2003–10/2004. The study

was approved by the ethics committee (CCPPRB) of the Bicêtre Hospital first

in 1994 and then for addenda in 1997 and 2000. It was also approved by the

National Commission for Data Treatment (CNIL) in 1994, 1997, and 2008. All

subjects provided informed written consent.

For this work, three groups of diabetes cases were selected from the

study participants: all subjects who were determined to be diabetic for

the first time at Y3 (group 1), or at Y6 (group 2), or at Y9 (group 3), respec-

tively. Blood plasma samples for lipidomics analysis were picked from all

available time points before subjects were diabetic, and from the time point

when they were classified as diabetic for the first time, i.e., for group 1: Y0

and Y3; for group 2: Y0, Y3, and Y6; for group 3: Y0, Y3, Y6, and Y9. Sub-
2276 Cell Reports 18, 2269–2279, February 28, 2017
jects who were already diabetic at Y0 (baseline) were not included. In

addition, a group of control subjects was selected at random from the

entire pool of DESIR participants, and samples from all four time points

(Y0, Y3, Y6, and Y9) were picked. Due to the random selection without prior

filtering of subjects, the control group initially contained a small number of

participants with diabetes. Subjects with diabetes at any time point were

removed from the control group. Baseline clinical characteristics and details

of the numbers of samples analyzed in each of the groups are shown in

Tables S3 and S4.

Samples from the CoLaus Cohort

From the CoLaus (Cohorte Lausannoise) study (Firmann et al., 2008), a popu-

lation-based study of men and women living in Lausanne, Switzerland, plasma

samples for lipidomics analysis were obtained from two time points, year 0 (Y0)

and year 5 (Y5). A group of incident diabetes cases was picked, consisting of

participants who were diabetic at year 5 but not yet at year 0 and in the same

age range as the DESIR subjects. A group of sex- and age-matched control

subjects was also selected. Baseline clinical characteristics and details of

the numbers of samples analyzed in each of the groups are shown in Tables

S5 and S6. The institutional Ethics Committee of the University of Lausanne,

which afterward became the Ethics Commission of Canton Vaud, approved

the CoLaus baseline study in 2003 (reference 16/03) and renewed the approval

for two follow-ups in 2009 and 2014 (references 33/09 and 26/14). All partici-

pants gave their signed informed consent.

Definition of Diabetes Cases

In both cohorts, subjects were identified as incident diabetic cases either when

their fasting glucose level exceeded 7 mmol/L or when they were under treat-

ment for diabetes at the time of the health center visit.



Lipidomics Analysis

Lipid extraction, mass spectrometry (MS)-based lipid detection and data

processing for mouse and human samples was performed by Zora Biosci-

ences Oy (Jung et al., 2011). See Supplemental Experimental Procedures,

Lipid sample preparation and extraction and Mass spectrometric analyses

and data processing.

Data Preprocessing

Lipid concentrations that could not be measured and were missing from the

original lipidomics data files were imputed (see Supplemental Experimental

Procedures, Imputation of missing lipidomics values). In the DESIR cohort, a

batch effect in the lipidomics data, which resulted from processing the lipid

samples in two batches several months apart, was corrected using the

ComBat method (see Supplemental Experimental Procedures, Removing un-

wanted variation due to batch effect, DESIR cohort). Clinical data were log2-

transformed (except age and categorical or binary variables). Prior to the

log2 transformation, waist circumference in females was adjusted to account

for the difference in waist size between males and females (see Supplemental

Experimental Procedures, Data preprocessing in clinical variable’’).

Statistical Tests, DESIR Cohort

The main focus of this work was to compare the concentrations of ceramides

and related lipids in diabetes cases, before and after diabetes onset, to those

in the control group. Each group of cases from a certain time point (sample

collection period) was compared to the control samples from the same time

point. Time points were not mixed and not compared directly to one another

in order to avoid confounding with effects linked to sample storage duration

or collection date. This gave the following comparisons:

Year 0: Collection Dates 1994–1996, None of the Included Cases

Were Diabetic

d Group 1 (3 years before T2D) versus controls (not diabetic)

d Group 2 (6 years before T2D) versus controls (not diabetic)

d Group 3 (9 years before T2D) versus controls (not diabetic)

Year 3: Collection Dates 1997–1998, Group 1 Was Diabetic at This

Time Point

d Group 1 (diabetic) versus controls (not diabetic)

d Group 2 (3 years before T2D) versus controls (not diabetic)

d Group 3 (6 years before T2D) versus controls (not diabetic)

Year 6: Collection Dates 2000–2001, Group 2 Was Diabetic at This

Time Point

d Group 2 (diabetic) versus controls (not diabetic)

d Group 3 (3 years before T2D) versus controls (not diabetic)

Year 9: Collection Dates 2003–2004, Group 3 Was Diabetic at This

Time Point

d Group 3 (diabetic) versus controls (not diabetic)

The R language, version 3.2.1 was used. A linear model (R function lm) was

used for the comparisons, with variables for age and sex to address con-

founding factors. The statistical test was performed for each of the 37 lipid

species included in the lipidomics study, as well as the total concentrations

for each lipid class. Additional tests were run that included one more variable

in addition to age and sex, such as BMI, glycemia, or LDL. Within each

group/time point, the p values from all 37 lipid species were adjusted using

the Benjamini-Hochberg method to correct for multiple testing. In addition,

interquartile-range odds ratios were computed using logistic regression

models with different covariates. These are the odds ratios per increase in

lipid concentration by an amount equal to the interquartile range, i.e., the

magnitude of the interval between the top and the bottom quartile. The

lrm() function in the R package rms (Harrel, 2016), version 4.4-2, was used

with default parameters.

Statistical Tests, COLAUS Cohort

For the CoLaus cohort, the statistical tests with linear models were performed

in the same way as for the DESIR cohort. Cases were compared to controls at

year 0 and, in a separate test, at year 5. Interquartile odds ratios for year 0 were

also computed with the same method as described above for the DESIR

cohort.
Decision Curve Analysis

Logistic regression models were used to obtain predicted probabilities (of be-

ing a future diabetic) for all individuals. This was done separately for each

participant group at each time point with control samples from the same

time point. A 10-fold cross-validation scheme was applied: data within each

group (consisting of cases and controls) was divided into ten equal-sized

parts. Nine parts were used to calculate regression coefficients, and then

probabilities were computed for the tenth part. This was repeated until each

data part had been left out once, and all individuals had a predicted probability

assigned to them. All logistic regression models included age and sex as po-

tential confounders, and a clinical variable or the Cer(d18:0) concentration or

both clinical variable and Cer(d18:0) as the predictors of interest.

Decision curve analysis based on net benefits (Rousson and Zumbrunn,

2011; Vickers and Elkin, 2006) was performed to quantify the predictive value

of the plasma concentration of lipid class Cer(d18:0). Decision curve analysis is

commonly used on predicted probabilities resulting from logistic regression

tests. Similar to an ROC analysis, it assumes that participants will be classified

into ‘‘positives’’ and ‘‘negatives’’ by applying a threshold to the predicted prob-

abilities. It allows to compute a ‘‘net benefit’’ of using a particular statistical

model for prediction, across all possible probability thresholds.

The same predictor variables (measures known or thought to be associated

with diabetes) were used in this analysis as for the computation of odds ratios:

BMI, LDL, glucose, insulin, HOMA2-%B, HOMA2-%s, waist circumference,

and bioimpedance. For each of these variables, a logistic regression model

was defined that also included age and sex as covariates, and the same

was done for the lipid class Cer(d18:0). A decision curve plot was prepared

for each clinical variable to visually compare the performances of (1) the model

with the lipid, (2) themodel with the clinical variable, and (3) an additionalmodel

with both clinical variable and lipid. Our principal interest was to see if

combining the clinical variable and the lipid in a model improved prediction

over the model with only the clinical variable. We looked at the range of risk

thresholds between 0.6 and 0.8 to compare the performance of predictive

models. The net benefit was not adjusted for population prevalence of dia-

betes, so the risk thresholds on the x axis of the plots reflect the risk within

the case-control study setting, where about half of all participants are cases

(i.e., not the risk of an individual picked at random from the population). This

does not matter for comparing decision curves with one another.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and seven tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2017.02.019.

AUTHOR CONTRIBUTIONS

L.W. and M.I. performed analysis and prepared figures and tables. R.L., L.W.,

and M.I. annotated and managed the data with contributions from R.R., A.N.,

and P.M.-V. B.T., L.W., andM.I. wrote the original draft with contributions from

H.L.S., C.C.-G., C.M., F.F., P.M.-V., P.W., G.W., and R.R.M.I. and I.X. oversaw

the bioinformatics analysis. J.D., N.F., C.C.-G., and C.M. performed mouse

experiments. F.F., A.N., P.M.-V., P.W., G.W., and R.R. provided samples

and metadata for human lipidomics analysis. B.T., A.K., and W.K. conceived

experiments and managed and coordinated the research project with support

from A.S. and I.U.

ACKNOWLEDGMENTS

Wewould like to thank Peter Hecht for continual support for this project and all

of the members of the IMIDIA consortium for support and advice. We would

like to thank Charlotte Soneson from the SIB Swiss Institute of Bioinformatics

for her expert statistical advice, and Alan Bridge and Lucila Aimo, also from the

SIB, for helpful discussions on lipidomics and lipid nomenclature. Further, we

would like to thank the Centre d’Exploration et de Recherche Fonctionnelle Ex-

périmentale (CERFE) for expert animal housing, and Zora Biosciences Oy, who

performed the quantitative lipidomics analysis, for their excellent service. The
Cell Reports 18, 2269–2279, February 28, 2017 2277

http://dx.doi.org/10.1016/j.celrep.2017.02.019


work leading to this publication has received support from the Innovative Med-

icines Initiative Joint Undertaking under grant agreement no. 155005 (IMIDIA),

resources of which are composed of a financial contribution from the Euro-

pean Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA

companies’ in kind contribution. The CoLaus study was and is supported by

research grants from GlaxoSmithKline, the Faculty of Biology and Medicine

of Lausanne, and the Swiss National Science Foundation (grants 33CSCO-

122661, 33CS30-139468, and 33CS30-148401). Additional support was pro-

vided by the Swiss National Science Foundation grant 3100A0B-128657

to B.T. Alain Ktorza was an employee of Servier, Werner Kramer is an indepen-

dent scientific adviser, Anke Schulte is an employee of Sanofi-Aventis, and

Ingo Uphues is an employee of Boehringer Ingelheim. The other authors

have no conflict of interest related to this work.

Received: June 10, 2016

Revised: November 7, 2016

Accepted: February 4, 2017

Published: February 28, 2017
REFERENCES

Aimo, L., Liechti, R., Hyka-Nouspikel, N., Niknejad, A., Gleizes, A., Götz, L.,
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