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Abstract

Charged Couple Device (CCD) technology is widely used in various scientific

measurement contexts. CCD equipped cameras have revolutionized astronomy

and space-related optical telescope measurements in recent years. They are

also used in electroscopic measurements, e.g., in fields such as geology, biology,

and medicine. The signal-to-noise ratio and the probability of detection are

crucial to design experiments observation setups properly and to employ further

mathematical methods for data exploitation such as, e.g. multi-target tracking

methods. Previous attempts to correctly characterize the signal-to-noise ratio

for star observations are revisited in this work and adapted for the application

of near-Earth object observations and high precision measurements, leading to a

modified CCD equation. Our formulation proposes a novel distribution of the

signal noise that accurately accounts for the truncation noise and the presence

of ambiguous pixels. These improvements are employed to derive the probability

of detection and the SNR with significant improvements compared to existing

formulations when ambiguous pixels are present.
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1. Introduction

Since its introduction in the early seventies, Charged Coupled Device (CCD)

technology revolutionized optical measurements in both consumer market and

scientific imaging alike. In non-resolved imaging, details of the objects or

structures of interest are not available. Such images are encountered in Astronomy

or Medical imaging Smal et al. (2010). The object image is represented by one

to a couple of hundred pixels that stand out from the background. In practice,

working with non-resolved images raise several challenges: first, the object pixels

have to be discriminated from the noisy background of the whole frame. The

background is typically composed of clutter or spurious object images, sometimes

with the same intensity as the signal of interest. In this case, the object signal

does not clearly stand out from the background and may remain undetected.

Second, the sensing process itself is a stochastic process affected by noise that

deteriorates our ability to single out object signal.

A CCD sensor is usually composed of a thin layer of photoactive semi-

conductors (typically silicons) and a transmitter region (see Janesick et al. (1987)

for a complete review of CCD functioning). The photon bombardment leads to

electron emissions according to a stochastic process that yields different results

from one observation to another. The electrons are collected in a capacitor well

at each so-called pixel. After the photo exposure, a control circuit performs

the readout of the CCD, during which each capacitor transfers its charge to

the neighboring pixel. The electrons are transferred to a voltage level. This

readout process is subject to random errors that directly affect the resulting

image. Hence the obtained signal image is the realization of a series of complex

random processes which affect our ability to detect and track space objects

Massey and George (1992). Furthermore, hot and dead pixels can lead to false

detections if they are not masked. Hot pixels constantly show a signal (charge)

even when the camera shutter is closed while dead pixels do not measure any

signal.

The community worked on deriving estimates of the Signal-to-Noise Ratio
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(SNR) and the probability of detection to quantify and predict the expected

information obtained from an observation beforehand. The SNR is the expected

intensity of a signal divided by the expected noise associated with the signal.

The probability of detection is the probability that an object is detected for

a given scenario. Several approaches have been developed to estimate both

quantities. One method consists in simulating a large number of CCD output

realizations of the same observation to extract an average SNR and probability

of detection for each observation scenario. Such Monte Carlo approaches are in

particular proposed in Merline and Howell (1995) where a computer simulator

of a CCD is presented. The accuracy of the strategy depends on the number

of samples that can be generated for each scenario. The major drawback of

Monte Carlo methods is their computational cost: when a large number of

observation scenarii has to be processed, they may become irrelevant because too

computationally expensive. Alternatively, analytical approximations of the SRN

have been proposed in the literature. The so-called ’CCD equation’ is presented

in its most classical form in the reference Howell (2006); Mortara and Fowler

(1981). The CCD equation has been subsequently improved in Merline and

Howell (1995) where the background subtraction noise is included. In Newberry

(1991), the author proposes a CCD equation in the context of data reduction

techniques (processing noise) and derives a model for the truncation noise.

Initially developed in the context of astronomical star observations, the ex-

pressions have certain shortcomings, especially when dealing with faint object

images Merline and Howell (1995). Faint detections are frequent in the observa-

tion of near-Earth space objects and space debris objects in the field of Space

Situational Awareness. Objects do not necessarily have a stable attitude, leading

to time-varying detections. Nevertheless, precise and reliable estimations of the

SNR and the probability are crucial inputs for object detection and tracking

tasks. The SNR is an indication of the amount of information available in a signal.

It is directly related for instance to the variance in the estimated space object

position Sanson and Frueh (2019). Space Situational Awareness (SSA) heavily

relies on ground observations to detect and track space objects. Automated
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procedures need to be developed to identify and keep tracking hundreds of thou-

sand objects. In recent years, space object tracking techniques have been greatly

improved by the use of multi-object filtering approaches. Filtering algorithms

(Kalman, Extended Kalman, Unscented,Probability Hypothesis Density) are

classical tools for multi-object observation and tracking (see Mahler (2007) for

reference) that have been adapted to SSA objectives Clark et al. (2007); McCabe

et al. (2015); Delande et al. (2015); Clark et al. (2008); DeMars et al. (2015). All

the mentioned algorithms strongly rely on the accurate and low-cost description

of the SNR and the probability of detection. One other important aspect of

SSA is the optimization of space object observation conditions to maximize the

efficiency of a telescope or a network of telescopes. The algorithms proposed

in Coder and Holzinger (2016); Frueh et al. (2017) directly use the SRN and

probability of detection. Such optimization problems are typically non-convex

and require the use of expensive genetic algorithms to obtain satisfying solutions.

In this work, we propose a novel derivation of the probability of detection

and the SNR that can directly be used in tracking algorithms or design of

optical observations. In the first step, previous methods of noise estimation,

here called classical CCD equation are revisited (Section 2.1). Then a new

analytical approximation of the signal-to-noise ratio is developed featuring

more accurate modeling of the CCD truncation noise and ambiguous pixels for

faint signals. The results are compared to the Monte Carlo simulations and

existing CCD equations in Section 4.1. Besides, expressions for the probability

of detection for the use in multi-target tracking frameworks are derived. The

accurate statistical determination of noise and the probability of detection with

fully analytic expression is crucial for a fast determination of a closed-form

approximation of those quantities solely based on the physical situation without

actually simulating a full frame image. The results eliminate the need to perform

expensive Monte-Carlo simulations Preliminary studies on the topic have been

performed by the authors in Sanson and Frueh (2015).
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(a) signal generation (b) object image

Figure 1: a: Simplified signal generation processes on a CCD in ground-based astronomy

observations. b: Space object image for an object with a relative movement to the observer

and the signal obtained with a CCD, (source Purdue Optical Ground Station ).

2. Estimation of the Signal-to-Noise Ratio (SNR)

The image generation process can be described as follow (see Fig.1a). All

celestial light sources impinge on the sensor (object signal but also background

stars, Zodiac light, etc. ). The sensor itself generates spurious electrons called

dark noise. For the signal to be read out, the readout process collects the

electrons from each pixel and the analog to numeric conversion takes place.

Additional noise is generated and referred to as readout noise. An example of a

CCD generated image is represented in Fig.1b. The frame is cropped around the

object image. Note that this is a high signal-to-noise ratio case. As the CCD

image generation relies on photon absorption and electron emission, the resulting

image is a stochastic process. Furthermore, to detect the object and find its

centroid Hagen and Dereniak (2008); Sanson and Frueh (2019), the background

has to be estimated and needs to be either locally or globally subtracted to

the image Houtz and Frueh (2018). Background estimation itself introduces

statistical error Merline and Howell (1995). To illustrate the stochastic nature

of the signal generated by the CCD after background subtraction, Fig.2 shows

three realizations of the same original light source, leading to three different

realizations subject to the same stochastic processes.
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(a) Signal 1
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(b) Signal 2
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(c) Signal 3

Figure 2: Three observation realizations of the same object (light source signal), background

noise, sensor-detector, and observation geometry, generated numerically and projected on

x-direction for clarity.

Additional, higher order effects such as gain variations due to the CCD

fabrication process or the brighter-wider effects have been noticed by several

studies Lage et al. (2017); Beamer et al. (2015), but are neglected this paper.

Traditionally, the Signal-to-Noise Ratio (SNR) is referred to as the CCD

equation. Signal-to-noise ratio is defined as the expectation value E(S) of a

signal S over the standard deviation
√

var(N) of the noise N :

SNR :=
E(S)√
var(N)

, (1)

Three different versions of the CCD equation are compared here: the classical

SNRclassic as in Tiersch (1993) , Merline’s derived in Newberry (1991); Mer-
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line and Howell (1995), SNRMerlin, and our improved derivation formulation,

SNRimpro , that is derived in this study. The assumptions of all three methods

are discussed and compared.

2.1. Known Formulations of the CCD Equation

The signal of interest is the object signal Sobj, that is the trace that the

object on the detector. The signal is usually computed by adding the signal

intensity in all pixels i containing the object image. Theoretically, the object

image is spread over the entire frame. Realistically, only the pixels above the

background n are used. The SNR is then defined as the ratio between the sum

of the signal intensities and the sum of the noise in each pixel:

Sobj =

npix∑
i

Sobj,i N =

npix∑
i

Ni. (2)

The noise Ni in a given pixel comes from distinct sources. It comes from the

object signal Sobj,i, but also from the celestial and sky background sources SS,i,

such as stars, and other light sources: the zodiac light airglow and others, that

contribute to a non-zero photo background. Furthermore, the dark noise, ND,i,

of the detector that results from atomic excitement in non-zero temperatures,

and the readout noise NR,i, of the detector contribute to the noise of the CCD

output. The temperature of the detector influences both sources. Moreover, due

to CCD limited resolutions, not every single electron can be reported. Inevitably

there is a truncation noise introduced NU,i. Then the total noise per pixel is:

Nclassic,i = Sobj,i + SS,i +ND,i +NR,i +NU,i (3)

The classical derivation concludes at these noise terms. The formulation of

Merline and Howell (1995) adds a further term, stemming from the background

estimation; it will be discussed below.

To determine mean and standard deviation for the SNR, the distributions

of all those sources need to be determined. Here, there is a modeling choice

given.

7



The basis of all three derivations is that the electron emittance after absorption

of all incoming photons is modeled as a Poisson random variable (hypothesis 1).

Incoming photons per pixel are stemming from the object itself per pixel i, Sobj,i

with mean and variance λobj,i and from celestial and terrestrial background

sources, SS,i with mean and variance λS,i. Furthermore the dark noise is also

modelled as a Poisson variable ND,i with mean and variance λD,i. Thus:

E[Sobj] = var(Sobj) =

npix∑
i

λobj,i, E[SS] = var(SS) =

npix∑
i

λS,i,

E[ND] = var(ND) =

npix∑
i

λD,i. (4)

When taking a summation over the single pixels, it is assumed that the pixels are

independent (hypothesis 2). In the classical formulation of the CCD equation

as well as in the formulation of Merline, the truncation noise is modeled by

an independent uniform random variable with support [− g2 ,
g
2 ], where g is the

gain. Newberry (1991) (hypothesis 3), where Ui are independent and identically

distributed (iid) uniform random variables with support [− g2 ,
g
2 ]. The readout

error is chosen modeled by a centered Gaussian distribution with variance σ2
R,i in

the classical formulation and in the formulation by Merline Merline and Howell

(1995) (hypothesis 4). Hence, the truncation and the readout noise variance is:

var(NU,i) =
g2

24
var(NR,i) = σ2

R,i (5)

If it is assumed that all noise sources are independent (hypothesis 5), then the

noise var(Nclassic) can be deduced from Eq. (3) :

var(Nclassic) =

npix∑
i

var(Sobj,i) +

npix∑
i

var(SS,i) +

npix∑
i

var(ND,i)

+

npix∑
i

var(NR,i) +

npix∑
i

var(NU,i) (6)

var(Nclassic) =

npix∑
i

λobj,i +

npix∑
i

λS,i +

npix∑
i

λD,i +

npix∑
i

σ2
R,i +

npix∑
i

g2

24
(7)
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The classical formulation of the CCD equation hence results in the following

expression, assuming a uniform background underneath the object image, allow-

ing to multiply the background sources by npix rather than performing a direct

summation (hypothesis 6):

SNRclassical =
E[Sobj]√

var(Sobj) + npix · (var(SS,i) + var(ND,i) + var(NR,i) + var(NU,i))

=

∑npix

i λobj,i√∑npix

i λobj,i + npix · (λS,i + λD,i + σ2
R,i + g2

24 )
(8)

In the classical CCD equation, the background subtraction is not included in the

noise. It is equivalent to assuming that the background is perfectly determined

(hypothesis 7). In the classical CCD equation and the derivation of Merline, it

is furthermore assumed that the number npix of object pixels is exactly known

(hypothesis 8).

The CCD equation derived by Merline and Howell (1995) differs from the

classical derivation as it takes into account the background estimation process

that generates additional uncertainty. In practice, the background subtraction

leads to an additional term coming from the background estimation noise. In

the case of a constant background, the background is estimated over the region

in which the object image is located, background signal NB is:

NB =
1

nB

nB∑
i

(SS,i +Di +Ri + Ui) (9)

and nB is the number of background pixels used to estimate the background. A

common way of estimating the background is the background pixel identification

method explained in Schildknecht et al. (1995). The CCD image is divided into

groups of m cells. In every group, the cells are ranked according to their intensity.

Then the p lowest intensity cells and the p highest intensity cell are dropped.

The background is defined as the mean intensity of the remaining pixels. The

size of the sub-frame should ideally be much larger than the signal. This leads

to the following modification of the noise variance compared to the classical

formulation, assuming the signal is independent of the background (hypothesis
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9):

var(NMerline) = var(Nclassical) +
npix
nB

var(NB) (10)

Based on the Central Limit Theorem, the distribution of the background estima-

tion noise can be assumed to be Gaussian, denoting σ2
B = var(NB) Leading to

the modified CCD equation of Merline:

SNRMerline

=
E[Sobj]√

var(Sobj) + +npix

(
1 + 1

nb

)
· (var(SS,i) + var(ND,i) + var(NR,i) + var(NU,i))

=

∑npix

i λobj,i√∑npix

i λobj,i + npix

(
1 + 1

nb

)
(λS,i + λD,i + σ2

R,i + g2

24 )

(11)

2.1.1. Discussion of the Hypotheses of the Classical and Merline CCD Equation

In this section, we discuss the hypotheses used in the previous derivations of

the CCD equations.

Hypothesis 1 - the number of electrons emitted after the absorption of photons

is a Poisson random variable:. This assumption is plausible and is a classical

model for electron emission. although non-Poisson distributed higher order

effects exist Walter (2015).

Hypothesis 2 - the pixels are uncorrelated: As long as the Poisson parameter

λobj can be modeled as a deterministic value, the pixels can be safely viewed as

independent. The light reflected upon the object can be modeled using geometric

optic macroscopic laws under the assumption that the object and the illumination

and observation geometry is known. However, atmospheric disturbance modeling

could impose using to non-deterministic Poisson parameter, depending on the

level of accuracy modeling. Furthermore, in a few particular cases with very

high pixel intensity, bleeding effects can occur, and in this case, neighbor pixels

may be correlated Barrett et al. (2007) for example in the brighter-wider effect

Lage et al. (2017); Beamer et al. (2015).
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Hypothesis 3 - the truncation noise is an independent additive uniform noise:

During the truncation process the signal is converted from electrons into ADU.

This conversion leads to losses in resolution: the CCD can only count a limited

number of electrons at the time. This assumption is conceptually wrong and leads

to inaccurate estimations of the truncation noise for faint signals (cf section 2.2

for more details), besides it implies that the signal remains a Poisson distribution

after the round off error.

Hypothesis 4 - the readout noise is an independent additive Gaussian noise:

The readout error is a sum of independent random variables each accounting

for a flaw in the electronics. The almost Gaussian distribution usually obtained

Massey and George (1992) can be justified by Lindeberg-Feller theorem. Under

mild assumptions on the Ui such as finite second moment, we have Durrett

(2010)
∑∞
i Ui is normally distributed.

Hypothesis 5 - the background, signal and dark noise are independent: In-

dependence is an accurate model since the electron emissions are emitted by

different and independent sources, however an intense electric current increases

temperature by Joule dissipation leading to an increase in the dark noise, which

is usually not the case in a cooled sensor.

Hypothesis 6 - the background is constant over the signal: Some studies such

as Schildknecht et al. (1995) propose more refined models of backgrounds. For

instance, due to optical effects the background may be intense at the center

of the image and celestial sources such as stars may vary from pixel to pixel,

however for signal of reasonable size, the variation of the background are usually

negligible or can normally be counterbalanced by estimating different background

values for different parts of the image.

Hypothesis 7 - the background is perfectly determined: This assumption that

is assumed in the classical CCD equation and has been improved upon by Merline

and Howell (1995), is wrong in general since only a limited number of pixels

available to evaluate the estimated quantity of the background level.

Hypothesis 8 - the number of signal pixels is perfectly known: The diffraction

pattern of the signal from the object of interest spreads the whole image frame,
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same as the background pixels. In general, the object image, the first maximum

of the diffraction pattern, the so-called Airy disk, is denoted as signal pixels,

discriminated against the background pixels, outside the Airy disk. Sometimes,

they are also called the signal and background mask. As with the background

estimation, the number of pixels that belong to the object is determined as the

number of pixels above the background level. Especially for very faint signals,

this assumption is problematic. In this case, it may be impossible to determine

for some pixels whether they should be included in the background mask or

considered as part of the signal. This problem will be assessed in the derivation

of the improved CCD equation in the following section.

Hypothesis 9 - the background is independent of the object signal: This

appears to be legitimate as the signals stem from different sources. However, the

true refraction pattern from the object signal is spreading across the whole frame,

while the first order maximum, Airy disk, is usually associated with object signal,

the secondary maxima are often included in the background determination (see

hypothesis 8). A correlation between the background and the signal always

exists. The correlation is especially significant when a sub-frame technique is

utilized, using only a small number of background pixels around the trace of the

object.

2.2. Derivation under more General Conditions: Improved CCD Equation

The derivation of the improved CCD equation is based upon the derivation of

Merline and Howell (1995). The hypotheses 3 and 8 are relaxed: The modeling of

the truncation error is improved upon Merline’s formulation, and the uncertainty

in the number of object pixels is taken into account. Improvements are most

significant for faint object images with a low SNR, such as the one shown in Fig.

3. A summary of the hypotheses used in each derivation is given in Table 1.

First, we work on the truncation error term. To avoid the assumption of

a uniform distribution, the signal after truncation has to be defined. Taking

the Poisson processes, stemming from the actual photon impacts, we use the

12



Figure 3: Example of a faint signal with low signal-to-noise ratio (source Purdue Optical

Ground Station ).

following notation for the independent Poisson signals Spois:

Spois,i = Sobj,i + SS,i +ND,i (12)

We also define for later use, the Poisson signals excluded the object signal:

SSD,i = SS,i +ND,i (13)

The corresponding truncated signal is denoted by Spois,trunc,i. In contrast to

the approximate representation in the previous section, Spois,trunc,i is no longer

a Poisson distributed random variable. In the following, we derive the exact

distribution of the signal after the truncation. For simplicity, we assume here

that the gain g is even. We get for the probability of the truncated signal

Spois,trunc,i based on the original signal in the interval subject to truncation,

Spois,i, for any signal strength q:

P (Spois,trunc,i = q) = P

(
Spois,i ∈

[
g

(
q − 1

2

)
; g

(
q +

1

2

)])
for any q > 0. (14)
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Hypotheses classical Merline’s CCD Improved

CCD equation equation CCD equation

Hypothesis 1 X X X

Hypothesis 2 X X X

Hypothesis 3 X X

Hypothesis 4 X X X

Hypothesis 5 X X X

Hypothesis 6 X X X

Hypothesis 7 X

Hypothesis 8 X X

Hypothesis 9 X X X

Table 1: Summary of the hypotheses used in the derivation of the different CCD equations

presented in this work. The ’X’ means the hypothesis is used to derive the SNR. Hence the

fewer ’X’s, the better. The hypotheses are presented and discussed in Section 2.1.1

This is equivalent to:

P (Spois,trunc,i = q) =

g(q+1)−1∑
k=gq

exp(−λpois,i)λ
k− 1

2 g
tot,i

(k − g
2 )!

=
Γ(g(q + 1

2 ), λpois,i)

Γ(g(q + 1
2 ))

−
Γ(g(q − 1

2 ), λpois,i)

Γ(g(q − 1
2 ))

, (15)

for any k > 0. Γ(q) = (q−1)! is the Gamma function and Γ(q, x) =
∫∞
x
e−ttq−1dt

is the incomplete Gamma function. The noise variance of the Poisson sources,

var(Spois,trunc,i) can be derived using the previous analytical expression of

P (Spois,i = q) in Eq.14:

var(Spois,trunc,i)

=
∑
q>0

q2P (var(Spois,i) = q)−

(∑
q>0

qP (var(Spois,i) = q)

)2

(16)

In the next step, the background subtraction is more closely investigated.
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fig/

(a) Schematic of non-ambiguous sig-

nal: the signal pixels clearly stand

above the background level

(b) Example of ambiguous sig-

nal: it is unclear for some pixels

whether they belong to the sig-

nal or not

Figure 4: Signals with and without ambiguous pixels

As previously discussed, there is indeed a correlation between the background

and the object image. This correlation is exacerbated for very faint object

traces relative to the (true) background, in which cases also the Airy disk’s

main maximum may merge with the surrounding background. Fig. 3 gives an

example of a very faint signal where the pixels at the edge of the signal are

extremely ambiguous. Ambiguous pixels are those pixels that could be part

of the object image or part of the background. The following CCD equation

derivation accounts for the ambiguous pixels that can be part of the signal, in

terms of the first Airy disk or signal mask, and of the background, respectively

background mask. We denote Iamb the set of ambiguous pixels. The ambiguous

pixels are included in the background mask and are considered as being part of

the signal. In other words we have Iamb ⊂ IobjandIamb ⊂ IB, where Iobj is the

set of signal pixels from the object image and IB is the set of background pixels

used in the background determination. Note that in our model the membership

of each pixel Iamb, Iobj or IB is deterministic and not subject to uncertainty.

The overall actual background B (analogous to Eq.(9) ) can readily be defined
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as:

NB =
1

nB

nB∑
i

Spois,i +NU,i +NR,i =
1

nB

nB∑
i

Spois,trunc,i +NR,i

=
1

nB

nB∑
i

Ntotal,i (17)

B and Spois are correlated since the some pixels are used to compute B and S.

As a result the background subtracted image noise is:

Nimpro = Spois − npixB =
∑
i∈Iobj

Ntotal,i −
npix
nB

∑
i∈IB

Ntotal,i (18)

Nimpro =
∑

i∈Iobj\Iamb

Ntotal,i + (1− npix
nB

)
∑
i∈Iamb

Ntotal,i

−npix
nB

∑
i∈IB\Iamb

Ntotal,i (19)

where npix are the number of object trace pixels (including the unambiguous

and the ambiguous pixels) , namb are the ambiguous trace pixels that could

belong either to the object trace’s first maximum or the background, nB are the

number of pixels used in the background estimation. Then the noise variance

can be computed as :

var(Nimpro) =
∑

i∈Iobj\Iamb

var(Spois,trunc,i) + (1− npix
nB

)2
∑
i∈Iamb

var(Spois,trunc,i)

with n = (npix − 2
nambnpix

nB
+

n2
pix

nB
). Finally this leads to the improved CCD

equation:

SNRimpro =
E[Sobj]√

var(Nimpro)

=
E[Sobj]√∑

i∈Iobj\Iamb
var(Spois,trunc,i) + (1− npix

nB
)2
∑
i∈Iamb

var(Spois,trunc,i)

+
(npix

nB

)2∑
i∈IB\Iamb

var(Spois,trunc,i) + n · var(NR,i)
(20)

denoting as before with λobj,i the corresponding Poisson parameter of the object

signal and with σ2
R,i the Gaussian variance of the readout noise in the ith pixel,
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respectively.

SNRimpro =

∑npix

i λobj,i√∑
i∈Iobj\Iamb

var(Spois,trunc,i) + (1− npix

nB
)2
∑
i∈Iamb

var(Spois,trunc,i)

+
(npix

nB

)2∑
i∈IB\Iamb

var(Spois,trunc,i) + n · σ2
R,i

(21)

Assuming that all the Poisson distribution parameters Spois are constant, the

expression can be simplified to the following:

SNRimpro,const =

∑npix

i λobj,i√
(npix − 2nambnpix

nB
+

nambn2
pix

n2
B

)var(Spois,trunc)

+(
npix

nB
)2(nB − namb)var(SSD,trunc) + n · σ2

R

Where var(SSD) is the variance of the Poisson signals without light from the

object trace Spois (see definition in Eq.(13)). The truncated version of SSD is

denoted SSD,trunc. Its variance is computed using Eq. (16).

Further simplifications can be proposed if the number of signal pixels is much

smaller than the number of pixels used for the background determination. In

that case, the ratio namb

nB
is small and the background is well determined. In this

case we can take namb

nB
→ 0 in Eq. (22):

SNRimpro,const ≈
∑npix

i λobj,i√
npix

nB var(SSD,trunc) + npixvar(Spois,trunc) + (1 +
npix

nB
)σ2

R

.

(22)

The equation is similar to Merline and Howell (1995) except for the modeling of

the truncation noise. If the number of background pixel is small (a sub-frame

technique has been used to reach a higher sampling rate) or the signal is faint,

then Eq. (22) is more accurate.

If the truncation error is modeled in the traditional way, assuming a uniform

distribution, the simplified improved CCD equation Eq. (22) is identical to

Merline’s CCD equation Eq. (11).
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3. Probability of Detection

The probability of detection is a probability measure of how likely one is to

detect an object whose image is indeed in the field of view, that is, present in the

CCD frame. It is immediately clear that the probability of detection is directly

related to the signal of the object image in comparison to the background of

the frame. Several approaches for space object detection have been proposed

using segmentation methods Virtanen et al. (2016) where pixels above a given

intensity are considered, Gaussian convolution Schildknecht et al. (2015), suited

space transforms (Radon or Hough) Ciurte and Danescu (2014); Zimmer et al.

(2013). Most detection algorithms rely on the entire object signal to detect the

object (or even several images Yanagisawa et al. (2012)), and when computed,

the probability of detection relies on a Gaussian noise assumption. Using several

pixels to declare detection may be used in large faint streaks and permits to use

a lower detection threshold. However, for faint and small signals, the probability

of detection may rely on only one pixel. Faint and small signals are of particular

interest because the detection probability is significantly lower than one. The

derivation proposed in the following paragraph assumes only one pixel is used to

declare detection, but it can be extended to detection strategies using multiple

pixels.

In the following, we define the probability of detection via a single pixel only,

instead of the whole object image. Naturally, the brightest pixel is selected.

The underlying idea is that the brightest pixel is more crucial for the detection

than any part of the object image. It is, of course, noted that the theoretically

brightest pixel in the center of the Airy disk might not be the brightest pixel in

the realization of the stochastic process on the pixel grid. When spatial filters

are applied, the brightest pixel after filter application is to be used.

Depending on the specific image processing method used, a particular threshold t

between the background and the object image signal is set, above which detection
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is possible. Potent image processing algorithms can reach a threshold of 2.5

Houtz and Frueh (2018). Hence, we define the probability of detection Pd for a

given threshold:

Pd = P (Sobj,trunc,ibpix
> t)

+P (Sobj,trunc,ibpix < t at least one other j has Sobj,j > t), (23)

where Sobj,trunc,ibpix
is the signal of the expected brightest pixel of the object

image. It is the measured signal and therefore includes the signal itself and the

background noise, both truncated, plus the readout noise. In practice, if the

brightest pixel is brighter than the other signal pixels, the second term is small.

In the following derivation, it is neglected. For the rest of the derivation, it is

implicit that only the brightest pixel is considered. If we use the signal definition

from Eq.(17), we can express the probability of detection as:

Pd = 1− P (Spois,trunc,ibpix −NB,ibpix +NR,ibpix < t). (24)

Computing P (Spois,trunc,ibpix
−NB,ibpix +NR,ibpix < t). can be complex and nu-

merically expensive. Reasonable simplifications are proposed in order to explicate

this expression. If the number of background pixels is large enough the central

limit theorem allows us to approximate NB with a Gaussian random variable

with mean µB = E[SSD,trunc] and variance var(SSD,trunc) = σ2
B. Moreover,

−NB +NR is the sum of two independent Gaussian random variables which is

also a Gaussian random variable with mean −µB and variance σ2
R + σ2

B . Under

those assumptions the probability of detection becomes, separating the Gaussian

distributed parts with respect to the brightest pixel ibpix:

Pd = 1−
∫
P (Spois,trunc,i − ε < t| −Bi +NR,i = ε)P (NB,i −NR,i = −ε)dε

for i = ibpix

Based on the definition of Spois,trunc,i Eq. 14 and from the fact thatSpois,i is
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assumed to be Poisson distributed, we obtain:

P (Spois,trunc,i − ε < t| −NB,i +NR,i = ε)

= P (Spois,trunc,i− ≤ bt+ εc)

= P (Spois,i− ≤ gbt+ εc − g

2
)

=
Γ(gbt+ εc − g

2 , λobj,i + λS,i + λD,i)

(gbt+ εc − g
2 )!

. (25)

bxc denotes the closest integer smaller or equal to x. Without any loss of

generality, the gain g is assumed to be even. Using Eq. (25) the probability of

detection can be written as:

Pd =1−
∫ ∞
−∞

Γ(gbt+ εc − g
2 , λobj,i + λS,i + λD,i)

(gbt+ εc − g
2 )!

· 1√
2π(σ2

B,i + σ2
R,i)

exp

(
− (ε− µB,i)

2

2(σ2
B,i + σ2

R,i)

)
dε.

for i = ibpix

Eq. (26) can be simplified for any integer n as long as we have ε ∈ [n−t;n+1−t)

then bt+ εc = n:

Pd =1− 1

2

∞∑
n=−∞

Γ(n− g
2 , λobj,i + λS,i + λD,i)

n!

· 1√
2π(σ2

B,i + σ2
R,i)

∫
ε∈[n−t;n+1−t)

exp

(
− (ε− µB,i)

2

2(σ2
B,i + σ2

R,i)

)
dε

(26)

Pd =1− 1

2

∞∑
n=−∞

Γ(n− g
2 , λobj,i + λS,i + λD,i)

n!

·

erf
 n+ 1− t− µB,i√

2g(σ2
B,i + σ2

R,i)

− erf
 n− t− µB,i√

2g(σ2
B,i + σ2

R,i)

 ,

for i = ibpix

where erf is the error function. In actual computation, the n summation is

approximated by limiting it to a suitable value range.
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4. Results

4.1. Performance of the Improved CCD Equation

The performance of the different expressions of the CCD equations, Eq. (8),

Eq. (11) and Eq. (22), is evaluated. To assess the performance of different

CCD equations, we use Monte Carlo simulations as reference: a large number

of CCD frames are simulated, and the average signal and noise are extracted

to compute the SNR. A two-step validation is performed: in the first step, the

effect of the mismodelling of the truncation error is investigated. In a second

step, the different approximations of the true signal-to-noise ratio, represented

in Eq. (8), Eq. (11) and Eq. (22) are compared against the Monte Carlo results,

and their performance is quantified. In the Monte Carlo simulation of the CCD

frames, a Gaussian noiseless signal is generated as the object image and constant

background noise SS is added to it. Then, the photo-electron release by the

external sources and internal dark noise is simulated. In the simulation of the

readout process, the readout noise and the truncation process are also included.

4.2. Comparison of the Noise Models for the Truncation Error

In this section the truncation error modelling as uniform variable, Newberry

(1991); Merline and Howell (1995) is compared to the improved modelling, as

shown in section 2. The noise for a truncated signal has been computed and

plotted in three different ways in Fig. 5 to optimally illustrate the difference

between the two noise models. In this set of tests, the variances have been

computed only considering the truncation noise and stochastic electron emission

noise. The signal variance denoted by varMC, is obtained running 100,000,000

independent identically Poisson distributed samples of parameter λ, rounding off

the signal and computing the variance of the signal. The second one is computed

using the expression derived in the previous section (see Eq. (15)):

varimpro =

∞∑
m=1

m2P (Strunc = m)−

( ∞∑
m=1

mP (Strunc = m)

)2

with P (Strunc = m) =

g(m+1)−1∑
k=gm

exp(−λ)λk−
1
2 g

(k − g
2 )!

.

(27)
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Finally the third expression, noted varclassical, is computed as in the literature

Merline and Howell (1995):

varclassical = λ+
g2 − 1

12
, (28)

where g2−1
12 is the variance of a uniformly distributed random variable. Fig. 5
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Figure 5: Comparison of the truncation noise for varMC, varimpro and varclassical. The

variances are normalized by the variance of the Poisson signal λ.
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Figure 6: Relative error between the exact variance of the truncated signal and the approximated

variance Vapprox.
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shows that the improved model of truncation noise performs better than the

approximation used in literature, especially for faint signals with high gain.

Fig. 6 displays the relative error between varMC and varimpro. It shows that

when the signal is only three times bigger than the gain, the approximation

used in the literature becomes inaccurate. Hence, the approximation made by

Merline and Howell (1995) and Newberry (1991) is acceptable for very bright

star observations, where g
λ is small. For faint signals, the ratio g

λ may be much

higher, and the improved expression of the noise for the truncation error should

be used.
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4.2.1. Comparison of the CCD Equations for Signals without Ambiguous Pixels

Now, the full expressions of the CCD equations, approximating the SNR

of the image frame, Eq. (8), Eq. (11) and Eq. (22), are compared to Monte

Carlo simulations. It is assumed that all object image pixels (Airy disc) are

perfectly identified and discriminated against the background. Fig. 1 shows an

illustrative example of a signal in which the object pixels can be easily identified,

as the signal-to-noise ratio (SNR) in all object pixels is high. Fig. 7 shows the

performance of the three approximations of the true SNR: the classical CCD

equation, Merline’s CCD equation as presented in Merline and Howell (1995)

and the improved CCD equation ( see Eq. (22) ) as a function of the normalized

background level. The background is normalized by the expected intensity of the

expected brightest pixel. All three are compared to a Monte Carlo estimation of

the SNR obtained with 50 000 samples. The classical formulation is different.

The Monte Carlo simulation results are in good agreement with the improved

and Merline CCD equation formulations while the classical formulation is biased.

The difference seems to be constant and is about 1 in the SNR. The constant

offset is due to the background estimation noise that is neglected in the classical

formulation.

4.2.2. Comparison of the Signal-to-noise ratio for Signals with Ambiguous Pixels

The situation is different when the presence of ambiguous pixels is taken

into account. As the signal can be extremely faint, it may become extremely

difficult to tell whether a pixel belongs to the background or the signal (see

Fig. 3 and 4b). Furthermore, in some cases, where very few pixels are available

to compute the background, one is likely to include those ambiguous pixels in

their estimation of the background level. In practice, the ambiguous pixels are

pixels for which the intensity from the observed object is of the same order of

magnitude as the background noise.

Fig. 8 shows again, the three formulations of the SNR as given in the three

formulations of the CCD equation and the Monte Carlo simulation obtained with
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Figure 7: Evolution to signal-to-noise ratio as a function if read out noise for g = 0.06λobj, no

ambiguous pixels are present.

50 000 samples. Note that the ambiguous pixels are modeled as a deterministic

quantity. Now, a clear distinction between all three formulations is visible. The

improved formulation now lies in-between the SNR values estimated by the clas-

sical and the estimation from Merline and Howell (1995). The differences appear

to be constant. The constant offsets are according to the constant offset intro-

duced by neglecting the background estimation noise in the classical formulation

and the constant amount of ambiguous pixels that are simulated. The Monte

Carlo simulations align almost perfectly with the improved formulation. One

particular result is that the introduction of ambiguous pixels does not necessarily

lower the signal-to-noise ratio since the membership of the ambiguous pixels is

deterministic. In practice, the difficulty behind differentiating the signal pixels

from the background pixels makes the classical definition of the signal-to-noise

ratio extremely ambiguous and subject to the observer subjectivity. It is hence

more adequate to take the ambiguous pixels into account.
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In this test, the number of ambiguous pixels considered is kept constant

to facilitate the comparison between the three approaches. For lower SNR

values, the number of ambiguous pixels is expected to increase, and therefore

the difference between our estimation of the SNR and Merline’s estimation is

expected to grow.
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Figure 8: Evolution to signal-to-noise ratio as a function of normalized background level

(g = 0.06λobj) with ambiguous pixels present.

Note: When computing the probability of detection (see nex section), the

difference between the formulation of Merline (Merline and Howell, 1995) and

the improved CCD equation can be limited even in cases of ambiguous pixels,

since only the brightest pixel is taken into account.However, in practice, (in

contrast to the use in probability of detection) the SNR of the whole object

image is often of interest.
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4.3. Validation of the Probability of Detection

To validate the expression for the probability of detection, derived in Eq.

(27), the results are compared to 500 000 Monte Carlo simulations. As the choice

of t is not unique but ultimately user-defined, the results are shown in Fig. 9 for

different values of t. t is chosen as k ×N , where N is the noise. The value of

the threshold should be chosen such as it minimizes the risk of false detection

and maximize the number of space objects detected. Fig. 9 shows the excellent

agreement of the expression for the probability of detection with all Monte

Carlo simulations, despite approximations that have been made to permit fast

computationally efficient computations. The analytical expressions can be used

in multi-target tracking scenarios. Note that the computation of the probability

of detection does not require to model the ambiguous pixels as for the CCD equa-

tions. Moreover, it is possible to compute the probability of detection accurately,

without using the CCD equation representation. Sometimes the SNR compu-

tation is not of interest once the probability of detection is accurately determined.

Note, that also the Monte Carlo validation also considers only the expected

brightest pixel when estimating the probability of detection. This hypothesis is

valid as t is chosen to minimize false positives.
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Figure 9: Detection probability as a function of the signal-to-noise ratio (SNR).

5. Conclusions

In this work, the signal-to-noise ratio and the probability of detection of

non-resolved object images on Charged Coupled Device (CCD) sensors are

investigated. Non-resolved object images cover only a few pixels and do not

feature any details of the object itself. The application cases in this paper are

optical ground-based observations of human-made space objects. The results

are, however, not specific to those observations.

Sensing is affected by external light sources entering the detector, but also

internal detector noise. The detection process itself is stochastic. As a result, the

signal-to-noise ratio can only be correctly computed using computationally in-

tensive Monte Carlo simulations. Approximate expressions of the signal-to-noise

ratio, so-called, CCD equation exist in literature. In this work, two common

CCD equations and the modeling hypothesis they are based on are discussed. In

a generalized approach, an improved CCD equation is derived. It features two
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modeling improvements. Firstly, it accurately models the truncation noise rather

than using a uniform approximation. Secondly, the generalized formulation does

not assume that the object image pixels above the background are perfectly

known. Instead, the notion of ambiguous pixels is introduced. Avoiding the

latter assumption proved to have a significant impact. The validation results

showed that if the object image is intensity is comparable to the background, and

if some pixels can be classified as ambiguous pixels, belonging to the background

or the object image, the improved CCD equation compares significantly better

to the Monte Carlo ground truth. In case no ambiguous pixels are present, the

performance is the same as the CCD equation first proposed by Merline and

Howell (1995).

Based on the improved representation of the object signal and the background, an

expression for the probability of detection has been derived. A computationally

fast analytic approximation has been provided. The approximation is in excellent

agreement with the Monte Carlo simulated ground truth. The expression for the

probability of detection avoids the explicit computation of the CCD equation.

Both, the analytical expressions of the detection probability, and the improved

CCD equation cut down computational cost avoiding expensive Monte Carlo

simulations.

In this work, the expressions derived were compared to Monte Carlo simula-

tions, future work could focus on further comparing our formulation to real

observations, in particular using well-characterized stars.
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