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Abstract: Camera relocalization is an important component in localization systems such as augmented reality or robotics
when camera tracking loss occurs. It uses models built from known information of a scene. However, these
models cannot perform in a dynamic environment which contains moving objects. In this paper, we propose
an adaptive regression forest and apply it to our DynaLoc, a real-time camera relocalization approach from a
single RGB image in dynamic environments. Our adaptive regression forest is able to fine tune and update
continuously itself from evolving data in real-time. This is performed by updating a relevant subset of leaves,
which gives uncertain predictions. The results of camera relocalization in dynamic scenes report that our
method is able to address a large number of moving objects or a whole scene to gradually change in order to
obtain high accuracy avoiding accumulation of error. Moreover, our method achieves results as accurate as the
best state-of-the-art methods on static scenes dataset.

1 Introduction

Camera pose estimation is a key feature of
Augmented Reality (AR), robot navigation and au-
tonomous vehicles (self-driving), which requires an
accurate tracking of camera viewpoint in a 3D space.
The main solution of camera pose estimation for com-
mercial systems is known as Simultaneously Local-
ization And Mapping (SLAM) (Davison et al., 2007;
Klein and Murray, 2007; Mur-Artal et al., 2015; En-
gel et al., 2014; Tateno et al., 2017). SLAM processes
an ordered sequence of images. In the case of fast
camera motion or sudden change of viewpoint such
as with a hand-held camera, tracking failure interrupts
camera pose estimation. When this happens, camera
relocalization is needed to retrieve camera pose af-
ter tracking lost, rather than restarting the localization
again from scratch. However, the existing camera re-
localization methods in SLAM need to store a large
set of key-points or key-frames. Consequently, mem-
ory usage as well as processing time increase with re-
spect to the size of models.

Recently, machine learning approaches for cam-
era relocalization have appeared to tackle these con-
straints. These methods (Kendall et al., 2015; Kendall
and Cipolla, 2016; Walch et al., 2017; Clark et al.,
2017) can estimate camera pose in real-time from

each image. However, limitations of these methods
lie in their moderate accuracy and the lack of con-
fidence score for each pose estimation. To improve
the accuracy as well as address uncertainty prediction
in deep learning approaches, (Shotton et al., 2013;
Guzman-Rivera et al., 2014; Valentin et al., 2015;
Brachmann et al., 2016; Duong et al., 2018) presented
hybrid methods using random forest and geometric al-
gorithms for camera relocalization with higher accu-
racy. Such methods are robust to illumination changes
and partial occlusion. Yet, these machine learning
based methods and hybrid methods still fail to chal-
lenge dynamic scenes with moving objects.

Moving objects are often encountered in many
augmented reality scenarios such as maintenance,
assembly and quality control task for Manufactur-
ing and Construction application where: devices are
equipped only with a single RGB camera, scenes are
changing gradually over time, tasks requires work-
bench scale 3D registration. Dynamic data is not a
challenge dedicated to camera relocalization. But it
also appears in many other applications using ma-
chine learning. Indeed, for machine learning in gen-
eral, a model is learned from a set of training data.
If data is changing and the learned model is not
able to update itself, this model is no longer accu-
rate. Thus, these methods require an adaptive learning



model which has the capacity to update rapidly to the
changes of data in order to maintain the accuracy of
the learned model.

In this paper, we focus on handling challenges of
dynamic data for generic machine learning as well as
for camera relocalization. Our contributions are di-
vided into two parts as follows.

Our first contribution is to propose an online up-
dating regression forest process. We call it Adaptive
Regression Forest - ARF. The main idea is that the
ARF updates instantly a subset of leaves which gives
uncertain predictions. It is performed by two main
originalities based on detection and update of uncer-
tain leaves.

The first originality of our ARF is to detect the
leaves giving uncertain predictions. There are two cri-
teria for a leaf to become a passive leaf: having a high
variance of predictive model; giving repeatedly a re-
sult rather different from the other leaves.

The second originality of our ARF is to update
in real time passive leaves of the regression forest
model. This is performed by re-modeling their pre-
dictive model from new computed labels. These la-
bels are computed based on results given by the other
leaves (actives leaves). Note that the update is only
performed on passive leaves and not on the whole re-
gression forest model. This process leads to select rel-
evant data to update efficiently at runtime the model.

The second contribution is to present our Dy-
naLoc. It is a real time camera relocalization in dy-
namic scenes based on the generic ARF. For this ap-
plication, the ARF predicts 3D points in the world co-
ordinates system which correspond to 2D points in the
image. The originality is to keep the structure of the
forest (trees and nodes) by using invariant SURF fea-
ture at split nodes as proposed in (Duong et al., 2018).

A last contribution concerns the creation of a pub-
lic database to evaluate camera relocalization meth-
ods. It is the first public database including dynamic
scenes, which is one of the most important challenge
for (re)localization methods.

In the following sections, we first present the re-
lated work in section 2. Our adaptive regression for-
est is described in section 3. Section 4 presents our
DynaLoc that is a real-time camera relocalization in
dynamic scenes based on the adaptive regression for-
est. Section 5 shows and discusses our results on rigid
scenes dataset and on our dynamic scenes dataset. Fi-
nally, section 6 provides some conclusions and per-
spectives.

2 Related Work

In this section, we first present camera localization
(SLAM) methods in dynamic environment. Then, we
introduce state-of-the-art camera relocalization meth-
ods and their limit regarding dynamic scenes.

2.1 SLAM in dynamic environment

Dynamic environment with moving objects is still
known as a difficult challenge in camera localization
community. The most typical methods to address this
challenge are RANSAC algorithms. RANSAC con-
siders data on moving objects as outliers in order to
eliminate them in camera pose estimation process.
However, if a large number of objects move, the num-
ber of outliers will be superior to the number of in-
liers. In this case, RANSAC algorithm processes in-
correctly. In recent years, several SLAM methods fo-
cus on this specific issue of dynamic scenes.

Most works perform detection and segmentation
of moving objects in each frame. This is to avoid their
influence on the camera pose estimation. (Wangsirip-
itak and Murray, 2009; Riazuelo et al., 2017; Bescos
et al., 2018) detect and track the known dynamic ob-
jects or movable objects e.g. people, vehicles. (Sun
et al., 2017; Alcantarilla et al., 2012) detect mov-
ing objects by using optical flow between consecutive
frames. Nevertheless, these methods try to remove
moving objects to compute camera pose. Hence,
they cannot process in scenes where the whole scene
changes gradually.

To overcome this, (Newcombe et al., 2015) pro-
posed a real-time dense dynamic scene reconstruction
and tracking based on depth images by using a single
rigid volumetric TSDF (Truncated Signed Distance
Function). This method requires a RGB-D camera to
robustly detect moving objects based on ICP (Iterative
Closest Point) algorithm, which is not our application
case. (Tan et al., 2013) proposes another SLAM ap-
proach that can detect any changes by projecting the
map feature into the current frame. In real-time, it can
update the 3D points cloud and keyframes stored in a
memory to add new elements or remove those which
do not exist anymore. This allows to address the chal-
lenge of whole scene changing gradually. Yet, it has
the limitations of geometric approaches, that we detail
below.

2.2 Camera relocalization methods

The camera relocalization methods can be classi-
fied into three different groups, namely: geometric



approaches; deep learning approaches; hybrid ap-
proaches.

Geometric approaches are methods that use ge-
ometric point correspondences in order to calculate
camera pose. These methods first extract a set of
sparse features (Sattler et al., 2011; Baatz et al.,
2012; Sattler et al., 2017) or dense features (New-
combe et al., 2011; Engel et al., 2014; Glocker et al.,
2015) from each frame. Then, these features are
matched with keypoints of a scene model. Eventu-
ally, camera pose is determined by minimizing feature
re-projection error. These methods require a scene
model that includes a set of keypoints attached to fea-
ture vectors and 3D positions in the world coordi-
nates. This model is constructed from a set of im-
ages of the scene by performing Structure from Mo-
tion (SfM) (Sattler et al., 2011; Baatz et al., 2012;
Sattler et al., 2017) or encoding a set of keyframes
(Mur-Artal et al., 2015; Glocker et al., 2015). Most of
these geometric methods attempt to reduce the com-
putational complexity of feature matching. (Sattler
et al., 2011; Sattler et al., 2017) use a visual vocabu-
lary for efficient 2D-to-3D matching. Even so, since
the matching time depends on the size of the model,
this reduces considerably the scalability.

Deep learning approaches in camera relocaliza-
tion are usually considered as a supervised regression
problem. A regression model is learned from the la-
beled data (images with their 6-DoF camera poses)
of the known scenes. (Kendall et al., 2015) was the
first to propose the use of deep learning as an end-to-
end camera pose estimation approach. (Kendall and
Cipolla, 2016) generates a probabilistic pose estima-
tion by using dropout after every convolutional layer.
(Walch et al., 2017) is an improvement of PoseNet’s
architecture with spatial Long Short Term Memory
(LSTM) added after CNN layers, that aims at reduc-
ing the dimension of the feature vector, thus providing
important improvements in localization performance.
(Kendall and Cipolla, 2017) solves an ambiguity of
scale factor between location error and orientation er-
ror in the loss function of (Kendall et al., 2015) by
a novel loss function based on re-projection error.
(Clark et al., 2017) exploits the temporal informa-
tion by using a LSTM to predict camera pose based
on multiple consecutive frames. However, all these
methods exhibit low relocalization accuracy so far.

Hybrid approaches estimate camera pose by fus-
ing both machine learning approaches and geometric
approaches. Machine learning part is applied to learn
and predict 3D position of each pixel in world co-
ordinates instead of 6-DoF camera pose as presented
in deep learning approaches above. Then, geometric
part infers camera pose from these correspondences.

The first hybrid methods are based on the regres-
sion forest to fast define 2D-3D point (Brachmann
et al., 2016) or 3D-3D point (Shotton et al., 2013;
Guzman-Rivera et al., 2014; Valentin et al., 2015;
Meng et al., 2017) correspondences. (Brachmann
et al., 2017; Brachmann and Rother, 2018), instead,
uses a deep learning architecture to predict scene co-
ordinates. (Duong et al., 2018) proposes a sparse
feature regression forest learning with a novel split
function aiming at accelerating computational time
and keeping high accuracy. (Cavallari et al., 2017)
proposes an on-the-fly training camera relocalization
from RGB-D images which deals with how to acceler-
ate learning a new scene. It adapts a pre-trained forest
to a new scene by retaining the internal nodes. Yet, it
needs to update all the leaves with the ground truth of
this new scene.

However, all camera relocalization methods men-
tioned above are not suitable for dynamic scenes
with moving objects. Indeed, geometrical model or
learned model are built from rigid scenes. There-
fore, when some objects move, these models are no
longer accurate to infer camera pose. To overcome
this challenge, we expand the real-time accurate hy-
brid method based on the regression forest (Duong
et al., 2018) to our ARF method. The ARF model
is able to update only a subset of uncertain leaves to
quickly modify without any interruption the trained
model according to changes of the scene such as mov-
ing objects.

3 Adaptive Regression Forest
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Figure 1: Adaptive regression forest pipeline. The common
regression forest method (red components) is extended with
an online update step (blue component). It refines predictive
model in real-time from new computed labels.

In this section, we first introduce the common re-
gression forest pipeline which our method is based on.
Then, we explain the limitations of this pipeline and
how we overcome them by using our ARF method.
Finally, we detail our ARF methodology including:
adaptive leaf; passive leaves detection and passive
leaves update.



3.1 Regression Forest pipeline

Fig. 1 presents the common regression forest pipeline
(components in red) including two phases: training
and testing. A regression forest is a set of N deci-
sion trees F = {T j}. Each tree T j = {θsplit ,θpred}
consists of split functions θsplit at internal nodes and
predictive models θpred at leaf nodes. These parame-
ters are learned from a set of labeled data {φ(di),mi},
where φ(di) is the feature vector extracted from data
di with the label mi. The split function θsplit is a weak
learner. It is used to split a subset of data into left
child node and right child node. The weak learner
is trained to maximize an objective function aiming
to reduce variance. The training terminates when the
tree reaches a maximum depth or when a node has
few data. The predictive model at each leaf node is
represented by a distribution θpred = N (m, m̄,Σm). It
is computed from a set of labels m of data reaching
this leaf. m and Σm are respectively the mean and the
covariance of the Gaussian distribution.

For testing phase, each testing data that is repre-
sented by a set of features {φ(di)} passes through the
regression forest model to obtain multiple leaves pre-
dictions {li

j}, in which li
j is a prediction of the deci-

sion tree j for the feature φ(di). All predictions are
combined to compute the final output result Ω with
a confidence score scon f by using a post-processing
function f post .

3.2 Limitations of Regression Forest

In the regression forest, leaves with a high variance
are not informative. They make noisy predictions.
Thus, all leaves whose variance is greater than a
threshold Tvar are discarded to eliminate noise and im-
prove accuracy. This leads to the fact that a subset of
leaves are stored in the regression forest, but they are
never used.

Another challenge of regression forest and of ma-
chine learning methods in general is facing dynamic
data. Because a regression model is learned from
static data, the pretrained regression model will be no
longer accurate if some data change. In this case, it
requires re-training from scratch a whole model with
a redefinition of data labels.

3.3 Methodology

To overcome the limitations of the regression forest,
we propose an adaptive regression forest. It is an ex-
tension of the common regression forest pipeline by
adding an update step, as shown in Fig. 1 (in blue).
At the beginning, we assume that a regression forest

is learned from initial training data. Then, in runtime,
their labels change. The update step of our ARF im-
proves consecutively the accuracy of the regression
forest model. It adapts robustly to dynamic data as
well as refines unused leaves (see 3.2). This is per-
formed by updating leaf nodes based on input data
{di}, predictions {li

j} and final output result Ω.
In this section, we first give the definitions of our

ARF parameters. Then, we describe the two main
steps of our update process: passive leaves detection
and passive leaves update. This ARF update is de-
tailed in Fig. 2.

3.3.1 Definitions of ARF parameters

Several concepts are used in our ARF: active/passive
leaf, good/bad prediction, validation function, confi-
dence score. We present them in this subsection.

The parameters of each tree of a regression forest
is extended to the ARF model {θsplit ,θpred ,θupdate},
where θupdate = {s,n f alse,Sdata} are the parameters
used in the update process.

s denotes the status of a leaf: s ∈ {0 : passive,1 :
active}. A passive leaf is a leaf whose prediction is
not accurate, see 3.3.2 for more details. We call it
passive because those leaves are not used during the
final process that use the random forest prediction. In
contrary, predictions which come from active leaves
are used to estimate final result. Therefore, the post-
processing function in our ARF is defined as follows:

Ω = f post({di, li
j|si

j = 1}) (1)

Where si
j is the status of the leaf of the tree j corre-

sponding to the feature vector φ(di).
n f alse denotes the number of consecutive times an

active leaf gives a bad prediction (see 3.3.2). Sdata is a
stack of data that stores the data di and the final result
Ω at each passive leaf. We need it for passive leaves
update (see 3.3.3).

We introduce a validation function f val to define
good and bad predictions.

f val( f err(Ω,di, li
j)) =

{
1, f err(.)< Tval , good
0, otherwise, bad

(2)
Where f err(Ω,di, li

j) denotes an error function of
each leaf prediction li

j based on the output Ω and input
data di. Tval is an error threshold in order to determine
good/bad predictions.

After the validation step, we obtain ngood and nbad
predictions. A score scon f is calculated to evaluate the
confidence score of final result:

scon f =
ngood

ngood +nbad
(3)
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Figure 2: Adaptive regression forest update process. The
predictive models at leaf nodes evolve by part over time
without training from scratch a whole new model. ARF
performs simultaneously two steps: passive leaves detec-
tion and passive leaves update.

If this confidence score is greater than Tcon f , the up-
date of ARF will be proceeded based on the output
result Ω. Tcon f is a confidence threshold to ensure
that the output result is reliable. It aims at limiting
accumulation of errors during the update process.

3.3.2 Passive leaves detection

Passive leaves detection aims at detecting leaves be-
ing no longer relevant and change their status to pas-
sive. After the initial training phase, the status of each
leaf is defined by:

s =

{
1,active, tr(Σm)< Tvar

0, passive, otherwise
(4)

Where tr(Σm) is the trace of the covariance matrix Σm,
Tvar is a threshold to define passive leaves. In the test-
ing phase, an active leaf becomes a passive leaf, when
it gives consecutively uncertain results. Fig. 2-a) il-
lustrates the passive leaves detection. We first define
good/bad predictions from a set of active leaves pre-
dictions based on the validation function (2). We then
use n f alse to count the number of consecutive times an
active leaf is considered as a bad prediction. Finally,
if n f alse > Tf alse, this active leaf becomes a passive
leaf and its status is assigned to 0 (passive). Tf alse is a
detection threshold to ensure that this leaf is really an
uncertain leaf. n f alse is reassigned to 0 as soon as the
active leaf gives a good prediction once. This aims

at avoiding mistakes of determining good/bad predic-
tion from the error function (2) due to noisy data.

3.3.3 Passive leaves update

The passive leaves update aims at remodeling the pre-
dictive models of passive leaves from new estimated
labels. These new labels are calculated based on the
estimated result Ω and input data {di}. Fig. 2-b)
shows the passive leaves update step. It only pro-
cesses at predicted passive leaves. When a feature
φ(di) passes through our forest and terminates in a
passive leaf, we firstly collect the corresponding input
data di and the result Ω in a stack of data Sdata asso-
ciated to this passive leaf. These elements stored in
the stack of data allow to compute new labels of data.
When the number of data in the stack at a passive leaf
is large enough |Sdata| > Tdata (Tdata is a threshold to
ensure that the number of data is sufficient to learn a
new distribution), we calculate labels mi of di by us-
ing a labeling function:

mi = f label(Sdata) (5)

And then a Gaussian distribution of this leaf is mod-
eled from these labels {mi}. Finally, the status of this
leaf is defined by the function (4). The stack of data
Sdata is reset. The passive leaves update and passive
leaves detection are performed at the same time to ac-
celerate ARF system.

4 Camera Relocalization in Dynamic
Scenes

In this section, we introduce our DynaLoc, a real-
time camera relocalization method from only RGB
images in dynamic scenes. Inspired by (Duong et al.,
2018), we propose a hybrid method merging our ARF
(described in the section 3) and geometric methods.
Our ARF is applied to learn and predict 2D-3D point
correspondences. The geometric part uses PnP and
RANSAC algorithms in order to compute camera
pose from these correspondences. Fig. 3 illustrates
our DynaLoc pipeline. Our method is summarized in
three principal steps. Firstly, we present how to ini-
tially train the ARF from RGB images. Then, camera
pose estimation is performed based on the ARF and
geometric algorithms. Finally, we detail the online
ARF update process for camera relocalization.

4.1 Initial ARF training

The ARF is initialized according to the training step
detailed in (Duong et al., 2018). An ARF is learned
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from a set of labeled feature vectors {φ(di),mi}which
are extracted from a set of RGB training images. φ(di)
is a SURF feature vector extracted around a 2D key-
point position di. mi is the 3D point in the world co-
ordinates system corresponding to di. The label mi
is defined by running triangulation algorithm (Hart-
ley and Zisserman, 2005) for each pair of matching
keypoints (dk,dl) of two RGB images, whose poses
(Ωk,Ωl) are supposed to be known in advance by us-
ing a localization system (marker based, 3D model
based, SLAM, tracking, etc.):{

dk× (KΩ
−1
k mi) = 0

dl× (KΩ
−1
l mi) = 0

(6)

Where K is the matrix of the camera intrinsic param-
eters.

Each tree of ARF is initially trained by a ran-
dom subset of data to determine the split func-
tions. We use whole SURF feature vector as pro-
posed in (Duong et al., 2018) and adaptive leaf nodes
{θsplit ,θpred ,θupdate} (see 3.3). Each leaf node stores
the 3D positions corresponding to a set of SURF fea-
tures reaching it which is represented by a Gaussian
distribution N (m,m,Σm). The status s of each leaf of
ARF is defined by the status definition function (4).
n f alse is assigned to 0 and Sdata is initialized by an
empty set.

4.2 Camera pose estimation

Firstly, a set of SURF keypoints and features
{di,φ(di)} is extracted from each RGB input image.
They pass through the ARF {T j} to achieve a set
of predictions {li

j} that contains 3D world coordi-
nates predictions {m̂i} corresponding to 2D SURF
keypoints {di}. All 2D-3D correspondences coming
from active leaves are used to estimate camera pose

based on the post-processing function (1). In cam-
era relocalization, f post function of ARF is defined by
PnP and RANSAC functions in order to remove bad
predictions (outliers) and keep good predictions (in-
liers). RANSAC generates a set of hypothetical poses
{Ωi} by performing PnP on random subsets of 2D-3D
point correspondences. The best inliers are defined
by maximizing the number of inliers corresponding
to each hypothesis based on the validation function
(2), in which the error function f err(.) is defined as a
re-projection error function:

f err(Ω,di, li
j) = ‖di−KΩ

−1
i m̂i‖2 (7)

The final camera pose Ω is carried out by running
PnP once on all inliers to minimize the sum of re-
projection error.

4.3 Online ARF update

The ARF in our DynaLoc keeps the internal nodes
and the structures of the trees. It only updates con-
tinuously predictive models at uncertain leaf nodes to
adapt to the changes in dynamic scenes. The update
process is based on two main steps: passive leaves
detection and passive leaves update, as described in
section 3.3.

In the passive leaves detection (see 3.3.2), the
good and bad predictions correspond to inliers and
outliers respectively which are defined in section 4.2.
In the passive leaves update (see 3.3.3), the stack Sdata
of each passive leaf collects constantly 2D positions
of SURF keypoints and camera poses (di,Ωi). The la-
beling function (5) is defined by the triangulation al-
gorithm (Hartley and Zisserman, 2005). From a pair
of data in the stack (dk,Ωk) and (dl ,Ωl), the label mi
is computed based on the triangulation function (6).
Thus, a set of Tdata data at each passive leaf defines
a set {mi} of Tdata·(Tdata−1)

2 3D points. A new Gaus-
sian distribution N (m, m̄,Σm) is modeled based on



Infos
DynaScene-01 DynaScene-02 DynaScene-03 DynaScene-04

Train Test Train Test Train Test Train Test
Seq-00 Seq-01 Seq-02 Seq-00 Seq-01 Seq-02 Seq-00 Seq-01 Seq-02 Seq-00 Seq-01 Seq-02

#Frames 669 681 681 831 1136 1075 743 842 1140 958 1395 2109
Occlusion No No No No Yes No No No No No Yes Yes

Illumination change No No No No No No No Yes No No Yes Yes
Moving objects 0% 0% 30% 0% 0% 60% 0% 0% 100% 0% 0% 100%

Table 1: DynaScenes dataset. A RGB images dataset is used to evaluate camera relocalization methods in dynamic scenes.

3D points. The function (4) validates the status of
new leaf model.

A key feature of this update process is that the
function (4) can eliminate the new model and reset the
data buffer at leaf nodes when the variance is too high
(outliers). Thus, changes of the scene such as mov-
ing/coming objects or wrong camera pose estimation,
generating inconsistent 3D points during triangulation
step, will not damage the model. Nevertheless, when
a moving object will become stationary again, the tri-
angulation function will estimate correct labels, and
the variance will become low enough to reactivate the
leaf. Thus, the model is updated to remain accurate
when the scene has changed.

5 Experiments

In this section, we first present the datasets used in
our experiments. Especially, we introduce our dataset
including dynamic scenes, we call it DynaScenes
dataset. Then, we demonstrate the usefulness of our
ARF on both static and dynamic scenes by compar-
ing it with a regression forest (RF) approach. Finally,
we compare our DynaLoc with state-of-the-art RGB
camera relocalization methods.

5.1 Datasets

We evaluate our method on two datasets, both static
and dynamic scenes, to compare with state-of-the-art
methods. These datasets are indoor scenes. Each one
provides intrinsic matrix of camera, thousands of im-
ages of different trajectories at 640× 480 resolution
and annotations (camera pose for each frame).

The 7-scenes dataset (Shotton et al., 2013) con-
tains seven static scenes in room-scale. Each scene in-
cludes some RGB-D image sequences which are cap-
tured around a single room and annotated by using
Kinect Fusion (Newcombe et al., 2011). The data is
challenging with texture-less surface, repeated struc-
ture or fast movement of the camera, that provides
many blurry images.

The DynaScenes dataset 1 is a completely new
dataset for camera relocalization proposing dynamic
environments. To create challenging dynamic scenes
with gradually moving objects, we simulates real sce-
narios as augmented reality based maintenance on a
workbench where users teleport sequentially objects
from one location to another. We also inject chal-
lenges of illumination changes and occlusion into this
dataset. This dataset consists of four scenes. Each
one contains three absolutely different RGB image se-
quences of the same scene (one training sequence and
two testing sequences). More detail characteristics of
this dataset are given in Tab. 1. The ground truth of
camera pose is accurately acquired by using a HTC
Vive tracker rigidly attached on the camera. The cam-
era can move around within a visible area of two light-
house base stations. This allows us to continuously
track the orientation and trajectory of the tracker. A
rigid transformation matrix between tracker pose and
camera pose is estimated by using the hand-eye cali-
bration method (Tsai and Lenz, 1988). Camera pose
is found based on tracker pose and this transformation
matrix. We perform a synchronization to get image
frame and tracker pose at the same time.

5.2 ARF versus RF

ARF performance on dynamic scenes. Fig. 4
shows the performance of our ARF compared to a re-
gression forest with chosen leaves (RF) on a dynamic
sequence which contains objects moving gradually.
The results demonstrate that when objects are static,
both approaches achieve high accurate localization as
shown at beginning of Fig. 4-a,b). As soon as more
than 30% of objects move, the RF approach has large
error because the number of inliers reduces rapidly.
On the other hand, the accuracy of our DynaLoc is
maintained thanks to the ARF update process. Fig. 4-
d) gives the evolution of the number of active leaves
over time. When some objects move, the correspond-
ing active leaves are defined as passive leaves and the
percentage of active leaves drops. When these ob-
jects return to a static state, this percentage increases

1https://github.com/duongnamduong/DynaScenes-
dataset
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Figure 4: Detail results of our DynaLoc based the ARF
(blue) and RF (red) on DynaScene-03/Seq-02. a), b) trans-
lation error in centimeter and rotation error in degree. c) the
percentage of number of inliers at each frame. d) the per-
centage of active leaves compares to the number of leaves
used at each frame for predictions. The background color
present the percentage of objects in the scene that have
moved since the beginning.
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Figure 5: Comparison our DynaLoc based on the ARF
(blue) to RF approaches using all leaves (red) and chosen
leaves (green) with Tvar = 0.1 on DynaScenes dataset by
measuring the percentage of test images where the pose er-
ror is below 5cm and 5°.

again thanks to the passive leaves update step. That is
why the inliers percentage remains sufficiently high,
as shown in Fig. 4-c). Furthermore, although the ARF
update is proceeded based on estimated results, the
error accumulation is very small. The rotation and
translation errors before and after movements are ap-
proximately equal as shown in Fig. 4-a,b). Therefore,
our DynaLoc can handle a whole scene with gradual
changes.

In Fig. 5-b), we compare the results of our Dy-
naLoc with the RF approaches (with or without cho-
sen leaves) on dynamic scenes. We report that the ac-
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Figure 6: Comparison results between DynaLoc and RF on
a dynamic sequence.
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Figure 7: The percentage of active leaves in the whole re-
gression forest at each frame for the ARF strategy (blue) and
a regression forest strategy (green) on the static sequence
01/01.

curacy of RF approaches drastically drops when the
scene changes, whereas our DynaLoc remains stable.
Fig. 6 also shows results on a part of the sequence
Dyna-03/Seq-02. For this example, when some ob-
jects move gradually, the result of our DynaLoc is
still accurate. Conversely, the RF approach fails com-
pletely.

Fine-tune predictive model on static scenes. Our
ARF also improves the predictive model on static
scenes. Indeed, Fig. 5-a) shows that the removal of
uncertain leaves significantly improves accuracy (RF
chosen leaves gives better results than RF all leaves).
And the ARF update increases accuracy further than
the static strategy (RF). This is due to our ARF fine-
tunes the predictive model from online data. Firstly,
we discard the uncertain predictive models given by
passive leaves. Then, these predictive models are re-
calculated based on active leaves update. Fig. 7 shows
the percentage of active leaves in the forest on the
static sequence DynaScene-01/Seq-01 with a variance
threshold Tvar = 0.1. Our ARF update increases the
number of active leaves.



5.3 Comparison to state-of-the-art
methods

Baselines. We compare our method to three differ-
ent RGB camera relocalization approaches: sparse
feature based (Sattler et al., 2017), machine learning
based (Kendall and Cipolla, 2017) and hybrid based
(Brachmann et al., 2016; Brachmann et al., 2017;
Brachmann and Rother, 2018; Duong et al., 2018)
methods. All baselines use RGB-D images for the
training phase and a single RGB image for the testing
phase. We report our results on both static scenes and
dynamic scenes.

Sequence (Duong et al., 2018) DynaLoc
Dyna-01/Seq-01 2.9cm, 1.9° 2.6cm, 1.7°
Dyna-02/Seq-01 3.2cm, 2.6° 3.0cm, 2.5°
Dyna-03/Seq-01 1.9cm, 1.4° 1.4cm, 1.2°
Dyna-04/Seq-01 4.3cm, 3.8° 3.3cm, 1.9°
Dyna-01/Seq-02 4.7cm, 2.9° 2.2cm, 1.6°
Dyna-02/Seq-02 7.2cm, 5.1° 3.5cm, 2.7°
Dyna-03/Seq-02 19.8cm, 14.3° 2.2cm, 1.5°
Dyna-04/Seq-02 25.6cm, 20.6° 3.2cm, 1.7°

Average 8.7cm, 6.6° 2.7cm, 1.9°

Table 2: Comparison of our method with a hybrid method
based on a regression forest (Duong et al., 2018). The ac-
curacy is evaluated by median pose errors on DynaScenes
dataset.

Scene Active Search PoseNet2 DSAC++ DynaLoc
Chess 0.04m,2.0° 0.13m,4.5° 0.02m,0.5° 0.03m,1.3°
Fire 0.03m,1.5° 0.27m,11.3° 0.02m,0.9° 0.02m,1.2°

Heads 0.02m,1.5° 0.17m,13.0° 0.01m,0.8° 0.02m,1.3°
Office 0.09m,3.6° 0.19m,5.6° 0.03m,0.7° 0.04m,1.5°

Pumpkin 0.08m,3.1° 0.26m,4.8° 0.04m,1.1° 0.05m,1.6°
Kitchen 0.07m,3.4° 0.23m,5.4° 0.04m,1.1° 0.04m,1.7°
Stairs 0.03m,2.2° 0.35m,12.4° 0.09m,2.6° 0.07m,1.9°

Average 0.05m,2.5° 0.23m,8.1° 0.04m,1.1° 0.04m,1.5°

Table 3: Comparison of our method with state-of-the-art
methods. The accuracy is evaluated by median pose errors
on 7 scenes dataset.

Scene (Brachmann et al., 2016) DSAC (Duong et al., 2018) DynaLoc
Chess 94.9% 97.4% 73.1% 75.2%
Fire 73.5% 71.6% 79.5% 82.3%

Heads 49.1% 67.0% 80.1% 81.8%
Office 53.2% 59.4% 54.5% 58.2%

Pumpkin 54.5% 58.3% 55.1% 56.7%
Kitchen 42.2% 42.7% 52.2% 54.5%
Stairs 20.1% 13.4% 41.0% 41.6%

Average 55.2% 58.5% 62.2% 64.3%

Table 4: Comparison of our method with state-of-the-art
methods. The accuracy is measured by the percentage of
test images where the pose error is below 5cm and 5°on 7
scenes dataset.

DynaScenes dataset. We first compare our method
to the hybrid method (Duong et al., 2018) on Dy-
naScenes dataset. Tab. 2 shows median camera pose
error for each sequence. Our results are moderately
better than (Duong et al., 2018) on the sequences
01,02,03,04/01 where there are challenging partial

DSAC++ DynaLoc

Configuration GPU Tesla K80 Intel Core i7-7820HKIntel Xeon E5-2680
Training time 1-2 days 5-10 minutes
Testing time 220ms 55ms (5ms for ARF update)

Table 5: Comparison of our method with DSAC++ in term
of runtime. Training time per scene and testing time per
image.

occlusion, illumination changes without moving ob-
jects. Both methods achieve high accuracy thanks to
the use of SURF features and RANSAC algorithm.
However, on the remaining sequences, (Duong et al.,
2018) only obtains moderate accuracy for two scenes
Dyna-{01,02}/Seq-02 that contain respectively 30%
and 60% moving objects. For the scenes Dyna-
{03,04}/Seq-02 where all the objects move gradu-
ally, the accuracy of (Duong et al., 2018) drops sig-
nificantly because RANSAC cannot eliminate a lot of
outliers on moving objects. Inversely, our method still
estimates precisely thanks to passive leaves detection
and update.

7 scenes dataset. Our method is also as accurate as
the state-of-the-art methods on static scenes. This is
demonstrated by results on 7 scenes dataset shown in
Tab. 3 and Tab. 4. Tab. 3 reports that our results
clearly outperform PoseNet2 (Kendall and Cipolla,
2017) on all scenes. And they are slightly better than
Active Search (Sattler et al., 2017) on this dataset
except for the translation error on the stairs scene.
The results also show that the accuracy of our method
is approximately equal to DSAC++ (Brachmann and
Rother, 2018). Tab. 4 shows the results of our
method, of the hybrid methods (Brachmann et al.,
2016; Brachmann et al., 2017; Duong et al., 2018)
using another metric: the percentage of test images
where the pose error is below 5cm and 5°. This met-
ric gives a better evaluation of the stably of a method
on this dataset. Regarding result of each scene, our
method achieves the best results on four scenes: Fire,
Heads, Kitchen and Stairs. Our method achieves bet-
ter accuracy than (Duong et al., 2018) on all scenes.
This indicates that the update of ARF from current
data improves significantly the accuracy of the ini-
tially learned model. In term of the runtime, our
method is much faster than DSAC++ for both train-
ing and testing, as shown in Tab. 5.

6 Conclusion

In this paper, we proposed an adaptive regression
forest that can update itself during the test phase with



current observations to tackle the challenge of dy-
namic data. This is performed by detecting and up-
dating passive leaves of a regression forest. We apply
our adaptive regression forest to our DynaLoc, a real-
time and accurate camera relocalization from a singe
RGB image in dynamic scenes with moving objects.
Our DynaLoc achieves high accuracy on our dynamic
scenes dataset. Moreover, our method is as accurate
as the state-of-the-art methods on static scenes dataset
but performs more quickly both training and testing
time.
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