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Design of Optimal Multiplierless FIR Filters
with Minimal Number of Adders

Martin Kumm, Member, IEEE, Anastasia Volkova, and Silviu-Ioan Filip, Member, IEEE

Abstract—This work presents two novel methods that simul-
taneously optimize both the design of a finite impulse response
(FIR) filter and its multiplierless hardware implementation. We
use integer linear programming (ILP) to minimize the number of
adders used to implement a direct/transposed FIR filter adhering
to a given frequency specification. The proposed algorithms work
by either fixing the number of adders used to implement the
products (multiplier block adders) or by bounding the adder
depth (AD) used for these products. The latter can be used to
design filters with minimal AD for low power applications. In
contrast to previous multiplierless FIR filter approaches, the
methods introduced here ensure adder count optimality. We
perform extensive numerical experiments which demonstrate that
our simultaneous filter design approach yields results which are
in many cases on par or better than those in the literature.

Index Terms—FIR filters, multiplierless implementation, ILP
optimization, MCM problem

I. INTRODUCTION

F Inite impulse response (FIR) filters are fundamental
building blocks in digital signal processing (DSP). They

provide strict stability and phase linearity, enabling many
applications. However, their flexibility typically comes at the
expense of a large number of multiplications, making them
compute-intensive. Hence, many attempts have been made in
the last four decades to avoid costly multiplications and to
implement FIR filters in a multiplierless way [1]–[23].

One of the most widespread ways to do so is to replace
constant multiplications by additions, subtractions and bit
shifts. Consider, for instance, the multiplication by a constant
coefficient 23. It can be computed without dedicated multipli-
ers as

23x = 8 · (2x+ x)− x = ((x << 1) + x) << 3)− x, (1)

where (x << b) denotes the arithmetic left shift of x by b
bits. This computation uses one addition and one subtraction.
Since in this context the add and subtract operations both have
similar hardware cost, the total number of add/subtract units is
usually referred to as adder cost. Bit shifts can be hard-wired
in hardware implementations and do not contribute any cost.
In general, the task of finding a minimal adder circuit for a
given constant is known as the single constant multiplication
(SCM) problem and is already an NP-complete optimization
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(a) SCM with 23 (b) MCM with {7, 23}

Fig. 1: Different adder circuits for constant multiplications.

problem [24]. For (1), the corresponding SCM adder circuit is
illustrated in Fig. 1a.

Such a problem extends to multiplication with multiple
constants, which is necessary when implementing FIR filters.
It is called multiple constant multiplication (MCM). Here,
some of the intermediate factors like the adder computing 3x
in Fig. 1a can be shared among different outputs. Take for
example the coefficients {7, 23}; Fig. 1b shows a solution for
multiplying with both coefficients at an adder cost of only two.
The corresponding optimization problem is called the MCM
problem and has been addressed by numerous heuristic [25]–
[27] and optimal [28]–[30] approaches.

Fig. 2 shows the two most popular structures used to
implement FIR filters: the direct and transposed forms. The
result of an MCM solution can be directly placed in the
multiplier block of the transposed form from Fig. 2b. The
total adder cost can be modeled as the sum of the number
of multiplier block adders and the remaining ones, commonly
called structural adders. The transposed form can be obtained
from the direct form by transposition [31]. As the transposition
of a single-input-single-output system does not change the
adder count, it leads to the same adder cost. In the end, it
does not matter which one of these two filter structures is
actually optimized with respect to the adder count.

In the MCM optimization problem, it is assumed that the
coefficients are known and already quantized to a fixed-point
(or integer) representation. The design of FIR filters with
fixed-point coefficients and a minimum frequency response
approximation error is itself a well-known optimization prob-
lem, going back to at least [32] with subsequent extensions
and improvements [1]–[4], [6], [8]–[10], [12], [15], [16],
[20], [22], [23], [33], [34]. It is however often the case in
practice that a bounded frequency response is acceptable.
In fact, there may be a large number (often hundreds or
more) of different fixed-point coefficient sets that meet such
a specification. Because of this, the most widely used filter



2

(a) Direct form

(b) Transposed form

Fig. 2: Structure of FIR filters.

design technique is a 2-step approach in which: (a) a filter with
real-valued coefficients is derived using standard approaches
(e.g. windowing or Chebyshev) after which (b) the obtained
values are quantized and optimized for a minimum number of
adders using an MCM approach.

Still, when optimizing for resources (in this particular case,
total number of adders), the obtained results are usually far
from optimal (see Section VI-C for a comparison). Therefore,
a lot of effort in fixed-point FIR filter design has gone into
aggregate 1-step methods that put emphasis on resource use.
Finding a minimal adder circuit for a given filter specification
has thus been approached by several authors [1]–[4], [6], [9],
[10], [15], [16], [20], [23], [35].

However, to the best of our knowledge, only one approach,
SIREN [23], [35] , has actually addressed this 1-step design
of multiplierless FIR filters in an optimal way, using a custom
branch and bound algorithm. Here, by optimal multiplierless
filter we mean a direct/transposed form FIR filter requiring a
minimum number of addition/subtraction operations to meet
a target frequency specification, as well as constraints on the
maximum coefficient word size and filter order.

This work presents for the first time a closed form in-
teger linear programming (ILP) formulation for solving this
problem. The authors believe that having a mathematical ILP
formulation allows for easy re-implementations and offers a
convenient framework for further extensions. Examples are
minimizing the power consumption [36]–[38], the inclusion of
lookup table-based multipliers [39], targeting 3-input adders
for FPGAs [40], [41], pipelining [39], optimizing FIR cas-
caded filters [19], etc. Besides that, any performance improve-
ments to ILP solvers directly translate into faster run-times for
solving the multiplierless FIR filter design problem.

The main contributions of our work can be summarized as:

• We present for the first time a solution for the optimal
multiplierless design (in terms of adder count) of FIR
filters from a frequency specification using a closed form
ILP formulation.

• We provide another ILP formulation that is capable of
additionally limiting the adder depth inside the FIR filter.

filter coefficient
optimizer

frequency bands Ω

bounds D(ω), D(ω)

effective word length B

filter order N

FIR filter type

Input parameters

scaled coefficients h′
m

filter gain G

multiplier-less solution

Optimizer outputs

Fig. 3: Simplified multiplierless FIR filter design flow.

• We show that relevant problem sizes can be addressed
by current ILP solvers and that the adder complexity of
well-known FIR filters can be further reduced compared
to the most advanced methods.

Our approach builds on previous ILP formulations [30], [39]
for optimally solving the MCM problem, which we extend
here to multiplierless FIR design. The major challenge is that
such previous work assumes that the constants are known in
advance, while in the FIR filter setting they are the unknowns.
To address it we formalized the search space for the coeffi-
cients, incorporated the frequency domain constraints into the
problem and “linked” the unknowns with the MCM problem
inputs. We also formalized the notion of structural adders
in order to efficiently exploit sparse filter implementations.
In addition, the proposed tool takes advantage of a variety
of techniques for reducing the search space of the obtained
models.

In the following, we will give background information
about previous work this paper is based on. In Section III
and Section IV we describe the two ILP formulations that are
at the core of the paper, whereas in Section V we talk about
ideas meant to improve the practical run-time of the proposed
algorithms. We then present experimental results accompanied
by a comparison with the state-of-the-art (Section VI), fol-
lowed by concluding remarks (Section VII).

II. BACKGROUND

Multiplierless filter design problems usually start with a
functional specification of the frequency domain behavior,
together with the number of filter coefficients and their word
lengths. An optimization procedure is applied to get a set
of bounded integer coefficients together with their associated
adder circuits for the constant multiplications needed in the
final implementation. Summarized in Fig. 3, this section
overviews these parameters and their interactions, together
with the state-of-the-art design methods found in the literature.

A. Linear Phase FIR Filters

An N -th order linear phase FIR filter can be described by
its zero-phase frequency response

HR(ω) =

M−1∑
m=0

hmcm(ω), ω ∈ [0, π], (2)
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TABLE I: Relation between filter order N , number of coeffi-
cients M and function cm(ω) for different filter types

Type Sym. N M cm(ω)

I sym. even N
2

+ 1 cm(ω) =

{
1 for m = 0

2 cos(ωm) for m > 0

II sym. odd N+1
2

cm(ω) = 2 cos(ω(m+ 1/2))

III asym. even N
2

cm(ω) = 2 sin(ω(m− 1))

IV asym. odd N+1
2

cm(ω) = 2 sin(ω(m+ 1/2))

which has the property that its magnitude is identical to that
of the transfer function, i.e.,

|H(ejω)| = |HR(ω)| . (3)

The cm(ω) terms are trigonometric functions and M denotes
the number of independent coefficients after removing iden-
tical or negated ones due to symmetry. Both depend on the
filter symmetry and on the parity of N as given in Table I.

Let D(ω) and D(ω) be the desired lower and upper bounds
of the output frequency response HR(ω). The associated fre-
quency specification-based FIR filter design problem consists
of finding coefficients hm, m = 0, . . . ,M − 1 that fulfill the
constraints

D(ω) ⩽ HR(ω) ⩽ D(ω), ∀ω ∈ Ω, (4)

where Ω ⊆ [0, π] is a set of target frequency bands (usually
pass and stopbands). A standard approach in practice is to
work with Ωd ⊆ Ω, a uniform discretization of Ω. One number
for the size of Ωd found in the literature is 16M [34].

B. Fixed-point Constraints

Fixed-point (integer coefficient) FIR filter design problems
further restrict the search space to integer variables h′

m ∈ Z
with |h′

m| < 2B , where the coefficients of HR(ω) are

hm = 2−Bh′
m (5)

and B ∈ N is the maximum effective word length of each
coefficient (excluding sign bit). Note that we do not rely on
any number representations or other limited number spaces
like many previous approaches [1], [2], [5]–[7], [9]–[11], [13],
[14], [16].

To broaden the feasible set of efficient designs, some
applications allow the use of a real-valued scaling factor
G > 0 when computing the quantized fractional coefficients
hm. Equation (4) thus becomes

GD(ω) ⩽ HR(ω) ⩽ GD(ω), ∀ω ∈ Ω . (6)

When the frequency specification contains a passband, it is
called the passband gain [33]. Finding adequate bounds for
G is dependent on the set/format of feasible h′

m coefficient
values. If these values are constrained to a power of two space,
the ratio between the upper and the lower bound on G does
not need to be larger than 2 [33, Lemma 1]. Even when this
is not the case, the interval [0.7, 1.4] is frequently used [14],
[20], [33]. For our tests, unless otherwise stated, we project

the polytope described by (6) onto G in order to obtain a
sufficiently large search domain [G,G] (see Section V-A). In
case a unity or fixed-gain filter is required we use G = 1.

C. Multiplierless FIR Filters

Formulas (5) and (6) are easily expressed as constraints in
an ILP formulation. However, to ensure an optimal multipli-
erless design, further constraints are needed.

The way these constraints are constructed and used has
varied over the years. Early research in this direction looked
at multiplierless designs where each coefficient was repre-
sented by a limited number of signed power-of-two terms,
optimized using branch-and-bound techniques [1]. Later, min-
imum signed digit (MSD) representations like the canonic
signed digit (CSD) representation characterized by a minimum
number of non-zero digits were quickly adopted for this
purpose [2], [5], [11], [16].

The MSD representations of a number include all possible
representations that have a minimum number of non-zero dig-
its. This includes the CSD representation, but also alternatives.
It can be used to find sharing opportunities of intermediate
computations like the 7x term shown in Fig. 1b. One way is
by searching and eliminating redundant bit patterns common to
several coefficients, a technique called common subexpression
elimination (CSE). Savings are obtained by performing the
computation specified by the bit pattern and distributing the
result to all coefficients depending on it [6], [7], [25]. However,
the CSE search cannot deliver all possible sharing opportuni-
ties due to its dependency on the number representation [26]
and the effect of hidden non-zeros [38]. To avoid them,
graph-based approaches are commonly used in state-of-the-art
MCM methods [25]–[30]. Some early work on multiplierless
FIR filter design already considered this by incorporating the
graph-based MCM algorithm of [25] into a genetic algorithm
that optimizes the filter coefficients according to the adder
cost [4]. A different approach is followed by [9], where a
branch-and-bound-based ILP optimization is used; here, a
pre-specified set of integer terms that can be shared among
the different coefficient expansions, called the subexpression
space, has to be provided. This work was later extended with a
dynamic subexpression space expansion algorithm [13], [14],
which, at least in the case of [14], claims to usually produce
designs with a minimal number of adders. In contrast to these
potentially slow branch-and-bound approaches, in [17], a fast
polynomial-time heuristic for the design of low complexity
multiplierless linear-phase FIR filters was proposed.

Although many of the approaches described above use
optimal branch-and-bound or ILP methods, they are only
used on a limited search space corresponding to the selected
number representation. The branch-and-bound method SIREN,
first described in [35] and later refined in [23], is the only
other work the authors are aware of, besides this one, which
addresses the optimal multiplierless FIR filter design problem
regardless of the number representation. It performs a depth-
first search on a search tree where each level consists of the
possible values of one of the coefficients. When reaching the
bottom of the tree, their optimal MCM algorithm [29] is used
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to determine the adder cost. Lower and upper bounds of these
coefficients are computed using linear programming (LP) and
clever ways are proposed to further prune the search tree.
The first objective in [23] is to find the minimal effective
word length B, with the number of adders being a secondary
objective. The method could work in principle with any B, but
run-time will become prohibitive, as the search tree increases
exponentially with B.

Recent work has also focused on integrating filter coefficient
sparsity, which can also have a big impact on the complexity
of the final design [18], [42], [43] by reducing the number
of structural adders. Also, other structures than the direct and
transposed forms (see Fig. 2) have been shown to possess
good properties. The factoring of FIR filters into a cascade
of relatively small subsections can lead to a lower bit-level
complexity [19]. Alternative structures have also been pro-
posed [21], [43]–[45]; they provide lower word sizes for the
structural adders, reducing resource use.

Besides optimizing the adder count, it was shown early that
the power consumption of the resulting filter also strongly
depends on the adder depth (AD), which is defined as the
number of cascaded adders in the multiplier block [36]. Since
then, many works have focused on limiting the AD either
in MCM algorithms [37]–[39] or directly in multiplierless
filter design methods [14]. Again, all of those approaches
are heuristics that provide minimal AD, but do not guarantee
minimal adder cost.

A low-level metric, e.g. minimizing the number of full
adders [46] or gates [47], would lead to more hardware-
efficient results. However, modeling with respect to these
metrics significantly increases the size and complexity of the
optimization problem, limiting its practicality. While counting
adders is a larger-grain approach, it nevertheless gives a good
indication of the hardware resources needed in practice, and
is better-suited for efficient ILP modeling.

III. MULTIPLIERLESS FIR FILTERS WITH FIXED NUMBER
OF MULTIPLIER BLOCK ADDERS

Our first ILP model targets the design of generic multipli-
erless FIR filters regardless of their adder depth. It is based
on a recently proposed MCM ILP formulation [30], where
the goal is to directly compute the parameters of an MCM
adder graph, if feasible, for a given number of adders. This
idea is extended here for multiplierless FIR filter design by
adding constraints on the frequency specification. As a result,
we get an ILP model to design a multiplierless filter for a
fixed number of adders in the multiplier block. To optimize
the total number of adders, this ILP model is applied several
times using an overall algorithm discussed in Section III-B.
In the following, we first present the ILP formulation for the
fixed number of multiplier block adders.

A. ILP Formulation for Fixed Multiplier Block Adder Count

The proposed ILP formulation is given in ILP Formulation 1
and uses the constants and variables listed in Table II. The
objective is, given a fixed number of multiplier block adders
AM, to minimize the number of structural adders AS (which

ILP Formulation 1 Multiplierless FIR filters with fixed AM

minimize AS(hm,0)

subject to

C1a: G2BD(ω) ⩽
M−1∑
m=0

h′
mcm(ω) ⩽ G2BD(ω), ∀ω ∈ Ωd

C1b: hm ⩽ h′
m ⩽ hm, ∀m = 0, . . . ,M − 1

C2: G ⩽ G ⩽ G

C3a: h′
m = (−1)ϕ2sca if oa,m,s,ϕ = 1

∀a = 0, . . . , AM,m = 0, . . . ,M − 1

C3b: h′
m = 0 if hm,0 = 1, ∀m = 0, . . . ,M − 1

C3c:
AM∑
a=0

Smax∑
s=Smin

1∑
ϕ=0

oa,m,s,ϕ + hm,0 = 1, ∀m = 0, . . . ,M − 1

C4: c0 = 1

C5: ca = csh,sg
a,ℓ + csh,sg

a,r , ∀a = 1, . . . , AM

C6a: ca,i = ck if ca,i,k = 1, ∀a = 1, . . . , AM, i ∈ {ℓ, r}
k = 0, . . . , a− 1

C6b:
a−1∑
k=1

ca,i,k = 1, ∀a = 1, . . . , AM, i ∈ {ℓ, r}

C7a: csh
a,i = 2sca,i if φa,i,s = 1

∀a = 1, . . . , AM, i ∈ {ℓ, r}, s = Smin, . . . , Smax

C7b:
Smax−1∑
s=Smin

φa,i,s = 1, ∀a = 1, . . . , AM, i ∈ {ℓ, r}

C7c: φa,ℓ,s = 0 ∀s > 0

C7d: φa,ℓ,s = φa,r,s ∀s < 0

C8a: csh,sg
a,i = −csh

a,i if ϕa,i = 1, ∀a = 1, . . . , AM, i ∈ {ℓ, r}
C8b: csh,sg

a,i = csh
a,i if ϕa,i = 0, ∀a = 1, . . . , AM, i ∈ {ℓ, r}

C8c: ϕa,ℓ + ϕa,r ⩽ 1, ∀a = 1, . . . , AM

depend on the number of zero filter coefficients, encoded by
the binary decision variables hm,0).

The resulting constraints can be roughly divided into fre-
quency response conditions (C1, C2), equations linking the
filter coefficients with the coefficients of the multiplier block
(C3) and formulas describing the multiplierless realization of
the multiplier block (C4 – C8).

The integer coefficients h′
m (m = 0, . . . ,M − 1) of the

FIR filter are directly used as integer variables in the ILP
formulation. The resulting frequency response is constrained
in C1a by setting (2) and (5) into (6). Constraints C1b are
called lifting constraints. These are actually not required to
solve the problem, but can significantly reduce the search
space and improve run-time performance. Specifically, they
limit the range of the coefficients to lower hm and upper hm

bounds. Constraint C2 similarly limits the range of the gain G.
The computation of these bounds is considered in Section V-A.

Constraints C3a to C3c provide the connection between
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TABLE II: Used constants (top) and variables (bottom) in ILP
Formulation 1

Constant/Variable Meaning

AM ∈ N Number of adders in the multiplier block
M ∈ N Number of filter coefficients
Smin, Smax ∈ Z Minimum and maximum shift
B ∈ Z max. effective word length of coefficients
G,G ∈ R lower and upper bounds on the filter gain

AS ∈ N Number of structural adders
h′
m ∈ Z Integer representation of filter coefficient

hm,0 ∈ {0, 1} true, if coefficient h′
m is zero

ca ∈ N Constant computed in adder a
ca,i ∈ N Constant of input i ∈ {ℓ, r} of adder a
csh
a,i ∈ N Shifted constant of input i ∈ {ℓ, r} of adder a

(defined by C7a)
c

sh,sg
a,i ∈ N Shifted, sign corrected constant of input

i ∈ {ℓ, r} of adder a (defined by C8a/b)
ϕa,i ∈ {0, 1} Sign of input i ∈ {ℓ, r} of adder a (0:’+’,

1:’−’)
ca,i,k ∈ {0, 1} true, if input i of adder a is connected to

adder k
φa,i,s ∈ {0, 1} true, if input i of adder a is shifted by s bits
oa,m,s,ϕ ∈ {0, 1} true, if coefficient h′

m is connected to adder a,
shifted by s and sign ϕ

hm, hm ∈ Z Lower and upper bound for filter coefficient
m = 0 . . .M − 1

G ∈ [G,G] Gain of a flexible gain filter (G = 1 when the
gain is fixed)

the filter coefficient h′
m and the (potentially shifted and sign-

corrected) multiples computed in the multiplier block ca. For
that, the binary decision variables oa,m,s,ϕ ∈ {0, 1} encode if
h′
m is connected to adder a of the multiplier block, shifted

by s, and either added (ϕ = 0) or subtracted (ϕ = 1) in the
structural adders (C3a). In case the coefficient is zero, a single
binary decision variable hm,0 is used (C3b). This encoding
allows the optimization of structural adders by considering
the hm,0 variables in the objective function. For every zero
coefficient, the corresponding structural adder(s) can be saved
depending on the coefficient and filter type. Table III shows
the number of structural adders for the different filter types.
Overall, constraints C3c ensure that only one of the above
cases is valid for each filter coefficient.

The remaining constraints C4 – C8 are identical to the ones
used for solving the MCM problem from [30]. We give a
brief description here, but refer the reader to [30] for a more
detailed presentation. The multiplier block input is viewed
as a multiplication by factor one (c0 = 1) and is defined
with constraint C4. Constraints C5 represent the actual add
operation of adder a and its corresponding factor ca. It is
obtained by adding the shifted and possibly sign corrected
factors of its left input csh,sg

a,ℓ and its right input csh,sg
a,r . The

source of the adder inputs is encoded by C6a/b. Indicator
constraints C6a are used to set the value ca,i of the adder
input i ∈ {ℓ, r} to the actual factor when the corresponding
decision variable ca,i,k is set. Indicator constraints are special
constraints in which a binary variable controls whether or not a
specified linear constraint is active. They are in-fact non-linear,
but are supported by many modern ILP solvers and are also
simple to linearize for other solvers (see [30]). Constraints C6b
make sure that only one source is selected. The actual shift is

TABLE III: Structural adder count for the different filter types

Type no. of structural adders, AS(hm,0)

I N − h0,0 − 2

M−1∑
m=1

hm,0

II N − 2

M−1∑
m=0

hm,0

III N − 2

M−1∑
m=1

hm,0

IV N − 2

M−1∑
m=0

hm,0

constrained by C7a/b in a similar way: indicator constraints
C7a are used to set the shifted factor csh

a,i according to the
corresponding decision variable φa,i,s.

Constraints C7c and C7d are both optional lifting constraints
used to reduce the search space. As the filter coefficients can
be shifted in constraint C3a, we can limit the constants of the
multiplier block to odd numbers. This allows us to use the
well-known fact that odd coefficients can be computed from
odd numbers using one addition where either one operand
is left shifted and the other operand is not shifted, or both
operands are right shifted by the same value [48, Theorem 3].

To support subtractions, indicator constraints C8a/b are used
to set the sign according to decision variable ϕa,i. Finally,
constraints C8c ensure that at most one input of the adder
can be negative, as subtracting both inputs is typically more
hardware demanding.

All of the integer variables from Table II are computed
from boolean variables weighted by integer constants. They
can thus be relaxed to real variables without changing the
problem, while also speeding up the optimization (by reducing
the number of integer variables).

B. Minimizing the Total Number of Adders

As the number of adders in the multiplier block AM is fixed
in ILP Formulation 1, we need to iterate over various values
AM to find the minimum number of total adders

A = AM +AS . (7)

For that, we first search for a solution with minimal number
of multiplier block adders by solving ILP Formulation 1 using
a lower bound for the multiplier block adders AM = AM,LB
and, if infeasible, increase AM by one until we obtain the first
feasible solution. A feasible lower bound AM,LB is zero, but a
better lower bound is provided later in Section V-B.

This solution with minimum multiplier block adders AM,min
is not necessarily the global optimum, as there might be a
solution with AM > AM,min and a smaller AS. To account for
this, we need a lower bound for the structural adders AS,min.
This is obtained once at the beginning of the overall algorithm
by solving the problem for a maximally sparse FIR filter,
which we do by taking ILP Formulation 1 where only the
constraints C1 – C3 are considered.
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In case the structural adders AS of solutions with AM =
AM,min are not identical with AS,min, we increment AM until
we find a solution with AS = AS,min. This is a safe stopping
point since, by the optimality of ILP Formulation 1, there is
no solution with larger AM and smaller AS. The solution with
minimum total adders A found so far is hence also globally
optimal. Typically, only a few iterations are necessary to reach
this point.

IV. MULTIPLIERLESS FIR FILTERS WITH BOUNDED
ADDER DEPTH

As discussed above, limiting the AD is important to reduce
the power consumption of a filter. Unfortunately, adapting ILP
Formulation 1 to limit the AD is not straightforward, as the
topology of the adders and thus the AD is left open. We
present in this section a novel ILP model for the design
of multiplierless FIR filter with limited AD which is based
on a formulation that was initially designed for optimizing
pipelined MCM (PMCM) circuits [39].

In contrast to ILP Formulation 1, the possible coefficients
are precomputed for each adder stage s and selected using bi-
nary decision variables. The computation of the corresponding
coefficient sets is given next.

A. Definition of Coefficient Sets

We use some notation and definitions originally introduced
in [26]. First, we define the generalized add operation called
A-operation, which includes shifts. An A-operation has two
input coefficients u, v ∈ N and computes

Aq(u, v) = |2luu+ (−1)sv2lvv|2−r, (8)

where q = (lu, lv, r, sv) is a configuration vector which
determines the left shifts lu, lv ∈ N0 of the inputs, r ∈ N0

is the output right-shift and sv ∈ {0, 1} is a sign bit which
denotes whether an addition or subtraction is performed.

Next, we define the set A∗(u, v) containing all possible
coefficients which can be obtained from u and v by using
exactly one A-operation:

A∗(u, v) := {Aq(u, v) | q is a valid configuration} . (9)

A valid configuration is a combination of lu, lv , r and sv such
that the result is a positive odd integer Aq(u, v) ⩽ cmax. The
reason for limiting the integers to odd values is that we can
compute every even multiple by shifting the corresponding odd
multiple to the left. The cmax limit is used to keep A∗(u, v)
finite. It is chosen as a power-of-two value which is usually
set to the maximum coefficient bit width B plus one [25], [26]

cmax := 2B+1 . (10)

For convenience, the A∗ set is also defined for an input set
X ⊆ N as

A∗(X) :=
⋃

u,v∈X

A∗(u, v) . (11)

We can now define the coefficients that can be computed
at adder stage s, denoted as As, by recursively computing the
A∗ sets

A0 := {1} (12)

As := A∗(As−1) . (13)

In addition, let T s denote the set of (u, v, w) triplets for which
w ∈ As can be computed using u and v from the previous
stage (i.e., u, v ∈ As−1). T s can be computed recursively,
starting from the last stage s, which is equal to the maximum
allowable AD:

T s := {(u, v, w) | w = Aq(u, v),

u, v ∈ As, u ⩽ v, w ∈ As+1}. (14)

To give an example, the first elements of T 1 are T 1 =
{(1, 1, 1), (1, 1, 3), (1, 1, 5), (1, 1, 7), (1, 1, 9), (1, 1, 15), . . .}.
This set contains all the possible rules for computing
multiples from the input within one stage of additions,
while set T 2 = T 1 ∪ {(1, 3, 11), (1, 5, 11), . . . , (3, 5, 11), . . .}
contains all the combinations of how elements in the next
stage can be computed.

B. ILP Formulation for Fixed Adder Depth

The bounded AD model is given in ILP Formulation 2,
while the corresponding constants and variables are given
in Table IV.

In contrast to ILP Formulation 1, the objective is to directly
minimize the total number of adders A, which is separated
into adders in the multiplier block (AM) and structural adders
AS. Similar to ILP Formulation 1, the constraints are divided
into frequency response conditions (C1, C2), the link between
the filter coefficients and the coefficients of the multiplier
block (C3, C4) and the equations describing the multiplierless
realization of the multiplier block (C5 – C8).

Constraints C1a/b and C2 are identical to the ones in
ILP Formulation 1. Now, the connection between the odd
multiplier block coefficients of the pre-computed sets and the
filter coefficients is performed using binary decision variables.
Let hm,w ∈ {0, 1} be a binary decision variable that is true if
the magnitude of h′

m is identical to w, i.e.,

hm,w =

{
1 when |h′

m| = w

0 otherwise
(15)

for m = 0, . . . ,M − 1 and w = 0, . . . , 2B − 1. Furthermore,
let ϕm determine the sign of h′

m as follows

ϕm =

{
0 when h′

m ≥ 0

1 otherwise .
(16)

The value of each integer coefficient h′
m is selected by the

indicator constraints C3a. In addition, constraints C3b make
sure that only one value per filter coefficient is selected.

Next, we distinguish between coefficients that are computed
for the selected stage (by using an addition) and coefficients
that are just duplicated from a previous stage. Hence, we
introduce two new decision variables for each w and stage:
asw and dsw, which are true, if w in stage s is realized
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ILP Formulation 2 Multiplierless FIR filters with depth limit

minimize
AD∑
s=1

∑
w∈As

asw︸ ︷︷ ︸
=AM

+AS(hm,0)

subject to

C1a: G2BD(ω) ⩽
M−1∑
m=0

h′
mcm(ω) ⩽ G2BD(ω), ∀ω ∈ Ωd

C1b: hm ⩽ h′
m ⩽ hm, ∀m = 0, . . . ,M − 1

C2: G ⩽ G ⩽ G

C3a: h′
m =



2B−1∑
w=0

whm,w if ϕm = 0

−
2B−1∑
w=1

whm,w if ϕm = 1

∀m = 0, . . . ,M − 1

C3b:
2B−1∑
w=0

hm,w = 1, ∀m = 0, . . . ,M − 1

C4: dAD
odd(w) + aAD

odd(w) ⩾
1

M

M−1∑
m=0

hm,w, ∀w = 0, . . . , 2B − 1

C5: dsw = 0 ∀w ∈ As \
s−1⋃
s′=0

As′ and s = 1, . . . ,AD − 1

C6: dsw − as−1
w − ds−1

w ⩽ 0, ∀w ∈ As \{0}, s = 2, . . . ,AD

C7: asw −
∑

(u,v,w′)∈T s |w′=w

xs−1
(u,v) ⩽ 0, ∀w ∈ As, s = 2, . . . ,AD

C8:
xs
(u,v) − dsu − asu ⩽ 0

xs
(u,v) − dsv − asv ⩽ 0

∀(u, v, w) ∈ T s with s = 1, . . . ,AD − 1

using an adder or just duplicated, respectively. Duplicates
do not contribute to the cost in this work, but note that the
decision variable can be used to model the cost in a pipelined
implementation of the multiplier block.

The connection to the filter coefficients hm,w is made
through C4. As several of the M h′

m coefficients can have
the same w value, the right hand side of C4 is scaled by 1/M
to keep it less than one. Whenever the right hand side of C4 is
non-zero it forces the realization of coefficient w in the output
stage AD, either as an adder or as a register/wire.

Constraints C5 and C6 consider the realization as regis-
ter/wire: they require that a value w can only be replicated
from a previous stage if it was computed or replicated before.

The realization as an adder computing constant w from
the inputs u and v requires the presence of both inputs in
the previous stage. For that, the binary variables xs

(u,v) are
introduced to determine if both are available in stage s:

xs
(u,v) =

{
1 if both u and v are available in stage s

0 otherwise.
(17)

TABLE IV: Used constants (top) and variables (bottom) in
ILP Formulation 2

Constant/Variable Meaning

M ∈ N Number of filter coefficients
As ⊆ N Coefficients that can be computed in adder stage s
T s ⊆ N3 Tripplets (u, v, w) from which w ∈ As can be

computed using u, v ∈ As−1

hm, hm ∈ Z Lower and upper bound for filter coefficient
m = 0, . . . ,M − 1

B ∈ Z max. effective word length of coefficients
G,G ∈ R lower and upper bounds on the filter gain
AD ∈ N adder depth

h′
m ∈ Z Value of filter coefficient m = 0, . . . ,M − 1

hm,w ∈ {0, 1} true, if |h′
m| = w for m = 0, . . . ,M − 1 and

w = 0, . . . , 2B − 1
ϕm ∈ {0, 1} true, if h′

m is negative
asw ∈ {0, 1} true, if w ∈ As in stage s = 1, . . . , S − 1 is

realized using an adder
dsw ∈ {0, 1} true, if w ∈ As in stage s = 1, . . . , S − 1 is

realized using a register or wire
xs
(u,v)

∈ {0, 1} true, if u and v are available in stage
s = 1, . . . , S − 2

G ∈ [G,G] Gain of a flexible gain filter (G = 1 when the
gain is fixed)

Now, constraint C7 specifies that if w is computed by w =
A(u, v) in stage s, the pair (u, v) has to be available in the
previous stage. If a pair (u, v) is required in stage s, constraints
C8 make sure that u and v have been realized in the previous
stage either as register or adder.

Note that instead of using constraint C5, it is more practical
to remove all variables dsw = 0 from the cost function and their
related constraints. Also note that the binary variables xs

(u,v)

and the integer variables h′
m can be relaxed to real numbers

to speed up the optimization.
Finally, this model can be extended to optimize an approx-

imate low-level cost. For that, the AS and asw terms have to
be weighted with their corresponding low-level cost. While
this is exact for the multiplier blocks (as their coefficients are
pre-computed) the costs for the structural adders have to be
approximated. This can be done by taking the input word size
for computing the cost of each structural adder and considering
their word size increase due to the multiplier block in the asw
terms. This works, of course, only when the structural adder
is actually realized.

C. Selecting the Adder Depth

The AD is often selected to be as small as possible, typically
at the expense of a higher adder cost. It is well known that the
minimal AD needed when multiplying with a given coefficient
can be realized by using a binary tree [49]. Therefore, it
cannot be lower than the base two logarithm of the non-
zero digit count of its MSD representation. Unfortunately, as
the coefficients are not known in advance, the minimum AD
cannot be derived from the filter specification. However, the
upper bound of the AD can be computed from the coefficient
word size B as follows. A B bit binary number can have up
to B + 1 digits when represented as an MSD number and up



8

to ⌊(B + 1)/2⌋+1 non-zeros in the worst case. This leads to
a maximum adder depth of

ADmax =

⌈
log2

(⌊
B + 1

2

⌋
+ 1

)⌉
. (18)

Using this bound, a search from AD = 0, . . . ,ADmax can be
performed until the first feasible solution is found.

For practical FIR filters, early studies have shown that
coefficient word sizes between 15 bit to 20 bit are sufficient
to achieve approximation errors between −70 and −100 dB.
Using (18), this translates to ADs of at most three to four. In
our experiments, we found very good solutions with AD = 2
for most of the filters from practice.

V. REDUCING THE PROBLEM COMPLEXITY

A. Reducing the Coefficient Range

Following [23, Sec. 3], we bound the search space for
the gain and coefficient values, respectively, by projecting
the polytope corresponding to the discretized versions of (4)
or (6) onto G and each h′

m. For instance, in the case of the
coefficients, the goal is a tight interval enclosure [hm, hm] for
the feasible values of h′

m. This corresponds to the LPs:

minimize h′
m

or
maximize h′

m

subject to

G2BD(ω) ⩽
M−1∑
k=0

h′
kck(ω) ⩽ G2BD(ω), ∀ω ∈ Ωd,

where h′
k ∈ R for k = 0, . . . ,M − 1 and G ∈

[
G,G

]
(or

G = 1 when unity gain is used). We get [hm, hm] by taking

hm = ⌈h′
m⌉ from minimize h′

m,

hm = ⌊h′
m⌋ from maximize h′

m.

We do the same for G in computing the enclosure [G,G],
which is done before bounding the filter coefficients.

B. Computing a Lower Bound for the Number of Adders

Having a good lower bound for the number of adders helps
to reduce the number of ILP runs for ILP Formulation 1 as
described in Section III-B. There are well-known bounds for
the number of adders that are required to multiply with a
pre-determined set of constants [50]. Unfortunately, these can
not be directly applied as we do not know the coefficients
in advance. However, we can adopt them to the ranges we
obtained in Section V-A.

The initial lower bound in [50] is the following:

AM,LB = min
m

⌈ADmin(h
′
m)⌉+Muq − 1 (19)

The function ADmin(h
′
m) computes the minimum AD for the

coefficient h′
m and Muq is the number of positive odd unique

coefficients excluding zero and one. To transfer this to the co-
efficient ranges we obtained, we have to compute lower bounds
for ADmin(h

′
m) and Muq. A lower bound of ADmin(h

′
m) can

be obtained by simply evaluating the minimum AD for all the
possible values h′

m ∈ [hm, hm], i.e.,

AM,LB = min
m,h′

m∈[hm,hm]
⌈ADmin(h

′
m)⌉+Muq − 1 (20)

To obtain a lower bound of the number of unique coefficients
Muq, we compute the following:

1) We initialize Muq = 0 and Om = {},m = 0, . . . ,M−1.
2) For each h′

m ∈ [hm, hm], we compute its positive odd
representation by dividing its absolute value by two until
it is odd and add it to the Om set.

3) For each Om, we check whether it contains neither 0
nor 1 and does not have any intersection with another
set On with n > m. In this case, we know that we need
at least one adder to compute this coefficient and we
increase Muq by one.

C. Discretizing the Frequency Domain

Even though Ω is replaced by a finite set Ωd, we perform a
rigorous posteriori validation of the result over Ω [51]. Still,
the typically large size of Ωd (16M is a common value found
in the literature) can have a big impact on the run-time of
the filter design routine. This is shown for instance in the
context of an optimal branch-and-bound algorithm for FIR
filter design with fixed-point coefficients [34, Table 2]. A too
small number of points can, on the other hand, lead to an
invalid solution over Ω and a larger feasible set, potentially
incurring a larger run-time as well. It is thus important to
consider a discretization of reasonable size that is unlikely to
lead to invalid solutions over Ω (i.e., equations (4) or (6) do not
hold) and does not increase the search space by a too large
factor. To this effect, we use so-called approximate Fekete
points (AFPs), which contain the most critical frequencies for
a given filter that needs to fit a target frequency response.
They have recently been used to improve the robustness of
the classic Parks-McClellan Chebyshev FIR filter design algo-
rithm [52] and for a fast and efficient heuristic for FIR fixed-
point coefficient optimization [53]. They are efficient choices
when performing polynomial interpolation/approximation on
domains such as Ω. This is relevant in our context since
HR(ω) in (2) is a polynomial in cos(ω). For details on how
to compute them we refer the reader to [52], [53] and the
references therein.

D. An Adaptive Search Strategy

Even if the current Ωd leads to a solution that does not pass
a posteriori validation, it might still be possible to rescale
the gain factor G such that (6) holds. By taking a point
ωmax ∈ Ω where GD(ωmax) − HR(ωmax) or HR(ωmax) −
GD(ωmax) is largest (i.e., the point of largest deviation from
the specification) we first update G to take a value close
to HR(ωmax)/D(ωmax) or HR(ωmax)/D(ωmax), depending
on where the deviation occurs. If this new gain leads to a
valid solution over Ω, then it is optimal. If not, we update Ωd
by adding the points of largest deviation for each frequency
subdomain. We rerun the optimization with this new Ωd,
repeating until either (a) there are no more invalid frequency



9

points or (b) the problem becomes infeasible, meaning no
solution with the imposed constraints over Ω exists.

We should mention that running the result validation code
of [51] at each iteration of the adaptive routine is computa-
tionally expensive. This is why at each iteration we perform
a fast, non rigorous test consisting of verifying (6) on a much
denser discretization of Ω than Ωd. We found this to usually
be sufficient in ensuring that the a posteriori validation [51]
done at the end of optimization is successful. This is in stark
contrast with the rest of the literature, which generally only
uses a small discretization of Ω throughout the design process.
While good for performance, such an approach will sometimes
lead to designs which actually fail to satisfy the specification
(see results in Table VI).

VI. EXPERIMENTAL RESULTS

To test the ILP formulations discussed above, we have
implemented them in a C++ filter design tool1. It features a
flexible command-line interface.

A. Experimental Setup and Parameter Choices

The proposed implementation supports several popular
(M)ILP solvers, such as Gurobi2 and CPLEX3. For conve-
nience, these solvers are accessed through the ScaLP [54]
library, which acts as a frontend. Based on our experiments,
Gurobi usually proved to be the fastest, which is why, apart
from a few exceptions, we use it on all the examples below.

All experiments use the AFP-based frequency grid dis-
cretization mentioned in Section V-C. As discussed before,
the number of frequency points in Ωd is run-time critical. To
determine an appropriate size, we ran an experiment using a
typical design scenario with an Ωd size of kM points and
k = 1, . . . , 32. They start large for very low k, as in these
cases the frequency grid usually has to be extended to address
violations, which require re-running the optimization routine
on a new grid. If k is large enough (e.g., k ⩾ 4), invalid results
become rare, meaning just one optimization pass is sufficient.
Further increasing k at this point just leads to more constraints
in the model and likely a larger run-time. Based on these
results, we start with 4M points. This choice usually delivers
a good balance between optimizer run-time and number of
iterations needed to obtain a valid solution over Ω.

B. Benchmark Set

Several multiplierless filter designs were computed to eval-
uate our methods. They are introduced next.

1) A Family of Specifications from [4, Example 1]: We
consider a family of low-pass linear-phase filter specifications
from Redmill et al. [4]. These specifications are defined by:

1− δ ⩽ HR(ω) ⩽ 1 + δ, ω ∈ [0, 0.3] (passband)
−δ ⩽ HR(ω) ⩽ δ, ω ∈ [0.5, 0.1] (stopband)

1Available as an open-source project at: https://gitlab.com/filteropt/firopt.
2https://www.gurobi.com
3https://www.ibm.com/analytics/cplex-optimizer

TABLE V: Specifications of the reference filters

Name Source Ωp/π Ωs/π δp δs

S1 [4] [0, 0.3] [0.5, 1] 0.00636 0.00636

S2 [9], [14], [23] [0, 0.042] [0.14, 1] 0.026 0.001

L1 [9], [11], [23] [0.8, 1] [0, 0.74] 0.0057 0.0001

L2 [1], [16], [23] [0, 0.2] [0.28, 1] 0.02800 0.001

L3 [1], [16]
[0; 0.15]
[0.15; 0.1875]
[0.1875; 0.2125]

[0.2875; 1]
0.0165
0.0296
0.0546

0.0316

X1 [10], [14], [23] [0, 0.2] [0.8, 1] 0.0001 0.0001

G1 [6], [14], [23] [0, 0.2] [0.5, 1] 0.01 0.01

Y1 [14], [23] [0, 0.3] [0.5, 1] 0.00316 0.00316

Y2 [14], [23] [0, 0.3] [0.5, 1] 0.00115 0.00115

where δ is a parameter regulating error. We set δ = 10−
p
20 ,

where p > 0 is the error in decibels (dB).
Our goal with this benchmark is to explore the tradeoff

between the error (p), the filter order (N ) and the word length
(B) in terms of the total number of adders.

2) A Set of State-of-the-art Specifications: We also test our
tool on a set of reference specifications from the literature [1],
[2], [4], [6], [9], [10], [14], [16], [23], referred to as S1, S2,
L1, L2, L3, X1, G1, Y 1 and Y 2. They are all low-pass filters
defined by

1− δp ⩽ HR(ω) ⩽ 1 + δp, ω ∈ Ωp (passband),
−δs ⩽ HR(ω) ⩽ δs, ω ∈ Ωs (stopband),

where the values of δp, δs,Ωp,Ωs for each specification are
given in Table V. Over time, some of these reference filter
specifications were slightly modified by different publications.
We compare against the most recent version in each case,
updating it to account for any violation of the specification
in the results reported in the literature.

The restriction to low-pass filters comes only from the exist-
ing literature. Our tool can also be used to design other types
of filters, such as multiband filters or decimators (since we
generalize constraints on the frequency response as functions
of frequencies).

C. 1-step vs 2-step Design Optimization Approach

We start by demonstrating the advantages of an overall 1-
step optimization over the classic 2-step filter design process.
For each frequency specification, there exist numerous coeffi-
cient sets satisfying it. Take, for example, frequency specifi-
cation S1, when realized as a type I filter with N = 24: there
exist 237 sets of coefficients of word length B = 9 that satisfy
the constraints. We brute-force explored the design space and
applied the optimal MCM solver [30] on each possible filter
coefficient set to design the multiplierless implementations.
For this particular example, the total adder cost varies from
26 up to 34 adders. Figure 4 presents the histogram illustrating
the number of coefficient sets falling into each adder cost
category. It can be interpreted in the following way: when
selecting coefficient sets out of the pool of feasible results,
with high probability one obtains the design of cost 32, 33 or
perhaps 31 adders. Indeed, only 15 out of 237 filters have cost

https://gitlab.com/filteropt/firopt
https://www.gurobi.com
https://www.ibm.com/analytics/cplex-optimizer
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Fig. 4: Histogram demonstrating the total adder cost of feasible
filter designs for S1 specification with word length B = 9.

less than 30 adders and the lowest cost is achieved by only one
filter. Generally speaking, for an arbitrary filter specification,
the 2-step approach that first selects a filter coefficient set
(without a priori knowledge of the cost) and then designs an
optimal MCM architecture, has a high probability to be far
from optimal. Brute-force design exploration as presented here
is not practical for higher-order and high-wordlength solutions,
hence a 1-step optimization approach is necessary to navigate
the search space towards an optimal solution.

D. ILP1 versus ILP2

1) Model Complexity and Run-Time Comparison: To esti-
mate the model complexity, we evaluated the model sizes as
well as the run-times. This is done using the family of speci-
fications from [4, Example 1] as described in Section VI-B1.
The value of p is varied from −2 dB to −46 dB using an
effective word length of up to B = 10 bits. A timeout of
2 hours was set for each ILP run. Fig. 5 shows the ILP
model sizes in terms of number of variables and constraints,
while Fig. 6 shows the run-times obtained on an 8-core Intel
Core i9 notebook CPU. The run-times include the ILP runs
of the coefficient range reduction (Section V-A) as well as
the adaptive search strategy (Section V-D). Coefficient range
reduction always took less than a second to compute the lower
and upper bounds for each coefficient. For the adaptive search
strategy, at least one re-run was necessary in 27 out of the 125
cases (21.6%). At most four re-runs were necessary to meet
frequency specification, in two of the cases.

The following can be observed: for ILP1, the model size
grows with decreasing error as more adders are required, lead-
ing to longer run-times. For errors smaller than −38 dB, the
ILP timeout was exceeded. For ILP2, the model size remains
approximately constant for a fixed AD. The fluctuations in
model size can be explained by the coefficient range reduction
of Section V-A.

For AD=2, fast run-times were observed, outperforming
ILP1 and scaling to −46 dB errors within a few seconds (for
smaller errors, the word size has to be increased). For AD=3,
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Fig. 5: Model size in terms of the number of variables and
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Fig. 6: Run-time for different pass/stopband errors for ILP1
and ILP2 with AD=2 and AD=3.

the model size becomes much larger, translating into longer
run-times. Similar to ILP1, the 2 hour timeout was exceeded
for errors less than −38 dB.

This shows the limitations of the proposed methods: ILP1
execution is dominated by the total number of adders while
ILP2 execution is dominated by the adder depth. As filters
with low adder depth are desired for low power applications,
this later limitation is less impactful.

2) Optimization Results Comparison: Both ILP1 and ILP2
can be used to optimize for the total number of adders given
fixed parameters like filter order N , filter type and the effective
word length B (see Fig. 3). In case of ILP2, the adder depth
is an additional constraint. Therefore, in practice, the two
approaches can sometimes lead to different results.

This is exemplified in Fig. 7, where we again design a set of
filters using the family of specifications from [4, Example 1].
We consider 37 filters with error varying from −2 dB to
−38 dB, with a 9-bit effective word length and gain G = 1. In
each case, a type I filter with smallest N that leads to a feasible
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Fig. 7: Total adder count comparison when using ILP1
(adapted to minimize the total number of adders) and ILP2
(with AD limit set to 2) on the Redmill set of filters [4].

solution under the given constraints was used. For ILP2, the
upper bounds on the AD were set to 2 and 3, respectively. The
ILP solver timeout was again set to 2 hours.

For most error targets the total adder count is identical
between the three variants. The exceptions are as follows:

• At −22 dB the minimum filter order is N = 10, leading
to a higher adder count than for −23 dB. . .−26 dB where
a filter order of N = 12 is necessary.

• At −27 dB and −32 dB, AD = 2 was simply not
sufficient to reach the minimum adders. Similarly, at
−31 dB and −36 dB, AD = 3 was not sufficient.

• At −37 dB, ILP1 finds an optimal solution with N = 20
and 25 adders while an AD = 2 solution for ILP2 is only
possible starting with N = 22 and achieving 23 adders.

As we further illustrate in the next section, the combination
of the filter order, word length and adder depth for a given
specification forms a non-linear discrete design-space, increas-
ing the difficulty of the search for the overall minimal-adder
implementation.

E. Optimization Results for Benchmark Sets

For comparison with previous work, we use ILP2 with
AD = 2 (unless otherwise stated).

1) The Family of Specifications from [4, Example 1]: The
experiment setting from Section VI-D2 is expanded upon. We
compare our best results (with effective word lengths B ∈
{8, 9, 10, 11}) with those from [4, Example 1]. We start off
by considering only type I filters (just like in [4]), flexible gain
G ∈ [2/3, 4/3] and minimal order N for each error target. The
results are illustrated in Fig. 8. We note that there are certain
cases where, for a given B, taking the minimal filter order
leading to a feasible solution does not minimize the adder cost.
This is most visible for B = 11 and a −30 dB error target,
where a minimal order N = 14 filter requires 24 adders. For
B = 10, the minimal N is 16, leading to only 17 total adders,
a 7 adder improvement. Taking N = 16 for B = 11 also
results in a 17 adder solution. A lower implementation cost
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Fig. 8: Our designs with effective word lengths varying from
8 to 11, filter type I and smallest feasible filter order.
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Fig. 9: Comparison between our best design space exploration
results and the best results from [4, Example 1]. Our tool
improves designs from [4] or proves them optimal.

is sometimes possible when increasing the filter order leads
to a sparser filter and/or a more economical MCM design.
Such solutions better optimize the objective functions in the
proposed ILP models. We nevertheless remark that increasing
the filter order beyond a certain threshold will not lead to
different solutions.

Of course, increasing the word length can also lead to
a significant improvement in the results. For instance, the
optimal −50 dB attenuation results for B ∈ {9, 10, 11} require
42, 32 and 31 adders, respectively.

This nonlinearity of the word length/cost relation means
that the user should favor a comprehensive exploration of the
design space, varying the design parameters (especially B,
filter type and N ) and examine the various trade-offs. This
is possible with our tool. Fig. 9 shows the results of such an
experiment where, with respect to the setting of Fig. 8, we
additionally allow N to vary and also consider type II filters.
We also added the fixed and flexible gain as well as the results
from the genetic algorithm presented in [4]. Compared to [4],
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TABLE VI: Comparison between our method and the state-of-the-art results for the specifications in Table V.

Name Source N Type AM AS A AD G B Coefficients

S1 [4] 24 I 6 20 26 3 2.4570 9 2 8 0 −16 −14 20 43 0 −80 −71 112 377 502
S1 ours 23 II 5 19 24 2 2.46492 9 6 6 −8 −21 0 36 32 −42 −96 0 248 472

S2 [14] 59 II 17 59 76 3 10.47032 10 5 5 6 5 2 −2 −10 −20 −32 −48 −64 −78 −92 −98 −87 −65
−26 26 93 174 267 368 472 575 672 757 826 874 898

S2 ours 59 II 15 51 66 2 7.5904 10 0 0 0 −2 −5 −10 −16 −23 −32 −40 −50 −58 −64 −64 −61
−50 −29 0 38 86 143 206 274 344 412 476 532 576 608 624

L2 [14] 62 I 17 56 73 3 4.1991 10 4 8 12 13 9 0 −10 −16 −13 0 19 35 36 18 −15 −49 −64 −48 0
60 102 96 32 −72 −170 −203 −124 79 371 678 911 998

L2 ours 62 I 16 62 78 3 2.6668 11 4 9 13 12 4 −10 −26 −36 −32 −12 18 44 52 32 −10 −56 −80
−64 −4 74 130 128 48 −86 −215 −263 −168 88 460 854 1153
1265

L3 [14] 35 II 4 31 35 1 2.627 7 3 0 −2 −5 −5 0 3 7 8 3 −6 −14 −16 −7 12 40 65 80
L3 ours 35 II 3 31 34 2 2.60564 7 4 0 −2 −4 −4 0 3 8 8 3 −6 −13 −16 −8 13 40 64 80

X1 [23], ours 14 I 5 8 13 2 1.6404 10 −4 0 28 0 −113 0 509 840

G1 [23], ours 15 II 2 15 17 2 2.6338 6 1 2 −1 −7 −7 7 34 56

Y1∗ [23], ours 29 II 6 23 29 2 2.505 9 −1 −4 0 8 8 −10 −22 0 40 33 −44 −99 0 254 479
Y1 ours 29 II 7 23 30 2 2.468 10 −2 −8 0 16 15 −20 −44 0 80 65 −88 −195 0 500 944
Y1 ours 29 II 6 23 29 3 2.472 10 −2 −8 0 16 15 −20 −44 0 80 64 −88 −196 0 501 945
Y1 [14] 29 II 6 23 29 3 2.5985 10 −2 −8 0 17 16 −21 −46 0 84 68 −92 −205 0 527 994

Y2 [23] 37 II 9 29 38 3 2.6361 10 −1 0 4 4 −5 −13 0 24 20 −26 −55 0 91 73 −96 −213 0 536 1008
Y2 ours 37 II 9 29 38 3 2.6259 10 −1 0 4 4 −5 −13 0 24 20 −26 −55 0 91 73 −96 −212 0 534 1004

∗The solution slightly fails the specification

we could improve all of the results, except two of them where
we obtained the same adder cost (−9 dB and −25 dB). It is
clearly visible that allowing flexible gain designs can have a
major influence on the quality of the results.

2) The Set of State-of-the-art Specifications: Table VI
presents the comparison between our designs and the best
results from literature [1], [2], [4], [9], [14], [16] for the
filter specifications from Table V. The following information
for each implementation is given: filter order (N ), filter type,
number of multiplier adders (AM ), number of structural adders
(AS), total number of adders (A), adder depth of the multiplier
block (AD), gain (G), effective coefficient word length (B)
and, finally, coefficients of the filter. In the following, we
discuss each instance in detail.

S1: for this specification we show that the AD can be
reduced from 3 to 2 stages, while keeping the same effective
word length. We also reduce the number of adders by two
(one structural and one MB).

S2: in [9], implementations with adder depths 3 and 2
are proposed, at the cost of 78 and 80 adders, respectively.
These results are improved in [14], with the authors claiming
that a 3-stage implementation at the cost of 76 adders has a
high probability to be optimal. We demonstrate that a 2-stage
design with a cost of only 66 adders is possible. Again, our
result has higher sparsity than previous designs.

L1: the tool timed out for this specification before giving
a feasible result, hence it is not presented in Table VI. The
best known result from literature is a 120-tap filter [9] and
the size of an instance of the corresponding ILP formulation
goes beyond the current capabilities of the solvers we tried,
showing its limitations.

L2: we could not achieve a better solution than the state
of the art [14] before the timeout. This example showcases

the scalability limits of our tool with a high filter order and
AD = 3, as also shown in Section VI-D1.

L3: in [14], an implementation with 35 adders is pro-
vided. We show that a 34 adder solution is possible.

X1&G1: we obtain the same results as the optimal ones
reported in [23].

Y1: the verification of the frequency response of the
result of [23] revealed a slight stopband violation. By adjusting
the frequency specification (denoted as Y1∗), we could obtain
the same result. The solution of the initial frequency speci-
fication with AD= 2 requires one adder more while setting
AD= 3 as in [14] yield to an optimal solution with 29 adders.

Y2: we obtain a result with same adder count as the
optimal one reported in [23].

Overall, the proposed tool achieves improvements to several
of the considered filter design problems and confirms optimal
results reported in literature. Most importantly, the user can
explore a large design space by setting different implemen-
tation parameters, e.g., adder depth, coefficient word length,
filter type, etc. The required run-time however, will depend
greatly on the problem. In the case of Table VI, it varied from
several seconds for the smallest filters (S1) up to several days
for the largest ones (S2 and L2).

VII. CONCLUSION AND PERSPECTIVES

In this paper we have introduced two new algorithms for
the design of optimal multiplierless FIR filters. Relying on
ILP formulations stemming from the MCM literature, our
algorithms minimize either (a) the number of structural adders
given a fixed budget of multiplier block adders or (b) the total
number of adders (multiplier block + structural adders) given
a fixed adder depth. We further show how (a) can be applied
iteratively to optimally minimize the total number of adders
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(without any adder count or adder depth constraints). Extensive
numerical tests with example design problems from the state-
of-the-art show that our approaches can offer in many cases
better results. We also make available an open-source C++
implementation of the proposed methods.

In the future we plan to extend the current solution to other
filter structures and use other efficiency metrics, in particular
to optimize the number of full adders. Regarding new metrics,
this calls for modeling the impact of the precision choice
on the numerical quality of the result, which is non-trivial
due to its highly non-linear nature. Developing a dedicated
branch and bound solver for instance, inspired by [23], has
the potential of helping us deal with this heterogenous design
problem. Regarding filter structures, we plan to adapt our
framework to cascaded forms and recursive filters.
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