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Abstract—We present Dedale, an environment for studying
multi-agents coordination, learning and decision-making prob-
lems under realistic hypotheses. Dedale avoids the 8 fallacies
of MAS in which all previous testbed fall and offers open,
dynamic, asynchronous and partially observable environments.
Highly parametrizable, Dedale allows to tackle either cooperative
or competitive exploration, patrolling, pickup and delivery, trea-
sure(s) or agent(s) hunt problems with teams from one to dozens
of heterogeneous agents in discrete or continuous environments.
The variety of modelable multi-agents problems associated with
the possibility to create a peer-to-peer network of Dedale’s
environments makes us believe Dedale beeing able to become
a unifying environment for both MAS research and teaching
communities in their goal to work and evaluate their proposals
under real-life hypotheses. Feedback from more than 150 early-
users comfort us in this perspective.

Index Terms—Multi-agent, environment, simulation, testbed,
p2p, decentralised problem solving, coordination, decision-
making, learning

INTRODUCTION

In recent years, single-agent standardised environments al-
lowed the research community to efficiently benchmark their
proposals, which led to real progress in the field [1, 5, 44].
Unfortunately, there is currently no equivalent for multi-agent
coordination, learning and decision-making problems under
real-life hypotheses.

Several experimental platforms have been built in the
last 30 years [8, 9, 24, 25, 27, 43]. Nevertheless, they either
focus on large-scale Complex Adaptive Systems (CAS) [22]
and are thus restricted to synchronous environments with
no [27] or few communication [41] capabilities or they
assume closed-world environments where evolve up to only
4 homogeneous agents with a perfect vision of the system in
zero-sum games between two teams [33], when they are not
controlled from a unique omniscient entity [20].
In both cases, these platforms make unrealistic hypotheses.
It thus makes their use difficult or even impossible for
coordination problems, and may render the proposed
solutions ineffective or inoperable in a real situation. As
a result, researchers working on these issues often use
their own (unpublished) toy examples environments, which
can unfortunately turn out to be over-fitting the proposed
algorithms or make the results difficult to reproduce.

Through the release of Dedale, we aim to facilitate and
improve the experimental evaluation conditions of the devel-

oped algorithms, and to contribute to the progress of the field
towards decentralised solutions able to deal with real-world
hypotheses and problems.
Section 1 presents the state of the art of multi-agent testbeds
and compare them to Dedale through the prism of what we
define as the 8 fallacies of MAS. Section 2 presents Dedale,
and more particularly the important features from the user’s
point of view. In Section 3, we present three class of multi-
agent problems that can be studied through the use of Dedale
as well as the associated open-research issues. Finally, section
4 presents the peer-to-peer capabilities of Dedale for long-
term experiments in open-world before discussing its future
evolutions.

I. EXISTING PLATFORMS AND THE 8 FALLACIES OF MAS

To study decentralised multi-agents coordination, decision-
making and learning problems under real-life hypotheses, a
suitable testbed should avoid what we call the 8 fallacies of
MAS:

1) Agents take turns executing each other
2) Agents are homogeneous and run at the same speed
3) Agents have access to unlimited resources
4) Agents are reliable
5) Agents are sure
6) Agents have a global and perfect vision of the system
7) Agents number does not change over time
8) Communication respects the 8 fallacies1 of distributed

systems [35].
To consider turns (1) make disappear all questions related

to synchronized actions and drastically reduce conflicts
over resources. (2,3) Homogeneous agents – both in term
of capacities and (unlimited) computational capabilities –
eliminates bottlenecks and operational constraints (calculation
time, memory, and energy), and simplifies coordination
problems (the agents are interchangeable). (4,5) In real
life situations, whether deployed on servers or mobile
robots, agents can experience malfunctions, face byzantine
behaviours,.. Eliminating these hypotheses does not make it
possible to study the robustness of the proposed solutions.
(6,7) Outside of toy use-cases, open-environments and
limited-percepts’ agents are the norm. Assuming complete

1The network is secure, reliable, instantaneous, with infinite bandwidth, the
topology is fixed and homogeneous, communications costs are non-existent.
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TABLE I: Multi-agent testbeds facing the 8 fallacies of MAS.

hhhhhhhhhhhCriteria
Platform Mages RobotCup Rescue RobotCup Soccer Pommerman Starcraft II Gym (openAI) Repast Gama Dedale

(1) Asynch. agents 3 7 7 7 7 7 7 7 3
(2) Heterog. agents 3 3 7 7 3 3 3 3 3
(3) Comput. limited agents 7 3 7 7 7 7 7 7 3
(4,5) Reliability and safety 3 7 7 7 7 7 7 7 3
(6) Uncertain & P. observable 3 3 3 3 3 3 3 3 3
(7) Open-word 7 3 7 7 7 7 7 7 3
(8) Asynch. communication 3 3 7 7 7 7 7 7 3
Team-size > 2 3 3 3∗ 7 3∗ 7 3 3 3
Nb-teams > 2 3 3 7 3 3 3 3 3 3

observation and a fixed number of agents thus conducts
proposed solutions to be non-scalable. (8) To assume a
perfect, instantaneous and zero-cost communication network
lead to bias the evaluation of all proposed solutions.

Finally, from an initially easy to understand and tackle
team-of-two independent agents setup, the environment should
allow users to progressively raise the complexity by increasing
the number of agents as well as to remove simplifying but
unrealistic hypotheses (either online or offline). Indeed, this
progressivity is a necessary step to evaluate and validate
both the robustness and scalability of a decentralised proposal.

Table I summarizes the behavior of the main simulation
environments available today to study multi-agent problems
with respect to the 8 fallacies of MAS.
The Repast [13, 27] and Gama [41] platforms are central
when it comes to agent simulation, but, focusing on large-
scale Complex Adaptive Systems, they are not designed to
study coordination problems. Their objective is to simulate
and study the behaviour are emerging from tens of thousands
of agents for problems related to transport, climate or epi-
demiology within GIS-based environments. Communications
between agents simply does not exist, and agents runs on a
turn-by-turn basis.

On the opposite spectrum, a platform such as Gym [9], ded-
icated to reinforcement learning research, is focused on mono
or 2 agents use-cases with unlimited computation capabilities
and no explicit coordination.

If the well-known Starcraft II testbed [1] offers the possi-
bility to confront more than two adversaries at the same time,
no coordination can take place as each agent controls all the
entities that compose its “team” and as no communication
channel exist between entities within the game. Although
technically impressive, DeepMind recent results [45] are no
exception. The multi-agent dimension they consider is for
them to specialise 3 agents in order to play the 3 available
Starcraft races. The same limitation appears with the Robocup
Soccer simulator [20]. It is theoretically possible to consider
a team composed of more than 2 autonomous agents, but,
in practice, the framework’s incentive leads users to develop
one central agent that efficiently control all the entities that
compose a team.

Pommerman [33], a multi-agent environment based on

Bomberman, assumes closed-world environments where
evolve up to only 4 homogeneous agents in zero-sum games
between two teams [33]. Communication is synchronous and
restricted to 2 Ints in [0,8]. Focused on team-of-two agents
learning, it does not currently allow users to scale-up and
thus meanly attract the research community around Deep
reinforcement learning.

To our knowledge, RoboCup Rescue [40] and Mages [8]
platforms are the closest ones to cover all required criteria
to study and evaluate multi-agent coordination, learning,
and decision-making under realistic hypotheses. If Mages
is no longer supported (nor available), RoboCup rescue is
still actively developed. In addition to asynchronous and
potentially failing communications, Robocup Rescue is the
only one (with Dedale) to support explicit limitation of
the computational capabilities of the agents2. Nevertheless,
to guarantee their scenarios to scale-up to hundreds of
agents, they favour simple agents’ architectures and run in a
turn-peer-turn unrealistic setting which removes much of the
complexity inherent to decentralised problems.

We aim for the Dedale testbed to provide for the multi-agent
community a plateform allowing to work under parametrizable
but realistic hypotheses and environment setups without sac-
rificing the number nor the complexity of deployable agents.

II. THE DEDALE PLATFORM

Figure 1 illustrates Dedale’s general architecture. From
a synthetic standpoint, it combines the well-known Jade
framework and the Inter-Platform Mobility Service (IPMS)
[6] with the GraphStream (GS) [18] and jMonkeyEngine
(JME3) [26,34] libraries. While Jade is in charge of the MAS
management, GraphStream and Jme are respectively handling
the two types of environments currently provided by Dedale
: discrete dynamic graphs and continuous 3D-environments.
Users’ agents will then have to evolve within them to
accomplish their goals.
Note that Dedale and its components are all open-source.
Our website [21] contains all required information on how to
install, configure and run it.

2This was done in order for the users to take into account the scarcity and
unreliability of available resources in disaster-like situations

2
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Fig. 1: Dedale’s architecture overview : The Jade platform
combined with the IPMP component is used as a baseline
to create a distributed environment. One GateKeeper’s agent
(GK) is deployed on each computer and is in charge of the
local environment’s creation and management. It maintain a
view of the distant locations that can be reached from its local
map and takes care of incoming and exiting migration requests
made by users’ agents intending to complete their missions.

The use of Jade allows us to make real-life hypotheses on
the agent’s functioning. Each agent is a thread, their respective
execution speed can thus vary. Furthermore, there is no bound
on the transmission time of a message sent between agents
(messages can be lost, delayed, or have a maximum reach
depending on the users’ choices). We are thus considering
both system and communication asynchronism. From these
choices, we avoid the 1st,2nd and 8th fallacies previously
introduced. To this point, we made implementation choices
guaranteeing to avoid the 5 remaining fallacies of MAS.

The types of continuous environments we currently offer
through the JME game-engine increases the complexity of the
environment and the planning needs for the agents without
intrinsically changing the properties of the problems consid-
ered. Thus, for sake of clarity, we will focus in the present
document on the case of discreet environments, referring
to the continuous case only when the agents’ behaviour is
significantly impacted.

In the discrete case (see figure 2), the environment is a
graph. Nodes are rooms associated with a unique identifier
where the agents will find objects to interact with, and edges
are non-oriented corridors between them. The topology can
be hand-made, generated or imported from OpenStreetMap
[15]. The number and the initial location of both objects
and agents can also be either generated or hand-picked. By

default, only one agent can be on a given node at any given
time. However, the user can decide otherwise and individually
set higher capacities to nodes.

Fig. 2: Part of a 400-nodes hand-made environment integrating
treasures (gold and diamonds), wells, golems and several
teams of 10 heterogeneous agents. 1 Tanker, 2 Explorers and
2 Collectors are visible.

A. Activable elements within the environment
1) Wells: They are dangerous nodes where any agent

coming-in falls and dies. Wells generate wind in their sur-
rounding nodes (the distance is parametrizable), giving a
warning to any passing agent.

2) Treasures: A treasure is stored within a safe, and is
defined by its type (gold or diamonds), its value and its lock
(a set of skills required to open it combining strengh and
lockpicking expertise).

When an agent (see next section) is in a room where a
treasure is, and if its backPack and expertise allow it, then the
agent can grab it.
• If the safe is locked and the agent does not possess

sufficient expertise to open it, he needs to call for help.
Several agent can indeed pool their forces to meet the
lock requirements.

• If the agent backPack is full or the treasure is a different
type than his, then he grabs nothing.

• If the agent cannot grab all the treasure of an opened
safe, the remaining treasure stays on the map. Another
agent can come and take it.

The system is designed so that an agent drops a portion of
the treasure by picking it up. The more picking actions are
made on a treasure, the more the loss is important. This will
therefore conduct the agents to opt for picking up a single
treasure in a minimum of actions.

3) Benchmark agents (Golems): They are “native” Dedale’s
agents activable within the environment. Dedale currently
offers three types of Golem’s behaviours :
• DummyMovingGolem : As he moves, the Golem will

shift all or part of the treasures he discovers.

3
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• CollectingGolem : He will explore the environment

and collect the treasures he finds.
• EscapingGolem : He will try to move around indefi-

nitely.
Golems release a stench which allow other agents to detect

them before encountering them. In Fig. 2, the emission radius
is set to 1. As we will see in section III, Golem(s) significantly
increase the complexity of the tasks to be performed by user’s
agents.

B. User’s agents

Dedale’s agents can be of 3 different types :
• Explorer : It cannot collect, only explore
• Tanker : It possesses a nearly unlimited storage capac-

ity, but cannot pick anything
• Collector : It possess a backpack specific to a given

type of treasure, and a limited carrying capacity. It can
pick a treasure, and drop it in the Tanker if the latter is
in reach

The scenario designer can decide to activate one or several
type of agents.

1) Agent-centered representation: At the beginning, agents
are deployed (randomly or not) on the map. The agents do not
know the topology beforehand and thus have to discover and
learn it.

a) Limited percepts: When an agent is in a room, it can
only perceives :
• The id – unique – of the room.
• The names of the others agents in the room, if any.
• The occurrence, if any, of a treasure, its type, value and

opening conditions.
• The links to the neighbouring rooms (and associated

observations, if any).
b) Limited communication range: Agents can

communicate through messages to share their knowledge,
coordinate and optimize their actions. Nevertheless, the reach
is limited. An Agent can only communicate with the ones in
the neighbourhood (a distance that can vary with each agent).
The coordination solutions should thus take into account this
fact.

2) Agent observations and actions: In the absence of trea-
sures, 4 actions are available to the agents, 9 otherwise.

a) Observation, communication and motion:
• getCurrentPosition() : Returns the current posi-

tion of the agent
• observe() : Returns the set of observables that can

be perceived from the agent current position as a list of
couple (position,list(ObservationType,Value))

• moveTo(myDestination) : Makes the agent move
to myDestination (if reachable)

• sendMessage(msg) : Send a message and manage the
communication radius. It can contain any information. If
the recipient is not in range, the message is lost.

Additionally, if its a treasure-type scenario, then the follow-
ing actions are available to the agents :

b) Treasures and safes:
• getMyTreasureType(): Type of treasure that the

agent can grab (only one type per agent)
• getMyExpertise(): Expertise of the agent (strengh

and lockpicking) to open safes
• openLock(): Open the safe present in the current room

if the required expertise is provided.
• pick(): Grab all of any of the treasure available on the

current position (according to agent type, capacity and
safe state)

• EmptyMyBackPack(agentTankerName): Allow
the agent to transfer its backpack within the Tanker
agent in the vicinity (if any).

C. Performance analysis

To properly compare the performances of different propos-
als to a given problem instance, several evaluation metrics are
available.
• The number of messages exchanged between the agents
• The number of actions executed
• The overall time needed to complete a task

In the case of a treasure hunt, the quantity of collected
resources is also stored. Finally, for both analytical and de-
bugging purposes all of the agents’ actions are logged.

III. MULTI-AGENTS USE-CASES

In this section, we present the main classes of multi-agent
problems that can be currently studied through the use of
Dedale as well as the associated open research issues.

A. Distributed exploration

Consider an unknown finite graph, a set of agents randomly
deployed, a limited communication range and the impossibility
for two agents to be on the same node at the same time.
How to efficiently explore the environment ? This classical
problem was initially formulated by Shannon [37] and has
been extensively studied since then (see [16, 32, 38]).

If uniquely labelled nodes and no harmful situations allow
a smooth exploration through the use of Distributed DFS-like
algorithms, the activation of the well(s) introduced in section
II-A1 significantly change the problem. Indeed, any agent
visiting a “well-node” is instantaneously destroyed. In this
context, the complete exploration of the environment require
for at least one agent to survive knowing all edges leading to
the well(s). The location of the harmful node(s) must thus
be based on a coordinated exploration and communication
strategy.
• What is the minimal number of agents required to locate

all wells and finish the exploration ?
• For a given number of agent and wells, what is the

quickest possible strategy and the minimal number of
messages exchanged ?

In synchronous cases, when the agents know the topology
beforehand or when they start from the same location and

4
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have unlimited communication range, some proposal and com-
plexity bound have been established [14,17,19]. Nevertheless,
to our knowledge, no algorithm seems to have so far been
proposed in the general setting above-mentioned.

Another interesting variation offered by Dedale is to study
the cooperative exploration of an unlabelled graph. Once
again, under the previously introduced hypotheses, no optimal
strategy seems to currently exist [10].

B. Cooperative patrolling and pursuit-evasion games

The second setup is the well known patrolling problem and
its related pursuit-evasion game. Consider an unknown finite
environment E, a set of agents A, a set of intruders I and
limited communication ranges C.
• What is the minimal size of A in order to guarantee that

there exist a finite solution to detect and block all the
intruders in E ?

• For a given number of agent (and intruders), what is the
best possible strategy ?

To determine the minimal number of agents required for
any graph is an NP-Hard problem [3,12], but several heuristics
have been proposed [4]. Regarding the optimal strategy for a
given A and I , if its easy on a (finite) binary tree with unlim-
ited communication range and only one intruder, it becomes
more difficult when you set a limited communication range,
use a complex environment such as Fig. 3a and annoyingly
clever intruder(s). In this context existing proposals mainly
tend to decrease the size of the subgraph that the evader(s)
can safely reach instead of minimizing the distance between
pursuers and evader(s).

As illustrated in Fig 4, the key problem is that an already
explored (and thus considered as cleared) area can be contam-
inated by an intruder moving behind the agents’ back, thus
requiring to maintain containments areas whose size depend
of both the graph structure, the number of patrolling agents
and of their respective communication ranges.

Numerous work have been published regarding multiagent
patrolling, either from the robotic [2, 30] or mas [7, 11, 31]
communities. But little attention has been paid to the impact
of asynchronism, limited communication range or dynamic
environments on the agents cooperation [28]. We believe
Dedale to be a suitable testbed in these directions.

C. Treasure(s) hunt & pickup and delivery problems

This last setup, the treasure hunt, is the more complex one
as it can include the two previous and create an additional
level of difficulty through the agents’ heterogeneity and the
problems induced. Note that the pickup and delivery problem
[36] is a subset of the treasure hunt problem where the pickup
and delivery locations are a priori known.

Consider an unknown finite environment with treasure
chests, a set of heterogeneous agents randomly deployed and
limited communication ranges. Assuming that the team’s score
only takes into account the treasures stored within the tankers
at the end of the time limit:

• What is the best strategy to maximise the overall treasure
value within the Tankers’ backpacks ?

As highlighted in II-A2, the agents have to minimize
the number of picking to maximise the amount of treasure
grabbed. The agents goals are thus to : (1) locate the treasures,
(2) collectively decide on the coalitions required to efficiently
open them, (3) determine the optimal picking order as well
as (4) quickly and repetitively find the tankers to unload their
backpacks.
As agents initally start from distinct locations and do not
posses an unlimited communication range, steps 2 to 4 require
to solve the rendez-vous problem [29]. Moreover, steps 3 and
4 will make the interlocking problem arise.

1) Path planning and the interlocking problem: Interlock-
ing are non-existent during the exploration phase: When two
agents meet each others they only need to share their respective
knowledge to get what they were immediately looking for and
solve their momentary issue. In the case of a treasure hunt,
the heterogeneity of the agents will on contrary generate non-
interchangeable objectives and a dynamical hierarchy between
agents. Fig. 5 illustrates a typical situation.
A1 wants to go the node where A3 is and conversely. At

the same time A2 is moving in towards its goal, node 7,
increasing the interlocking complexity. Here, the locked agent
(A3) should become prioritary over A1 as it has no escaping
path to let A1 going through. This priority should not be
of one-action duration, otherwise A1 and A3 will oscillate
“infinitely”, soon joined by A2. The obvious solution is, in
the current example, for A1 and A2 to move towards nodes 1
and 2 and wait until A3 leaves the sub-tree and inform them
of this fact before leaving trough node E.

In the general case, multi-agent path planning has been
shown to be a PSPACE-hard problem [23]. Even when the
information are available, a global search is only tractable
by aggregating the agents [39]. In real conditions, from air
traffic control to computer games, decentralised replanning
and heuristic procedures are the preferred methods to break
the occurring interlocks [46].

Capable of transparently support a hundred of agents on a
standard computer3, Dedale offers a flexible testbed to study
and compare the efficacy, the scalability, and the robustness
of those approaches.

2) Dynamicity and decision-making trade-off: If we release
the Golem(s) or allow several adversarial teams on the same
map, the environment becomes dynamic.

• In the case of the Golems, they will move the treasures.
Consequently, two agents meeting each others might face
inconsistency while sharing their knowledge. Until now,
the value of a treasure on a given position could only
diminish. Now it can also increase. Without the use

3The number of agents that Dedale can manage without slowing down
depends on their inner complexity as well as on available processing cores.

5



Pre-
pri

nt
(a) Groix island, France. Topology imported from OpenStreetMap and used as
default testbed for real-world discrete case-study for mas patrolling, treasures
hunt or pickup and delivery problems. Pick-up locations are represented as
treasures (yellow) and delivery locations as Tanker agents (purple). The collector
agents (blue nodes) are the delivery vehicles.

(b) Mountainous area, Auvergne, France. Heightmap imported from ter-
rain.party and used as default testbed for 3 dimensional and continuous
environments. Only grounded agents are currently considered.

Fig. 3: Dedale’s discrete and continuous default testbeds for real-word environments. Users can easily choose the topology
they want to consider for their experiments, either it is generated or based on a real geographical area.

A1

I1

1

23

4

5 6

7

8 9

Fig. 4: The containment problem : Agent A1 is looking for
the intruder I1. Its field of view allow him to check the
neighbouring nodes. While A1 explores the graph (arrows 1 to
5), the intruder can move behind its back and join a previously
secured area (dotted arrows 6 to 9).

of common clock, the agents are no longer capable of
identifying the most recent information.

• In the case of adversarial teams, in addition to collecting
resources some adversaries may block the access to a sub-
graph without the possibility for a member of a different
team to trigger interlocking procedures. The topology of
the accessible graph will thus change over time.

In both cases the agents will have to significantly adapts
their strategy to this situation. When a treasure is discovered,
each agent have to choose between picking it up (if possible),
protecting it or looking for his team before someone else
discovers it. The chosen decision-making process (robust,
risk-adverse,..) will greatly influence the result of the team and
we believe cooperative learning to be perfectly fitted for the
emergence of innovative and adaptive strategies in this context.

IV. FROM A LOCAL TESTBED TO A PEER-TO-PEER
ENVIRONMENT FOR LONG-TERM EXPERIMENTS IN

OPEN-WORLD

We have so far introduced the different characteristics of
Dedale and highlighted its advantages, inherent to the fact

1 2 3 4

A2

E

5 (Diamonds;50)

6 A1

7 (Gold;100) A3

Fig. 5: Interlocking problem : Let 3 agents A1,A2 and A3 on
a known graph and their communication range set to 2. Node
E represents the exit, any agent moving in will transfer its
backpack to the tanker. Agents A1 and A2 are of gold type,
and their backpack capacities are respectively 80 and 10. A3

is of diamond type and posses a 51 carrying capacity. Each
agent’s goal is to reach the node possessing their resource type.
When picking, 50% of the remaining resources is definitely
lost. No prior coordination have been made.

that the 8 fallacies of MAS are taken into account. What we
believe to be an additional stand-out factor comparatively to
the literature is its ability to work as a node in a network of
Dedale’s environments.

Indeed, after conscientiously designing their environment
and developing the capabilities of their agents, each user can
decide to open incoming or outgoing access to their instance.
This offers for the user’s agents the possibility to explore
foreign and unknown environments, and for foreign agents to
discover and test their robustness facing an environment – and
potentially the agents’s – the local user designed. The size, the
complexity and the richness of the “networked” environment
accessible to the agents therefore becomes virtually unlimited.
This is made possible by the fact that Dedale relies on the
JADE multiagent platform [6], which supports inter-platform
migration. When activated, this feature gives two additional
actions to the agents :
• getNeighbours(): The list of Dedale’s nodes con-

nected to this environment.

6
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• migrateTo(myDestination): Makes the agent mi-

grate to the distant environment it is willing to be
deployed in (if the authorisation is granted).

For the sake of clarity we will only present here the key
points associated with this peer-to-peer feature from the agent
perspective.

A. The Gatekeeper

To allow foreign agents to dynamically move-in and out
of a Dedale instance require to manage two critical elements :
security and deployment. Both of them are at the Gatekeeper’s
expense. As illustrated on Fig. 6, its a supervision agent that
authorises or refuses the access to the environment it manages
according to the local user preferences as well as on the locally
available computational and memory capacities.

Fig. 6: Migration process : Gk is the local gatekeeper, Gk′

the distant one.

Once the authorisation received, the local gatekeeper ini-
tiates the agent transfer with the distant one following a
transaction-type process. All classes that constitute the agent
are serialized and sent over the network4. A reference to
the environment managed by the local gatekeeper is given
to the agent while him and his previous knowledge are
instantiated. Once the migration achieved, the original agent
is transparently destroyed by its former gatekeeper.

B. Supervising distant agents

To allow its agents to leave the nest represents both an
opportunity and a risk. An opportunity for learning agents
to improve their knowledge and performances, a risk for all
to die if the new environment is dangerous or the platform
unstable. Either way, to supervise and monitor distants agents
is challenging. Dedale currently offer no default backup for
the agents, their logs are stored within them and only written
on disk when and where the agent dies. Nevertheless, through
its local gatekeeper, the user keep a minimalistic control over

4All of the agent’s classes and libraries should thus be serializable.

its agents and can send two predefined priority-orders to each
of them : goHome and terminate. Thus, a misbehaving
but living learning agent can still be repatriated and its
knowledge and behaviours analysed.

We believe Dedale’s peer-to-peer network feature to be
suited for multi-agent coooperative learning and research on
long-term autonomy. The user can at the same time tailor
its environment to meet its experiments requirements and let
its agents face the unexpected, guaranteeing Dedale to be a
challenging environment for years to come.

CONCLUSION

Avoiding what we introduced as the 8 fallacies of MAS,
we opensource [21] the first testbed exclusively designed for
studying truly multi-agents problems under real-life hypothe-
ses : asynchronous agents evolving in open, dynamic, and par-
tially observable continuous and discrete environments. From
distributed exploration to cooperative pick-up and delivery,
including pursuit-evasion games, Dedale offers a wide range of
multi-agents use-cases which represent as many open research
challenges.

Our next steps will be : (1) To set up a public and automated
ranking of the best strategies found for each configuration.
(2) To propose a peer-to-peer network management algorithm
allowing the automatic placement of Dedale’s nodes according
to their reliability, thus offering a classification and a cartog-
raphy of relatively (un)safe areas for the agents to explore.

Dedale was successfully tested by more than 150 early-
users, either researchers or post-graduate students on dis-
tributed AI. The very positive feedbacks confirm its ease of use
and the progressiveness offered. In its educational dimension,
its led in particular to the publication of a press article by one
of its users on the richness and difficulties inherent to multi-
agent systems [42].
More generally, we believe that Dedale offers a challenging
but accessible – because fully parametrizable – combination of
coordination, decision-making and learning situations, both for
research and teaching activities, outside of the too restrictive
multi-agents team-of-2 setup. Its peer-to-peer feature also
opens new perspectives with the possibility for researchers to
study agents’ capabilities to remain autonomous on a long
term basis at minimal cost. Finally, if easily reproducible
experiments with teams of dozens or hundreds of agents are
not common today, we believe that Dedale provides a step
towards this goal.
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