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Stability investigations of an elastic rotor supported by actively deformed journal bearings considering the associated spectral system
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Due to the non-linear fluid-solid interaction within journal bearings instability phenomena (o en referred to as 'oil-whirl' and/or 'oil-whip') can be observed at higher revolution speeds, which can lead to unwanted oscillations of the corresponding rotor dynamic system. To improve this behaviour, various successful methods, which are based on the idea of non-cylindrical bearing geometries, have been proposed in literature. ese investigations focus on static geometries as well as on time-varying geometries, revealing a high potential to suppress the above mentioned instability phenomena. In the present work a more elaborated model of a journal bearing with time-varying geometry is developed. e varying geometry is thereby realized by an appropriate time-dependent elastic deformation. Using the suggested bearing model as support of an elastic Jeffco rotor leads to interesting effects compared to a system with static bearing geometry. In order to ensure an efficient, comprehensive parameter study an approximation by means of an associated spectral system is derived and analysed.

INTRODUCTION

Destabilizing effects being caused by the non-linear fluidsolid interaction within journal bearings can lead to tremendously increasing oscillation amplitudes of the rotor-dynamic system and therefore represent a major disadvantage. Such phenomena are o en referred to as 'oil-whirl' and/or 'oilwhip' which are well explained in literature (cf. [ ]). In order to avoid these unwanted oscillations, various countermeasures have been developed, some of which are shortly listed below. It is thereby focused on concepts which are based on the general idea of adjustable bearing geometries, as these have shown a significant influence on the performance characteristics of the corresponding rotor system. Typical approaches from former times are non-cylindrical bearings, like multi-lobe [ , , ] or tilting pad bearings [ ], which proved themselves to have a stabilizing effect for certain parameter configurations. Nevertheless, these concepts are rather 'passive' as the current geometry is either fixed (multi-lobe) or depends on the pressure state within the bearing (tilting pad). In both cases such an 'active' intervention from outside is not possible. More recent works deal with the idea of actively adjustable journal bearings. An overview of the current state of the art can thereby be found in [ ]. Some of these concepts focus on the introduction of additional elastic or flexible elements, which lead to a change in geometry depending on the internal bearing pressure. By modifying the properties of these elements the system can successfully be influenced. E.g. C

.

[ , ] suggest a displaceable lobe which is connected to a viscoelastic element. K

. [ ] present a modification via an elastic element, whose displacement can be partly controlled by means of a hydraulic pressure unit. Other concepts with a more actively controlled change in geometry can be found as well.

P

[ ] or T ˘ . [ ] introduce the idea of a rigid cylindrical bearing which can actively be displaced by a corresponding actuation mechanism. Another approach is given by so-called active tilting pad bearings which can be found e.g. in the works of S [ ], D

. [ ] or W . [ ]. eir concept is based on the radial displacement of the pivot points of the single tilting pads in order to influence the pressure distribution. Among different other aspects the design of an appropriate controller represents the main objective in these works.

In all of the previously mentioned cases it has been shown (experimentally and/or numerically) that the stability properties of a rotor system can be significantly improved (compared to the cylindrical bearing) by using these different approaches for the journal bearings. e present work rather considers the principle effects within the bearing, without covering the question of an appropriate controller. Like captured by P

. [ ], who investigate a two-lobe bearing with harmonically changing geometry, it is thereby focused on the theoretical aspects from the mathematical/mechanical point of view. e whole rotor system should therefore be interpreted as some kind of coupled non-linear oscillators. As such systems show interesting behaviour for certain parameter configurations (cf. [ ]), this approach towards the given problem seems promising. In order to keep the idea of coupled oscillators as simple as possible in first place, a pure harmonic adjustment (similar to [ ]) of the corresponding bearing geometry is chosen which already requires an appropriate approximation strategy in order to assess a potential stabilization in a principle manner.

In the following a more elaborated model of an actively deformable journal bearing. As opposed to most of the concepts being mentioned above, the geometry adjustment is realised by an elastic deformation of an initially cylindrical bearing. As described, a harmonic variation of the bearing's geometry is implemented, aiming for an improvement of the rotor's dynamic behaviour during operation at different rotational speeds. An analytical approximation of the geometry for different degrees of deformation is derived in section . and compared to FEM results. e resulting deformation field is used to compute the pressure distribution and the corresponding bearing forces, which are relevant for the set-up of the equations of motion of a Jeffco rotor in section . . Due to the complexity of the dynamic system an associated spectral system (cf. [ ]) is derived in section . . Subsequently, a numerical analysis of the original equations of motion and the derived spectral system is carried out in section . It is thereby focused on static bearing profiles as well as on time-varying profiles. A summary and outlook for possible further investigations can be found in section .

. MODELLING e description of the total rotor system comprises the modelling of the change in the bearing's geometry due to the elastic deformation, the description of the fluid pressure distribution and the corresponding set-up of the resulting equations of motion. Focusing on an efficient solution continuation, the derivation of an associated spectral system is presented as well in the following section.

. Bearing Model

As depicted in fig. the initially circular, closed bearing of inner radius R 0 is elastically deformed by two vertically acting forces F(τ), which correspond to an appropriate actuation mechanism. e non-dimensional time τ = ωt is constructed by means of the angular frequency ω of the rotating journal. e bearing is modelled as thin, circular beam with middle radius R and rectangular cross-section with width B ≪ R and height A ≪ R, which corresponds to a rather short bearing. Further information can be obtained from fig. . e bearing is modelled as linear elastic material with Young's modulus E and it is assumed that the deformation is not influenced by the internal fluid pressure at all and that inertia terms can be neglected, which seems reasonable as a first approach. With the previously mentioned geometric properties the classical bending theory for curved beams (cf. [ ]) can be applied in order to determine the radial displacement w(ϕ, τ) of the inner bearing surface, which depends only on τ and the circumferential coordinate ϕ. As described by P

. [ ] the displacement can be determined by solving

∂ 5 w ∂ϕ 5 + 2 ∂ 3 w ∂ϕ 3 + ∂w ∂ϕ = 0 ( ) separately on the two domains D 1 ϕ = {ϕ ∈ [-π /2, π /2)} and D 2 ϕ = {ϕ ∈ [ π /2, 3π / 
2)}. e following boundary conditions have to be met on D 1 ϕ (and similarly on D 2 ϕ ):

w 1 (ϕ) = w 1 (-ϕ) , ∂w 1 ∂ϕ ϕ= π 2 = 0 , π 2 ∫ 0 w 1 dϕ = 0 , E I R 3 0 ∂ 3 w 1 ∂ϕ 3 + ∂w 1 ∂ϕ = F(τ) 2 . 
( )

Solving the ordinary differential equation (ODE) ( ) on D 1 ϕ leads to

w 1 = c 1 + (c 2 + c 3 ϕ) sin ϕ + (c 4 + c 5 ϕ) cos ϕ, ( )
with integration constants c k (k = 1, .. , 5). A er imposing the boundary conditions from ( ) a final solution is given by:

w 1 = F(τ)R 3 4E I 4 π -ϕ sin ϕ -cos ϕ . ( )
By following the same principle for the second domain D 2 ϕ the deformation over the whole circumference can be stated:

w(ϕ, τ) = F(τ)R 3 4E I 4 π -ϕ sin ϕ -cos ϕ ϕ ∈ D 1 ϕ 4 π -(π -ϕ) sin ϕ + cos ϕ ϕ ∈ D 2 ϕ ( ) With w * (τ) = w ϕ = ± π 2 , τ = (8 -π 2 )F(τ)R 3 8πE I . ( )
the radial displacement ( ) can be rewri en as follows:

w = w * 2π 8 -π 2 4 π -ϕ sin ϕ -cos ϕ ϕ ∈ D 1 ϕ 4 π -(π -ϕ) sin ϕ + cos ϕ ϕ ∈ D 2 ϕ . ( )
e approximated displacement field is validated by a finiteelement (FE) calculation with C [ ] of just the upper bearing half (ϕ ∈ [0, π]). e FE-model is set up under the assumption of a plain stress field and an isotropic material with E = 210 GPa and ν = 0.3. e geometry parameters are exemplary chosen as R = 500 mm, B /R = 0.4 and different ratios for A /R. Similar boundary conditions like in ( ) are chosen and a static, radial point displacement w( π /2) /R = 1e-4 is enforced at the outer bearing radius.
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Figure .

Scaled radial displacement w /R of inner bearing surface (analytic and FE) for different ratios A /R e relative radial displacement (scaled by 1 /R) of the inner bearing surface, for both the analytic approximation and the FE solution, is depicted in fig. . As the assumption of a thin, circular beam is more and more violated by increasing values of A /R the results differ obviously. In the following, only cases with sufficiently small ratios A /R are considered, for which the models show a sufficient congruency.

Motivated by the later pressure modelling the initial bearing clearance C = R 0 -R J is used to define the nondimensional displacement as W = w /C. For consistency with the thin-film approach (cf. [ ]) the elastic deformation is assumed to be of the same magnitude as the clearance C, i.e. W = O(1). As the influence of a time-varying bearing geometry should be investigated, the following harmonic approach is chosen

W * = w * C = W [1 + δ W cos(Ω W τ)] ( )
with mean value W, relative amplitude δ W < 1 and angular frequency Ω W . e special case of W = 0 corresponds to the classical circular journal bearing.

. . Pressure Distribution As the fluid-film thickness and radial displacement are considered to be of the same magnitude, the non-dimensional pressure distribution Π(ϕ, z) in the bearing can be modelled by the non-dimensional Reynolds equation

(cf. [ ]) ∂ ∂ϕ ∂Π ∂ϕ H 3 + γ 2 ∂ ∂z ∂Π ∂z H 3 = 6 ∂H ∂ϕ + 12 ∂H ∂τ ( )
with the commonly used substitutions (cf. [ ])

z = 2z B , Π = C 2 R 2 0 p µω , γ = 2R 0 B . ( )
and the non-dimensional fluid-film-thickness

H(X J , Y J , ϕ, τ) = h C = 1+W(ϕ, τ)-X J cos ϕ-Y J sin ϕ . ( )
e axial coordinate is denoted by z, the fluid pressure by p and the dynamic viscosity by µ. e coordinates X J = x J/C and Y J = y J/C correspond to the non-dimensional centre coordinates of the journal, i.e. r J = x J e x + y J e y .

e Reynolds equation ( ) has to be solved for Π, while taking the axial boundary conditions Π(z = ±1) = 0 into account. A Galerkin approach with an appropriate axial shape function of the form

Π(ϕ, z) = (1 -z 2 )g(ϕ) ( )
reduces eq. ( ) to a pure circumferential problem that is solved by a finite difference scheme on D = D 1 ϕ ∪ D 2 ϕ for periodic solutions g(ϕ) ∈ C 2 , which is an agreement with other pressure modelling approaches, e.g.

V [ ]. In total N = 121 sampling points are equally distributed over the domain D at the different points ϕ i . Applying the finite difference scheme leads to the linear system

P g = b ( )
with the discrete pressure mean values g = [g(ϕ 1 ), g(ϕ 2 ), ..] T . e linear system ( ) represents a periodic, scalar, tridiagonal system and can therefore be solved efficiently by means of an appropriate transformation. Fristly, the Sherman-Morrison-Woodbury formula is used to transform the system matrix P to a pure tridiagonal matrix. A erwards, the transformed system is solved by means of the omas algorithm. Detailed information can be found in [ ].

is procedure allows a much faster solution of these kinds of linear systems than other conventional algorithms. As a result, the semi-discrete pressure distribution is obtained:

Π(ϕ i , z) = g(ϕ i )(1 -z 2 ). ( )
. . Bearing Forces Having determined the pressure distribution, the corresponding forces which act on the journal are determined. With the given non-dimensional parameters ( ) and the approach ( ) the bearing forces are expressed by the following integrals which only take into account positive pressure values by integrating over Ω ϕ = {ϕ ∈ [π /2, 3π /2] : g(ϕ) > 0}:

F x = µBR 2 0 R J 2C 2 1 ∫ z=-1 ∫ Ω ϕ -g(ϕ)(1 -z 2 ) cos ϕ dϕdz = -F 0 S m ∫ Ω ϕ γ 2 3 g(ϕ) cos ϕ dϕ F y = µBR 2 0 R J 2C 2 1 ∫ z=-1 ∫ Ω ϕ -g(ϕ)(1 -z 2 ) sin ϕ dϕdz = -F 0 S m ∫ Ω ϕ γ 2 3 g(ϕ) sin ϕ dϕ ( )
With the discrete values g(ϕ i ) from eq. ( ) the previous integrals are approximated by means of a trapezoidal integration:

F x = -F 0 S m γ 2 3 2π N -1 N -1 i=1 max(g(ϕ i ), 0) cos ϕ i F y = -F 0 S m γ 2 3 2π N -1 N -1 i=1 max(g(ϕ i ), 0) sin ϕ i ( )
e used coefficient S m corresponds to the modified Sommerfeldnumber S m acc. to ( ) (cf. [ ]).

. Rotor Model

e classical Jeffco rotor model [ ] is used like depicted in fig. . e rotor of mass M is mounted on an elastic sha with stiffness c s and is exposed to a vertically acting external force F R as well as to an external viscous damping d a . e rotor is considered to be perfectly balanced and tilting is not permi ed, such that the rotor's centre of mass coincides with the centre of the sha at r R = x R e x + y R e y + r Rz e z .

e sha is supported by two journal bearings of the above described type, wherby additional masses m ≪ M are allocated to each journal at the two bearing positions. 

ω 2 X ′′ R + d a ωX ′ R + X R -X J Γ = 0 , ω 2 Y ′′ R + d a ωY ′ R + Y R -Y J Γ + f R = 0 , ηω 2 X ′′ J + X J -X R Γ -2σω f x (X J , Y J , X ′ J , Y ′ J ,τ) = 0 , ηω 2 Y ′′ J + Y J -Y R Γ -2σω f y (X J , Y J , X ′ J , Y ′ J ,τ) = 0, ( )
with the following substitutions:

X R/J = x R/J C , Y R/J = y R/J C , ω 2 = MC F 0 ω 2 , S m = B 3 µR J ω 2C 2 F 0 ,σ = S m ω ,η = 2m M , Γ = F 0 c s C , d a = C MF 0 d a , f R = F R F 0 . 
( ) e parameter Γ represents the sha compliance, d a characterizes the viscous damping and η describes the mass ratio of the rotor and the allocated masses. e modified Sommerfeldnumber S m is used for the definition of the bearing load parameter σ, which is independent of the rotational speed. e external vertical load F R is represented by f R , while F 0 describes a characteristic force, used for the non-dimensional representation. e rotational speed-or rpm-parameter ω is considered to be essential for the following parameter studies and stability investigations.

e support reactions from the fluid-solid interaction within the bearings is represented by f x and f y respectively and can be obtained from ( ) via:

f x = F x S m F 0 , f y = F y S m F 0 . ( )
e system ( ) is alternatively represented by the following first-order system with state space vector z :

d dτ z = f z , τ , f : R 8 × R → R 8 with z = X J , X ′ J , X R , X ′ R , Y J , Y ′ J , Y R , Y ′ R T . ( )

. Spectral System

As the time-varying bearing deformation ( ) enters the equations of motion in ( ) as a parameter, the system is exposed to both, parametric and self-excitation, which can lead to quasi-periodic behaviour (cf. [ ]). erefore, an associated spectral system is derived according to the suggested method of S

. [ ] in order to easily describe and analyse quasi-periodic system trajectories.

e derivation of the spectral system is shortly explained while detailed information can be found in [ ] and [ ].

. . Invariance Equation

It is assumed that a torus-manifold with two base frequencies Ω W and ω 2 exists, on which the stationary system trajectories are located. It is searched for an appropriate torus function u (θ 1 , θ 2 ) with torus coordinates θ 1 and θ 2 , such that a stationary solution z * of system ( ) can be expressed by

z * = u (Ω W t, ω 2 t) .
( ) e frequencies Ω W and ω 2 thereby refer to the torus coordinates via θ ′ 1 = Ω W and θ ′ 2 = ω 2 . Under these assumptions an invariance equation for the torus function can be set up

Ω W ∂u ∂θ 1 + ω 2 ∂u ∂θ 2 = g u (θ 1 , θ 2 ), θ 1 Ω W , ( )
whereby the corresponding periodicity conditions u (θ 1 , θ 2 ) = u (θ 1 + 2π, θ 2 ) = u (θ 1 , θ 2 + 2π) have to be met. Each solution to this partial differential equation (PDE) can correspond to a quasi-periodic solution of the original system ( ).

. . Approximation via Galerkin Approach As the base frequency Ω W of the parametric excitation is known, the PDE ( ) can be approximately solved by means of a Galerkin approach with the Ansatz-function

u ⋆ = U (θ 2 ) [1, sin θ 1 , cos θ 1 ] T with U ∈ R 8×3 ( )
and the unknown coefficients U (θ 2 ). A er defining an appropriate scalar product

x, y = 1 2π 2π ∫ 0

x(θ 1 )y(θ 1 )dθ 1 ( ) the residual of PDE ( ) can be projected onto the different base functions [ψ 1 , ψ 2 , ψ 3 ] = [1, sin θ 1 , cos θ 1 ]:

Ω W ∂u ⋆ ∂θ 1 + ω 2 ∂u ⋆ ∂θ 2 -f u ⋆ , θ 1 Ω W , ψ k = 0 for k = 1, 2, 3. ( )
is results in a system of 8 × 3 = 24 ordinary differential equations for the unknown coefficients U (θ 2 ) :

ω 2 dU dθ 2 = G U (θ 2 ) ( )
With the transformation θ 2 = ω 2 θ and Z θ = U ω 2 θ the dependence on the still unknown frequency ω 2 can be eliminated:

dZ d θ = G Z ( θ) ( ) According to M .
[ ] an equilibrium solution of this spectral system can correspond to a periodic solution of the original system with period 2π /Ω W , whereas a periodic solution (with any period T θ ) of the spectral system can correspond to a quasi-periodic solution of the original one. In accordance with the previous assumptions the base frequencies of this solution are given by Ω W and ω 2 = 2π /T θ .

. RESULTS AND DISCUSSION

e two derived systems (original ( ) and spectral ( )) are investigated for their dynamic behaviour in dependence of the rpm-parameter ω by means of a bifurcation analysis via MATCONT [ ]. It is searched for configurations which may represent a system state without any negative influence of the above mentioned instability phenomena. Although the spectral system is suitable for the investigation of quasi-periodic system trajectories, it is only focused on the continuation of its stable/unstable equilibrium solutions, as they can reveal a potential stabilization caused by the introduced geometry variation. A continuation of periodic solutions of the spectral system will be part of future works.

Besides the continuation parameter ω, a standard set of parameters for the considered rotor system is taken as follows:

σ = 1, γ = 3, η = 0.001, Γ = 0.01, d a = 1, f R = 1.
( ) e investigations are divided into two parts. Firstly, an analysis of a static non-circular geometry (δ W = 0) is performed, focusing mainly on the original system. A erwards, the spectral system is used to investigate the influence of a time-varying bearing geometry (δ W 0, Ω W ).

. Static, Non-Circular Bearing Geometry

In this section the variation of the geometry is neglected (by pu ing δ W = 0) and only the influence of a non-circular bearing (controlled by W) is investigated. By increasing the mean value W the geometry becomes more and more 'elliptic-like', while W = 0 corresponds to a circular profile. In this case it is sufficient to just consider the original equations of motion 

W = 0 W = 0.1 W = 0.2 5 10 15 20 -0.2 -0.1 0 0.1 ω equilibria of Y R [-]
Figure . Stable (dense) and unstable (dashed) equilibrium solutions for different W with parameter set from ( ) As the diagrams indicate, the stability of the equilibrium solution is lost in all three cases with an increasing value of the rpm-parameter via a Hopf-Bifurcation (cf. [ ]). A more elliptic bearing shape (increasing W) thereby shi s the bifurcation point to even higher rpms.

is phenomena seems reasonable, as for an elliptic bearing (in contrast to a circular one) two converging fluid-film gaps are present, resulting in a be er support of the rotating journal. A er passing the respective Hopf-Bifurcation, the system leaves its former equilibrium position and performs limitcycle oscillations (cf. [ ]), which are not depicted in fig. .  e stabilizing effect of the non-circular geometry becomes obvious. Nevertheless, these kinds of geometries cause large anisotropies in the associated bearing stiffness-matrix, which represents a disadvantage for certain applications like de-scribed by F

. [ ].

.

Time-Varying Bearing Geometry

While limiting the mean value of the bearing deformation to a certain degree, the occurring oscillations in the unstable rpm-range should now be reduced by using the previously described parametric excitation, which is caused by a comparatively small harmonic geometry variation (cf. eq. ( )).

As described e.g. in [ ], [ ],[ ] such small variations may have a positive effect onto the rotor system. In order to emphasize the advantage of the previously de- As it can be seen in fig. , the original system tends to small limit-cycle oscillations caused by the parametric excitation with frequency Ω W . Instead, the spectral system in fig. , which is freed from this frequency, approaches an equilibrium solution. e spectral components SC(. , 1) can thereby be interpreted as mean values, whereas the other two components SC(. , sin θ 1 ) and SC(. , cos θ 1 )) describe the oscillations around this mean value.

In the context a systematic solution continuation, this behaviour is much more desirable than the limit-cycle characteristic. Instead of continuing limit-cycle solutions, which will loose their stability via a Neimark-Sacker-Bifurcation (cf. [ ]), the equilibria of the spectral system are continued, for which ta Neimark-Sacker-Bifurcation corresponds to a normal Hopf-Bifurcation.

On the other hand it has to be mentioned that the increased system dimension ( ODEs) has of course a negative influence on the computation time compared to the original system ( ODEs).

In fig. an equilibrium continuation of the spectral system 

θ spectral components (SC) of X R SC(X R , 1) SC(X R , sin θ 1 ) SC(X R , cos θ 1 ) 0 10 20 30 40 50 -0.15 -0.1 -0.05 0 0.05 θ spectral components (SC) of Y R SC(Y R , 1) SC(Y R , sin θ 1 ) SC(Y R , cos θ 1 )
Figure .

Transient results of spectral system for W = 0.2 and ω = 1 with geometry variation Ω W = 2.5, δ W = 0.1 and parameter set from ( ) can be found for W = 0.2. A er comparing these results to the previous ones with static geometry from fig. , the advantage of the geometry variation becomes obvious. e equilibrium solution of the system with static geometry looses its stability and stays unstable for the remaining rpm-range.

As opposed to this in the case of a time-varying geometry, the equilibrium solution of the spectral system shows a regain of stability at higher rpms at approximately ω ≈ 17. It has to be mentioned, that the original system behaviour would correspond in this case to a limit-cycle. But as the spectral components SC(. , sin θ 1 ) and SC(. , cos θ 1 )) are almost vanishing on this re-stabilized branch, the oscillation amplitudes are comparatively small. Performing a transient simulation of the original system with geometry variation for a parameter set, for which the stabilization in the spectral system has been detected, validates the obtained results: e original system tends to comparatively small limit-cycle oscillations, whereas without geometry variation, large amplitudes can be detected.

Of course a correct value for the parametric excitation frequency Ω W has to be chosen in order to achieve the above described stabilization effect. A detailed analysis of this phenomena will be part of future work. Like investigated for similar systems the stabilization might result from parametric anti-resonances as describe by P . [ ].
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Equilibrium continuation of spectral system for W = 0.2 with geometry variation Ω W = 2.5, δ W = 0.1 and parameter set from ( )

. SUMMARY AND OUTLOOK

An elaborated model of an actively deformable journal bearing has been developed. It has been implemented into a Jeffco rotor system and the corresponding equations of motion as well as an associated spectral system have been set up. e results of the rotor system with static bearing geometries have shown a significant influence of a deformed bearing onto the stability properties of the respective rotor dynamic system. Transient simulations for both, the original as well as the spectral system, have been performed, emphasizing the advantage of the spectral system in the context of a possible solution continuation. An equilibrium search of the associated spectral system in dependence of the rpm-parameter ω has revealed a potential stabilization effect, caused by the time-varying geometry of the bearing. e dependence of this stabilizing effect on the parametric excitation parameters Ω W and δ W will be part of future work. Besides comprehensive parameter studies which also take into account the other system parameters, an extension of the presented model by several other effects is in progress.

e neglected influence of the pressure field onto the elastic deformation should be considered in a future model, as well as effects of a static imbalance of the rotor. Furthermore, an even be er Galerkin approach for the solution approximation of the invariance equation should be implemented, taking into account also higher harmonics in the Ansatz-function.

A proper validation of the purely theoretical results is still outstanding, whereas a comparison of different modelling strategies is in progress. Considering the stabilizing effects of other non-circular bearing profiles ([ ],[ ], [ ] etc.) the obtained qualitative results seem reasonable. Nevertheless, an experimental validation would be useful. 
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W non-dimensional radial deformation (= w /C) w * bearing displacement at ϕ = ± π /2 W * non-dimensional bearing displacement at ϕ = ± π /2 W mean value of W * x J , y J centre coordinates of journal X J , Y J non-dimensional centre coordinates of journal x R , y R centre coordinates of rotor X R , Y R non-dimensional
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  for different static bearing geometries is shown in fig. . Stable solutions are indicated with dense lines, whereas a dashed line style is used for unstable solutions instead.
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