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Abstract  23 

Permanent grasslands produce highly diverse ecosystem goods and services, which need to be 24 

easily assessed by decision makers. Naturalists and agronomists classify grasslands in 25 

different ways to predict ecological, agronomic and environmental characteristics of the 26 

grasslands. However, few studies have compared the prediction abilities of these different 27 

classifications using the same botanical relevés, and none has explored the utility of 28 

combining classifications. In this study, we attributed a grassland class from each of three 29 

classifications (phytosociological, agronomic and functional) to 250 permanent grasslands in 30 

north-eastern France to predict 16 characteristics: nine ecological, three agronomic and four 31 

environmental. We used statistical model selection to identify the classification or 32 

combination of classifications that best predicted each characteristic. Our results showed great 33 

prediction ability of agronomic classification, which created the best models for predicting 34 

agronomic (yield) and environmental (management, elevation) characteristics. We also 35 

identified a strong prediction ability of combining two or all three classifications to predict 36 

seven other grassland characteristics. However, grassland classifications did not predict most 37 

of the ecological characteristics well. We can assume that phytosociological classification, 38 

despite its mainstream use, predicts grassland characteristics less well than agronomic 39 

classification. We recommend combining grassland classifications to improve rapid 40 

prediction abilities. This study provides new knowledge useful for developing grassland 41 

classifications which meet the needs of agronomists and naturalists. 42 

Key words: phytosociology; agricultural type; functional type; management; biodiversity; 43 

typology 44 

 45 

1 Introduction 46 

Worldwide, permanent grassland is the main terrestrial ecosystem, covering 26% of the world 47 

land area (FAO, 2019) and 28% of UE total utilised agricultural area in 2013 (Eurostat, 2017). 48 

Permanent grasslands provide diverse ecosystem goods and services of global importance, 49 

such as forage production, species habitat, pollination, water purification, flood prevention 50 

and mitigation of global warming through carbon storage (D’Ottavio et al., 2017). Provision 51 

of these services is threatened by four main dangers: disappearance of grasslands (cultivation, 52 

degradation), underuse (abandonment), agricultural intensification and climate change (Biró 53 

et al., 2013; Muller et al., 1998; WallisDeVries et al., 2002; Young et al., 2005).  54 

Conservation of grasslands and associated goods and services requires strong policy, but 55 

grasslands differ and do not need equal protection. Indeed, agronomic and ecological services 56 

provided by grasslands are complex consequences of management choices, environmental 57 

constraints and botanical composition (Dumont et al., 2018; Michaud et al., 2012). Decision-58 

makers need simple tools such as grassland classifications to assess or predict the levels of 59 

grassland services provided. At local scales, farmers and agronomists mainly need to predict 60 

forage yield and quality, while naturalists are interested in ecological values of grasslands. At 61 

regional, national and international scales, policy makers and administrators need to assess 62 

trade-offs between economics and the environment, and to design best policies. To solve these 63 

issues, naturalists and agronomists have developed different grassland classifications, using 64 

divergent methods. These classifications simplify prediction of grassland characteristics, 65 

which depend on the viewpoint and method of study. 66 

Naturalists have used phytosociology since the early 20th century to classify vegetation 67 

communities and assess habitat conservation. The development of phytosociological 68 



 

classification required botanical relevés of all vascular species and a coefficient of abundance-69 

dominance for each species of each relevé (Braun-Blanquet, 1964). Phytosociology is the 70 

mainstream method for classifying vegetation communities as it can be applied to all 71 

ecosystems worldwide (e.g. Cheng et al., 2013; Rodríguez-Rojo et al., 2017, 2001; Setubal 72 

and Boldrini, 2012), vegetation classes are arranged into a hierarchical system, and their 73 

names follow scientific rules (Dengler et al., 2008). Once developed, the use of 74 

phytosociological classifications requires only a complete botanical relevé and less than an 75 

hour in each field. Phytosociology can also be used to predict agronomic characteristics, such 76 

as forage quality, and environmental characteristics by using indicator species (Petrovic et al., 77 

2013); however, coefficients of abundance-dominance correlate only weakly with each 78 

species’ percentage of total grassland biomass (i.e. relative biomass) , which can skew 79 

assessment of agronomic characteristics (Daget and Poissonet, 1971; Pittarello et al., 2018). 80 

Naturalists use phytosociology frequently worldwide; in the European Union, it is used to 81 

assess habitat conservation and define priority habitats to protect faunal and floral 82 

biodiversity. 83 

Agronomists have developed agronomic classifications since the 1950s to quickly assess 84 

forage yield and quality, as well as impacts of practices on forage production and the 85 

environment (Michaud et al., 2013). Complete knowledge of botanical diversity is needed to 86 

develop a classification because effects of each plant species on animal production depend on 87 

its prevalence in an animal’s diet (Diquélou et al., 2003), but classification approaches may 88 

vary. Agronomic classifications provide accurate information about agronomic performances 89 

of grasslands but are closely tied to the areas for which they were developed. Once developed, 90 

agronomic classifications can often be used without botanical knowledge, but they do require 91 

knowledge about agronomic practices, which needs to be collected when the classifications 92 

are developed. Doing so requires time, but can begin a discussion between farmers and 93 

agricultural advisors. Moreover, agronomic classifications can be used to predict ecological 94 

characteristics such as species richness and pollinator value (Hulin et al., 2011; Launay et al., 95 

2011), but not all classifications have been developed for this purpose. Several agronomic 96 

classifications have been developed, especially in western Europe, and they are used by a 97 

wide range of decision makers, including agricultural advisors and farmers (Michaud et al., 98 

2013). 99 

More recently, during the 1990s, ecologists attempted to explain the functioning of grassland 100 

ecosystems using functional traits of plants (e.g. Lavorel and Garnier, 2002; Mouillot et al., 101 

2013; Violle et al., 2007). A functional trait is “any morphological, physiological or 102 

phenological feature measurable at the individual level, … without reference to the 103 

environment or any other level of organization” (Violle et al., 2007). Agronomists applied this 104 

knowledge to permanent grasslands to develop functional classifications, which are used to 105 

predict grassland agronomic characteristics such as forage quality, earliness and management 106 

flexibility. Dominant grass (Cruz et al., 2010; Durante et al., 2012) and forb species have been 107 

classified by their functional traits, which are then used to classify grasslands. Functional 108 

ecology has brought a fresh perspective to ecology and agronomy, improved prediction of 109 

ecosystem goods and services, such as fodder production or carbon and nitrogen cycling 110 

(Carol Adair et al., 2018; Lavorel, 2013), and been particularly useful for characterising 111 

community response to environmental change (Lavorel and Garnier, 2002; Nock et al., 2016). 112 

Unlike agronomic classifications, functional classifications are not restricted to the areas for 113 

which they were developed (Cruz et al., 2010) and, once developed, do not require great 114 

botanical knowledge: the relative biomass of the grass and forb species classified is sufficient 115 

to classify the grassland and predict its agronomic characteristics. Developing functional 116 

classifications, however, requires knowledge about functional traits of plant species. These 117 



 

classifications are already used in France to help farmers manage grasslands (Carrère et al., 118 

2012).  119 

The first objective of our study was to compare how phytosociological, agronomic and 120 

functional classifications assess grassland characteristics, as they use different methods and 121 

have different objectives. Phytosociological classification’s main aim is to describe botanical 122 

associations, while agronomic classification focuses on predicting forage yield and quality. In 123 

comparison, functional classification predicts mechanisms (e.g. strategy for acquiring 124 

nutrients, development of plant structure) that express themselves when exposed to 125 

environmental variation. We hypothesised that each classification could predict certain 126 

characteristics well: phytosociological for ecological characteristics, agronomic for agronomic 127 

characteristics and functional for agronomic and environmental characteristics. 128 

Classifications are used to predict grassland ecosystem goods and services, but usually only 129 

one classification approach is used to do so. However, differences in classification objectives 130 

lead to divergent methods for constructing classifications, which can cause classifications’ 131 

predictions of grassland characteristics to differ despite having similar prediction potentials. 132 

From this perspective, the second objective of this study was to investigate prediction 133 

capacities of combined grassland classifications. To our knowledge, few studies have 134 

combined classification approaches. Carrère et al. (2012) combined phytosociological class, 135 

agronomic management and functional class to study potential evolution from one grassland 136 

class to another (e.g. due to modifying fertilisation or earliness of first use). Macedo et al. 137 

(2010) compared the species prediction abilities of three classifications of dune plants: 138 

phytosociological, dominant-strategy (Grime’s CSR theory) and functional. They found that 139 

these classifications predicted plant species similarly but differed in their predictions of plant 140 

response to disturbance. However, Macedo et al. (2010) predicted ecological characteristics of 141 

dune communities only, and neither of these two studies assessed the increase in prediction 142 

accuracy provided by combinations of classifications. We hypothesised that although each 143 

classification has strengths and weaknesses, combined classifications would create a new 144 

classification that was more polyvalent and accurate at predicting grassland characteristics. 145 

Using a sample of 250 permanent grasslands, we determined a phytosociological, agronomic 146 

and functional class for each. We analysed the prediction accuracy of each of the three 147 

classifications and explored whether combining two or all three of them improved prediction 148 

of each of 16 ecological, agronomic and environmental characteristics. Finally, we 149 

determined whether one classification alone or a combination of classifications could predict 150 

all 16 of the characteristics well. 151 

 152 

2 Materials and methods 153 

2.1 Site 154 

The dataset consisted of 250 grasslands in the Vosges Mountains (north-eastern France, 155 

7000+ km²) (Fig. 1). Their elevations vary greatly (170-1424 m a.s.l.), as does their geology: 156 

from limestone and sandstone in the north to plutonic volcanic rock in the south. The climate 157 

is under oceanic and semi-continental influences, and can be polar at mountain summits. 158 

According to climate normals (1981-2010), mean monthly temperatures vary from -4 to 159 

+12°C, and mean annual precipitation varies greatly (700-2300 mm) under complex 160 

latitudinal, longitudinal and elevational gradients (Ferrez et al., 2017). Finally, the Vosges 161 

Mountains cover a large gradient of agricultural practices: 26 % of the grasslands were 162 

exclusively mown, 38% were exclusively grazed, and nitrogen fertilisation ranged from 0-277 163 



 

kg nitrogen/ha (69% organic (manure applied or directly deposited during grazing) and 31% 164 

synthetic, by mass ). 165 

2.2 Attribution of grassland classes 166 

Three studies were performed from 2001-2013 (Bayeur et al., 2013; Collectif, 2006; Launay 167 

et al., 2011) of 250 permanent grasslands on commercial farms (Fig. 1). They focused on the 168 

main homogeneous vegetation community of each grassland in areas 1000-10,000 m² in size 169 

to avoid effects of paddock size on botanical diversity. One botanical relevé per grassland was 170 

performed in the spring (peak biomass production), identifying all vascular botanical species 171 

and their relative biomass (%) in 25 circles of 0.2 m² randomly placed in the homogeneous 172 

vegetation community. Finally, homogeneous vegetation community were prospected to 173 

search for species too rare to be found in the 25 samples.  174 

353 species were observed in 250 grassland homogeneous vegetation communities. The mean 175 

(±SD) number of species per community was 37.6 (±8.7) [min-max = 16-65]. Thirty species 176 

formed 80% of the total biomass, with a dominance of red fescue Festuca rubra L. (14.9%), 177 

Yorkshire fog Holcus lanatus L. (9.1%), perennial ryegrass Lolium perenne L. (7.4%) and 178 

sweet vernal grass Anthoxanthum odoratum L. (5.6%). 11 threatened or endangered species 179 

were identified (seven vulnerable, two endangered and two critically endangered) according 180 

to the IUCN Red List, distributed in 30 grasslands. We used this dataset to attribute an 181 

agronomic, functional and phytosociological class to each of the 250 grasslands. 182 

 183 

Figure 1. Location of the 250 botanical relevés performed in the Vosges Mountains, France, 184 

from 2001-2013 (Bayeur et al., 2013; Collectif, 2006; Launay et al., 2011). Coordinate 185 

system: RGF93-Lambert93 186 

 187 

 188 



 

2.2.1 Agronomic class attribution 189 

Previous studies identified 25 agronomic classes for homogenous grassland based on species 190 

presence and relative biomass (Bayeur et al., 2013; Collectif, 2006). To this end, they 191 

performed multivariate analyses of grassland composition: Correspondence Analysis (CA) 192 

and Hierarchical Cluster Analysis (HCA) of species presence and Principal Component 193 

Analysis (PCA) and HCA of relative biomass. Thus, by combining CA and PCA, they 194 

attributed one agronomic class to each grassland based on the presence and relative biomass 195 

of its botanical species (Table S1). The number of grasslands per agronomic class varied from 196 

4-24 (Table 1). 197 

This classification is called “agronomic” because its main aim is not to predict botanical 198 

associations, but to use these associations to predict forage yield and quality. 199 

2.2.2 Functional class attribution 200 

Cruz et al. (2010) attributed one class (A, B, b, C and D) to 38 of the most common French 201 

grasses (Poaceae), based on a combination of functional traits for leaves (dry matter content, 202 

specific leaf area, longevity, resistance to breakage) and plants (flowering date, maximum 203 

height) (Table S2). Then, Cruz et al. (2010) attributed functional classes to grasslands 204 

according to the percentage of each grass class in them.  205 

We adapted their method of functional class attribution to reduce the number of grassland 206 

classes containing only one grassland. If one grass class represented more than 60% of 207 

grassland grasses, the grassland was defined as that class (e.g. 76% of grasses of class A, 3% 208 

of B and 21% of C yielded grassland class A), as proposed by Cruz et al. (2010). Otherwise, 209 

grassland was defined by the two main grass classes, in decreasing order (e.g. 28% of A, 30% 210 

of B, 10% of b and 32% of C yielded grassland class CB).  211 

We then attributed one functional class to each permanent grassland based on the Cruz et al. 212 

(2010) grass classifications and the relative biomass of these grasses in each grassland. Thus, 213 

we attributed 20 functional classes, with 1-41 grasslands per class (Table 1). The mean (±SD) 214 

percentage of Poaceae in relevés was 64.8 ± 13.5% [min-max = 24.0-96.7%], while that of 215 

other families was 35.2 ± 13.5% [3.3-76.0%]. 216 

2.2.3 Phytosociological class attribution 217 

Ferrez et al. (2017) developed a phytosociological classification for the entire Vosges 218 

Mountain range using 1628 relevés performed from 1993-2015 following the Braun-Blanquet 219 

method. They identified 35 phytosociological classes and selected the 22 of them that had the 220 

highest appearance rates and most important agronomic and ecological roles in the Vosges 221 

Mountains (Table S3). These 22 classes are based on 550 grassland relevés on commercial 222 

farms.  223 

Normally, phytosociological classes are attributed directly in the field. For this study, 224 

however, we had to attribute phytosociological classes to the 250 grasslands a posteriori, 225 

from a dataset of existing botanical relevés. Therefore, we developed a new key to determine 226 

phytosociological classes. We used a statistical regression tree to design the new key, using 227 

the complete set of 550 relevés (Ferrez et al. 2017) and the mvpart package of R software v. 228 

3.4.2 (R Core Team, 2019; Therneau and Atkinson, 2014). The key, based on 48 botanical 229 

genera, determines phytosociological classes easily. We verified the key’s percentage of good 230 

classification for the dataset (550 grasslands) using a confusion matrix. According to the 231 

confusion matrix, the key had an agreement of 81%.  232 



 

Using this key and the presence of botanical genus that we observed in each grassland during 233 

the field sampling from 2001-2013, we attributed a phytosociological class to each of the 250 234 

studied grasslands. All of the following analyses were performed for these 250 grasslands. 235 

Thus, we attributed 17 phytosociological classes to the 250 grasslands, with 3-61 grasslands 236 

per class (Table 1). As 22 classes could have been attributed at most, five classes were not 237 

observed in the set of grasslands. 238 

 239 

Table 1. Number of grasslands (n = 250) attributed to 17 phytosociological classes, 25 240 

agronomic classes and 20 functional classes when attributing one phytosociological, one 241 

agronomic and one functional class to each grassland (Table S1, S2 and S3). 242 

Phytosociological  

classes 

Agronomic  

classes 

Functional  

classes 

Phy_12 61 BV_02 24 VN_09 14 C 41 

Phy_05 25 BV_01 17 VN_07 13 A 40 

Phy_01 24 BV_10 13 VN_12 11 AC 38 

Phy_02 21 BV_06 12 VN_13 11 CA 31 

Phy_11 20 BV_07 11 VN_05 9 AB 26 

Phy_20 20 BV_08 11 VN_08 9 Ab 15 

Phy_07 14 BV_03 10 VN_14 9 B 10 

Phy_09 12 BV_04 10 VN_01 8 BA 8 

Phy_25 9 BV_09 10 VN_02 8 Cb 8 

Phy_04 8 BV_11 6 VN_06 8 CB 6 

Phy_06 8 BV_05 5 VN_03 6 CD 6 

Phy_08 8   VN_11 6 BC 5 

Phy_16 6   VN_10 5 Bb 4 

Phy_18 5   VN_04 4 bB 3 

Phy_29 3     DC 3 

Phy_30 3     bC 2 

Phy_31 3     AE 1 

      b 1 

      bA 1 

      E 1 

 243 

 244 



 

2.3 Grassland characteristics  245 

We chose to analyse ecological, agronomic and environmental characteristics of grasslands. 246 

Some of them were ecosystem services, which are benefits that people obtain from 247 

ecosystems (Millennium Ecosystem Assessment, 2005); however, this definition is still 248 

debated, and goods can be separated from services (Fisher et al., 2009). In addition, goods and 249 

services can be delivered by both the ecosystem and human practices; for example, grassland 250 

yield can be increased by applying synthetic fertilisers. Because we assessed a variety of 251 

goods and services delivered by the ecosystem and by human practices, we referred to them 252 

collectively as “grassland characteristics”. 253 

We selected nine ecological characteristics to assess taxonomic diversity (species richness, 254 

family richness, Shannon heterogeneity index, Simpson diversity index), functional diversity 255 

(life form abundance, pollinator value, richness and weighted mean of the Ellenberg root 256 

system depth index) and patrimonial functions (oligotrophic species richness, which can be 257 

used as a proxy for species of high ecological value, threaten by the homogenization and 258 

intensification of agricultural management). We selected three agronomic characteristics to 259 

assess actual forage quantity (yield), potential forage quality and quantity (pastoral value) and 260 

phenology (fodder earliness). Finally, we selected four environmental characteristics to assess 261 

the sensitivity of classification to natural and human factors (Ellenberg humidity and fertility 262 

indices, elevation and management). We used a variety of methods (e.g. calculation, farmer 263 

interviews) to determine the 16 characteristics (Table 2, S4 and S5).  264 

The botanical relevés of 250 grasslands and interviews of 52 farmers were performed in 265 

previous studies, which were used to develop the agronomic classification (Bayeur et al., 266 

2013; Collectif, 2006; Launay et al., 2011). Botanical relevés allowed the collection of species 267 

composition and relative biomass, which we entered into the e-FLORA-sys program 268 

(Plantureux and Amiaud, 2010, 2009). This program calculated information at the vegetation 269 

community scale: all ecological characteristics, as well as pastoral values and life form 270 

diversity came from direct observation and calculation by e-FLORA-sys. Using a 271 

questionnaire to avoid bias, farmers were interviewed to obtain information about yield and 272 

grassland management. Knowledge from the interviews were extracted to deduce grassland 273 

management (“mown”, “grazed” or a “mixture” of both) and estimate yield from the number 274 

and mass of bales and from livestock stocking rates. On 14 grasslands, vegetation was 275 

sampled and dried to measured yields without interviews. Finally, grassland elevation was 276 

collected using BD ALTI dataset and QGIS software (IGN, 2016; QGIS Development Team, 277 

2019).  278 

 279 

 280 

Table 2. Methods for determining the 16 characteristics studied for permanent grasslands, in 281 

ecological, agronomic and environmental categories. 282 



 

Characteristic Determination method 
E

co
lo

g
ic

al
 

Species richness Number of botanical species observed in the grassland 

Oligotrophic species 

richness 

Number of botanical species observed in the grassland with an 

Ellenberg nitrogen index of 1-3 

Family richness Number of botanical families observed in the grassland 

Shannon 

heterogeneity index 
-(Yk × log2 Yk), where Yk is the relative biomass of species 

k (0<Yk≤1) 

Simpson diversity 

index 
1 – ( Yk2), where Yk is the relative biomass of species k 

(0<Yk≤1) 

Pollinator value 
Relative biomass (% of total biomass) of entomophilous 

botanical species observed in the grassland 

Ellenberg root 

system depth index 

richness 

Number of different Ellenberg root system depth indices 

observed in the grassland 

Ellenberg root 

system depth index 

weighted mean 

(Yk × individual root index), where Yk is the relative 

biomass of species k (0<Yk≤1) 

Life form abundance 

Relative biomass (% of total biomass ) of each life form: 

grasses (Cyperaceae, Juncaceae, Liliaceae , Poaceae), legumes 

(Fabaceae) and forbs 

A
g
ro

n
o
m

ic
 

Yield 

Estimated from the number of bales and livestock stocking 

rate, or measured in the field 

Pastoral value 

(Yk × individual pastoral value), where Yk is the relative 

biomass of species k (0<Yk≤100). For each species, pastoral 

value is estimated by expert opinion from potential yield, 

nutritive value, appetence and digestibility (Daget and 

Poissonet, 1971) 

Fodder earliness 
Relative biomass (% of total biomass) of early, middle and late 

species, according to Cruz et al. (2010) and Theau et al. (2017) 

E
n
v
ir

o
n
m

en
ta

l 

Ellenberg humidity 

index 
(Yk × individual humidity index), where Yk is the relative 

biomass of species k (0<Yk≤100) 

Ellenberg fertility 

index 
(Yk × individual fertility index), where Yk is the relative 

biomass of species k (0<Yk≤100) 

Elevation Mean elevation of the grassland 

Management 
“Mown”, “grazed”, or a “mixture” of both, obtained from 

farmer interviews 

 283 

 284 



 

2.4 Statistical analyses 285 

We first identified the classification or combination of classifications that predicted each 286 

characteristic the best. We then assessed the quality of the best models to identify the most 287 

polyvalent classification or combination of classifications for all 16 characteristics. The 288 

specific method used depended on the grassland characteristic. 289 

2.4.1 Modelling each characteristic with classifications 290 

We used statistical model selection to calculate the probability that each classification alone 291 

(phytosociological (P), agronomic (A) or functional (F)), or a combination of classifications, 292 

yielded the best model, using R software. We modelled each characteristic as a function of 293 

each classification or combinations of classifications. To this end, we generated a model 294 

containing the main effects of all the classifications (A+P+F), and we then derived all 295 

possible submodels, including an intercept-only model (null model) (Burnham and Anderson, 296 

2002; Grueber et al., 2011). We then repeated this methodology from a model containing the 297 

interactions of all the classifications (A×P×F). Thus, a set of 12 models could be created, 298 

based on classifications alone and combinations of classifications. The sets of models 299 

generated to predict each characteristic are presented in Table S6. 300 

Combining agronomic and phytosociological classifications yielded 116 combinations (e.g. 301 

agronomic class BV_01 with phytosociological class Phy_05 for the same grassland). 302 

Similarly, we identified 136 combinations of agronomic and functional classifications, 93 303 

combinations of phytosociological and functional classifications, and 202 combinations of all 304 

three classifications. The large number of combinations of classifications demonstrated that 305 

classifications differed in how they classified grasslands. 306 

We modelled each continuous variable (species richness, oligotrophic species richness, family 307 

richness, Shannon heterogeneity and Simpson diversity indices, pollinator value, Ellenberg 308 

root system depth richness and root system depth index weighted mean, yield, pastoral value, 309 

Ellenberg humidity and fertility indices and elevation) using generalised linear models from 310 

the gamma family. We modelled each characteristics by 12 models. 311 

We also fitted life form abundance and fodder earliness using generalised linear models. 312 

However, as we used only one model for life form (grass, legume and forb) and one model for 313 

earliness (early, middle and late), models were created from the binomial family. Here again, 314 

we modelled each characteristics by 12 models. 315 

Grassland management was a categorical variable, so we created multinomial logit models 316 

using the mlogit package (Croissant, 2015). As logit models do not support interactions 317 

(Croissant, 2015), we fitted only eight models to grassland management. 318 

2.4.2 Identification of the best model 319 

After creating the models, we selected the best one for each characteristic. Except for 320 

grassland management models, the best model was that with the lowest second-order Akaike 321 

Information Criterion (AICc), calculated using the MuMIn package and R software (Barton, 322 

2018). Grassland management models were ranked according to the Akaike Information 323 

Criterion (AIC) itself, calculated using the qpcR package and R software (Spiess, 2014), 324 

because AICc cannot be calculated for logit models (Barton, 2018). 325 

During model selection, an Akaike weight (hereafter, “weight”) is attributed to each model 326 

tested. This weight is the probability that a given model is the best, and the sum of the weights 327 

of all models tested equals 1 (Symonds and Moussalli, 2011). For each analysis, we compared 328 



 

the weight of each model to those of other models: the closer a model’s weight is to 1, the 329 

better the model is. If only one model had a high weight (> 0.8), we assumed it was the best, 330 

but if several models had similar weight, we examined them more closely. We verified the 331 

quality of the model selection by ensuring that the null model had a weight close to zero 332 

(Symonds and Moussalli, 2011).  333 

2.4.3 Identification of a reliable polyvalent classification 334 

Best model do not mean good model: the best among poor quality models remain a poor 335 

quality model. Moreover, the best model for a given characteristic may not be the best model 336 

for multiple characteristics together. To solve these two issues, we calculated the quality of 337 

each best model. First, model quality informed about the accuracy of each characteristics 338 

model. Then we could compare the accuracy of models selected for several characteristics: if 339 

a model would be selected as best model for several characteristics and its accuracy would be 340 

sufficient, we could assume it is a polyvalent and reliable model.  341 

AIC and AICc indicate model quality, but as they are relative to the dataset for each 342 

characteristic we could not use them to compare best models for multiple characteristics 343 

(Burnham and Anderson, 2002). We used each best model to predict all 16 characteristics and 344 

calculated a goodness of fit among the predictions using pseudo-R², because R² cannot be 345 

calculated for generalised linear models (Tjur, 2009). 346 

For generalised linear models for the gamma family, we calculated Cox and Snell pseudo-R² 347 

(Cox and Snell, 1989), which is the easiest to use because it expresses R² in terms of log-348 

likelihood (Tjur, 2009). Because the Cox and Snell pseudo-R² is not optimal for generalised 349 

linear models from the binomial family or for multinomial logit models (Cox and Snell, 350 

1989), we calculated McFadden’s pseudo-R² for these models, which is also based on the 351 

likelihood of the model (Hoetker, 2007). We used the DescTools package and R software to 352 

calculate pseudo-R² (Signorell, 2017). Finally, we calculated generalised variance-inflation 353 

factors to check for collinearity among models, using the car package (Fox and Sanford, 354 

2011). We assumed that models with pseudo-R² > 0.5 had a satisfactory goodness of fit. 355 

 356 

3 Results 357 

3.1 Identification of the best classification 358 

The model with the highest weight for 15 of the 16 grassland characteristics contained one or 359 

more classifications, as root system depth richness was predicted best by the null model (Fig. 360 

2). Among these 15 models, four of them had a weak weight <0.8 and required a closer look 361 

to identified best models: Shannon heterogeneity index (0.66), pollinator value (0.52), 362 

Ellenberg root system index weighted mean (0.73) and Ellenberg fertility index (0.59). 363 

One classification alone was sufficient to predict four characteristics the best. Three 364 

characteristics were predicted best by agronomic classification alone (A): yield (agronomic), 365 

grassland management (environmental) and elevation (environmental). One characteristic was 366 

predicted best by phytosociological classification alone (P): species richness (ecological).  367 

For two characteristics, the model with the highest weight contained only one classification, 368 

but the weight was not high enough to select it as the best model. For Shannon heterogeneity 369 

index, phytosociological classification (P) alone had the highest weight (0.66), but it did not 370 

differ enough from the second highest weight (0.25), which was for the main effects of 371 

phytosociological and functional classifications (P+F). Similarly, for pollinator value, weights 372 



 

of agronomic classification (A) and the null model (0.52 and 0.35, respectively) were too 373 

similar to identify one best model. 374 

The main effects of two or three classifications predicted six characteristics the best: 375 

agronomic and phytosociological (A+P) for family richness; agronomic and functional (A+F) 376 

for Ellenberg humidity index; phytosociological and functional (P+F) for Simpson 377 

heterogeneity index and pastoral value; and all three classifications (A+P+F) for fodder 378 

earliness. Ellenberg root system index weighted mean highest weight was associated to the 379 

P+F model, but was <0.8. However, the second highest weight was different enough to 380 

assume Ellenberg root system index weighted mean was best model by the main effects of 381 

phytosociological and functional classifications. 382 

On the other hand, weights of the A+P+F and A+P models for the Ellenberg fertility index 383 

were too similar (0.59 and 0.41, respectively), we could not identify which one was best. 384 

Finally, two best models contained an interaction: that between agronomic and 385 

phytosociological classifications (A×P) for life form abundance, and between 386 

phytosociological and functional classifications (P×F) for oligotrophic species richness. 387 

The highest weights equalled 1.0 for seven characteristics, 0.7-1.0 for six characteristics, and 388 

less than 0.7 for the Shannon heterogeneity index, pollinator value and Ellenberg fertility 389 

index. Null model weights equalled zero, except for those for pollinator value (0.35) and root 390 

system depth richness (1.0).  391 

3.2 Identification of a reliable and polyvalent classification 392 

The goodness of fit (pseudo-R²) varied greatly among the best models for characteristics 393 

(0.20-0.88) (Fig. 2). The goodness of fit of the model for the Ellenberg root system index 394 

weighted mean equalled zero, due to the selection of the null model. Models for agronomic 395 

and environmental characteristics had high weights and/or quality. In contrast, most models 396 

for ecological characteristics had low quality, except for life form abundance, oligotrophic 397 

species richness and, to a lesser extent, family richness (pseudo-R² = 0.87, 0.83 and 0.54, 398 

respectively). We identified ten grassland characteristics whose models had goodness of fit > 399 

0.5 (Fig. 3): oligotrophic species richness, family richness and life form abundance 400 

(ecological); yield, pastoral value and fodder earliness (agronomic); and Ellenberg indices for 401 

fertility and humidity, elevation and management (environmental). Unlike these ten grassland 402 

characteristics, the other six, all ecological, had best models of low quality despite having 403 

high weights: species richness, Shannon heterogeneity index, Simpson diversity index, 404 

pollinator value and richness and weighted mean of Ellenberg root system depth 405 

We could not identify one polyvalent and reliable classification or combination of 406 

classifications that could predict ecological, agronomic and environmental characteristics 407 

well. Only agronomic classification could predict characteristics the best when alone, with 408 

high quality models. Moreover, most of the characteristics predicted well were predicted 409 

totally or partially by agronomic classification. The combination of phytosociological and 410 

functional classifications predicted oligotrophic species richness and pastoral value well.  411 

 412 



 

 413 

Figure 2. Akaike weights and goodness of fit (pseudo-R2) of the 16 grassland characteristics 414 

modelled using agronomic (A), phytosociological (P) or functional (F) classification, the main 415 

effects of two or all three of them (A+P, A+F, P+F and A+P+F), their interactions (A×P, 416 

A×F, P×F and A×P×F) and a null model (Null). The term “n.c.” (“not considered”) indicates 417 

characteristics that could not be modelled with interactions. The goodness of fit shown is that 418 

of the model with the highest weight for each grassland characteristic. 419 



 

 420 

Figure 3. Representation of which phytosociological, agronomic and functional classifications 421 

(or combinations of them) were needed to predict ten grassland characteristics well (goodness 422 

of fit > 0.5). Red, green and blue text identify ecological, agronomic and environmental 423 

characteristics, respectively.  424 

 425 

4 Discussion 426 

4.1 Prediction of grassland characteristics 427 

4.1.1 Quality of prediction models 428 

Four of the six characteristics whose models had goodness of fit < 0.5 involved species or 429 

trait richness and equitability. This poor prediction of ecological characteristics is not 430 

surprising for agronomic and functional classifications, which were not designed to predict 431 

them and rely mainly on relative biomass rather than presence of species. The best models for 432 

each of these characteristics are built in part on phytosociological classification, except those 433 

for pollinator value and Ellenberg root system index weighted mean. However, the poor 434 

quality of these ecological characteristics highlights the lack of a relationship between 435 

ecological characteristics and phytosociological classification, which is more surprising. 436 

While grasslands in the same phytosociological class have species in common (a 437 

“characteristic combination”), they also have some different species among them, which gives 438 

them different values of species richness and may help explain our result. Bias in relevés 439 

could also be a reason: Chytrý (2001) showed that botanists increase the area sampled in 440 

species-poor grasslands to increase the number of species, which could bias attribution of 441 

class and calculation of richness. 442 

Despite its common use and importance for estimating total biodiversity, species richness is 443 

not a key characteristic to predict because of its high variability in similar grasslands 444 

(Brunbjerg et al., 2018). These limits to biodiversity measurements have led researchers and 445 

decision-makers to use diversity indices such as the Shannon heterogeneity index and 446 



 

Simpson diversity index (Bello et al., 2010; Mauchamp et al., 2014). In our study, we could 447 

not identify models that predicted diversity indices well, but ecological indices were predicted 448 

best by phytosociological classification alone or a combination of phytosociological and 449 

functional classifications. These indices provide different types of information: the Shannon 450 

heterogeneity index describes species equitability, while the Simpson diversity index 451 

describes both species equitability and richness. One way to predict grassland plant diversity 452 

well could be to use disturbance intensity: Vujnovic et al. (2002) showed that intermediate 453 

disturbance by grazing, trampling or soil management maximised grassland biodiversity, 454 

while Rodríguez-Rojo et al. (2017) observed that management intensity had more influence 455 

on grassland biodiversity than management practices. However, biodiversity measurement, 456 

through species richness or ecological indices, is not necessary a useful indicator. Indeed, 457 

these measurements do not take into account vegetation characteristics as proportion of rare 458 

species, which is not correlated to total richness (Pykälä et al., 2005). Assessment of 459 

biodiversity should be implemented with proxy for species of high ecological value like 460 

oligotrophic species richness (Michaud et al., 2012; Muller, 2002). In the present study, 461 

oligotrophic species richness was predicted best by the combination of phytosociological and 462 

functional classifications. 463 

Among ecological characteristics, only pollinator value and the weighted mean of Ellenberg 464 

root system depth needed species relative biomass in their calculations. However, they are 465 

based on traits (pollinator attractiveness traits and root system depth, respectively) not 466 

included in the functional classification studied nor in other classifications. Agronomic 467 

classification has been used to estimate pollinator value (Bayeur et al., 2013; Hulin et al., 468 

2011; Launay et al., 2011). Our study confirms that agronomic classification predicts 469 

pollinator value the best, but its low model quality (weight = 0.52, pseudo-R² = 0.20) raises 470 

questions about the reliability of the prediction. Beyond our study, phytosociological 471 

classification may help predict pollinator species or traits, which are particularly related to 472 

flower diversity (Hegland and Totland, 2005; Warzecha et al., 2017). However, 473 

entomophilous botanical species relative biomass assesses a potential pollinator value at 474 

grassland scale. To assess a real pollinator service, flowering time and cutting/grazing dates 475 

should be studied because they express the real abundance of flowers (Kleijn et al., 2001). 476 

The landscape also influences pollinator diversity and abundance strongly, but it is not 477 

included in grassland classifications (Sutter et al., 2017). Finally, our modelling of root 478 

system depth is similar to the study of Oram et al. (2018), which found that mean root system 479 

depth was related to other characteristics but root system depth richness was not. 480 

4.1.2 Grassland characteristics predicted by one classification alone 481 

Three grassland characteristics – elevation, management and yield – were predicted best by 482 

agronomic classification alone, which was the only classification that could predict grassland 483 

characteristics well by itself (Fig. 3). Management and elevation predict species composition 484 

well (Rodríguez-Rojo et al., 2017; van Oijen et al., 2018), and agronomic classification 485 

predicted management and elevation well with high weights and model qualities. We can 486 

assume that botanical associations developed from taxonomic relative biomass are good 487 

indicators of elevation and might be indicators of climate more generally. 488 

Prediction of yield is crucial, especially for farmers. As agronomic classifications are 489 

developed mainly to predict agronomic characteristics, we expected a strong relationship 490 

between yield and agronomic classification. Functional classifications are also developed to 491 

predict grassland yields, and this ability was confirmed by Lavorel and Garnier (2002), who 492 

identified strong relationships between nutrient-response traits and traits determining yields. 493 

Plasticity in trait expression (at the species scale) and trait co-occurrence (at the community 494 



 

scale) of grasses and forbs need to be better understood to improve predictions of functional 495 

classification (Roscher et al., 2018). Yield can be estimated easily using Ellenberg fertility 496 

index (Hill and Carey, 1997) or by more complex models based on functional traits, life form 497 

abundance (Michaud et al., 2015) and phytosociological classes (Magiera et al., 2017). 498 

Finally, field measurement also estimates grassland yield well but requires more time and 499 

equipment than using grassland classifications or Ellenberg indices (Ni, 2004). 500 

4.1.3 Combining classifications: a solution? 501 

To our knowledge, our study is the first to compare three classification approaches using the 502 

same relevés. Carrère et al. (2012) created tool based on phytosociological, agronomic and 503 

functional classifications but did not compare the quality of predictions provided by each 504 

classification to those of the combination of two or three classifications. Macedo et al. (2010) 505 

compared the prediction abilities of three classifications but focused only on predicting 506 

ecological characteristics of dune communities. 507 

In our study, seven of the characteristics studied were predicted better by combinations of 508 

classifications than by one classification alone (Fig. 3): oligotrophic species richness, family 509 

richness and life form abundance (ecological), pastoral value and fodder earliness 510 

(agronomic) and Ellenberg humidity and fertility indices (environmental). Notably, among the 511 

goodness of fit >0.8, three out of four models required combination of classifications: life 512 

form abundance (0.87), oligotrophic species richness (0.83) and Ellenberg fertility index 513 

(0.8). Moreover, despite its weak prediction capacities when used alone, phytosociological 514 

classification is part of these three best models.  515 

Both fertility and humidity indices were predicted well (high weight and goodness of fit) by 516 

combining classifications. Humidity and fertility indices have been linked to elevation (de 517 

Almeida Campos Cordeiro and Neri, 2019; Pittarello et al., 2018; Sevruk, 1997) but also to 518 

taxonomic (Critchley et al., 2002; Melts et al., 2018; Wang et al., 2007) and functional (Čop 519 

et al., 2009; Schellberg, 1999; Suding et al., 2005) diversity. We also used the fertility index 520 

to calculate oligotrophic species richness. However, fertility needed all three classifications to 521 

be predicted well, while oligotrophic species richness needed only phytosociological and 522 

functional classifications and was predicted better. This difference could have been due to the 523 

method used: the fertility index is based on relative biomass, unlike oligotrophic species 524 

richness. Ellenberg fertility index is influenced by fertilizer application, but is also dependant 525 

of soil properties like the cation exchange capacity. Thus, the prediction of Ellenberg fertility 526 

index and oligotrophic species richness can bring information about presence of species of 527 

high ecological value, but cannot be used to assess the impact of fertilization at scales larger 528 

than grassland community.  529 

Life form abundance, as well as root system depth, was not included in previous 530 

classifications. The latter was not predicted well, but the life form abundance was predicted 531 

well by an interaction between classifications (A×P). This result is particularly interesting 532 

because it shows that grassland classifications can predict characteristics beyond those for 533 

which they were developed. Moreover, family richness was predicted best by a similar 534 

combination of classifications: the main effects of agronomic and phytosociological 535 

classifications (A+P). These characteristics are related by the method of calculation. Indeed, 536 

life forms are based on botanical families: legumes belong to Fabaceae, while grasses belong 537 

to Cyperaceae, Juncaceae, Liliaceae and Poaceae. This result could highlight a correlation 538 

between richness and relative biomass of families. Grassland management influences life 539 

form diversity strongly: mowing increases grass and forb relative biomass, while grazing 540 

selects rosettes and creeping plants (Gaujour et al., 2012; Lanta et al., 2009). However, 541 



 

intensification also selects rosettes and creeping plants (Gaujour et al., 2012), and livestock 542 

type also has a strong influence on life form diversity (Tóth et al., 2018). These previous 543 

studies show that knowledge about grassland management could improve prediction of life 544 

form abundance; however, Craine et al. (2001) identified correlations between leaf traits and 545 

life form but no correlation between intensification and life form. The prediction of life form 546 

abundance can be useful for agronomists and naturalists. Indeed, grassland with highest life 547 

form diversity produce higher yields (Bullock et al., 2006), and allow heavier livestock live 548 

weight than grassland with poor life form diversity (Grace et al., 2019). In the present study, 549 

the goodness of fit of life form abundance (0.87) was higher than goodness of fit of yield 550 

(0.51) and fodder quality (0.60). Finally, life form abundance also determines the resistance of 551 

botanical species to drought: life form of weak abundance have more probabilities to 552 

disappear (Tilman and Haddi, 1992). Thus, life form abundance could be an important 553 

characteristic for naturalist who want to assess the risk of extinction of grassland botanical 554 

species. 555 

It was particularly surprising that phytosociological and functional classifications combined 556 

(P+F) predicted pastoral value the best, because i) yield, part of the pastoral value equation, is 557 

predicted well by agronomic classification, and ii) calculating the pastoral value requires the 558 

pastoral value and relative biomass of each species, which is provided by agronomic 559 

classification (Daget and Poissonet, 1971). Functional traits (Tasset et al., 2019) and 560 

phytosociology (Petrovic et al., 2013) can be used to predict forage quality, but our result 561 

shows that combining them improves predictions. Phytosociology alone may not be sufficient 562 

to predict pastoral value due to the inclusion of different facies in the same phytosociological 563 

class (Bagella and Roggero, 2004). Prediction of pastoral value could be improved by using 564 

Ellenberg fertility index and environmental indicators such as elevation and slope (Bagella 565 

and Roggero, 2004; Pittarello et al., 2018). 566 

Forage earliness is key information in grassland management, because peak forage quality is 567 

related to plant phenology (Pontes et al., 2007). Moreover, coupled with cutting or grazing 568 

dates, earliness could also be used to assess pollination service (Kleijn et al., 2001). Climate is 569 

the main factor that influences flowering time: temperature (Kudernatsch et al., 2008) and, to 570 

a lesser extent, precipitation (Hovenden et al., 2008) create annual variability. We used degree 571 

days to be free from annual temperature variability. Generally, alpine vegetation needs fewer 572 

heat units to initiate flowering (Heide, 1994), which could create a fodder earliness gradient 573 

according to elevation. Management, expressed indirectly through botanical composition, 574 

creates differences in earliness of French grasslands, but differences are also perceptible 575 

among species from the same community (Ansquer et al., 2009). We conclude that the three 576 

classifications are essential to predict fodder earliness: while the functional classification is 577 

based in part on grass earliness, phytosociological and agronomic classifications could 578 

provide information about other species. 579 

4.2 Limits of the study and perspectives 580 

It may be possible to extrapolate results of this study. From the viewpoint of environmental 581 

conditions, our study focused on 250 permanent grasslands of the French Vosges Mountains 582 

but covered wide gradients of climates, elevations, soils and agricultural practices. From the 583 

viewpoint of vegetation, we found 17 phytosociological classes out of the 35 identified by 584 

botanists in the Vosges Mountains (Ferrez et al., 2017). However, these 17 classes are the 585 

most representative of commercial farms according to expert opinion and can be found in 586 

many other lowlands and low-elevation mountains in western Europe. Finally, the functional 587 

classification studied can also be used in a wide range of grasslands, as it is representative of 588 

western-European grassland Poaceae (Cruz et al., 2010). 589 



 

All grassland classifications are based in part on arbitrary choices, either of the classification 590 

criteria (here, taxonomic richness, taxonomic relative biomass, or functional relative biomass) 591 

or the number of grassland classes. The method used to attribute functional classes provided 592 

quick and easy classification, but it can also be restrictive and attribute different functional 593 

classes to similar grasslands. This method also creates several functional classes containing 594 

few grasslands: seven classes contained less than five grasslands. Moreover, the functional 595 

classification focused only on Poaceae, even though other families represent a relatively large 596 

percentage of each grassland (mean ± SD = 35 ± 14%), which could lead to lower accuracy in 597 

measuring response traits if Poaceae respond differently to disturbances than other plant 598 

families. A new functional classification based not only on Poaceae but also on 599 

dicotyledonous species may improve prediction abilities of functional classification. Finally, 600 

including new classification approaches should also improve knowledge about predicting 601 

grassland characteristics. Phytosociology diverges into two approaches: Braun-Blanquet and, 602 

more recently, numerical (Dengler et al. 2008). In the latter, relevés are grouped into classes 603 

using statistics, based on presence/absence (as in the Braun-Blanquet approach) or relative 604 

biomass (as in agronomic classifications). Classes are not phytosociological classes from the 605 

literature but are instead free from the subjective concept of the vegetation unit. 606 

Of the 16 characteristics studied, five were calculated using Ellenberg indices, whose use may 607 

raise some questions. Indeed, some indices are estimated rather than measured, species 608 

response to the environment depends on location and plant stage, and the strength of 609 

correlations between indices and field measurements diverges among studies (Diekmann, 610 

2003; Schaffers and Sýkora, 2000). Nevertheless, Ellenberg weighted mean indices are 611 

considered reliable (Diekmann, 2003). 612 

In a more extensive study, we could have analysed the ability of grassland classifications to 613 

predict other characteristics. Classifications have been used to predict organoleptic 614 

characteristics of animal products (Diquélou et al., 2003) and soil carbon stocks (Hulin et al., 615 

2011), but other services could be studied, such as maintenance of genetic diversity, 616 

regulation of water flows and landscape heritage (D’Ottavio et al., 2017). Moreover, a more 617 

complete dataset of grassland characteristics could improve statistical analyses: the lack of 618 

homogeneity of grasslands per class might induce statistical bias, and it is important to assess 619 

the quality of new models on an external dataset.  620 

Our study raises questions about the use of phytosociological classification alone to identify 621 

habitats of interest in Europe. Indeed, we demonstrated that ecological characteristics remain 622 

difficult to predict and, above all, that phytosociological classification alone does not predict 623 

grassland characteristics well. However, identification of ecological characteristics could lead 624 

to conservation of key grasslands, while identification of agronomic characteristics could 625 

improve distribution of economic incentives for ecologically valuable grasslands. 626 

Characteristics can be predicted more accurately by combining classifications, as in this 627 

study, but also by using other methods. Indicator species or life traits such as life forms or 628 

flower colour are also easy to use but might be less accurate or more time consuming (Arnold 629 

et al., 2009; Ellenberg et al., 1992). Finally, models can consider soil and weather variability, 630 

but such models are often difficult for non-specialists to use and do not predict agronomic and 631 

ecological characteristics at the same time (van Oijen et al., 2018). 632 

 633 

5 Conclusion 634 

Our study focused on the ability of three classification approaches to predict 16 grassland 635 

characteristics. Our results show that agronomic classification has great potential to predict 636 



 

three agronomic and environmental characteristics, which demonstrates that it meets the 637 

needs of farmers and agronomists well. Although phytosociological classification is designed 638 

to assess habitat conservation, it failed to predict the studied ecological characteristics well. 639 

Functional classification appears promising, but it was developed more recently and may 640 

suffer from knowledge gaps. As ecological characteristics remain especially difficult to 641 

predict, naturalists and policy makers should use tools other than phytosociological 642 

classification alone to predict them. Indicator species or life traits such as life forms or flower 643 

colour are also easy to use but might be more time consuming than a phytosociological relevé. 644 

To identify trade-offs between economics and ecology, it may be important to combine 645 

grassland classifications: our results show that combinations of phytosociological, agronomic 646 

and/or functional classification could accurately predict seven ecological, agronomic and 647 

environmental characteristics. Finally, models may improve prediction of characteristics: they 648 

can consider soil and weather variability but are often difficult for non-specialists to use and 649 

do not predict agronomic and ecological characteristics at the same time. 650 

 651 

Acknowledgments 652 

The authors acknowledge the Northern Vosges Regional Nature Park, the Regional Natural 653 

Park Ballons des Vosges and the Franche-Comté National Botanical Conservatory for their 654 

contribution to the botanical relevés and to the development of agronomic and 655 

phytosociological classifications. The authors also gratefully thank Mélissa Berthet, Christof 656 

Neumann and Jean Villerd for their statistical support. This project was funded by the 657 

European Regional Development Fund, the Agence de l’eau Rhin-Meuse, the Fonds National 658 

d’Aménagement et de Développement du Territoire Massif des Vosges and the Région 659 

Grand-Est. 660 

 661 

References 662 

Ansquer, P., Al Haj Khaled, R., Cruz P, P., Theau, J.P., Therond, O., Duru, M., 2009. 663 

Characterizing and predicting plant phenology in species-rich grasslands. Grass and 664 

Forage Science 64, 57–70. https://doi.org/10.1111/j.1365-2494.2008.00670.x 665 

Arnold, S.E.J., Le Comber, S.C., Chittka, L., 2009. Flower color phenology in European 666 

grassland and woodland habitats, through the eyes of pollinators. Israel Journal of 667 

Plant Sciences 57, 211–230. https://doi.org/10.1560/IJPS.57.3.211 668 

Bagella, S., Roggero, P.P., 2004. Integrating phytosociological and agronomic analysis to 669 

support the sustainable management of Mediterranean grasslands. Fitosociologia 41, 670 

101–107. 671 

Barton, K., 2018. MuMIn: Multi-Model Inference. 672 

Bayeur, C., Kleiber, F., L’Hospitalier, M., Loridat, F., Plantureux, S., 2013. Typologie des 673 

prairies permanentes Vosges du Nord et Vosges Mosellanes : guide technique 2013. 674 

Bello, F. de, Lavergne, S., Meynard, C.N., Lepš, J., Thuiller, W., 2010. The partitioning of 675 

diversity: showing Theseus a way out of the labyrinth. Journal of Vegetation Science 676 

21, 992–1000. 677 

Biró, M., Czúcz, B., Horváth, F., Révész, A., Csatári, B., Molnár, Z., 2013. Drivers of 678 

grassland loss in Hungary during the post-socialist transformation (1987–1999). 679 

Landscape Ecology 28, 789–803. https://doi.org/10.1007/s10980-012-9818-0 680 

Braun-Blanquet, J., 1964. Pflanzensoziologie. Springer Vienna, Vienna. 681 

https://doi.org/10.1007/978-3-7091-8110-2 682 



 

Brunbjerg, A.K., Bruun, H.H., Dalby, L., Fløjgaard, C., Frøslev, T.G., Høye, T.T., Goldberg, 683 

I., Læssøe, T., Hansen, M.D.D., Brøndum, L., Skipper, L., Fog, K., Ejrnæs, R., 2018. 684 

Vascular plant species richness and bioindication predict multi‐taxon species richness. 685 

Methods in Ecology and Evolution 9, 2372–2382. https://doi.org/10.1111/2041-686 

210X.13087 687 

Bullock, J.M., Pywell, R.F., Walker, K.J., 2006. Long-term enhancement of agricultural 688 

production by restoration of biodiversity: Restoring biodiversity enhances production. 689 

Journal of Applied Ecology 44, 6–12. https://doi.org/10.1111/j.1365-690 

2664.2006.01252.x 691 

Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical 692 

information-theoretic approach, 2nd ed. ed. Springer, New York. 693 

Carol Adair, E., Hooper, D.U., Paquette, A., Hungate, B.A., 2018. Ecosystem context 694 

illuminates conflicting roles of plant diversity in carbon storage. Ecology Letters 21, 695 

1604–1619. https://doi.org/10.1111/ele.13145 696 

Carrère, P., Seytre, L., Piquet, M., Landrieaux, J., Rivière, J., Chabalier, C., Orth, D., 2012. A 697 

multifunctional typology of grassland in AOP-certified dairy systems in the Massif 698 

Central combining an agronomic and ecological approach. Fourrages 209, 9–21. 699 

Cheng, Y., Kamijo, T., Tsubo, M., Nakamura, T., 2013. Phytosociology of Hulunbeier 700 

grassland vegetation in Inner Mongolia, China. Phytocoenologia 43, 41–51. 701 

https://doi.org/10.1127/0340-269X/2013/0043-0540 702 

Chytrý, M., 2001. Phytosociological data give biased estimates of species richness. Journal of 703 

Vegetation Science 12, 441–444. https://doi.org/10.1111/j.1654-1103.2001.tb00190.x 704 

Collectif, 2006. Le Massif Vosgien : Typologie des Prairies Naturelles. 705 

Čop, J., Vidrih, M., Hacin, J., 2009. Influence of cutting regime and fertilizer application on 706 

the botanical composition, yield and nutritive value of herbage of wet grasslands in 707 

Central Europe: Management of wet grasslands. Grass and Forage Science 64, 454–708 

465. https://doi.org/10.1111/j.1365-2494.2009.00713.x 709 

Cox, D.R., Snell, E.J., 1989. The Analysis of Binary Data, 2nd ed., Chapman and Hall. ed. 710 

London. 711 

Craine, J.M., Froehle, J., Tilman, D.G., Wedin, D.A., Chapin, III, F.S., 2001. The 712 

relationships among root and leaf traits of 76 grassland species and relative abundance 713 

along fertility and disturbance gradients. Oikos 93, 274–285. 714 

https://doi.org/10.1034/j.1600-0706.2001.930210.x 715 

Critchley, C.N.R., Chambers, B.J., Fowbert, J.A., Sanderson, R.A., Bhogal, A., Rose, S.C., 716 

2002. Association between lowland grassland plant communities and soil properties. 717 

Biological Conservation 105, 199–215. 718 

Croissant, Y., 2015. Multinomial logit model. 719 

Cruz, P., Theau, J.P., Lecloux, E., Jouany, C., Duru, M., 2010. Functional typology of 720 

perennial forage grasses : a classification based on several characteristics. Fourrages 721 

201, 11–17. 722 

Daget, P., Poissonet, J., 1971. Une méthode d’analyse phytosociologique des prairies. 723 

Annales Agronomiques 22, 5–41. 724 

de Almeida Campos Cordeiro, A., Neri, A.V., 2019. Spatial patterns along an elevation 725 

gradient in high altitude grasslands, Brazil. Nordic Journal of Botany 37. 726 

https://doi.org/10.1111/njb.02065 727 

Dengler, J., Chytrý, M., Ewald, J., 2008. Phytosociology, in: Encyclopedia of Ecology. 728 

Elsevier, pp. 2767–2779. https://doi.org/10.1016/B978-008045405-4.00533-4 729 

Diekmann, M., 2003. Species indicator values as an important tool in applied plant ecology – 730 

a review. Basic and Applied Ecology 4, 493–506. https://doi.org/10.1078/1439-1791-731 

00185 732 



 

Diquélou, S., Leconte, D., Simon, J.C., 2003. Diversité floristique des prairies permanentes de 733 

Basse Normandie (synthèse des travaux antérieurs). Fourrages 173, 3–22. 734 

D’Ottavio, P., Francioni, M., Trozzo, L., Sedić, E., Budimir, K., Avanzolini, P., Trombetta, 735 

M.F., Porqueddu, C., Santilocchi, R., Toderi, M., 2017. Trends and approaches in the 736 

analysis of ecosystem services provided by grazing systems: A review. Grass and 737 

Forage Science 73, 15–25. https://doi.org/10.1111/gfs.12299 738 

Dumont, B., Ryschawy, J., Duru, M., Benoit, M., Chatellier, V., Delaby, L., Donnars, C., 739 

Dupraz, P., Lemauviel-Lavenant, S., Méda, B., Vollet, D., Sabatier, R., 2018. Review: 740 

Associations among goods, impacts and ecosystem services provided by livestock 741 

farming. animal 1–12. https://doi.org/10.1017/S1751731118002586 742 

Durante, M., Lezana, L., Massa, E., Figari, M., Lezama, F., Jaurena, M., Cruz, P., 2012. A 743 

first attempt to classify in functional groups grasses of Entre Rios (Argentina) and 744 

Uruguay. Presented at the International Symposium on Integrated Crop-Livestock 745 

Systems, Porto Alegre, Brasil, p. 4. 746 

Ellenberg, H., Weber, H.E., Düll, R., Wirth, V., Werner, W., Paulissen, D., 1992. Zeigerwerte 747 

von Pflanzen in Mitteleuropa, Scripta Geobotanica. 748 

Eurostat, 2017. Permanent grassland: number of farms and areas by agricultural size of farm 749 

(UAA) and size of permanent grassland area. 750 

FAO, 2019. FAOSTAT - Land Cover [WWW Document]. Food and Agriculture 751 

Organization of the United Nations$. URL http://www.fao.org/faostat/en/#data/LC 752 

(accessed 7.29.19). 753 

Ferrez, Y., Cholet, J., Dor, J.-C., Dupont, F., Froehlicher, T., Giovannacci, L., Hennequin, C., 754 

Laumond, J.-S., L’Hospitalier, M., Nguefack, J., Simler, N., Voirin, M., 2017. Guide 755 

phytosociologique des prairies du massif des Vosges et du Jura alsacien. Autechaux, 756 

France. 757 

Fisher, B., Turner, R.K., Morling, P., 2009. Defining and classifying ecosystem services for 758 

decision making. Ecological Economics 68, 643–653. 759 

https://doi.org/10.1016/j.ecolecon.2008.09.014 760 

Fox, J., Sanford, W., 2011. An R Companion to Applied Regression, Second Edition. 761 

Gaujour, E., Amiaud, B., Mignolet, C., Plantureux, S., 2012. Factors and processes affecting 762 

plant biodiversity in permanent grasslands. A review. Agronomy for Sustainable 763 

Development 32, 133–160. https://doi.org/10.1007/s13593-011-0015-3 764 

Grace, C., Lynch, M.B., Sheridan, H., Lott, S., Fritch, R., Boland, T.M., 2019. Grazing 765 

multispecies swards improves ewe and lamb performance. Animal 13, 1721–1729. 766 

https://doi.org/10.1017/S1751731118003245 767 

Grueber, C.E., Nakagawa, S., Laws, R.J., Jamieson, I.G., 2011. Multimodel inference in 768 

ecology and evolution: challenges and solutions: Multimodel inference. Journal of 769 

Evolutionary Biology 24, 699–711. https://doi.org/10.1111/j.1420-9101.2010.02210.x 770 

Hegland, S.J., Totland, Ø., 2005. Relationships between species’ floral traits and pollinator 771 

visitation in a temperate grassland. Oecologia 145, 586–594. 772 

https://doi.org/10.1007/s00442-005-0165-6 773 

Heide, O.M., 1994. Control of flowering and reproduction in temperate grasses. New 774 

Phytologist 128, 347–362. https://doi.org/10.1111/j.1469-8137.1994.tb04019.x 775 

Hill, M.O., Carey, P.D., 1997. Prediction of yield in the Rothamsted Park Grass Experiment 776 

by Ellenberg indicator values. Journal of Vegetation Science 8, 579–586. 777 

https://doi.org/10.2307/3237210 778 

Hoetker, G., 2007. The use of logit and probit models in strategic management research: 779 

Critical issues. Strategic Management Journal 28, 331–343. 780 

https://doi.org/10.1002/smj.582 781 



 

Hovenden, M.J., Wills, K.E., Vander Schoor, J.K., Williams, A.L., Newton, P.C.D., 2008. 782 

Flowering phenology in a species-rich temperate grassland is sensitive to warming but 783 

not elevated CO 2. New Phytologist 178, 815–822. https://doi.org/10.1111/j.1469-784 

8137.2008.02419.x 785 

Hulin, S., Carrère, P., Chabalier, C., Farruggia, A., Landrieaux, J., Orth, D., Piquet, M., 786 

Rivière, J., Seytre, L., 2011. Typologie multifonctionnelle des prairies Outil 1 - 787 

Typologie multifonctionnelle des prairies. Niveau 2. 788 

IGN, 2016. BD ALTI®. Institut National de l’information Géographique et forestière, é, 789 

France. 790 

Kleijn, D., Berendse, F., Smit, R., Gilissen, N., 2001. Agri-environment schemes do not 791 

effectively protect biodiversity in Dutch agricultural landscapes. Nature 413, 723–725. 792 

https://doi.org/10.1038/35099540 793 

Kudernatsch, T., Fischer, A., Bernhardt-Römermann, M., Abs, C., 2008. Short-term effects of 794 

temperature enhancement on growth and reproduction of alpine grassland species. 795 

Basic and Applied Ecology 9, 263–274. https://doi.org/10.1016/j.baae.2007.02.005 796 

Lanta, V., Doležal, J., Lantová, P., Kelíšek, J., Mudrák, O., 2009. Effects of pasture 797 

management and fertilizer regimes on botanical changes in species-rich mountain 798 

calcareous grassland in Central Europe. Grass and Forage Science 64, 443–453. 799 

https://doi.org/10.1111/j.1365-2494.2009.00709.x 800 

Launay, F., Baumont, R., Plantureux, S., Farrié, J.-P., Michaud, A., Pottier, E., 2011. Prairies 801 

permanentes Des références pour valoriser leur diversité. Institut de l’Elevage, Paris. 802 

Lavorel, S., 2013. Plant functional effects on ecosystem services. Journal of Ecology 101, 4–803 

8. https://doi.org/10.1111/1365-2745.12031 804 

Lavorel, S., Garnier, É., 2002. Predicting changes in community composition and ecosystem 805 

functioning from plant traits: revisiting the Holy Grail. Functional ecology 16, 545–806 

556. 807 

Macedo, J.A., Alves, P., Lomba, Â., Vicente, J., Henriques, R., Granja, H., Honrado, J., 2010. 808 

On the interest of plant functional classifications to study community—level effects of 809 

increased disturbance on coastal dune vegetation. Acta Botanica Gallica 157, 305–810 

315. https://doi.org/10.1080/12538078.2010.10516208 811 

Magiera, A., Feilhauer, H., Waldhardt, R., Wiesmair, M., Otte, A., 2017. Modelling biomass 812 

of mountainous grasslands by including a species composition map. Ecological 813 

Indicators 78, 8–18. https://doi.org/10.1016/j.ecolind.2017.02.039 814 

Mauchamp, L., Mouly, A., Badot, P.-M., Gillet, F., 2014. Impact of management type and 815 

intensity on multiple facets of grassland biodiversity in the French Jura Mountains. 816 

Applied Vegetation Science 17, 645–657. https://doi.org/10.1111/avsc.12116 817 

Melts, I., Lanno, K., Sammul, M., Uchida, K., Heinsoo, K., Kull, T., Laanisto, L., 2018. 818 

Fertilising semi-natural grasslands may cause long-term negative effects on both 819 

biodiversity and ecosystem stability. Journal of Applied Ecology 55, 1951–1955. 820 

https://doi.org/10.1111/1365-2664.13129 821 

Michaud, A., Carrère, P., Farruggia, A., Jeangros, B., Orth, D., Pauthenet, Y., Plantureux, S., 822 

2013. Building grassland typologies in order to evaluate their potential to provide 823 

agro-environmental services. Fourrages 213, 35–44. 824 

Michaud, A., Plantureux, S., Amiaud, B., Carrère, P., Cruz, P., Duru, M., Dury, B., Farruggia, 825 

A., Fiorelli, J.L., Kerneis, E., Baumont, R., 2012. Identification of the environmental 826 

factors which drive the botanical and functional composition of permanent grasslands. 827 

The Journal of Agricultural Science 150, 219–236. 828 

https://doi.org/10.1017/S0021859611000530 829 

Michaud, A., Plantureux, S., Pottier, E., Baumont, R., 2015. Links between functional 830 

composition, biomass production and forage quality in permanent grasslands over a 831 



 

broad gradient of conditions. The Journal of Agricultural Science 153, 891–906. 832 

https://doi.org/10.1017/S0021859614000653 833 

Millennium Ecosystem Assessment (Ed.), 2005. Ecosystems and human well-being: 834 

synthesis. Island Press, Washington, DC. 835 

Mouillot, D., Graham, N.A.J., Villéger, S., Mason, N.W.H., Bellwood, D.R., 2013. A 836 

functional approach reveals community responses to disturbances. Trends in Ecology 837 

& Evolution 28, 167–177. https://doi.org/10.1016/j.tree.2012.10.004 838 

Muller, S., 2002. Diversity of management practices required to ensure conservation of rare 839 

and locally threatened plant species in grasslands: a case study at a regional scale 840 

(Lorraine, France). Biodiversity and Conservation 11, 1173–1184. 841 

https://doi.org/10.1023/A:1016049605021 842 

Muller, S., Dutoit, T., Alard, D., Grévilliot, F., 1998. Restoration and Rehabilitation of 843 

Species-Rich Grassland Ecosystems in France: a Review. Restauration ecology 6, 94–844 

101. 845 

Ni, J., 2004. Estimating Net Primary Productivity of Grasslands from Field Biomass 846 

Measurements in Temperate Northern China. Plant Ecology 174, 217–234. 847 

Nock, C.A., Vogt, R.J., Beisner, B.E., 2016. Functional Traits, in: ELS. John Wiley & Sons, 848 

Ltd, Chichester, UK, pp. 1–8. https://doi.org/10.1002/9780470015902.a0026282 849 

Oram, N.J., Ravenek, J.M., Barry, K.E., Weigelt, A., Chen, H., Gessler, A., Gockele, A., de 850 

Kroon, H., van der Paauw, J.W., Scherer-Lorenzen, M., Smit-Tiekstra, A., van 851 

Ruijven, J., Mommer, L., 2018. Below-ground complementarity effects in a grassland 852 

biodiversity experiment are related to deep-rooting species. Journal of Ecology 106, 853 

265–277. https://doi.org/10.1111/1365-2745.12877 854 

Petrovic, M., Acic, S., Zornic, V., Andjelkovic, B., Dajic-Stevanovic, Z., Babic, S., 2013. 855 

Evaluation of quality of semi-natural grasslands of central Serbia upon 856 

phytosociological and numerical analysis. Biotechnology in Animal Husbandry 29, 857 

363–371. https://doi.org/10.2298/BAH1302363P 858 

Pittarello, M., Lonati, M., Gorlier, A., Perotti, E., Probo, M., Lombardi, G., 2018. Plant 859 

diversity and pastoral value in alpine pastures are maximized at different nutrient 860 

indicator values. Ecological Indicators 85, 518–524. 861 

https://doi.org/10.1016/j.ecolind.2017.10.064 862 

Pontes, L.S., Carrere, P., Andueza, D., Louault, F., Soussana, J.F., 2007. Seasonal 863 

productivity and nutritive value of temperate grasses found in semi-natural pastures in 864 

Europe: responses to cutting frequency and N supply. Grass and Forage science 62, 865 

485–496. 866 

Pykälä, J., Luoto, M., Heikkinen, R.K., Kontula, T., 2005. Plant species richness and 867 

persistence of rare plants in abandoned semi-natural grasslands in northern Europe. 868 

Basic and Applied Ecology 6, 25–33. https://doi.org/10.1016/j.baae.2004.10.002 869 

QGIS Development Team, 2019. QGIS Geographic Information System. Open Source 870 

Geospatial Foundation Project. 871 

R Core Team, 2019. R: A language and environment for statistical computing. R Foundation 872 

for Statistical Computing, Vienna, Austria. 873 

Rodríguez-Rojo, M.P., Jiménez-Alfaro, B., Jandt, U., Bruelheide, H., Rodwell, J.S., 874 

Schaminée, J.H.J., Perrin, P.M., Kącki, Z., Willner, W., Fernández-González, F., 875 

Chytrý, M., 2017. Diversity of lowland hay meadows and pastures in Western and 876 

Central Europe. Applied Vegetation Science 20, 702–719. 877 

https://doi.org/10.1111/avsc.12326 878 

Rodríguez-Rojo, M.P., Sánchez-Mata, D., Gavilan, R.G., Rivas-Martínez, S., Barbour, M.G., 879 

2001. Typology and ecology of Californian serpentine annual grasslands. Journal of 880 

Vegetation Science 12, 687–698. 881 



 

Roscher, C., Gubsch, M., Lipowsky, A., Schumacher, J., Weigelt, A., Buchmann, N., Schulze, 882 

E.-D., Schmid, B., 2018. Trait means, trait plasticity and trait differences to other 883 

species jointly explain species performances in grasslands of varying diversity. Oikos 884 

127, 865–865. https://doi.org/10.1111/oik.04815 885 

Schaffers, A.P., Sýkora, K.V., 2000. Reliability of Ellenberg indicator values for moisture, 886 

nitrogen and soil reaction: a comparison with field measurements. Journal of 887 

Vegetation Science 11, 225–244. https://doi.org/10.2307/3236802 888 

Schellberg, J., 1999. Long-term effects of fertilizer on soil nutrient concentration, yield, 889 

forage quality and floristic composition of a hay meadow in the Eifel mountains, 890 

Germany. Grass and Forage Science 54, 195–207. 891 

Setubal, R.B., Boldrini, I.I., 2012. Phytosociology and natural subtropical grassland 892 

communities on a granitic hill in southern Brazil. Rodriguésia 63, 513–524. 893 

https://doi.org/10.1590/S2175-78602012000300003 894 

Sevruk, B., 1997. Regional Dependency of Precipitation-Altitude Relationship in the Swiss 895 

Alps, in: Diaz, H.F., Beniston, M., Bradley, R.S. (Eds.), Climatic Change at High 896 

Elevation Sites. Springer Netherlands, Dordrecht, pp. 123–137. 897 

https://doi.org/10.1007/978-94-015-8905-5_7 898 

Signorell, A., 2017. DescTools: Tools for Descriptive Statistics. 899 

Spiess, A.-N., 2014. Modelling and analysis of real-time PCR data. 900 

Suding, K.N., Collins, S.L., Gough, L., Clark, C., Cleland, E.E., Gross, K.L., Milchunas, 901 

D.G., Pennings, S., 2005. Functional- and abundance-based mechanisms explain 902 

diversity loss due to N fertilization. Proceedings of the National Academy of Sciences 903 

102, 4387–4392. https://doi.org/10.1073/pnas.0408648102 904 

Sutter, L., Jeanneret, P., Bartual, A.M., Bocci, G., Albrecht, M., 2017. Enhancing plant 905 

diversity in agricultural landscapes promotes both rare bees and dominant crop-906 

pollinating bees through complementary increase in key floral resources. Journal of 907 

Applied Ecology 54, 1856–1864. https://doi.org/10.1111/1365-2664.12907 908 

Symonds, M.R.E., Moussalli, A., 2011. A brief guide to model selection, multimodel 909 

inference and model averaging in behavioural ecology using Akaike’s information 910 

criterion. Behavioral Ecology and Sociobiology 65, 13–21. 911 

https://doi.org/10.1007/s00265-010-1037-6 912 

Tasset, E., Boulanger, T., Diquélou, S., Laîné, P., Lemauviel-Lavenant, S., 2019. Plant trait to 913 

fodder quality relationships at both species and community levels in wet grasslands. 914 

Ecological Indicators 97, 389–397. https://doi.org/10.1016/j.ecolind.2018.10.035 915 

Theau, J.P., Pauthenet, Y., Cruz, P., 2017. Assessing the diversity and usage value of 916 

permanent grasslands with a classification system based on non-grass species. 917 

Fourrages 232, 321–329. 918 

Therneau, T.M., Atkinson, B., 2014. mvpart. 919 

Tilman, D., Haddi, A.E., 1992. Drought and Biodiversity in Grasslands. Oecologia 89, 257–920 

264. 921 

Tjur, T., 2009. Coefficients of Determination in Logistic Regression Models—A New 922 

Proposal: The Coefficient of Discrimination. The American Statistician 63, 366–372. 923 

https://doi.org/10.1198/tast.2009.08210 924 

Tóth, E., Deák, B., Valkó, O., Kelemen, A., Miglécz, T., Tóthmérész, B., Török, P., 2018. 925 

Livestock Type is More Crucial Than Grazing Intensity: Traditional Cattle and Sheep 926 

Grazing in Short-Grass Steppes: Traditional Cattle and Sheep Grazing in Short-Grass 927 

Steppes. Land Degradation & Development 29, 231–239. 928 

https://doi.org/10.1002/ldr.2514 929 



 

van Oijen, M., Bellocchi, G., Höglind, M., 2018. Effects of Climate Change on Grassland 930 

Biodiversity and Productivity: The Need for a Diversity of Models. Agronomy 8, 14. 931 

https://doi.org/10.3390/agronomy8020014 932 

Violle, C., Navas, M.-L., Vile, D., Kazakou, E., Fortunel, C., Hummel, I., Garnier, E., 2007. 933 

Let the concept of trait be functional! Oikos 116, 882–892. 934 

https://doi.org/10.1111/j.2007.0030-1299.15559.x 935 

Vujnovic, K., Wein, R.W., Dale, M.R.T., 2002. Predicting plant species diversity in response 936 

to disturbance magnitude in grassland remnants of central Alberta. Canadian Journal 937 

of Botany 80, 504–511. https://doi.org/10.1139/b02-032 938 

WallisDeVries, M.F., Poschlod, P., Willems, J.H., 2002. Challenges for the conservation of 939 

calcareous grasslands in northwestern Europe: integrating the requirements of flora 940 

and fauna. Biological Conservation 104, 264–273. 941 

Wang, C.T., Long, R.J., Wang, Q.J., Ding, L.M., Wang, M.P., 2007. Effects of altitude on 942 

plant-species diversity and productivity in an alpine meadow, Qinghai–Tibetan 943 

plateau. Australian Journal of Botany 55, 110–117. https://doi.org/10.1071/BT04070 944 

Warzecha, D., Diekötter, T., Wolters, V., Jauker, F., 2017. Attractiveness of wildflower 945 

mixtures for wild bees and hoverflies depends on some key plant species. Insect 946 

Conservation and Diversity 11, 32–41. https://doi.org/10.1111/icad.12264 947 

Young, J., Watt, A., Nowicki, P., Alard, D., Clitherow, J., Henle, K., Johnson, R., Laczko, E., 948 

McCracken, D., Matouch, S., Niemela, J., Richards, C., 2005. Towards sustainable 949 

land use: identifying and managing the conflicts between human activities and 950 

biodiversity conservation in Europe. Biodiversity and Conservation 14, 1641–1661. 951 

https://doi.org/10.1007/s10531-004-0536-z 952 

 953 


