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Abstract 34 

This work aims at studying Morris’ extension method to evaluate the contribution of combined 35 

variations of inputs to variations of a model output. There is a lack of studies on the Morris’ 36 

extension method concerning crucial choices of the adequate number of trajectories to 37 

distinguish influential and non-influential groups of pairs of inputs, rank pairs of inputs 38 

according to their relative importance and reach out the stability of sensitivity indices values. 39 

The Morris’ extension method was studied regarding the three previous issues via applications 40 

on simple and complex models, in comparison with total interaction indices of Sobol. Formal 41 

criteria were implemented to assess the convergence of sensitivity analysis results. Sensitivity 42 

indices based on the median of mixed elementary effects (MEE) were investigated and found 43 

to be competing with classical ones based on the mean of MEE, to achieve convergent results. 44 

Keywords: sensitivity analysis; combined action; Morris’ extension method; Sobol method; 45 

carbonation model. 46 
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1. Introduction 64 

Sensitivity analysis (SA) methods are valuable tools to study how uncertainty about the 65 

output of a model can be attributed to different sources at the input of the model [1-3]. SA has 66 

been developed in the literature with many proposed improvements, offering different solutions 67 

depending on the objective. These methods can be used to verify a model, to understand the 68 

mechanisms (individual influences and interactions) within a model, to simplify a model or 69 

determine the priority of input parameters. Thus, the SA methods are helpful to provide 70 

guidance on the reliability of a model and its predictions. Indeed, many models representing 71 

various types of systems (e.g., biological, agricultural, civil engineering) are considered as 72 

being “complex” due to both the large numbers of input parameters and non-negligible potential 73 

interactions between these inputs that affect response variables [4]. For most of complex 74 

models, relationships of the interacting parameters are not precisely known. For instance, the 75 

model response is different when two or more inputs vary simultaneously in comparison with 76 

the case where inputs vary successively one after the other.  77 

Main goals of SA studies are to define and characterize the influence of individual (or 78 

pairs, triplet, etc.) input parameters on the model response [5, 6]. This includes (i) identifying 79 

the influential and non-influential inputs, i.e. whether the input parameters have or do not have 80 

a significant contribution one another to the variation of the model output; (ii) quantifying 81 

relative importance of inputs, i.e. the amount of variation of the response caused by variation 82 

of one input relatively to other input parameters; and (iii) identifying the type of their influence, 83 

i.e. linear or not, monotonic or not, and their sense, i.e. decreasing or not.  84 

To address these issues, various SA methods are available in the literature. One group 85 

of methods is considered as local SA methods, which measured the output sensitivity to the 86 

variations of the inputs from their nominal values one at a time (OAT). Local SA used a 87 

sampling strategy in which output variations are calculated by varying one input parameter at a 88 

time, while keeping all others constant [7]. Another group of methods is considered as global 89 

SA methods, which are characterized by the exploration of the entire space of the input 90 

parameters. This includes Morris elementary effects method [8] using OAT sampling strategy 91 

and its extension for the case of mixed effects [9, 10], methods based on linear regression 92 

(standard regression coefficient, linear regression coefficient and partial correlation coefficient) 93 

[11], those based on the derivatives [12, 13] (derivative-based global sensitivity measures, 94 

DGSM [14] and crossed-DGSM [15]) and on the moment independent (PDF and CDF based) 95 

[5, 16, 17], and the methods based on the decomposition of the variance (Sobol indices) [18, 96 

19]. These methods are particularly valuable tools for the development, analysis, and use of 97 
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computer models, although the most have generally a high computational cost [7]. However, 98 

the Morris methods provide valuable information at low computational cost, making them 99 

suitable tools to use for complex models. These methods are a global extension of local 100 

perturbation approach within the input parameter space. Reviews of different types of SA 101 

methods are available in the literature [1]. A comparison of main SA methods based on certain 102 

characteristics is provided in Table 1.  103 
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OAT [7] ✓ ✗ ✓ ✗ ✓ ✗ – – – – – ✗ ✗ ✗ ✗ – – �. (�� + �) 

Morris [8] ✗ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ – – �. (� + �) 

Morris’ extension [9, 10] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗ �. (�� − � + �) 

Indices based on linear 

regression (SRC, PCC) [11] 
✗ ✓ ✗ ✓ ✓ ✗ – – – – – ✓ ✗ ✗ ✗ – – 
. � 

Indices based on the 

derivatives (DGSM and 

crossed-DGSM) [14, 15] 

✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
. (� + �) 

Sobol [18] ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
. (� + �) 

Moment independent (PDF 

& CDF based) [5, 16, 17] 
✗ ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 
 + � . (
 × 
) 

Notations: (✓) means that the characteristic is obtained by the SA method, (✗) means that the characteristic is not obtained or 

difficult to interpret by the SA method and (–) means that the characteristic is not considered or not suitable. 
 =number of input 

parameters; �= sample size (~ 10000 for Sobol [20] and ~ 100 to 1000 for indices based on the derivatives, DGSM [21]); �=number of replications or number of trajectories used for Morris and Morris’ extension method (~10 to 50 for Morris method 

[22] and more for Morris’ extension, depending on the complexity degree of model).         

Table 1: Comparison between SA methods according to various characteristics of calculation 105 

costs and obtained information 106 

 107 

All characteristics are essential to choosing a suitable SA method depending on the 108 

objectives, and the choice must be based on the principles of each method and its calculated 109 

indices. First, the type of method may depend on the calculation of SA indices. These indices 110 

are computed using a local variation by calculating the output model variations with respect to 111 

each input parameter or global variation that is characterized by the exploration of input 112 

parameters space. Second, the method’s type may also depend on the type of the resulting 113 
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information from these indices, whether qualitative or quantitative results. For example, Morris 114 

and Morris’ extension methods produce a qualitative classification order of the input parameters 115 

according to their relative importance on the model output and normalized indices that can be 116 

considered as semi-quantitative measures to quantify the influence of inputs, while Sobol 117 

method allows us to quantify these influences. Third, SA methods differ by the ability of their 118 

indices to analyze first order, second order or higher order (combined-actions) sensitivities. 119 

Fourth, some SA methods allow identifying the influence sense of individual and interaction 120 

effects. This requires that calculation of indices include the sense of variations of model output 121 

according to the senses of variations of input parameters. This is the case for the mean of 122 

elementary effects (EE) or mixed elementary effects (MEE) in Morris and Morris’ extension 123 

methods. Fifth, some SA methods can also provide information on the model shape when the 124 

analytical equations are not known (i.e. numerical models). These characteristics depend on the 125 

calculated sensitivity indices. For example, for Morris’ method, a small value of the standard 126 

deviation of EE indicates a linear or quasi-linear relationship between the output and the 127 

individual input parameter. On the contrary, a high value of the standard deviation of EE 128 

indicates either a non-linear, a non-monotonic or an interaction effect [23]. Likewise, for 129 

Morris’ extension method, small and high values of the standard deviation of MEE respectively 130 

indicate a bilinear or quasi-bilinear relationship and a non-bilinear or non-monotonic 131 

relationship between the input pairs and the output [10]. Finally, the calculation cost (i.e. the 132 

total number of model evaluations ���) of methods depends on the number of input 133 

parameters (
), the number of trajectories (�) and the sample size (�) used in the sampling 134 

strategy to calculate sensitivity indices.  135 

 136 

SA is frequently required as a method to identify and characterize the relationships of 137 

interacting factors, and their influence on a model response is a crucial issue in many studies. 138 

For instance, in human genetics, the identification of risk loci and their interactions investigated 139 

[24]. Likewise, in medicine, a SA technique is developed for interaction analyses between 140 

biological and chemical exposures, which is a challenge in epidemiologic research and can bias 141 

effect measures [25]. In building energy models, the relative influence of a couple of input 142 

parameters is investigated for developing models that take into account coupling between 143 

phenomena, such as occupancy, micro-climate and building envelope [23, 26]. Particularly, in 144 

the latter study, the Morris’ extension method is applied to identify the most influential pairs of 145 

inputs.  146 
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Morris’ extension method and the total interaction Sobol indices are efficient to detect 147 

(screening) and to prioritize (ranking) influential pairs of inputs, and they both provide 148 

complementary information. On one hand, the Morris’ extension method has an acceptable 149 

calculation cost (number of model evaluations) in the screening and ranking of the influential 150 

pairs of inputs relative to combined-action influence on the model output, and can identify the 151 

sense of the combined-action influence (Table 1). On the other hand, the total interaction Sobol 152 

indices are useful to determine the total contribution of the combined-actions influences to the 153 

variability of model response for all possible pairs of inputs, but its calculation cost is high 154 

(Table 1). To obtain the total interaction of the combined-actions influences and reduce the 155 

calculation cost, as previously proposed for the individual input effects [27-29], one could apply 156 

the Sobol method to the most influential pairs (i.e. reduce the number of considered 157 

parameters 
 in Table 1), those being previously selected among the most influential ones at 158 

lower calculation cost from the Morris’ extension method.   159 

However, in studies that used Morris’ extension method, e.g. [23, 26], (i) there is a lack 160 

of issues concerning stability and convergence of results and (ii) the sensitivity indices are 161 

essentially based on calculation of mean of mixed elementary effects (MEE), relative to two or 162 

more inputs. The choice of the “optimal” number of model evaluations and sample size that is 163 

sufficient to provide convergent results is a critical step of SA methods. The total number of 164 

model evaluations in SA methods varies according to the number of input factors and the 165 

complexity of the model. Studies in the literature suggest choices for number of evaluations 166 

and sample size [30, 31]. Recently, a more rigorous study was conducted for assessment of 167 

convergence of SA methods [32]. However, this study only focused on first order analysis and 168 

there is thus a lack of knowledge on the convergence of second and higher order analysis. 169 

Moreover, the sensitivity indices based on the median of MEE are less frequently studied than 170 

those based on the arithmetic mean. Nevertheless, the median is a descriptive statistic that may 171 

be more informative about the order of magnitude of variables than the mean, which aggregates 172 

the information concerning the repartition of a variable.  173 

 This work is a contribution to the assessment of three types of convergence of the 174 

Morris’ extension screening method and total interaction Sobol index: (i) convergence of 175 

screening to distinguish influential and non-influential pairs of input parameters, (ii) 176 

convergence of ranking to order the pairs of input parameters according to their contribution to 177 

output variance, (iii) convergence of the sensitivity indices values. In addition, the 178 

convergences of screening and ranking results of the Morris’ extension method are particularly 179 

investigated according to indices based on the median of MEE, in comparison to the classical 180 
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indices based on the mean of MEE. Formal criteria are presented to assess the convergence of 181 

sensitivity analysis results for pairs of input parameters, adapted from the case of individual 182 

input parameters [32]. The convergence of results of the SA methods is illustrated on a 183 

theoretical model having simple (bilinear) effects and a more complex model from civil 184 

engineering having non-linear effects. The first model is a theoretical model defined on the 185 

four-dimensional cube [9] which is a simple model and the second is a complex model from 186 

civil engineering [33]. Moreover, the robustness of methods is analyzed, via the number of 187 

trajectories and the number of simulations, to obtain convergent results depending on the type 188 

of model. Note that this work is interested in the influence of interacting input parameters on 189 

model output that means if we act on these two inputs at the same time, the result of the model 190 

output changes.  191 

 192 

This paper is organized as follows. Section 2 presents the Morris’ extension method and 193 

Sobol indices to identify the influence of combined-action of two input parameters on model 194 

output. Section 0 illustrates methods performance on two models chosen through simulations. 195 

Section 2 contains discussions of the results. Finally, some concluding remarks are given in 196 

Section 5.   197 

 198 

 

Nomenclature abbreviations, symbols and 

nomenclature �              Mean of elementary effects �∗            Mean of absolute values of elementary effects �              Standard deviation of elementary effects �              Median of elementary effects �∗            Median of absolute values of elementary effects ��            Simple elementary effect ����         Second order elementary effect ����         Mixed elementary effect (MEE) �              Sobol index   

 

Variables, parameters and indices  
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RH          Relative external humidity  

T             Ambient temperature 

C��         C��-concentration in the air 

C              Cement content  

W/C         Water to cement ratio 

S/G          Sand to gravel ratio 

S_max     Maximum nominal aggregate size 

CEM        Cement type ���          Cement compressive strength  

d              Concrete cover depth !�             Initial curing period !"�#          Service life $              Variance %              Vector of input parameters of a model &              Model output variable  

 199 

2. Sensitivity analysis methods 200 

This section presents first the Morris’ extension method [9] then the Sobol indices [18]. 201 

Henceforth, we consider a mathematical model which, to a set of random independent input 202 

parameters % =  (%(, . . . , %*), maps a random output variable (or response) & via a deterministic 203 

function f : 204 

                                                 f    :  ℝ*     →     ℝ 205 

                                                          X       ↦     Y = f (X)               206 

 207 

2.1. Morris’ extension method [9] 208 

This method aims at studying the influence of combined-actions of two input parameters 209 

on model output, while maintaining good computational efficiency. Similarly to Morris’ 210 

approach to the calculation of simple EE (recalled in Section I of Supplementary material), 211 

experimental designs are presented to allow the detection of MEE (i.e. related to two or more 212 

input parameters) when performing a preliminary screening of model inputs with 
 input 213 

parameters. The Morris’ extension method plays the role of screening for combined-actions of 214 

model inputs [9].  215 
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For a given value - of the input vector of the input parameter space ./ ⊆ ℝ*, the double 216 

(second in the nomenclature) elementary effect ���� (1 ≤ 2 ≤ 3 ≤ 
) attributable to the pair of 217 

the input parameters (%�, %�) is defined as: 218 

����(-) = 
4567 �8∆87 �:∆:; < 4(6) ∆8∆:  

                           (1) 

where ∆ = ( ∆(, . . .,   ∆* ) is a predetermined vector such that - +  =8∆8 +  =:∆: > .*, and  219 

�5- +  =8∆� +  =:∆�; = �5 -(, . . . , -8?(, -� + ∆�, -8@(, . . . , -:?(, -� + ∆� , -:@(, … , -/;. 

 220 

The quantity ���� can be used to provide a measure of the effect of the combined-actions 221 

between the input parameters %� and %� on the model output & (Mixed elementary effect, MEE), 222 

by calculating the following approximation of second partial derivative [10]: 223 

BC4(6)B68 B6: = ��8:(-) = 
4567 �8∆87 �:∆:; <4(67 �8∆8) <4567 �:∆:;7 4(6) ∆8∆:  

                           (2) 

Then, by adding and subtracting the quantity �(-), we obtain the following approximation: 224 

BC4(6)B68 BD6:  ≅  ��8: − 
F ∆: �8 − 

F ∆8 �:,                            (3) 

with the elementary effect �8 = G�/G-8 (and �:) being the approximation of partial derivative 225 

with respect to input %8 (respectively, %:). The model must be evaluated at the four following 226 

points in the space of input parameters in order to compute ��8: :  227 

I:  - = ( -F, ..., -/ );                       II: (- +=�∆�); 228 

 229 

       III:  (- +=�∆�);                                IV: (- + =�∆�+=�∆�). 230 

For a model containing 
 input parameters, the number of possible combined-actions of 231 

two parameters, given by 5/�; =  
/ (/<F) � , defined the number of elements of the set I8: =232 J��8:(-) K- ∈ .*}. The sensitivity indices of the Morris’ extension method (see later equations                 233 

(4),                (5) and                (6)) are estimated using the following two sampling strategies 234 

(experimental plans). The goal of these experimental designs is to extract randomly a sample 235 

of � elements ��8:((), … , ��8:(#)
 from each element of the set I8:, 1 ≤ 2 ≤ 3 ≤ 
 [9]. 236 
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Throughout this work, the evaluation of MEE is based on the assumption that the set of MEEs 237 

across the trajectories has a continuous and non-skewed distribution, which can be summarized 238 

accurately by the measures of mean and median of absolute values of MEE and standard 239 

deviation (similar to the elementary effects (EE) of simple Morris method [26]). 240 

 241 

2.1.1. Sampling strategy of “Handcuffed Prisoners” 242 

The "Handcuffed Prisoners" design is used when the number of input parameters is even 243 

[9], which is a mathematical solution to the graph theory problem, to optimize the number of 244 

model evaluations needed to evaluate the second order combined-action effects. By analogy 245 

with the sampling scheme for the simple Morris method [8], the basic idea is to construct a 246 

multiple trajectory (MT) to estimate the mixed effect ��8: for all 5/�; pairs of input parameters. 247 

MT is constructed by joining together a set of simple trajectories having all the same starting 248 

point. MT must retain the properties required by the simple Morris method such that at least 249 

one elementary effect �8 per input can be estimated. As in the simple Morris method, each 250 

simple trajectory in ./ corresponds to a simple orientation matrix N� such that its elements are 251 

either 0 or 1. In addition, for each value of 2 = 1, 2, … , 
, there are two rows of N� that differ 252 

only in the ith entries. For instance, the simple orientation matrix in .Q is given by: 253 

NQ = RSS
ST01111

00111
00011

00001VWW
WX 254 

The matrix MT corresponds to a multiple matrix YZ, which is the junction of several 255 

simple orientation matrices. Thus, if each simple orientation matrix N� has a dimension [� − 256 

by − 
, MT will correspond to a matrix of multiple orientation YZ (or simply, multiple matrix), 257 

YZ =  \NFN�⋮N^
_ , of dimension (∑ [��̂aF ) − by − 
. 258 

Specifically, the optimal experimental plan (in terms of computational cost) will be that 259 

for which the number of simple trajectories used to cover the set b = {(2, 3), 2 < 3} is minimum.  260 

The construction of a simple matrix N is possible if the pairs contained in the block are 261 

handcuffed, i.e. if they form a path 〈2F, 2�, … , 2/〉. Consider, for example 
 input parameters and 262 

a path such that each pair of two successive points of this path is handcuffed. To estimate the 263 
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second-order elementary effect ��/ /<F for the pair of inputs (%/<F, %/), it must use the 264 

difference of the values of the function f for the coordinates of ( 
 + 1)^g and (
 − 1)^g rows 265 

of the matrix N. Each path defines a simple orientation matrix N or a simple Morris trajectory, 266 

which means that the multiple trajectory is constructed from multiple paths. Each path allows 267 

the computation of all second order elementary effects for all pairs of two successive points of 268 

this path. In a path, for each input parameter, the combined-actions that are taken into account 269 

are with the preceding parameter and the next parameter according to this path. Thus, the 270 

objective is to: “Find a partition of b made of / � (= h) subsets such that each of this subset is 271 

composed of (
 − 1) handcuffed pairs”. These (
 − 1) handcuffed pairs {(2F, 2�),272 (2�, 2i), … , (2/<F, 2/)} represents a path designated by 〈2F, 2�, … , 2/〉, for 
 being even (
 = 2 h). 273 

Finally, in order for a handcuffed design to exist, the following conditions must be satisfied 274 

[34]: 275 

1) Each element of the set appears among the paths the same number of times; 276 

2) Each of 
 prisoners handcuffed of a path is never handcuffed twice with the same prisoner. 277 

3) The design "handcuffed prisoners" exists if and only if 
 is even (
 = 2 h).  278 

 279 

More details have been stated in this case and the case where the number of input parameters 280 

of a model 
 is odd (
 = 2 h + 1) [9].  281 

 282 

2.1.2. Sampling strategy of  “cycle equitable graphs” 283 

Let us now present the second experimental plan [10]. The computation of a mixed 284 

effect of a pair 5%�,  %�; in the directions of (2, 3) requires the design of a graph that contains a 285 

quadratic cycle: 286 

 287 

Figure 1: The form of a quadratic cycle [10]. 288 

The generic families of graphs that allow the calculation of j k 1 mixed effect for all possible 289 

pairs of two input parameters of a model are called “(
, j) – cycle equitable graphs”. 290 
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Let � ⊂ ./ denote the subgraphs of the unit hypercube with dimension 
 : ./ = [0,1]� 291 

(where 
 is the number of input parameters of a model). 292 

• � is said to be a graph of the (
, [) – edge equitable form and represented by � =  o /  if 293 

and only if � has exactly [ edges in all the coordinates 2 ∈  {1, . . . , 
} [35]. 294 

• � ⊂ ./ is said to be a graph of the (
, j) – cycle equitable form and represented by � =295  p�/ if and only if � has exactly j quadratic cycles (4–cycles) in each pair of 296 

coordinates (2, 3) ∈  {1, . . . , 
}�, 2 ≠ 3. 297 

The subgraphs of ./ are represented using edge labels (or colors) to indicate the direction along 298 

which they are aligned (there will be 
 different labels in the subgraphs of ./).  299 

 300 

Figure 2 shows an illustration of this class of graphs of (5, 1) – cycle equitable, i.e. that has 301 

exactly one cycle of size 4 involving all 10 possible pairs of input parameters. 302 

 303 

Figure 2 :  A subgraph of the form (5, 1) – cycle equitable of .r [10]. 304 

 305 

Each graph of the form (
, j) – cycle equitable is represented by a matrix. This matrix 306 

can be used to construct the sampling matrix and that allows the computation of the mixed 307 

effects of the all-possible pairs of input parameters. See [10, 35] for more details.   308 

 309 

2.1.3. Sensitivity indices 310 

The experimental plans presented above are used in order to calculate the following 311 

classical descriptive measures:  312 

•  the mean of MEE :  313 

�8:   =  
F#  ∑ ��8:(t)#tu(                  (4)                                      

•  the standard deviation of MEE :    314 
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�v = wF#   ∑ (��8:(t) − �8:)C#xaF  
                (5)              

• the mean of absolute values of MEE :    315 

�8:∗  =  
F#  ∑ | ��8:(t)ztu( |                 (6)                                        

 316 

where � is the number of repetitions of the Morris’ extension method, i.e. number of multiple 317 

trajectories. The estimated mean of absolute values �8:∗  of values ��8: is a measure of the relative 318 

importance of the combined-actions of two input parameters, while �v (standard deviation) is 319 

an indicator of the effects of the combined-actions of two input parameters about the presence 320 

or not of non-bilinear effects and / or of combined-actions of order ≥ 3. Thus, using �8:∗  and �{ 321 

we can classify all possible pairs of inputs 5%�,  %�; of the model into three classes according to 322 

their effects and their influence on model output, such that in the Morris method [23]: 323 

(C1) If �8:∗  and �{ have very low values (close to zero ≃ 0), we consider that there’s no effect  324 

of combined-action between 5%�,  %�; on the output; 325 

(C2) If �8:∗  is high and �{ is low, we consider that there is a bilinear effect of combined-action 326 

between 5%�,  %�; on the output; 327 

(C3) If �{ is high (independently of the value of �8:∗ ), we consider that the pair of 328 

inputs 5%�,  %�; has a non-bilinear effect and/or more complex combined-actions (i.e. 329 

combined-action of order > 2 with other inputs) on the output. 330 

Remark. We now briefly analyze why the behavior of sensitivity indices in the conditions (C1), 331 

(C2) and (C3) enables to distinguish bilinear and non-bilinear effects since these details are not 332 

completely presented in most existing references. For instance, consider the pair of inputs % =333 5%�,  %�; with a bilinear combined-action on the model output & = �(%) = }%� + ~%� + j%�%� 334 

with j > 0. 335 

For a given value - = 5-�,  -�; of the input vector, the MEE of  5%�,  %�; is given by: 336 

��8:(-) = 
456 7 �8∆8 7 �:∆:; <4(6 7 �8∆8) <456 7 �:∆:;7 4(6) ∆8∆:  337 

              = 
4568 7 ∆8, 6: 7 ∆:; <4568 7 ∆8, 6:; <4568, 6: 7 ∆:; 7 4568, 6:; ∆8∆:   338 
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              = 
�(68 7 ∆8)7 �56: 7 ∆:; 7 �(68 7 ∆8)56: 7 ∆:; < ��(68 7 ∆8) 7 �6: 7 �(68 7 ∆8)6:�  ∆8∆:   339 

−  �}-�  +  ~5-�  +  ∆�;  +  j-�5-�  +  ∆�;�  +  }-�  +  ~-�  +  j-�-� ∆�∆�  340 

              = 
�∆8∆: ∆8∆:  = j = constant. 341 

That results in the following respective values of mean and standard deviation of MEE:  342 

 �8:   =  
F#  ∑ ��8:(t)#tu(  = 

# × �#  = j = constant = �8:∗ . 343 

�v = wF#   ∑ (��8:(t) − �8:)C#xaF  = 
F#  w ∑ [j − j]�#:u(  = 0. 344 

Thus, firstly, for a pair of inputs of class (C1) with values of �8:∗  and �{ close to zero 345 

(i.e. j ≃  0), we have & = �(%) ≃  }%� + ~%�, which corresponds to non-bilinear effects of 346 5%�,  %�; on model output &. In this case, these two input parameters %� and %� have a linear 347 

effect on the model output &. Secondly, for a pair of inputs of class (C2) with a high value of 348 �8:∗  (i.e. �8:∗ ≫  0) and a small value of �{, we have a non-negligible contribution of the term 349 j%�%� to model output & that corresponds to a bilinear effect of 5%�,  %�;. Thirdly, for a pair of 350 

inputs of class (C3), the high value of  �{ ≫ 0 indicates values of  ��8:(-) that are not constant. 351 

Thus, the parameter j is not constant and can be assumed as a third variable j = %�, which 352 

implies combined-actions of order ≥ 3 of inputs 5%�,  %�, %�; on model output &. A similar 353 

remark is presented in Section II in Supplementary material for the indices of simple Morris 354 

method. 355 

In comparison with the classical indices based on mean of MEE, one can also compute 356 

the medians ��� and ���∗ , respectively, of the mixed effects and absolute values of the mixed 357 

effects of the pair of inputs 5%�,  %�;. The indices based on the median of MEE merit to be 358 

investigated to classify all possible pairs of inputs 5%�,  %�;, similar to the indices based on the 359 

mean of MEE. The objective is take advantage of the median as a more stable statistic measure 360 

than the mean, which is particularly less sensitive to the addition of extreme values in a sample. 361 

Screening and ranking results will be investigated according to these two types of sensitivity 362 

indices. 363 
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Finally, by using �8: we can identify the sense of the influence of each second order 364 

combined-action relative to the model response. If  �8:(%�, %�) < 0 then the output of the model 365 

and the combined-action between 5%�,  %�; vary in the opposite sense. However, the index  �8: 366 

is not studied in this paper, as well as the index ���. The meaning of the sense of combined-367 

action of a pair of parameters will require to be deeper investigated, regarding to the sense of 368 

the individual action of each parameter in the pair.    369 

Note that the ratio �{/�8:∗  is another measure suggested for the classification of the combined-370 

actions influence of the pair of inputs 5%�,  %�; on the output (for more details, see Section III 371 

in Supplementary Material). 372 

 373 

2.2. Sobol method  374 

The calculation of Sobol indices is recognized to be an efficient SA method, but which 375 

can have a high computational cost. These indices allow us to quantify the contribution of the 376 

variability of individual input parameter or group of input parameters to the variation of the 377 

model output [18]. The Sobol method is based on the decomposition of the variance of the 378 

model output such that [36]: 379 

Y        = �� + ∑ ��/8u( (%�) + ∑ ��,�(%�, %�)(�8�:�*  + . . . + �8,…,*(%�, . . . , %/)           (7) 

Based on the decomposition of the function f of the model in the sum of elementary functions, 380 

the variance of Y  denoted V can then be decomposed as follows: 381 

 382 

V    =    ∑ $�*8u(    +    ∑  $��(�8�:�*     +  . . .  +   $(…*           (8) 

where 383 

            $8  =   V (E [Y | %� ]), 384 

          $8:   =   V (E [Y | %8, %: ]) – $8  – $:, 385 

          $8:�  =  V ( E [ Y  | %8, %:, %� ] ) –  $8:  – $8� –  $:� –  $� – $� –  $�,  386 

and so on until order 
. 387 

 388 

The first order Sobol indices �� measure the effect of the individual inputs such that  389 
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�� = 
�( �[ � | D8 ] )�( � )  =  

�8� ,           (9) 

while the second-order Sobol indices �8: correspond to the influence of the combined-action 390 

between the two input parameters %� and %� (by excluding their individual effects) such that  391 �8:  =   
�8:� ,         (10) 

 and so on until order 
. 392 

The superset importance �8,:����zof a pair of inputs 5%�,  %�; is defined as the sum of all Sobol 393 

indices with respect to the supersets containing 5%�,  %�; [37-39]. It was calculated by dividing 394 

the Total interaction index (TII) = $8,:����z on the total variance such that 395 

�8,:����z    =   
�8,:����z

� , 
        (11) 

with $8,:����z  =   ∑ $� � ⊇ { � ,� }  = TII where  � ⊆ {1, . . ., 
}. For instance, for a model Y = f 396 

(%F, %�, %i, %Q), the superset importance �(,C����z = �(C + �(C� +  �(C� + �(C��. 397 

The total interaction index aims to identify the total influence of combined-actions for all-398 

possible pairs of influential inputs on the response model, i.e. including the influence of second-399 

order combined-actions and the combined-actions of order > 2. The calculation of Total 400 

interaction indices provides information about the total combined-actions for all possible pairs 401 

of model. Sobol indices can be estimated using samplings of input parameters within their 402 

interval of variation and according to their probability distribution function. Random samplings 403 

such as Monte Carlo method (see [18] for first order and interaction indices and [31] for first 404 

order and total indices), or stratified samplings as the quasi Monte Carlo [5], or Latin hypercube, 405 

can be used [19]. In this paper, the Sobol sensitivity indices are estimated using the classical 406 

Monte-Carlo sampling method. Note that a graphic tool “FANOVA graph” [40] is available in 407 

the literature to visualize the structure of the model including their individual and estimated 408 

combined-action effects based on Sobol indices. 409 

 410 

2.3. Convergence criteria    411 

Three criteria for the assessment of the convergence of the SA results for pairs of input 412 

parameters are presented, adapted from SA of individual input parameters [32]. These 413 

convergence indicators allow for a rigorous assessment of convergence and comparison of 414 

sample sizes across methods, without additional model evaluations. The computation of the 415 

convergence criteria required normalized sensitivity indices denoted ����, which measure the 416 
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combined influence of each input pair (%�, %�) on the model output of a model. For the Morris’ 417 

extension method, we defined normalized measures of the mean ���∗  and median ���∗  of absolute 418 

values of MEE of Morris’ extension method, which can be compared to Sobol indices in [0,1], 419 

such that: 420 

���∗  =  {8:∗ �6(�8�:�*({8:∗ ) ∈ [0,1] and  ���∗  =  �8:∗ �6(�8�:�*(�8:∗ ) ∈ [0,1]                                   (12) 

 421 

where [}-F�����/(���∗ ) and [}-F�����/(���∗ ) are the maximum values of ���∗  and  ���∗ , respectively, for 422 

all input pairs possible (%�, %�). These normalized indices still provide semi-quantitative 423 

measures of sensitivity. For the second-order and total interaction indices of Sobol, we 424 

considered ���� = ��� and ���� = ����� �#
, respectively. 425 

 426 

2.3.1. Convergence of the sensitivity indices value 427 

The convergence of the sensitivity indices is reached when the values of the indices 428 

remain stable. To assess the convergence of the sensitivity value, we define a quantitative 429 

criterion by computing the width of the 95% confidence intervals (5% significance level) of the 430 

normalized sensitivity index ����. We use the maximum width of the confidence intervals across 431 

all the model input pairs as a summary statistic: 432 �!}!�/ �^  ��#" �/¡���" =  maxF�����/(������ − ����x�), (13) 

where ������ and ����x� are the upper and lower bounds of the normalized sensitivity index ����  of 433 (%�, %�), with 
 being the number of model input parameters. The convergence of sensitivity 434 

indices value is considered to be reached when the value of �!}!�/ �^  ��#" �/¡���" is lower than 435 

0.05 [32].    436 

2.3.2. Convergence of input pair ranking 437 

The convergence of input pair ranking is achieved if the ordering between the input pairs 438 

remains stable. The convergence of input pair ranking can be assessed by using a quantitative 439 

criterion. We define for this assessment an adjusted and weighted rank correlation coefficient, 440 

which is expressed by:  441 
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�!}!�/ �^  ��#" #�/��/¥ =  ∑ ¦§��(F) − §��(�)¦  ¨©ª((),(C)C(��8:((),��8:(C))∑ ( ¨©ª((),(C)C(��8:((),��8:(C)))(�8�:�*F�����/ , 
           

(14) 

where ����(F)
 and ����(�)

 are the values of the normalized sensitivity index ���� of an input pair 442 (%�, %�) estimated using the 1st and 2nd repetitions of the application of the Morris’ extension 443 

method, respectively and §��(F)
 and §��(�)

 are their ranks. 444 

This indicator emphasizes the disagreements in the ranking for the most influential input pairs 445 

while neglecting the disagreements for the least sensitive input pairs by directly using the 446 

sensitivity values to weight rank reversals. We used the squared maximum sensitivity index 447 

value between two repetitions of the application of the Morris’ extension method.  448 

When the value �!}!�/ �^  ��#" #�/��/¥ equal to 1 means that, on average, the differences in the 449 

ranking for the most influential input pairs are less than one position. So, the convergence of 450 

input pair ranking is considered to be reached when the value of �!}!�/ �^  ��#" #�/��/¥ falls 451 

below 1.  452 

2.3.3. Convergence of input pair screening 453 

The convergence of input pair screening is reached if the partitioning between influential 454 

and non-influential input pairs stabilizes. In other words, the convergence of input pair 455 

screening is reached when the sensitivity indices for the lower-sensitivity input pairs have 456 

converged. For the sensitivity indices, we can assume a threshold value I below which the input 457 

pairs are considered as non-influential, which results in the subset   458 %� = J5%�, %�; when the sensitivity index ���� < I µ, (15) 

where ���� is the normalized sensitivity index for the pair 5%�, %�;. Herein we consider the 459 

threshold I = 5% (as in the case of individual input parameters [32]). 460 

To assess the convergence of input pairs screening, we use as a quantitative criterion the 461 

maximum width of the 95% confidence intervals across the lower-sensitivity input pairs in %�:  462 

�!}!�/ �^  ��#" "�#��/�/¥ =  max(D8,D:)∈D¸(������ − ����x�) (16) 

 463 

Similar to the convergence of sensitivity indices, the convergence of input pairs screening is 464 

considered to be reached when the value of �!}!�/ �^  ��#" "�#��/�/¥ is below 5%. 465 

 466 
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3. Applications and Results 467 

In the following applications, the Morris’ extension method and total interaction Sobol 468 

indices are investigated with different numbers of trajectories (r) and simulations (N). We look 469 

to determine the optimal number of trajectories and simulations needed to obtain stable results 470 

of the sensitivity of the combined-actions between two input parameters of all possible pairs of 471 

inputs of the two considered models. The intervals of variation and the probability distributions 472 

of input parameters are needed for the application of Morris’ extension method and Sobol 473 

method, respectively.  474 

 475 

3.1. Theoretical model 476 

Consider the simple analytical function with additive bilinear effects such that [9]: 477 

� = ¹ ~�º�
Q

�aF +  ¹ ~��º���� º� 
               

(17)    

where º� = 2 × (-� − F�), - = (-F, -�, -i, -Q)  ∈ [0,  1]Q. The coefficients ~� and ~�� are set to 478 

the following standard values: ~i = 10; ~�� = 30; ~F� = 80; ~Fi = 60; ~FQ = 40. All the other 479 

coefficients are taken to be the absolute values of a set of random numbers generated from a 480 

normal distribution with zero mean and unit standard deviation. In particular, their values are:  481 ~F = 0.05; ~� = 0.59; ~Q = 0.21; ~FF = 0.00; ~�i = 0.73; ~�Q = 0.18; ~ii = 0.64;  ~iQ =482 0.93; ~QQ = 0.06.  The Morris’ extension method is applied by incrementally increasing the 483 

number of trajectories (r) from 2 to 20 (Figure 3), and Sobol method (second-order and total 484 

interaction) runs by incrementally increasing the size of classical Monte-Carlo samples (N) 485 

from 100 to 5600 (Figure S11 in Supplementary Material). 486 

 487 

For the simple model          (17), a small number of trajectories (here, equal to 2) was 488 

sufficient to obtain convergent results when applying the Morris’ extension method (Table 2). 489 

When increasing the number of trajectories beyond 2, screening and ranking results of the 490 

influence of all possible pairs of input parameters did not vary. Particularly, screening and 491 

ranking results of the Morris’ extension method were the same using the two possible 492 

experimental plans presented in Section 2.1, as well as the indices based on mean and median 493 

of MEE (Figure 3 and Figure S10 in Supplementary Material).  494 

 495 
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  496 

                                 (a)                                                                        (b) 497 

Figure 3 : Variations of the mean (a) and median (b) of absolute values of MEE for pairs of 498 

input parameters of the theoretical model by applying the Morris’ extension method using the 499 

sampling strategy of Handcuffed Prisoners.                                                                      500 

 501 

Concerning the two indices based on variance decomposition of model output, total 502 

interaction indices particularly distinguished more clearly groups of influential and non-503 

influential parameters than second-order Sobol indices (Figure S11 in Supplementary 504 

Material). However, the two types of Sobol indices gave the same ranking of influential 505 

combined-actions for all possible pairs of input parameters of the theoretical model          (17) 506 

(Table 2), as the Morris’ extension method. A relatively low number of simulations (herein, 507 

equal to 100) was sufficient to obtained a ranking that did not vary when increasing the number 508 

of simulations for the two types of Sobol sensitivity indices. However, a higher number of 509 

simulations was necessary to reach the stability of the two types of sensitivity indices (herein, 510 

equal to 4100).   511 

 512 

Rank Methods 

 Morris’ extension Sobol 

 Handcuffed Prisoners 

Sampling 

Cycle equitable Sampling Second-order 

Sobol indices 

Total interaction 

indices 

 Using Mean Using Median Using Mean Using Median   

1 (%F, %�) (%F, %�) (%F, %�) (%F, %�) (%F, %�) (%F, %�) 

2 (%F, %i) (%F, %i) (%F, %i) (%F, %i) (%F, %i) (%F, %i) 

3 (%F, %Q) (%F, %Q) (%F, %Q) (%F, %Q) (%F, %Q) (%F, %Q) 

Table 2 : Ranking of the first third most influential combined-actions between two inputs 513 

obtained by applying the Morris’ extension method and interaction Sobol indices on the 514 

theoretical model. 515 
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 516 

Based on the formulas presented in the last column of Table 1, we computed the 517 

computational cost of Morris’ extension and Sobol indices (second-order and total interaction) 518 

applied to the theoretical model (Table 3 and Table 4). The number of model evaluations to 519 

obtain a stable ranking for the Sobol method (for �=100) was around 21 times higher than that 520 

for the Morris’ extension method (for �=2).  521 

 522 

 Number of trajectories (�) 
2 4 6 8 10 12 14 16 18 20 

Calculation cost of Morris’ 
extension method 

28 56 84 112 140 168 196 224 252 280 

Table 3 : The calculation cost according to the number of trajectories used in the application 523 

of Morris’ extension method to the theoretical model.   524 

 525 

 Sample size (�) 
100 600 1100 1600 2100 2600 3100 3600 4100 4600 5100 5600 

Calculation cost 
of second order 

and total 
interaction Sobol 

indices 

600 3600 6600 9600 12600 15600 18600 21600 24600 27600 30600 33600 

Table 4 : The calculation cost according to the sample sizes used in the application of second-526 

order and total interaction Sobol indices to the theoretical model. 527 

We do not present formal criteria for the assessment of the convergence of the SA results, which 528 

were not relevant for the simple theoretical model. 529 

 530 

3.2. Case study: concrete carbonation model 531 

The second illustration concerns a carbonation meta-model that allows calculating the 532 

carbonation depth in concrete structures (Figure 4) [33]. The carbonation in concrete is a major 533 

cause of the corrosion of reinforced concrete structures. It is one of several pathologies that can 534 

affect concrete; the remedy against this pathology plays an important role in improving the 535 

durability of concrete. The developed carbonation model is governed by the diffusion of carbon 536 

dioxide (Â��) in concrete that is based on the analytic solution of the Fick’s first law in the 537 

form [41]: 538 -ÃÄC = Å . √!    (18) 

The carbonation front depth  -ÃÄC([) depends on the exposure time  ! (h) and the carbonation 539 

coefficient Å ([ /hF/�) that is determined by: 540 
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Å = �(RH, T, CO�, C, W/C, S/G,  S¨©ª,  CEM, ��� ,  !Ñ) =  w�.ÒÓÔC .[ÃÄC]�ÕÖ�  
   (19) 

where ×ÃÄC ([�/h) is the Â��-diffusion coefficient in carbonated concrete, } (ØÙ/[i) is the 541 

amount of  Â�� absorbed in a unit volume of concrete. When the carbonation depth -ÃÄC is 542 

equal to the concrete cover depth (�), the service life (!"�#) that corresponds to the 543 

corrosion initiation time is expressed as: 544 

!"�# = 
¡CÚC    (20) 

 545 

Ta et al. [33] used this model to identify the individual effects of the input parameters 546 

on the corrosion initiation time, by using simple Morris method and Sobol SA method. 547 

However, non-negligible effects of combined-actions of inputs of carbonation model were 548 

pointed out on the corrosion initiation time but still remain to be studied. Summary descriptive 549 

statistics (mean, min: minimum, max: maximum, COV: the variation coefficient) and the 550 

probability distribution of the input parameters are given in the Table 5. 551 

 552 

 553 

Figure 4 : Meta-model for calculating the depth of carbonation front [33]. 554 

 555 
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Input 

Parameters 
Unit Mean Min Max COV Distribution 

d M 0,065 0,05 0,08  Uniform 

t
c
 Days 2 1 3  Uniform 

S_max Mm 26 20 32  Uniform 

C kg/m
3
 404,5 300 509  Uniform 

W/C No unit 0,45 0,4 0,5  Uniform 

S/G No unit 1,3 0,5 2,1  Uniform 

���  MPa     
Dicsrete Uniform(3 

strength classes) 

CEM No unit     
Discrete Uniform(10 

cement types) 

T K 287,4 272,4 309,1 0,03 Truncated Normal 

RH No unit 0,56 0,2 0,88 0,33 Truncated Normal 

CO
2
 Ppm 380 

304,5

6 
456,8 0,05 Truncated Normal 

Table 5 : Statistical description of the input parameters of the carbonation model [33]. 556 

 557 

The Morris’ extension method was applied by incrementally increasing the number of 558 

trajectories from 100 to 4600. The mean absolute deviation �{∗ = F# ∑ ¦|����(x)| − ���∗ ¦#xaF  and 559 

median absolute deviation ��∗ = F# ∑ ¦|����(x)| − ���∗ ¦#xaF  were calculated to evaluate how 560 

sensitivity indices ���∗  and ���∗  are representative or not of ��8: values. We presented the 561 

difference �{∗ − ��∗ for the most influential pairs of inputs (Figure 6); see also Table S10 in 562 

Supplementary material. The Sobol method for second-order was run by incrementally 563 

increasing the size of classical Monte-Carlo samples from 10000 to 510000, while the Sobol 564 

method for total interaction was run by incrementally increasing the size of classical Monte-565 

Carlo samples from 100 to 9100. 566 

 567 

3.2.1. Results of Morris’ extension method 568 

The number of trajectories required to obtain convergent results was obviously higher 569 

than previously for the simple theoretical model, when applying the Morris’ extension method 570 
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based on the sampling strategy of Handcuffed Prisoners on the carbonation model. The 571 

magnitude of indices based on the mean of MEE enables to quickly distinguish influential and 572 

non-influential groups of input pairs of carbonation model, from the minimum number of 573 

trajectories considered (herein, equal to 100, Figure 5(a)). Comparatively, the magnitude of 574 

indices based on the median of MEE rather points out clearly the most influential pairs of inputs 575 

(Figure 5(b)).  576 

The criteria in Section 2.3 were implemented to assess the three types of convergence. 577 

The convergence of screening results of input pairs was achieved from 110 and 150 trajectories 578 

when using indices ���∗  and �8:∗  based on median and mean of MEE, respectively (Figure S12 579 

in Supplementary Material). Then, the convergence of ranking results was achieved from 580 

around 2,600 trajectories with indices ���∗  based on the median of MEE, whereas more than 581 

4,600 were required to achieve this convergence with indices �8:∗  based on the mean of MEE 582 

(Figure S13 and Figure S14 in Supplementary Material). The influential pairs of inputs were 583 

globally the same using the indices based on the mean and median of MEE but with little 584 

changes in their relative ranking (Table 6). The convergence of values of indices ���∗  and �8:∗  585 

was achieved from a similar number of 14100 trajectories (Figure S15 in Supplementary 586 

Material). 587 

Note that results obtained from the Morris’ extension method were completely different 588 

when applying the two sampling strategies (Handcuffed prisoners and cycle equitable graphs) 589 

on the corrosion initiation time model (Table 6). Results obtained by using the sampling 590 

strategy of cycle equitable graphs are illustrated in Supplementary Material (Figure S16 and 591 

Figure S17). 592 

 593 

 

(a) (b) 
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(c) (d) 

Figure 5: Indices ���∗  (a) and ���∗  (b) of the Morris’ extension method using the sampling 594 

strategy of Handcuffed Prisoners and second-order (c) and total interaction indices (d) of Sobol, 595 

for input pairs of carbonation model [33].   596 

 597 

Rank Methods 

 Morris’ extension Sobol 

 Handcuffed Prisoners Sampling Cycle equitable Sampling Second-order 

Sobol indices 

Total interaction 

indices 

 Using Mean Using Median Using Mean Using Median   

1 (T, W/C) (T, W/C) (d, !�) (d, !�) (W/C, ��� ) (T, W/C) 

2 (RH, T) (T, CEM) (T, d) (T, d) (CEM, ��� ) (RH, T) 

3 (RH, W/C) (RH, T) (W/C, !� ) (W/C, !� ) (W/C, CEM) (RH, W/C) 

4 (T, CEM) (W/C, CEM) (T, W/C) (T, CEM) (T, W/C) (T, d) 

5 (W/C, CEM) (RH, W/C) (T, CEM) (T, W/C) (RH, CEM) (W/C, d) 

6 (RH, CEM) (RH, CEM) (RH, W/C) (RH, W/C) (RH, W/C) (RH, d) 

Table 6 : Ranking of the most influential combined-actions between two inputs obtained by 598 

applying the Morris’ extension method and Sobol indices on the carbonation model. 599 

Moreover, the cost associated with the calculation of the indices of the Morris’ extension 600 

method was given in Table 7. The calculation cost required to obtain stable ranking with indices 601 ���∗  based on the median of MEE (for �=2,600) was around 2 times higher than that with indices 602 �8:∗  based on the mean of MEE (for �=4,600). The computational cost for the calculation of the 603 

indices of the Morris method (the influences for the single inputs) was given in Supplementary 604 

Material (Table S11), for comparison purposes. Likewise, additional graphs showing the 605 

variations of Morris  indices and the evolution of ranking of individual inputs of the carbonation 606 

model according to their relative importance are given in Supplementary Material (Figure S19 607 

and in Figure S20).  608 

Number of trajectories (�) 
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 100 600 1100 1600 2100 2600 3100 3600 4100 4600 

Calculation cost 
of Morris’ 
extension 
method 

9200 55200 101200 147200 193200 239200 285200 331200 377200 423200 

Table 7 : The calculation cost according to the number of trajectories used in the application 609 

of Morris’ extension method to the carbonation model. 610 

 611 

Finally, concerning the Morris’ extension method, the difference �{∗ − ��∗  was found 612 

to be always positive for all pairs (%�, %�), reflecting that the median value ���∗  was better able 613 

to represent the absolute values of MEE than the mean value ���∗  (Figure 6); see also Table S10 614 

in Supplementary material.  615 

 616 

Figure 6: The difference �{∗ − ��∗ of mixed elementary effects (MEE) of the most influential 617 

pairs of inputs on the carbonation model. 618 

 619 

3.2.2. Results of second-order and total interaction Sobol indices  620 

Concerning the two indices based on variance decomposition of model output, the 621 

magnitude of total interaction indices enabled to distinguish influential and non-influential 622 

groups of pairs of inputs from the minimum number of samples considered (herein, equal to 623 

100, Figure 5(d)). Comparatively, the magnitude of second-order Sobol indices pointed out the 624 

most influential pair of inputs (Figure 5(c)). The ranking of the first third most influential pairs 625 

of inputs was achieved through convergent sensitivity indices with a smaller sample size 626 

(herein, 5,100) for total interaction sensitivity indices than for second-order indices (herein, 627 

460,000) (Figure S18 in Supplementary material). Likewise, to achieve the convergence of 628 

total interaction sensitivity indices would require a smaller sample size than second order 629 
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sensitivity indices. For instance, values of total interaction sensitivity indices of first third most 630 

influential pairs of inputs achieved stability around the sample size 8,100. Visual checks of the 631 

convergence of SA results were confirmed by implementing formal criteria to assess the three 632 

types of convergence (Section 2.3).  633 

The computational cost according to the sample sizes used in the applications of Sobol indices 634 

(second-order and total interaction) to the carbonation model are respectively given in Table 8 635 

and Table 9. The number of model evaluations required to obtain a stable ranking for second-636 

order indices (for �=460,000) was around 90 times higher than that for total interaction 637 

sensitivity indices (for �=5,100). Likewise, the minimal number of model evaluations required 638 

to obtain a stable ranking for the Morris’ extension method with indices ���∗  based on the median 639 

of MEE (for �=2,600, Table 7) was around 4 times higher than that for total interaction 640 

sensitivity indices.  641 

 642 

 Sample size (�) 
10000 60000 110000 160000 210000 260000 310000 360000 410000 460000 510000 

Calculation 
cost of 
second 

order Sobol 
indices 

120000 720000 1320000 1920000 2520000 312000
0 

372000
0 

432000
0 

492000
0 

552000
0 

6120000 

Table 8 : The calculation cost according to the sample sizes used in the application of second-643 

order Sobol indices to the carbonation model. 644 

 645 

 Sample size (�) 
100 1100 2100 3100 4100 5100 6100 7100 8100 9100 

Calculation cost of total 
interaction indices of Sobol 

1200 13200 25200 37200 49200 61200 73200 85200 97200 109200 

Table 9 : The calculation cost according to the sample sizes used in the application of total 646 

interaction indices of Sobol to the carbonation model. 647 

 648 

Note that the structure of the carbonation model was visualized using FANOVA graph 649 

based on Sobol indices (Figure S9 in Supplementary material). 650 

 651 

4. Discussions and interpretations  652 

4.1. Convergence of combined influences results 653 

Convergence of input pairs screening. Applying the Morris’ extension method based on 654 

the sampling strategy of Handcuffed Prisoners showed the choice between either (a) indices 655 
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based on the mean of MEE to distinguish groups of influential and non-influential pairs of input 656 

parameters or (b) indices based on the median of MEE to point out the most influential pairs of 657 

input parameters. For the simple theoretical model with additive bilinear effects and the 658 

complex civil engineering model with non-bilinear effects, the two types of sensitivity indices 659 

revealed the same most influential pairs of parameters. However, a lower number of trajectories 660 

was obviously required to provide convergent results for the simple model than for the complex 661 

model. For instance, a number of trajectories equal to 10 was chosen in the Morris’ extension 662 

method for screening relative importance of pairs of 12 input parameters of an energy building 663 

model using sensitivity indices based on the mean of MEE [23]. Sobol indices may be also used 664 

to distinguish the group of influential and non-influential parameters with respect to their total 665 

interaction effect, but with a higher computational cost than the Morris’ extension method. 666 

Convergence of input pairs ranking. For the Morris’ extension method based on the 667 

sampling strategy of Handcuffed Prisoners, using indices based on the median of MEE was 668 

more appropriate to obtain a convergent ordering of pairs of inputs with respect to their relative 669 

importance. Comparatively, using indices based on the mean of MEE required a higher number 670 

of trajectories to achieve stability of the ordering, when applying Morris’ extension method 671 

with the sampling strategy of Handcuffed Prisoners. Total interaction Sobol indices and indices 672 

based on the mean of MEE provide the same ranking of relative importance of the first third 673 

influential pairs of inputs, which is different from the ranking provided by second-order Sobol 674 

indices. Thus, Morris’ extension method revealed the relative importance of most influential 675 

pairs of inputs according to their total interaction effect on model output (including second and 676 

higher order combined-effects). However, a stable ranking of inputs of carbonation model was 677 

achieved with a smaller computational cost for the total interaction Sobol indices than the 678 

Morris’ extension method. The Morris’ extension method, second-order and total interaction 679 

Sobol indices had similar results for the theoretical model since this model had not third or 680 

higher combined-effects of inputs, unlike the carbonation model.  681 

Convergence of sensitivity indices value. For all the sensitivity analysis methods applied 682 

in this work, to achieve stability of sensitivity indices required more model evaluations than to 683 

achieve stable screening and ranking results, according to the degree of complexity of the 684 

model. For instance, according to total interactions indices, while a sample size of 100 was 685 

found to be suitable for screening for the carbonation model, a sample size of 5,100 enabled to 686 

rank order first third more influential pairs of parameters but a sample size of 8,100 was required 687 

to obtain convergent sensitivity indices. Thus, most of the studies used the Morris methods with 688 

low numbers of trajectories that allow achieving a correct distinction of the relative importance 689 
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of inputs, i.e. high-, mid- and low-ranked parameters, although the results are not completely 690 

stable [42]. 691 

Number of trajectories for Morris’ methods and sample size for Sobol indices. Choices of 692 

number of trajectories � for Morris and Morris’ extension method and sample size � for Sobol 693 

indices and indices based on the derivatives can be found in the literature. For instance, the 694 

number  � was typically set between 10 and 50 for studying the influence of input parameters 695 

using the simple Morris method [22]. Likewise, a low number of trajectories (� = 10) was 696 

sufficient to screen out the influential and non-influential pairs according to their relative 697 

interactions using Morris’ extension method [23]. However, our results showed that whether a 698 

low number of trajectories can be suitable for screening, it can be insufficient for input ranking, 699 

particularly for complex models (see also [26]).  When using the Sobol method, different values 700 

of the base sample size are found for the same method when applied to different models within 701 

a given type of convergence. For instance, to ensure the convergence of Sobol’ indices, one 702 

base sample size � of 8,192 was used for a case study with 18 input parameters [43], while 703 

another  sample size  � of 3,000 was used for a case study with 5 input parameters [44]. 704 

Likewise, a base sample size of 12,000 was found to be necessary to ensure the convergence of 705 

Sobol’ indices in a specific case study on complex environmental model, but a much smaller 706 

sample size (� < 2,000) was sufficient if one was only interested in ranking the most 707 

influential input parameters [45]. Moreover, for estimating Sobol’ indices on a flood model, a 708 

sample size � of 10,000 was used for a case study with 5 input parameters [20]. Note that 709 

DGSM were efficiently estimated in most of the cases using quasi-Monte Carlo samples (of 710 

size 100 to 1,000) [21]. 711 

In our study, for the application of Morris’ extension method on the carbonation model, a 712 

number of trajectories � = 110 was sufficient to reach the convergence of input pairs screening, 713 

while � = 2600 and � = 14100 were sufficient to obtain convergent results of input pairs 714 

ranking and sensitivity indices values, respectively. However, for the application of Sobol 715 

method on the carbonation model, when using the total interaction indices a sample size  � =716 100 was sufficient to reach the convergence of input pairs screening but the ranking of the third 717 

most influential pairs was achieved from � = 5600, while � = 8100 was sufficient to obtain 718 

convergent results of values of sensitivity indices. Moreover, a sample size � = 460,000 was 719 

sufficient to achieve the convergence of input pairs ranking when using the second-order Sobol 720 

indices. 721 

 722 
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4.2. Recommendations 723 

Guidance on the application of second-order or total interaction indices. In the case of 724 

a simple model, the application of Morris’ extension method using indices based on the mean 725 

or median gave the same results with the same calculation cost in order to screen and rank the 726 

most influential pairs of parameters on the response of the model. In addition, the two sampling 727 

strategies “Handcuffed Prisoners” and “cycle equitable graphs” can be used. 728 

When the model is complex with no-bilinear effects, the Morris’ extension method using 729 

indices based on median may be just used to screen out the most influential pairs of parameters, 730 

because its calculation cost (i.e. which is a function with respect of number of trajectories and 731 

of number of input variables) is lower than indices based on mean. The two types of indices 732 

revealed the same group of most influential input pairs. However, as in our civil engineering 733 

model, the Morris’ extension method using indices based on mean and the total interaction 734 

Sobol indices that allow quantifying the total contribution of variability of a pair of inputs to 735 

the total variance of the model response gave the same ranking of the most influential pairs of 736 

inputs. Thus, the Morris’ extension method provides information about the total combined-737 

action influence for most influential pairs of model inputs.    738 

The sensitivity indices of Morris’ extension method and the total interaction Sobol 739 

indices gave the same results of the total combined influence of input pairs on the model 740 

response. However, to apply Sobol method is more costly than the Morris’ extension method. 741 

Thus, the choice between applying these two methods depends on the main researched 742 

information between screening, ranking and quantification of sensitivity indices of input pairs.   743 

 744 

Remarks: (1) For the carbonation model, the extension of Morris method based on the 745 

sampling strategy of “cycle equitable graphs” [10] provided results completely different from 746 

those of the other methods. The sampling strategy of cycle equitable graphs seemed not 747 

adequate for a complex model. Deeper investigations are required on the failure of this sampling 748 

strategy.  749 

(2) The calculation cost of the application of second-order Sobol indices on complex model is 750 

expensive compared with other methods such as the extension of Morris method and the 751 

computation of total interaction indices. Therefore, in order to identify the pairs that have the 752 

more relative importance on the model response, we can apply the Morris’ extension method 753 

and compute the total interaction indices, which let us detect the total influence of all possible 754 

pairs of the model with not expensive calculation cost.  Computational effort is a fundamental 755 
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issue associated with any sensitivity analysis technique. Surrogate models is one obvious 756 

technique that has been used in past to reduce computational burden associated with sensitivity 757 

analysis. For instance, for evaluating the Sobol indices at low computational cost, [46] 758 

introduced a novel approach, by post-processing the coefficients of polynomial meta-models 759 

belonging to the class of low-rank tensor approximations. Moreover, for CPU-demanding 760 

models such as finite element models, [47] proposed an optimized regression approach to 761 

compute the polynomial chaos (PC) expansion coefficients using a limited number of 762 

evaluations of the true model. However, for evaluating the moment independent sensitivity 763 

indices (PDF and CDF based) at low computational cost, [48] proposed a novel approach that 764 

integrates hybrid polynomial correlated function expansion (H-PCFE) into the framework of 765 

moment independent sensitivity analysis. H-PCFE is a novel surrogate model formulated by 766 

coupling polynomial correlated function expansion (PCFE) with kriging. In a similar way to 767 

the previous approach, [49] presented a method that couples PCFE with distribution based 768 

sensitivity analysis (DSA). By integrating PCFE into DSA, it is possible to considerably 769 

alleviate the computational burden.       770 

 771 

Combination of 1st, 2nd, and higher order sensitivity analysis. The 1st, 2nd, and higher 772 

order analyses should be applied successively using the appropriate sensitivity analysis methods 773 

(Figure 7), in order to obtain all information concerning the individual and combined-actions 774 

effects of input parameters or group of inputs on the model response. More precisely, the 1st 775 

order sensitivity analysis method as simple Morris should be applied in order to identify the 776 

non-important input parameters. Then, these non-influential inputs should be fixed and the 2nd 777 

and higher order sensitivity analysis methods as the Morris’ extension method and the Sobol 778 

method (second-order Sobol and Total interaction indices) should be performed in order to 779 

identify the influential combined-actions of pairs of inputs on the response model.  780 
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 781 

Figure 7 : An illustration of the combination of the 1st, 2nd, and higher order sensitivity analysis. 782 

(Notation: ↑ means that the value is high). 783 

 784 

5. Conclusions 785 

This paper investigates the cost-effectiveness and efficiency of the Morris’ extension 786 

method and the Sobol method to perform second-order and total interaction sensitivity analysis 787 

studies. The following issues are raised concerning sensitivity analysis methods: how to choose 788 

an adequate number of trajectories and sample size to distinguish influential and non-influential 789 

pairs of inputs, how to order pairs of inputs according to their relative importance and how to 790 

obtain stable values of sensitivity indices? Applied to the analysis of complex models with the 791 

Morris’ extension method, simulation results showed that indices based on the median of MEE 792 

were competing with classical indices based on the mean of MEE, to screen out the more 793 

influential combined-actions on the model response with lower calculation cost. In addition, the 794 

Morris’ extension method provides information about the total combined-action influence of 795 

most influential pairs of model inputs, as the total interaction Sobol indices. As an applied case 796 

study, the application of Morris’ extension method for a carbonation propagation model showed 797 

the joint influence of environmental and technological parameters on the service life of concrete 798 

structures, through the influence of coupling between temperature and water / cement ratio.  799 
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This work contributes to providing guidance to support practitioners for conducting a 800 

sensitivity analysis of a second-order and total interaction of all possible model input pairs. All 801 

these issues depend on the degree of complexity of the model studied, i.e. whether there are 802 

bilinear or non-bilinear effects and combined-actions of two or more input parameters. Some 803 

research prospects should include the study of the sense (or trend) of the combined-action 804 

influence for all possible pairs of inputs on the response of model, from the Morris’ extension 805 

method. That would be an additional valuable information on the sense of the influence of pairs 806 

of inputs on the model response when the two inputs vary in the same sense (increasing or 807 

decreasing) and in opposite senses.     808 
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 959 

In this paper, we provide our supplementary material, which includes more information and 960 

interpretations of our work by showing additional graphs and tables for our results. This 961 

additional material is used to support our main work.   962 

 963 

I. Review of Morris method 964 

The Morris method consists of repeating � times an experimental OAT plan. It varies a single 965 

parameter at a time randomly by repeating this step � times. It can be seen as a statistical 966 

analysis of the empirical estimates of the approximations of partial derivatives (or variations) 967 

of an output of the model with respect to each input parameter. This method is used to produce 968 
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a qualitative classification of the input parameters. It is a very effective approach that identifies 969 

the important input parameters of a model and those that are not influential.  970 

This method performs a number � of local measurements in different points -((), . . . , -(z)  971 

chosen randomly to cover the whole space of the input parameters .*, to measure the main 972 

effect of each input parameter by calculating their average, which reduces the dependence of 973 

the measure at a given nominal point. 974 

This method is based on the discretization of each input variable to obtain p levels (values) 975 

between 0 and 1, i.e. it may take as a value {0, 1/ (p -1), 2/ (p -1), . . . ,1}. Each input parameter 976 

is assumed to have a uniform distribution [0, 1] and therefore the space of input parameters .* 977 

is a unit hypercube of dimension 
 (
 being the number of input parameters). If an input 978 

parameter %� has a uniform distribution in [ - �/(2), - �6(2)], it should to transform this input 979 

in [0, 1] by using this formula: 
Ý8< 6Þ8*(�)6ÞßÕ(�)<6Þ8*(�)   (where - �/(2), - �6(2), and -�  are the 980 

minimum, the maximum and the value of the input parameter %�, respectively). We define in 981 

the hypercube .* a trajectory as a set of (
 + 1) successive points. Each point differs from the 982 

preceding one only by a single coordinate, such that each component is changed only once by 983 

a value Δ = p/ 2(p -1), then the elementary effect of the input parameter %� is defined by: 984 ��(-) = 
4 ( 6(,…,68?(,68 ± á ,68@(,...,6*)<4 (6) á                                                                                 

(1) 

Where  - ∈ .*  and - ± Δ ∈ ./. We can obtain a finite distribution ã� of the elementary effects 985 

of %� by sampling - in ./ � times.  986 

The mean 987 

�� = 1� ¹ ��(-  :)z
:u(  

                                                                                

(2) 

 988 

And the standard deviation 989 

�� = ä 1�   ¹[��(-  :) − ��]�#
:u(  

  

                                               

(3) 

 990 
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of the distribution ã� give indications on the influence of input parameter %� on the output of 991 

the model. 992 

 993 

The computational cost (the number of required simulation runs) of this method depend on the 994 

number of input parameters 
 and number of trajectories � and it is given by � ∗ (
 + 1). 995 

The input parameters of a model identified as non-influential can be set at their nominal value 996 

(Mean) and allowing reducing the model and thus obtaining a model with fewer input 997 

parameters to calibrate. 998 

 999 

II. Distinction of linear and non-linear effects for Morris method 1000 

 1001 

We now briefly describe why the sensitivity indices of simple Morris method enable to 1002 

distinguish linear and non-linear effects on the model output. For instance, consider the input %� 1003 

with a linear individual effect on the model output & = �(%) = }%� + ~. 1004 

For a given value - =  -� of the input vector, the simple elementary effect of %� is given by: 1005 

��(-) = ��(-�) = 
4 (687 á )<4 (68) á  = 

�(687 á ) 7 � <�68 <� á  = 
�(á) á  = } = constant.  1006 

That results in the following respective values of mean and standard deviation of simple 1007 

elementary effects:  1008 

 1009 

�� = F# ∑ ��(-�:)z:u(  =  
# × �#  = } = constant = �8∗ 1010 

�� = w F#   ∑ [��(-�:) − ��]�#:u(  = 
F#  w ∑ [} − }]�#:u(  = 0.  1011 

Thus, firstly, for an input of class (1) with values of �8∗ and �� close to zero (i.e. } ≃  0), we 1012 

have & = �(%) ≃  ~, which corresponds to the negligible effect of %� on model output &. 1013 

Secondly, for an input of class (2) with the high value of �8∗ (i.e. �8∗ ≫  0) and low value of ��, 1014 

we have a non-negligible contribution of the term }%� to model output & that corresponds to a 1015 

linear effect of %�. Thirdly, for an input of class (3), the high value of  �� ≫ 0 indicates values 1016 

of  �8(-) that are not constant. Thus, the parameter } is not constant and can be assumed to be 1017 



39 

 

a second variable } = %�, which implies combined-actions of order ≥ 2 of inputs 5%�,  %�; on 1018 

model output &. 1019 

 1020 

III. Another measure of Morris’ extension method 1021 

The mean �8:∗  of absolute values of MEE was introduced above as a measure of importance 1022 

(combined influence) for the input pair 5%�,  %�;. This information can be complemented by the 1023 

ratio �{/�8:∗  as an indicator of the shape of combined influence for all possible pairs, i.e. bilinear 1024 

or non-bilinear effects, as justified below: 1025 

• If �{/�8:∗  < 0.1, we consider that the pair of inputs 5%�,  %�; is influential and that it has a 1026 

bilinear or quasi-bilinear effect.  1027 

• If 0.1 < �{/�8:∗  < 0.5, we consider that the pair of inputs 5%�,  %�; has a monotonic effect. 1028 

• If 0.5 < �{/�8:∗  < 1, we consider that the pair of inputs 5%�,  %�; has an almost monotonic 1029 

effect. 1030 

• If �{/�8:∗  > 1, we consider that the pair of inputs 5%�,  %�; has non-bilinear effect and / or 1031 

combined-actions of order > 2 with the other input parameters. 1032 

 1033 

                               1034 

Figure S8 : The calculation of the ratio �{/�8:∗  of Morris’ extension method for all possible 1035 

input pairs of the carbonation model. 1036 

 1037 

Note that the ratio �{/�8:∗   was more than 1 for all possible influential pairs of inputs of the 1038 

carbonation model such that these pairs had a non-bilinear effect and / or combined-actions of 1039 

order > 2 with the other input parameters (Figure S8). In this figure, we applied the Morris’ 1040 

extension method with number of trajectories � = 150, because from this number we could 1041 
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screening out the input pairs that have most influential combined-actions on the carbonation 1042 

model. 1043 

 1044 

IV. FANOVA graph 1045 

The FANOVA graph is a nice way to visualize the estimated interaction structure. In this graph, 1046 

each vertex represents one input parameter and an edge between two vertices indicates the 1047 

presence of second or higher-order interactions between the input parameters. The thickness of 1048 

the edges is proportional to the total interaction index (TII) and in addition, the thickness of the 1049 

circles around vertices indicates the first-order indices. The early inactive inputs can be detected 1050 

as single thin vertices. The FANOVA graph is intended as a tool supporting structural kernel 1051 

design in the context of non-parametric modelling using Gaussian processes (kriging), whose 1052 

complexity and performance can improve if the kernel’s structure closely reflects the clique 1053 

structure of the FANOVA graph. Being based on Sobol indices, the set of total variation indices 1054 

that the FANOVA graph describes are computed by Monte Carlo techniques, and thus they 1055 

inherit the complexity of Sobol indices. 1056 

The two FANOVA graphs of our models are shown below (Figure S9). 1057 

                                     1058 

                   (a)                                                                                    (b) 1059 

Figure S9 : (a) and (b) are the FANOVA graphs of the theoretical and carbonation models, 1060 

respectively. 1061 

 1062 

V. Additional graphs and tables  1063 

 1064 
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 1065 

                                  (a)                                                                        (b) 1066 

Figure S10 : Variations of the mean (a) and median (b) of absolute values of MEE for pairs of 1067 

input parameters of the theoretical model by applying the Morris’ extension method using the 1068 

sampling strategy of cycle equitable graphs [10]. 1069 

 1070 

   1071 

(a)                                                                              (b) 1072 

Figure S11 : Variations of the second-order (a) and total (b) interaction Sobol indices of pairs 1073 

of input parameters of the theoretical model. 1074 

 1075 

 1076 

     � 
Pairs 

100 600 1100 1600 2100 2600 3100 3600 4100 4600 

(T, W/C) 609 378 320 391 471 417 417 456 461 421 
(RH, T) 422 506 647 478 506 550 540 570 539 579 
(RH, W/C) 601 494 519 573 628 495 487 579 574 592 
(T, CEM) 907 341 438 378 428 459 406 451 444 384 
(W/C, CEM) 334 395 328 454 384 350 380 385 437 394 
(RH, CEM) 1008 475 579 489 496 567 515 504 515 459 
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Table S10: The values of the difference (�{∗ − ��∗) of mixed elementary effects (MEE) of the 1078 

most influential pairs of inputs on the carbonation model. 1079 

 1080 

  1081 

                               (a)                                                                             (b) 1082 

Figure S12 : The calculation of �!}!�/ �^  ��#" "�#��/�/¥ to assess the screening convergence of 1083 

the carbonation model input pairs, using the normalized indices based on the mean (a) and 1084 

based on the median (b) of MEE of the Morris’ extension method. 1085 

 1086 

 1087 

  1088 

                               (a)                                                                (b) 1089 

Figure S13 : Ranking of pairs of input parameters of the carbonation model, when using mean 1090 

(a) and median (b) of absolute values of MEE for the Morris’ extension method using the 1091 

sampling strategy of Handcuffed Prisoners.  1092 
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  1095 

                                (a)                                                                             (b) 1096 

Figure S14 : The calculation of �!}!�/ �^  ��#" #�/��/¥ to assess the ranking convergence of 1097 

the carbonation model input pairs, using the normalized indices based on the mean (a) and 1098 

based on the median (b) of MEE of the Morris’ extension method. 1099 

 1100 

                               (a)                                                                             (b) 1101 

Figure S15 : The calculation of �!}!�/ �^  ��#" �/¡���" to assess the convergence of sensitivity 1102 

indices values of the carbonation model input pairs, using the normalized indices based on the 1103 

mean (a) and based on the median (b) of MEE of the Morris’ extension method. 1104 
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                             (a)                                                                (b) 1107 

Figure S16 : Indices ���∗  (a) and ���∗  (b) of the Morris’ extension method using the sampling 1108 

strategy of cycle equitable graphs. 1109 

 1110 

 1111 

                             (a)                                                                (b) 1112 

Figure S17 : Ranking of pairs of input parameters of the carbonation model, when using mean 1113 

(a) and median (b) of absolute values of MEE for the Morris’ extension method using the 1114 

sampling strategy of cycle equitable graphs.  1115 

 1116 

 1117 

 1118 

                             (a)                                                                       (b) 1119 

Figure S18 : Ranking of second-order (a) and total interaction (b) Sobol indices of input pairs 1120 

of the carbonation model according to their combined influences. 1121 

 1122 

 1123 

 Number of trajectories (�) 
100 600 1100 1600 2100 2600 3100 3600 4100 4600 

Calculation cost 
of Morris 
method 

1200 7200 13200 19200 25200 31200 37200 43200 49200 55200 
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Table S11 : The calculation cost according to the number of trajectories used in the application 1124 

of Morris method to the carbonation model. 1125 

 1126 

 1127 

 1128 

                             (a)                                                                 (b) 1129 

 Figure S19 : Variations of the mean (a) and median (b) of absolute values of elementary effects 1130 

(EE) for input parameters of the carbonation model by applying the Morris method. 1131 

 1132 

 1133 

                             (a)                                                                 (b) 1134 

Figure S20 : Ranking of input parameters of the carbonation model, when using mean (a) and 1135 

median (b) of absolute values of elementary effects (EE) for the Morris method.  1136 




