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Genetic and metabolic signatures
of Salmonella enterica subsp.
enterica associated with animal sources at
the pangenomic scale
Meryl Vila Nova1,2, Kévin Durimel1, Kévin La1, Arnaud Felten1, Philippe Bessières2, Michel-Yves Mistou1,
Mahendra Mariadassou2 and Nicolas Radomski1*

Abstract

Background: Salmonella enterica subsp. enterica is a public health issue related to food safety, and its adaptation to
animal sources remains poorly described at the pangenome scale. Firstly, serovars presenting potential mono- and
multi-animal sources were selected from a curated and synthetized subset of Enterobase. The corresponding
sequencing reads were downloaded from the European Nucleotide Archive (ENA) providing a balanced dataset of
440 Salmonella genomes in terms of serovars and sources (i). Secondly, the coregenome variants and accessory
genes were detected (ii). Thirdly, single nucleotide polymorphisms and small insertions/deletions from the
coregenome, as well as the accessory genes were associated to animal sources based on a microbial Genome Wide
Association Study (GWAS) integrating an advanced correction of the population structure (iii). Lastly, a Gene
Ontology Enrichment Analysis (GOEA) was applied to emphasize metabolic pathways mainly impacted by the
pangenomic mutations associated to animal sources (iv).

Results: Based on a genome dataset including Salmonella serovars from mono- and multi-animal sources (i), 19,130
accessory genes and 178,351 coregenome variants were identified (ii). Among these pangenomic mutations, 52
genomic signatures (iii) and 9 over-enriched metabolic signatures (iv) were associated to avian, bovine, swine and
fish sources by GWAS and GOEA, respectively.

Conclusions: Our results suggest that the genetic and metabolic determinants of Salmonella adaptation to animal
sources may have been driven by the natural feeding environment of the animal, distinct livestock diets modified
by human, environmental stimuli, physiological properties of the animal itself, and work habits for health protection
of livestock.

Keywords: Microbial genomics, Salmonella adaptation, Genome wide association study, Gene ontology
enrichment analysis
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Background
Salmonella is one of the main agents of foodborne
bacterial infections in human. In particular, Salmonella
enterica subsp. enterica serovars are responsible for
around 80 million foodborne cases annually in devel-
oped countries [1, 2]. The 2600 known S. enterica subsp.
enterica serovars exhibit a broad diversity in phenotypes
including infectious patterns, lifestyle, reservoirs, vectors
and host spectrum [3]. The genomic determinants of
these phenotypes remain however partially characterized
[4–11]. The present work tackles the genomic and
metabolic signatures highlighting the poorly understood
mechanisms of adaptation to animal sources at the pan-
genome scale of Salmonella enterica subsp. enterica.
From extremely clonal to the freely recombinant, bac-

terial evolution is mainly governed by stochastic point
mutations induced by replication errors or damage of
DNA (i.e. single nucleotide polymorphisms SNPs and
small insertions/deletions InDels), and Horizontal Gene
Transfers (HGT) promoted by homologous and non-
homologous recombination events [12]. The homologous
recombination events correspond to the replacement or
inversion of identical or similar sequences [13], while the
non-homologous recombination refers to the incorpor-
ation of new genetic material between distinct genomes
[12]. The HGT whose large fragments are also named
Mobile Genetic Elements (MGEs), can occur in bacterial
genomes during transformation (i.e. transfer of pathogen-
icity islands, transposons or insertion sequences between
two bacterial chromosomes), conjugation (i.e. transfer of
plasmids between two bacterial genomes) and transduc-
tion (i.e. transfer and/or chromosomal incorporation of
phages into bacterial genomes) [12].
The molecular mechanisms of host adaptation driven

by the evolution were revealed by conventional molecu-
lar biology highlighting that S. enterica subsp. enterica
extended over a wide range of hosts including birds,
fishes, reptiles, amphibians, bovines, pigs and others
[14]. Since the divergence from the most recent com-
mon ancestor (MRCA) with Escherichia coli approxi-
mately 100–160 million years ago [15], the coevolution
of Salmonella and animal hosts during millions of years,
has led to the acquisition of genes required for intestinal
infection (i.e. S. bongori species), colonization of deeper
tissues (i.e. other S. enterica subspp.), and expansion to-
ward warm-blooded vertebrates (i.e. S. enterica subsp.
enterica) [16]. The adaptation to warm-blooded animals
started by generalist host associations related to gastro-
intestinal infections and transmission induced by the
short-term proliferation in the intestine, or independ-
ently of the replication in the intestine by dissemination
and persistence in systemic niches that are devoid of
competing microbiota and can last for the lifetime of the
hosts [17].

Without exhaustive data for all known serovars of S.
enterica subsp. enterica, some are considered to be more
adapted to mono-hosts, like Gallinarum in avian [4, 7, 10]
or Dublin in bovine [4, 6]. The evolution of S. enterica
subsp. enterica within hosts may have led some serovars to
specialize to their host. This adaptation is accompanied by
loss of bacterial fitness for inter-host transmission and ap-
parent convergence in pathogenesis [17]. For instance,
Typhi and Paratyphi A cause typhoid and paratyphoid in
human, Gallinarum is associated with fowl typhoid, Abor-
tusovis induces abortion in sheep, and Dublin and Choler-
aesuis are involved in bacteraemia of cattle and pigs,
respectively [17]. Even if most of studies focusing on trans-
formed seafood products [18, 19] do not provide prevalence
of infected fish in natura [20], the serovar Bareilly is also
supposed to be adapted to fish. Causing gastroenteritis,
other serovars are also considered as adapted to multiple
hosts like Typhimurium [9, 21] or Enteritidis [11].
Most of studies based on conventional molecular biol-

ogy demonstrated that acquisition by HGT of Salmon-
ella Pathogenicity Islands (SPIs) that contain genes
coding for invasion, survival, and extraintestinal spread
is among the prominent molecular mechanisms explain-
ing the host adaptation of S. enterica subsp. enterica
[22]. The 23 known SPIs are mainly involved in adhesion
to epithelial cells (i.e. SPI-3, 4 and 5), invasion in their
Salmonella containing vacuoles (SCV) (i.e. SPI-1 and
14), resistance to overcoming colonization of the intes-
tinal mucus layer (i.e. SPI-6), induction of inflammation
and neutrophil recruitment (i.e. SPI-1), as well as sur-
vival (SPI-11, 12 and 16) and outer membrane remodel-
ing (SPI-2, 5 and 13) when they are in macrophages
[23–25]. More precisely, two type III secretion systems
(i.e. T3SS-1 and T3SS-2) encoded on SPI-1 and SPI-2
allow invasion of host epithelium and intracellular sur-
vival, respectively [17]. It must also be noted that the
prophages Gifsy-2 and Fels-1 are involved in resistance
to oxidative stress from neutrophils during infection,
while the prophages Gifsy-1 and sopEФ induce down-
regulation of inflammation in SCV and robust inflamma-
tion of the epithelial cells, respectively [25].
Albeit host adaptation of S. enterica subsp. enterica is

poorly described at the genomic scale [4–11], the studies
focusing on its accessory genome, confirmed that SPIs play
a major role in the adaptation of few serovars to avian (e.g.
SPI19 in Gallinarum and Pullorum [7, 10]) and bovine (e.g.
SPI6 and SPI7 in Dublin [4, 7]) hosts. These studies empha-
sized that plasmids are also a major determinant explaining
adaptation to avian (e.g. resistance-virulence plasmid of
Kentucky [5]) and bovine (e.g. plasmid pSDV of Dublin
[6]). The unique study focusing on the coregenome demon-
strated that the divergence, probably induced by animal
diet, between mammalian-host adapted Dublin and multi-
host adapted Enteritidis was due to fixed variants targeting
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regions involved in metabolic pathways of amino acids
linked to glutamate [11]. This study also showed that lim-
ited ion supply in avian tract and L-arginine used for
growth of laying hens, implied modifications of ion trans-
port (i.e. potassium-efflux system in Gallinarum) and L-
arginine catabolism (i.e. alanine racemase in Pullorum) of
avian-adapted serovars [11].
The Genome Wide Association Study (GWAS) aims

to identify the genetic variations associated with particu-
lar phenotypic traits within a population [26]. Following
the first tool computing GWAS with a correction of
Eukaryotic population structure based on SNPs (PLINK)
[27], combinations of different methods have been im-
plemented in the recently developed microbial GWAS.
Over the last 10 years, microbial GWAS was imple-
mented to explore a diversity of biological problems:
genetic backgrounds of microbial origin [28], persistence
[29], host preference [30], virulence [31, 32], and anti-
biotic resistance [33–42]. In comparison to human
GWAS, the confounding factors of the microbial GWAS
include genome selection, homologous recombination
events, population structure, as well as genome wide sig-
nificance [43]. Microbial GWAS takes into account these
confounding factors and tests for associations between
mutations and phenotypes of interest [40, 43–50]. In a
context of source tracking for food safety [1, 2], micro-
bial GWAS seems a promising tool to identify mutations
associated to animal sources in order to improve models
of source attribution [51].
Compared to the 10 years of developments focusing on

microbial GWAS, Gene Ontology Enrichment Analysis
(GOEA) has been undergoing constant improvements
since the beginning of the twenty-first century and re-
cently reached maturity for bacteria. GOEA is indeed
rarely applied to bacterial genomes in spite of successful
studies applying this approach to decipher host adaptation
of S. enterica at the coregenome level [11], compare tran-
scriptome expression profiles of minimally and highly
pathogenic S. enterica [52], or cluster orthologous groups
among differentially expressed microbial genes [53]. The
GOEA proposes to test the hypergeometric distributions
of GO-terms from a list of interest (i.e. tested sample) with
regards to a broader set of GO-terms (i.e. universe) based
on the assumption of dependencies between the GO-
terms implemented through a parent-child approach [54].
GOEA was historically proposed by the Gene Ontology
Consortium [55] and is today centralized in the universal
protein knowledgebase commonly known as UniProt [56].
More precisely, the GO-terms link the genes and/or
variants to the metabolic pathways [57] and are synthe-
tized through a directed acyclic graph (DAG) of GO-
terms into three independent ontologies called biological
process (BP), molecular function (MF) and cellular com-
ponent (CC) [55].

Taking into account confounding factors (i.e. genome
selection, homologous recombination events, population
structure and genome wide significance), the present
study proposes to decipher Salmonella adaptation to
animal sources (i.e. avian, bovine, swine and fish) based
on microbial GWAS implementing accessory genes and
coregenome variants (i.e. SNPs and InDels), as well as an
advanced population structure correction [40]. The mu-
tations (i.e. genes and variants) associated to traits of
interest (i.e. avian, bovine, swine and fish sources) were
also linked to metabolic pathways by GOEA implement-
ing a parent-child approach [11]. To our knowledge, the
present study is the first to apply successively microbial
GWAS and GOEA at the pangenome scale.

Results
Distributions of serovars from potential mono-and multi-
animal sources
The composition of Salmonella serovars from Entero-
Base [58] were investigated in order to build a genome
dataset taking into account the confounding factors of
microbial GWAS (Additional file 1), namely genome se-
lection [43, 44], recombination [43, 45–47], population
structure [33, 40, 43, 48] and genome wide significance
[43, 50]. Out of 13,635 records from a curated and
synthetic subset of Enterobase, Salmonella isolates were
mainly distributed in avian, bovine, fish, plant, shellfish
and swine sources, enabling the selection of multiple
strains for each studied serovar and source when build-
ing our dataset (Additional file 2). Because the detailed
records from Enterobase were not enough detailed to
determine if the strains from plants and shellfishes were
isolated inside or outside tissues, the present study
focuses on adaption to the following sources: avian, bo-
vine, swine and fish. Among strains isolated from these
sources (n = 11,450), most (22 out of 35) serovars (Fig. 1)
had single animal sources (p < 4.5 × 10− 1, Chi-square
tests of uniformity to find serovars associated with some
sources). Respecting high levels of diversity in terms of
phylogenomic relationships in agreement with previous
studies [59], geographical origins, dates of isolation and
BioProject accession numbers, a balanced dataset of
serovars from putative mono- and multi-animal sources
(Fig. 1) were selected. This dataset was used to detect
mutations and metabolic pathways associated with the
adaptation of Salmonella serovars to their animal
sources. More precisely, isolates of the Salmonella sero-
vars Newport, Typhimurium and Anatum were selected
as multi-animal sources, whereas other serovars were se-
lected as mono-animal sources related to avian (i.e. Hei-
delberg, Kentucky, Hadar), bovine (i.e. Dublin, Cerro,
Meleagridis), swine (i.e. Chloraesuis, Rissen, Derby) or
fish (i.e. Brunei, Lexington, Bareilly) (Additional file 3).
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Authenticity and completeness of detected mutations
Among the 440 selected isolates, we replaced 25 strains
for which paired-end reads presenting signs of exogen-
ous DNA and inconsistencies between in vitro (i.e. sero-
agglutination register in Enterobase) [60] and in silico
(i.e. SISTR program) identifications of serovars [61]. The
absence of exogenous DNA was checked based on the
distribution of GC% (i.e. 52.12 ± 0.09) and total sizes of
studied draft genomes (i.e. Additional file 4) in compari-
son with the complete circular genomes selected as
references during the scaffolding steps (i.e. 4.73 ± 0.16 ×
10− 6; n = 74).
The sizes of these 440 draft genomes (Fig. 2) agreed

with the literature and ranged from 3.39 to 5.59 Mbp
(i.e. between 3969 and 9898 genes) [62]. In line with
studies emphasizing that host adaptation and increased
pathogenicity of Salmonella serovars are not necessarily
reflected in smaller genome sizes [5], we did not detect

significant differences in terms of median values and dis-
tributions of total genomes sizes (Fig. 2) between strains
from mono- and multi-animal sources (Fig. 1).
NG50 values close to the sizes of the reference circular

genomes, low number of long scaffolds (i.e. between 1
and 83 higher than 1000 bp), and almost complete gen-
ome fractions (i.e. ≈ 100%) (Additional file 4), were con-
sidered as evidences of assembly quality sufficiently high
to perform pangenome extraction [63]. The pangenome
extraction revealed logarithmic and hyperbolic forms of
curves representing the new and conserved genes ac-
cording to the sizes of genome dataset, respectively
(Additional file 4). According to previous studies that
estimated strict coregenome sizes of Salmonella between
1500 [64] and 2800 [65] genes, the present open pangen-
ome of Salmonella enterica consists in 2705 core genes
and 19,130 accessory genes. Given the high breadth
(i.e. ≈ 100%) and depth coverages (i.e. > 30X)

Fig. 1 Relative proportions of serovars of Salmonella enterica subsp. enterica found in each animal source (i.e. avian, bovine, fish and swine) in
log-scale and corrected by the baseline proportions in the curated subset of Enterobase (see text for details). The present study focusing on
adaptation to animal sources (n = 13,635) does not include isolates from environment, composite foods of the retail market and humans, which
are considered as vectors of pathogen expositions and exposed susceptible consumers, respectively. The indexes higher and lower than zero
represent sources in which serovars are over- and under-represented, respectively. The total effectives and p-values of Chi-square tests of
uniformity applied to indexes are in brackets and square brackets, respectively. The serovars are sorted from the lowest (i.e. potentially mono-
animal source) to highest (i.e. potentially multi-animal source) p-values. An asterisk stands for less than 20 samples from fish. A double asterisk
stands for less than 20 samples from avian, bovine, swine and fish sources
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(Additional file 4), we performed variant calling ana-
lysis based on reference mapping [66]. Overall, 178,
351 variants (98% of SNPs and 2% of InDels) were de-
tected in the coregenome, including 139,514 variants from
3030 homologous recombination events. These accessory
genes and coregenome variants were considered as genu-
ine mutations, as the analysis followed best practices for
genome assembly [63] and variant calling [66].

Congruencies of phylogenomic reconstructions
Visual inspections of the few incongruencies between the
phylogenomic trees obtained from 3 different approaches,
namely ‘variants including homologous recombination
events’ (called A), ‘variants excluding homologous recombin-
ation events’ (called B) and ‘concatenated orthologous genes’
(called C) (Additional file 5), are in accordance with the high
congruencies of pairwise distances emphasized by the corre-
sponding cophenetic correlation coefficients (Table 1). Even
though the trees have some branches in conflicts (see

Robinson-Foulds indexes in Table 1), the few incongruencies
result from a Subtree Prune Regrafting move and the topolo-
gies are globally congruent (see Fowlkes-Mallows indexes in
Table 1). Swapped nodes are present comparing the serovars
Typhimurim and Heidelberg to Anatum (A versus C), Ba-
reilly (B versus C), or Anatum and Bareilly (A versus B)
(Additional file 5). Considering the high level of agreement
between the phylogenies, (Table 1 and Additional file 5) and
following the recommendations of Hedge and Wilson [67],
the present study will discuss the adaptation to animal
sources mainly based on the tree retaining most of genetic
information (i.e. reconstructed from the approach ‘A’). The
phylogenomic reconstruction from the approach ‘A’ (i.e.
iVarCall2) was indeed inferred based on coregenome SNPs
from intra- and intergenic regions, as well as homologous re-
combination events, contrary to the approaches ‘B’ (i.e. ‘vari-
ants excluding homologous recombination events’ from
iVarCall2 and ClonalFrameML) and ‘C’ (i.e. ‘concatenated
orthologous genes’ from Roary).

Fig. 2 Total genome sizes of Salmonella enterica subsp. enterica serovars isolated from potential mono- and multi-animal sources related to avian
(n = 120), bovine (n = 120), swine (n = 120) and fish (n = 80). Based on a curated and synthetic dataset of Enterobase, the Salmonella serovars
Newport, Typhimurium and Anatum were selected and considered as serovars from potential multi-animal sources. The other selected serovars
were considered as serovars from potential mono-animal sources related to avian (i.e. Heidelberg, Kentucky, Hadar), bovine (i.e. Dublin, Cerro,
Meleagridis), swine (i.e. Chloraesuis, Rissen, Derby) and fish (i.e. Brunei, Lexington, Bareilly). Normality of the data was checked using Shapiro-Wilk
test (p < 1.0 × 10− 2). The statistical differences in terms of median and distribution were assessed by non-parametric Wilcoxon rank sum and
Kolmogorov-Smirnov tests, respectively

Vila Nova et al. BMC Genomics          (2019) 20:814 Page 5 of 21



Phylogenomic relationships between serovars from
potential mono- and multi-animal sources
With the exception of serovars Newport and Cerro, all
other serovars were monophyletic (Fig. 3) in all trees
(Additional file 5). While the genomes of serovars from
multi-animal sources were clustered into three distinct
phylogenomic clusters (i.e. first lineage of Newport
versus second lineage of Newport and Typhimurium
versus Anatum), those from mono-animal sources were
grouped by serovar (Fig. 3). The coexistence of purely
clonal (i.e. mono-animal sources) and nearly panmictic
(i.e. multi-animal sources) serovars (Fig. 3), emphasizes
the necessity to correct the population structure when
performing a microbial GWAS (Additional file 1) to find
mutations associated to animal sources (i.e. avian, bo-
vine, swine and fish).

Consideration of confounding factors during microbial
GWAS
With the objective to take into account the confounding fac-
tors during microbial GWAS (Additional file 1), we com-
pared different dataset of genomes to assess the correction
of population structure and estimated the impact of the
homologous recombination events [43]. More precisely, 9
microbial GWAS were performed for each animal sources
(i.e. 36 analyses) considering different datasets of genomes
from multi- (i.e. panmictic expansion) and/or mono- (i.e.
clonal expansion) animal sources in the cluster presenting
the phenotype of interest, as well as the cluster without this
latter one (Additional file 6). Excluding the variants from
homologous recombination events, 9 other microbial
GWAS (i.e. 36 analyses) were performed with these different
datasets of genomes (Additional file 7). Probably due to the

coexistence of purely clonal to nearly panmictic lineages in
the dataset of 440 genomes (Additional file 1), the datasets
of genomes and variants from homologous recombination
events affected the population structure corrections
(Additional files 6 and 7). Expected shapes of quantile-
quantile (QQ) plots referring to suitable population
structure corrections (i.e. inflation for only highly
significant observed p-values) were systematically checked in-
cluding genomes from mono- and multi-animal sources in
both studied strains and compared strains for the avian,
bovine, swine and fish sources (Additional files 6 and 7).
Concerning these expected shapes of QQ plots pre-
senting inflations for only highly significant observed
p-values, much more stratification of causal mutations
were observed including variants from homologous re-
combination events (Additional file 6), compared to
microbial GWAS excluding them (Additional file 7).
All the 440 genomes included, we observed that most
of the associated mutations were different comparing
microbial GWAS performed with and without variants
from recombination events (Table 2). According to
this observation and the authors suspecting the homolo-
gous recombination events to conceal the detection of
causal variants by microbial GWAS [43, 45–47], we decided
to exclude the coregenome variants from these regions dur-
ing microbial GWAS (i.e. 139,514 variants from 3030 hom-
ologous recombination events). Taking into account all the
known confounding factors (Additional file 1), and even if
common genome wide significance of human GWAS is
around p ≤ 1 × 10− 6, the polygenicity was estimated at p ≤
1 × 10− 2 according to the QQ plots of the present study fo-
cusing on microbial GWAS (Additional file 7). Without
consensus concerning the genome wide significance of

Table 1 Congruency parameters between phylogenomic reconstructions of strains belonging to different serovars of Salmonella
enterica subsp. enterica (n = 440) in terms of distance and topology. The phylogenomic reconstructions were performed by
maximum likelihood selecting the most appropriate models of evolution and checking ultrafast bootstrap convergences (i.e. IQ-
Tree). The compared approaches ‘variants’ and ‘genes’ correspond to phylogenomic trees reconstructed using pseudogenomes from
variant calling analysis (i.e. iVARCall2) including (A) or excluding (B) variants from recombination events (i.e. ClonalFrameML), and
concatenated orthologous genes (C) from pangenome analysis (i.e. Roary), respectively. The cophenetic function of the ‘dendextend’
R package was used to compute the cophenetic correlations. The dendrogram function of the ‘dendextend’ R package was used to
compute the Fowlkes-Mallows indexes. The treedist function of the ‘phangorn’ R package was used to compute the Robinson-
Foulds indexes

Tree
parameters
a

Congruency parameters Compared approaches of phylogenomic reconstructions

‘A’ vs ‘B’ ‘C’ vs ‘A’ ‘C’ vs ‘B’

Distance Cophenetic correlation (Pearson) 0.989 0.993 0.981

Cophenetic correlation (Kendall) 0.766 0.828 0.742

Cophenetic correlation (Spearman) 0.924 0.954 0.911

Topology Fowlkes-Mallows index 0.650 0.600 0.600

Robinson-Foulds index 370 264 410
a distance refers to similarity between trees in terms of correlation between the cophenetic distance matrices. Topology refers to differences between two trees in
terms of node clustering, respectively

Vila Nova et al. BMC Genomics          (2019) 20:814 Page 6 of 21



microbial GWAS [43], and with regards to frequencies of
presence and absence of genes and alternative variants
(Additional file 8), we estimated and checked visually that
associated mutations present p-values of association
between p = 8.78 × 10− 3 and p = 2.32 × 10− 15 (Fig. 3 and
Additional file 8). These mutations associated by microbial
GWAS have been retained to apply downstream GOEA.

Mutation associated with animal sources (i.e. microbial
GWAS)
No matter the phenotype of interest, only partial associated
mutations were detected by microbial GWAS (Fig. 3).
While the presence of genes and presence of alternative
variants were associated with animal sources, the absence
of genes and presence of reference variants were not

Fig. 3 Maximum likelihood phylogenomic tree of Salmonella enterica subsp. enterica serovars (n = 440) from potential mono- and multi-animal
sources. Based on pseudogenomes inferred with the variant calling workflow iVARCall2, the workflow IQ-Tree selected the most appropriate
model of evolution (GTR + I + G4) according to Akaike Information Criteria (AIC) and reconstructed the tree with an ultrafast approximation of
phylogenomic bootstrap. The present phylogenomic tree was inferred including SNPs from recombination events and was rooted using the most
closely related indica subspecies as an outgroup. The potential mono- and multi-animal sources were assigned based on Chi-square tests of
uniformity applied on a curated and synthetic subset of Enterobase. Examples of mutations associated with animal sources by microbial GWAS
are presented (i.e. Wald tests). These associated mutations refer to polygenicity with regard to Quantile-Quantile (QQ) plots from microbial GWAS
(i.e. p < 1 × 10− 2) and present high (i.e. > 5%) and low (i.e. < 5‰) frequencies of presence (i.e. genes and alternative variants) in the studied and
compared genomes, respectively. The serovars (i.e. colored squares), potential sources (i.e. black and grew squares), animal sources (i.e. colored
squares), as well as annotated (i.e. colored circles) and non-annotated (i.e. colored triangles) mutations associated to animal sources, are
represented from the internal to external rings. The colored circles and triangles represent present genes or alternative variants, whereas missing
data refers to absente genes or reference variants, respectively. Most of the branches of the tree (i.e. 85%) are supported by bootstrap values
higher than 90% (i.e. black circles) and the corresponding newick file is accessible under request
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associated with animal sources. This observation is in
accordance with the fact that losses of unessential functions
do not necessarily refer to the adaptation to animal sources,
as previously reported [12], or unconfirmed [5], concerning
the host adaptation and restricted host transmission. As
suspected with regard to higher functional impacts of
accessory genes compared to coregenome variants, 38
genes were detected as associated with animal sources,
whereas only 3 intergenic, 3 synonymous and 8 non-

synonymous variants (SNPs and InDels) were associated to
these traits of interest (Table 3). Due to the fact that syn-
onymous variants associated to traits of interest (Table 3)
may emphasize elements of regulation [68] or phenotypical
impacts [69], we decided to retain them in GOEA. To
summarize, 38, 34, 26 and 14 associated mutations were
detected as signatures of avian, bovine, swine and fish
sources, respectively (Additional file 8). Among the latter,
annotations are available for only 10, 7, 6 and 2 mutations

Table 2 Mutations of Salmonella enterica subsp. enterica serovars (n = 440) associated with animal sources (i.e. avian bovine, swine
and fish) by microbial GWAS including or excluding variants from recombination events. The accessory genes and coregenome
variants (i.e. SNPs and InDels) were annotated with Prokka (1.12) and SNPeff (4.1 g), respectively. After potential exclusion of variants
from recombination events based on iVARCall2 and ClonalFrameML, the workflow ‘microbial-GWAS’ corrects the population
structure based on Linear Mixed Model (LMM), then perform associations with Wald tests implemented in GEMMA. The associated
mutations (i.e. Wald tests) refer to polygenicity with regard to Quantile-Quantile (QQ) plots from microbial GWAS (i.e. p < 1 × 10− 3

and p < 1 × 10− 2, with or without recombination events) and present high (i.e. > 5%) and low (i.e. < 5‰) frequencies of presence
(i.e. genes and alternative variants) in the studied and compared genomes, respectively

Animal
source

Comparison of associated mutations from microbial GWAS

Including homologous recombination Excluding homologous recombination

All Unique All Unique

avian 41 36 18 13

bovine 21 18 16 13

swine 35 30 11 6

fish 5 4 7 6

Table 3 Mutations before and after microbial GWAS aiming to associate animal sources (i.e. avian bovine, swine and fish) with
mutations from accessory (i.e. genes) and coregenome (i.e. SNPs and InDels) of Salmonella enterica subsp. enterica serovars (n = 440).
The accessory genes and coregenome variants (i.e. SNPs and InDels) were annotated with Prokka (1.12) and SNPeff (4.1 g),
respectively. After exclusion of variants from recombination events based on iVARCall2 and ClonalFrameML, the workflow ‘microbial-
GWAS’ corrects the population structure based on Linear Mixed Model (LMM), then perform associations with Wald tests
implemented in GEMMA. The associated mutations (i.e. Wald tests) refer to polygenicity with regard to Quantile-Quantile (QQ) plots
from microbial GWAS (i.e. p < 1 × 10− 2) and present high (i.e. > 5%) and low (i.e. < 5‰) frequencies of presence (i.e. genes and
alternative variants) in the studied and compared genomes, respectively

Mutations Annotations Before GWAS After GWAS

Including homologous
recombination

Excluding homologous
recombination

Avian
source

Bovine
source

Swine
source

Fish
source

accessory genes
and variants

annotated and hypothetical 178,351 38,837 38 34 26 14

accessory genes annotated 6387 6387 6 3 0 2

hypothetical 12,743 12,743 8 9 5 5

coregenome
variants

intergenic 17,362 2288 1 1 1 0

intragenic synonymous 68,157 8365 1 1 1 0

non
synonymous

missenses 65,044 8017 2 2 4 0

start lost 144 19 0 0 0 0

stop gained 4202 525 0 0 0 0

frameshift 1019 136 0 0 0 0

disruptive
inframe insertions

122 14 0 0 0 0

disruptive
inframe deletions

204 31 0 0 0 0

multiple annotations 2967 312 0 0 0 0
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associated with avian, bovine, swine and fish sources, re-
spectively (Tables 3 and 4).

Metabolic pathways mainly impacted by mutations
associated with animal sources (i.e. GOEA)
Based on the mutations associated by microbial
GWAS (Table 3 and Additional file 8), the GO-terms

retrieved by GOEA (Additional file 9) were parsed to
retain the most accurate (i.e. GO-levels ≥5) and the
most enriched (i.e. Bonferroni corrected p-values <
5.0 × 10− 2), as previously described [11]. This resulted
in 6, 1, 0 and 2 GO-terms of interest for the avian, bo-
vine, swine and fish sources, respectively (Table 5).
These GO-terms (Table 5) were mainly related to

Table 4 Functionally annotated mutations (i.e. excluding genes coding hypothetical proteins) of Salmonella enterica subsp. enterica
serovars (i.e. SNPs, InDels and genes) associated by microbial GWAS with animal sources (i.e. avian bovine, swine and fish). The
accessory genes and coregenome variants (i.e. SNPs and InDels) were annotated with Prokka (1.12) and SNPeff (4.1 g), respectively.
After exclusion of variants from recombination events based on iVARCall2 and ClonalFrameML, the workflow ‘microbial-GWAS’
corrects the population structure based on Linear Mixed Model (LMM), then perform associations with Wald tests implemented in
GEMMA. The associated mutations (i.e. Wald tests) refer to polygenicity with regard to Quantile-Quantile (QQ) plots from microbial
GWAS (i.e. p < 1 × 10− 2) and present high (i.e. > 5%) and low (i.e. < 5‰) frequencies of presence (i.e. genes and alternative variants)
in the studied and compared genomes, respectively. The genes with undefined names are assigned to STM identifiers with regard
to the reference genome of Salmonella Typhimurium LT2 (NCBI NC_003197.1). HGVS stands for Human Genome Variation Society. N/A
and ND stand for not applicable and not determined. N/A refers to intergenic regions. The term ‘gene’ refers to the gene presence

Studied
animal
source

Mutation p-value
(Wald test)

Gene
name

Annotation Variant
position

HGVS
notation
(DNA)

HGVS notation
(protein)

UniprotKB

Avian Gene 1.2 × 10− 8 zntR2 HTH-type transcriptional regulator ZntR N/A N/A N/A P0ACS5

Avian Gene 1.2 × 10−8 cph2_2 Phytochrome-like protein cph2 N/A N/A N/A Q55434

Avian Gene 1.2 × 10−8 merP2 Mercuric transport protein periplasmic
component

N/A N/A N/A P13113

Avian Gene 1.2 × 10−8 merP1 Mercuric transport protein periplasmic
component

N/A N/A N/A P13113

Avian Gene 1.7 × 10−5 recD2 ATP-dependent RecD-like DNA helicase N/A N/A N/A Q9RT63

Avian Gene 4.6 × 10−3 dcuA Anaerobic C4-dicarboxylate transporter DcuA N/A N/A N/A P0ABN5

Avian SNP 8.8 × 10−7 sinH Intimin-like inverse autotransporter
protein SinH

2,650,403 c.399C > T p.Pro133Pro E8XGK6

Avian SNP 8.8 × 10−7 ilvY HTH-type transcriptional activator IlvY 4,116,598 c.616G > A p.Glu206Lys P0A2Q2

Avian SNP 8.8 × 10−7 ilvC Ketol-acid reductoisomerase (NADP(+)) 4,117,833 c.457C > T p.Ala153Ser P05989

Avian SNP 8.8 × 10−7 N/A N/A 4,217,302 N/A N/A N/A

Bovine Gene 8.6 × 10−5 repE Replication initiation protein N/A N/A N/A P03856

Bovine Gene 2.8 × 10−3 hicB Antitoxin HicB N/A N/A N/A P67697

Bovine Gene 3.7 × 10−3 eptC Phosphoethanolamine transferase EptC N/A N/A N/A P0CB40

Bovine SNP 1.6 × 10−3 N/A N/A 294,951 N/A N/A N/A

Bovine SNP 6.5 × 10−6 arnD 4-deoxy-4-formamido-L-arabinose
phosphoundecaprenol deformylase ArnD

2,408,955 c.884A > C p.Ala295Ala O52326

Bovine SNP 6.5 × 10−6 srmB ATP-dependent RNA helicase SrmB 2,783,562 c.660 T > C p.Lys220Asn Q8ZMX7

Bovine SNP 6.5 × 10−6 aspA Aspartate ammonia-lyase 4,572,050 c.332C > T p.Asn111Ile Q7CPA1

Swine Indel 3.3 × 10−3 N/A N/A 4,816,900 N/A N/A N/A

Swine SNP 4.8 × 10−7 pepE Dipeptidase E 4,414,198 c.488G > T p.Pro163Leu P36936

Swine SNP 1.7 × 10−11 iroN TonB-dependent siderophore receptor protein 2,924,248 c.1516G > C p.Gly506Arg Q8ZMN0

Swine SNP 1.7 × 10−11 priA Primosomal protein N 4,304,871 c.689 T > C p.Lys230Thr Q8ZKN8

Swine SNP 6.9 × 10−05 ybeK or
rihA

Pyrimidine-specific ribonucleoside hydrolase
RihA

725,582 c.912A > G p.Ala304Ala Q8ZQY4

Swine SNP 2.3 × 10−15 ilvY HTH-type transcriptional activator IlvY 4,116,897 c.317C > A p.Leu106Gln P0A2Q2

Fish Gene 2.3 × 10−8 dapH 2,3,4,5-tetrahydropyridine-2,6-dicarboxylate N-
acetyltransferase

N/A N/A N/A Q7A2S0

Fish Gene 3.3 × 10−3 cgkA Kappa-carrageenase N/A N/A N/A P43478
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molecular functions (i.e. 66%) and biological processes
(i.e. 33%).

Discussion
Restricted and unrestricted animal sources across
Salmonella
Salmonella serovars might be considered as having re-
stricted (mono-) or broad (multi-) animal sources. Here
we used the Enterobase resource providing both genomic
data and metadata to build a dataset to explore the rela-
tionships between genotype and adaptation to the animal
sources (Fig. 1). As exemplified with Escherichia (only
host-unrestricted lineages), Campylobacter (both host-
restricted and -unrestricted lineages) and Staphylococcus
(only host-restricted lineages), the lineages resulting of
phylogenomic reconstructions reflect the genetic structure
(i.e. patterns of mutations) established through either
host-adapted lineages, physical barriers to colonization, or
local clonal spreading induced by selection or genetic drift
[12]. The restricted and unrestricted-host lineages can
be the result of a diversity of genetic processes: neutral
diversification, acquisition of a host-adaptive trait caus-
ing a genome-wide purge within the population, large
recombination between strains creating a hybrid lineage
or negative frequency-dependent selection induced by

decreasing of fitness [12]. Our segmentation distinguish-
ing mono- and multi-animal sources should consequently
reflect a representation of clonal and panmictic serovars
(Additional file 1) [43] rather than a phenomenon of adap-
tation to single or multiple niches. This hypothesis is sup-
ported by our ability to correct population structure
considering both serovars from potential mono- and
multi-animal sources as genomes of interest during micro-
bial GWAS (Additional files 6 and 7).

Genetic signatures of Salmonella adaptation to animal
sources
Especially in highly recombinant bacterial genomes,
phylogeographic signatures can be weakened due to
dissemination around the world and genomic changes
occurring within the reservoir hosts [70]. Even with a
dataset of genomes highly diversified in terms of sero-
vars (i.e. 12 clonal and 3 panmictic serovars including 13
monophyletic and 2 polyphyletic serovars), geographical
origin (i.e. 26 countries, 68% from United States) and
time of isolation (i.e. 25th and 75th percentiles: 2005–
2013) origins (Additional file 3), we were able to identify
genetic signatures of animal sources (Table 2, Table 4
and Additional file 8) by microbial GWAS (Fig. . 4 and
Additional file 7). Host-associated genetic signatures

Table 5 GO-terms mainly enriched by GOEA applied on accessory genes and coregenome variants of Salmonella enterica subsp.
enterica serovars associated by microbial GWAS with animal sources (i.e. avian bovine, swine and fish). The GOEA was performed
with the workflow ‘fastGSEA’ based on the parent-child approach integrating hypergeometric tests and Bonferroni corrections. The
GOEA input sample is a list of corresponding RefSeq identifiers of accessory genes (i.e. RefSeq from Roary) and coregenome variants
(i.e. NP from SNPeff 4.1 g) associated by microbial GWAS. The input universe is a list of RefSeq identifiers of all accessory genes (i.e.
RefSeq from Roary) and all core genes (i.e. NP from SNPeff 4.1 g). The highest GO-levels presenting the most accurate GO-terms (i.e.
≥ 5) and the lowest Bonferroni corrected p-values representing highly enriched GO-terms (i.e. < 5.0 × 10−2), are presented. BP, MF
and CC stand for biological process, molecular function and cellular component, respectively

Animal
source

Uniprotkb Associated
Mutations

GO-term
identifier

GO-term Hits Exp.
hits

GO
level

Corr.
p-
value

Ontology

avian Q55434 gene cph2_2 GO:0009585 red, far-red light phototransduction 1 0.01 7 1 ×
10−7

BP

avian Q55434 gene cph2_2 GO:0009584 detection of visible light 1 0.01 7 1 ×
10−7

BP

avian Q55434 gene cph2_2 GO:0009883 red or far-red light photoreceptor activity 1 0.01 5 1 ×
10−7

MF

avian Q9RT63 gene recD2 GO:0043141 ATP-dependent 5′-3′ DNA helicase activity 1 0.01 11 1 ×
10−7

MF

avian Q9RT63 gene recD2 GO:0008094 DNA-dependent ATPase activity 5 0.28 10 1 ×
10−3

MF

avian P0ABN5 gene dcuA GO:0015740 C4-dicarboxylate transport 3 0.13 10 1 ×
10−2

BP

bovine Q7CPA1 SNP in aspA GO:0008797 aspartate ammonia-lyase activity 1 0.01 6 1 ×
10−7

MF

fish Q7A2S0 gene dapH GO:0047200 tetrahydrodipicolinate N-acetyltransferase
activity

1 0.01 8 1 ×
10−7

MF

fish P43478 gene cgkA GO:0033918 kappa-carrageenase activity 1 0.01 6 1 ×
10−7

MF
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have been previously detected for Staphylococcus aureus
[71] and Campylobacter [72] which expanded into vast
open livestock niches from humans [73] or pre-agriculture
wild animal [73, 74]. Probably because Salmonella enterica
subsps. enterica did not evolve as an obligate intracellular
pathogens, we did not observe evidence of accumulation
of deleterious mutations and losses of unessential func-
tions (Fig. 2 and Table 2), that have been associated [12],

or not [5], with host adaptation and restricted host trans-
mission in other organisms. Salmonella genomes from
human source were not included in the dataset of ge-
nomes, because it would conceal the mutations associated
with the avian, bovine, swine and fish sources, but the mu-
tations identified in the present study as associated with
animal sources (Table 2 and Additional file 8) could be
used as in silico or in vitro markers to identify them from

Fig. 4 Manhattan plots from microbial GWAS aiming to detect accessory genes and coregenome variants of Salmonella enterica subsp. enterica
serovars (n = 440) associated with avian, bovine, swine and fish sources. Strains from both potential mono- and multi-animal sources were
considered as having phenotype 1 and others strains (i.e. mono-source with a different animal) as having phenotype 0. The accessory genes were
sorted by frequency and the positions of coregenome variants are in accordance with the reference genome of Salmonella Typhimurium LT2
(NCBI NC_003197.1). The blue and red lines (− log10(observed p-values)) correspond to the genome wide significance from human GWAS and
polygenicity with regard to Quantile-Quantile (QQ) plots from microbial GWAS (i.e. p < 1 × 10− 2)
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human isolates in a context of source tracking for food
safety [1, 2]. In this framework, we plan to develop in a
near future a workflow to attribute animal sources from
human samples based on the markers identified in the
present study to improve the models of source attribution
at the genomic scale [51], as recently proposed to predic-
tion sources of S. Typhimurium by machine learning Ran-
dom Forest classifier [75]. Even if the annotations of
hypothetical proteins associated with animal sources have
to be improved in the future (Table 2 and Additional file
8), we will discuss about the annotated mutations which
have been associated with animal sources (Fig. . 3).

Signatures of adaptation to the avian source
The studied Salmonella genomes from avian sources
(Additional file 3) principally come from samples found in
the food chain (i.e. 92% of poultry) and may consequently
be impacted by the environment and work practices of
this sector. The S. Typhimurium mutations associated
with avian source (Fig. . 3) impacted mainly the metabol-
ism processes related to detection of visible light (GO:
0009584 and GO:0009883), red and far-red light photo-
transduction (GO:0009585), DNA dependent activities
(GO:0043141 and GO:0008094) and C4-dicarboxylate
transport (GO:0015740) (Table 5).
Following the same pattern (i.e. a list of mutations ob-

served in the same genomes), the genes zntR2, cph2_2,
merP_1 and merP_2 are associated with avian source
(Fig. 3, Table 4 and Additional file 8). The zing
dependent helix-turn-helix domain (i.e. gene zntR2) al-
lows binding to DNA cognate sites [76]. Never described
in Salmonella, the cyanobacterial phytochrome Cph2 ac-
tivate mobility capacity (i.e. phototaxis) towards red light
(i.e. gene cph2_2) [77] and may be related to conditions
of poultry growth were red light his frequently used to
improve liveweight [78]. The mercuric transport protein
periplasmic components (i.e. genes merP_1 and merP_2)
may also be an adaptation related to mercury exposure.
DNA damage has been reported in rat and mouse fibro-
blasts as well as cells from Chinese hamster ovary and
human cells [79]. Due to anthropogenic activities, the
changes in the human chromatin is indeed known to be
induced by mercury exposure of the biosphere during
500 years [80]. As recently observed in a large subantarc-
tic avian community, the diet (i.e. crustacean, fish, squid
and carrion-consumers), rather than taxonomy, is an im-
portant driver of avian mercury exposure [81]. Even if
the mercury is considered as undesirable substance in
animal feed by European Food Safety Authority [82],
and in a context of prevention and control of contagious
poultry diseases [83], the domestic avian community
have been exposed to mercury through vaccination [84].
The ethyl mercury is very toxic water-soluble form of
mercury developed in the 1920s to preserve vaccines,

variously called Thimerosal, Merthiolate and Thiomersa.
For instance, the Thimerosal contains 49% of mercury
mass [85] and is a preservative used in vaccines prevent-
ing human flu (A/H1N1) [86], as well as infections of
domestic poultry and other bird species with virulent
Newcastle disease virus [84].
Following also the same pattern, the SNPs in genes sinH,

ilvY and ilvC are associated with avian source (Fig. 3, Table
4 and Additional file 8). Among other delivery devices
encoded in type V protein secretion systems (T5SS), the
intimin-like inverse autotransporter protein SinH (i.e. syn-
onymous SNP in sinH), also known as SivH, is a virulence
factor involved in internal colonization of Salmonella [87].
Organized as a LysR protein-regulated system, the HTH-
type transcriptional activator IlvY (i.e. missense SNP in
ilvC) is the transcriptional regulator of the ketol-acid reduc-
toisomerase NADP+ (i.e. missense SNP in ilvC) involved in
the parallel pathway for the biosynthesis of L-isoleucine
and L-valine [88], and was associated by different mutations
to avian (p.Glu206Lys) and swine (p.Leu106Gln) sources
(Table 4). As detailed latter concerning the diet of weaned
piglets [89], the isoleucine and valine are also controlled in
practical broiler formulas because these amino acids are
limited in nutrition based on corn and soybean meals [90],
and may consequently explain this missense SNP in ilvC
(p.Glu206Lys) (Table 4).
Associated to different genomes of avian source, the

genes recD2 and dcuA are also mutations explaining this
animal source. The ATP-dependent RecD-like DNA heli-
case (i.e. gene recD2) inhibits stress-induced mutations in-
dependently of effects on SOS induction in Escherichia coli
[91]. Mediated by an anaerobic C4-dicarboxylate trans-
porter DcuA (i.e. gene dcuA), S. Typhimurium performs a
complete tricarboxylic acid cycle during colonization of the
intestinal lumen to uptake and use poorly fermentable di-
carboxylic acids, such as succinate, conferring a fitness ad-
vantage in competition with the native gut microbiota [92].

Signatures of adaptation to the bovine source
All the studied Salmonella genomes from bovine sources
are related to livestock, and like their avian counterpart,
are exposed to the related environment and work prac-
tices in the food industry (Additional file 3). The muta-
tions associated with bovine source in S. Cerro, S. Dublin
and/or S. Meleagridis (Fig. . 3) affected the metabolism
process related to aspartate ammonia-lyase activity (GO:
0008797) (Table 5).
With an identical pattern, the SNP in arnD, as well as,

the genes arnD, srmB and aspA, are associated with the bo-
vine source (Fig. 3, Table 4 and Additional file 8). The 4-
deoxy-4-formamido-L-arabinose phosphoundecaprenol
deformylase ArnD (i.e. synonymous SNP in arnD) is in-
volved in modification of LPS with arabinose and required
for resistance to polymyxin and cationic antimicrobial
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peptides [93]. This adaptation signal may be explained by
the bovine exposures to polymyxin treatments. The poly-
myxin and colistin (i.e. polymyxins E2 and E1) are currently
last-line therapeutic options to treat infections caused by
multidrug-resistant Gram-negative bacteria [94], whose res-
idues can be detected in bovine milk and tissues [95].
The ATP-dependent RNA helicase SrmB (i.e. gene

srmB) is a dead-box family of helicase proteins involved
in ribosomal biogenesis, but his function in Salmonella
remains to be determined [96]. The aspartate ammonia-
lyase encoded by aspA, converts aspartate to fumarate
which is reduced by a fumarate reductase into succinate
[97]. As observed with enterohemorrhagic Escherichia
coli, aspartate deamination and anaerobic fumarate res-
piration, may be important pathways favoring Salmon-
ella adaptation to bovine gut [98].
Present in different genomes from bovine source, the

genes repE, hicB and eptC are also associated with bo-
vine source. The replication initiation proteins (i.e. gene
repE) relate to incompatibility of plasmids and compete
each other, with potential linked accessory genes, for
replication in the bacterial host [99]. As demonstrated
with E. coli, the antitoxin HicB (i.e. gene hicB) forms
probably a complex with the mRNA interferase HicA
which becomes active after dissociation induced by nu-
trient starvation and produces bacteriostatic conditions
for growth of other bacterial cells [100]. The phos-
phoethanolamine transferase EptC (i.e. gene eptC) adds
a phosphoethanolamine to the inner core lipooligosac-
charide of C. jejuni, promoting recognition by a human
Toll-like receptor and providing resistance to relevant
mammalian and avian antimicrobial peptides [101].

Signatures of adaptation to the swine source
The studied Salmonella genomes from swine sources are
mainly representative of livestock of this sector (i.e. 88% of
livestock) and potentially exposed to the environment and
work habits of this food chain (Additional file 3). The mu-
tations associated by microbial GWAS to different ge-
nomes of S. Choleraesuis, S. Derby and/or S. Rissen from
swine source (Fig. 3 and Additional file 8), are not over-
enriched by GOEA (Table 5) and are only constituted of
core variants including an InDel in the intergenic region
STM4562-yjjU and SNPs, as well as genes pepE, iroN,
priA, ybeK and ilvY (Table 4). The dipeptidase E of S.
Typhimurium (i.e. missense SNP in pepE) is hypothetically
involved in sequestration of peptide aspartate used in syn-
thesis of the aspartate family of amino acids [102], and the
aspartate may be added in diets of piglets to improve
growth performance and protect them against oxidative
stress and mycotoxin infection [103]. Keeping in mind
that iron availability increases the pathogenic potential of
S. Typhimurium [104], the TonB-dependent siderophore
receptor protein (i.e. missense SNP in iroN) is involved in

iron acquisition in S. enterica [105]. The primosomal pro-
tein N (i.e. missence SNP in priA) allows restarting of
stalled replication forks via its helicase activity [106] and
the pyrimidine-specific ribonucleoside hydrolase RihA (i.e.
synonymous SNP in rihA, also called ybeK) is involved in
conversion of cytidine into cytosine [107]. Requiring more
elements to consolidate the following hypothesis, this mu-
tation associated to swine (i.e. synonymous SNP in rihA)
may be linked to the pig specific pathway including the
cytidine-5′-monophospho-N-acetylneuraminic acid hy-
droxylase (CMAH). This CMAH is implicated in produc-
tion of carbohydrates on the surface of intestinal epithelial
cells, which are considered as the primary elements inter-
acting with microbes and viruses during foreign parasitic
infection [108]. As previously emphasized, the HTH-type
transcriptional activator IlvY (i.e. missense SNPs in gene
ilvY: p.Glu206Lys in avian and p.Leu106Gln in swine) is
involved in the parallel pathway for the biosynthesis of L-
isoleucine and L-valine [88]. Just as the practical broiler
formulas (Corzo et al. 2009), the isoleucine and valine are
limited and added in the diet of weaned piglets (i.e. barley,
wheat, maize and soya) [89], impacting expression of me-
tabolisms involved in branched-chain amino acid, as well
as amino acid composition of tissues [109].

Signatures of adaptation to the fish source
The fish sources of the studied genomes may be related to
environment and work habits of this food chain because
the corresponding Salmonella samples were isolated from
fresh (i.e. 28%), frozen (42%) and processed fresh (27%) fish
(Additional file 3). Without annotated mutations associated
with S. Bareilly, the mutations associated with fish source in
S. Lexington and S. Brunei impacted mainly the metabolic
processes involved in kappa-carrageenase (GO:0033918)
and tetrahydrodipicolinate N-acetyltransferase activities
(GO:0047200), respectively (Table 5). Never studied in
Salmonella, the kappa-carrageenase (i.e. gene cgkA) has
been described the first time in a marine bacterium Altero-
monas carrageenovora [110] and is involved in degradation
of k-carrageenan, a linear sulfated polysaccharides extracted
from red edible seaweeds [111]. The 2,3,4,5-tetrahydropyri-
dine-2,6-dicarboxylate N-acetyltransferase (i.e. gene dapH)
is known as the first step of the L-lysine biosynthesis via
diaminopimelate pathway [112] and the fish diets based on
plant ingredients are deficient in lysine which is added in
fish feed to improve growth [113] and liveweight [114].
These mutations associated with fish may consequently
refer to adaptation induced by natural (e.g. gene cgkA) and
artificial (e.g. gene dapH) diets.

Conclusions
The strains of different serovars of the recombinant
taxa Salmonella enterica subsp. enterica, evolved
through clonal and panmictic lineages and adapted their
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genomic contents to animal sources of food chains at the
accessory and coregenome scales. The major genetic and
metabolic determinants of Salmonella adaptation to ani-
mal sources may have been driven by the natural feeding
environment of the animal (e.g. k-carrageenan from red
edible seaweeds for fish) and distinct livestock diets modi-
fied by human (e.g. isoleucine and valine for poultry and
pig, aspartate for piglets, and lysine for fish). Environmen-
tal stimuli (e.g. red light exposure of poultry), physiological
properties of the animal itself (e.g. aspartate deamination
related to bovine gut adaptation), and work habits for
health protection of livestock (e.g. exposure of poultry to
mercury-based vaccines and exposure of bovine to poly-
myxin) may have also contributed to Salmonella adapta-
tion underpinned by genetic and metabolic mutations
associated with animal sources through the food chain.

Methods
Approach
We propose to decipher the adaptation to animal
sources of Salmonella serovars. Our approach aimed at
selecting 440 isolates, representative of most animal
sources, sequenced using paired-end reads and recorded
in a curated and synthetized subset of Enterobase (i). Sec-
ondly, accessory genes and coregenome variants (i.e. SNPs
and InDels) were detected (ii). Thirdly, accessory genes
and coregenome variants (i.e. SNPs and InDels) were asso-
ciated with the animal sources of interest (i.e. avian, bo-
vine, swine and fish) based on an implementation of
microbial GWAS correcting for strong population struc-
ture (iii). Finally, GOEA were performed in order to
decipher metabolic pathways mainly impacted by the pan-
genomic mutations associated with the animal sources
(i.e. accessory genes and coregenome variants) (iv).

Selection of a genome dataset (i)
With regard to metadata from Enterobase (i.e. December
2016: 83618 records), we selected 440 isolates in order to
depict a high level of genomic diversity of Salmonella enter-
ica subsp. enterica serovars, potentially related to mono- or
multi-animal sources [58]. The corresponding reads were
downloaded from the ENA [115]. With a homemade python
script (version 2.7), the metadata from Enterobase was cu-
rated retaining complete records (i.e. BioProject, ENA ID,
Host, sample Matrix, serovar, source niche, source origin,
source details, country and collection years) and standardiz-
ing typos. Based on this curated subset of Enterobase (i.e.
37,747 records), the samples from environment, composite
foods of the retail market and humans were not retained be-
cause they are considered as vectors of pathogen expositions
and exposed susceptible consumers in the present study fo-
cusing on adaptation to animal sources (i.e. 13,635 records
of considered sources). Taking into account the unbalanced
distributions of serovars and sources in this curated

database, indexes representative of the association levels of
animal sources were calculated for each serovar and each

source. These indexes ( i ¼ log %ðserovarsourceÞ
%ðstrainssourceÞ ) represent the

common logarithm of the number of strains per source for
each specific serovar (%ðserovar sourceÞ) divided by the num-
ber of strains per source in the full curated database (%ð
strains sourceÞ ). Deviations from 0 correspond to over- or
under-representation of the serovar in the source. Chi-
square tests of uniformity of these indexes for each serovar
allowed sorting of serovars from potential multi-animal
sources (p > 0.02 with i ≈ 0) to potential mono-animal
sources (p < 0.02 with i > 0 for over-represented serovars or
i < 0 for under-represented serovars). Based on the curated
and synthetic subset, we built a collection of 440 genomes
so that its composition was genetically diversified (i.e. 15 ser-
ovars) and roughly balanced considering animal sources (i.e.
mono- and multi-animal sources from 4 animal sources).
More precisely, 20 genomes from each of 3 serovars from
potential mono-animal sources were selected for each of the
studied sources: avian, bovine, swine and fish (i.e. 240 ge-
nomes). Between 60 and 80 genomes from each of 3 sero-
vars from potential multi-animal sources (i.e. 200 genomes)
were added in order to get a roughly balanced dataset of
potential mono- and multi-animal sources. The balance be-
tween mono- and multi-animal sources was deliberate and
used to evaluate the impact on several confounding factors
during microbial GWAS. The manual selection of isolates
was performed checking the animal sources and respecting
high levels of diversity concerning the geographical origins,
isolation dates and BioProject accession numbers.

Coregenome variants (ii)
The coregenome SNPs and small InDels were detected
based on the variant caller HaplotypeCaller implemented in
the iVARCall2 workflow [11], using Salmonella Typhimur-
ium LT2 (NCBI NC_003197.1) as a reference genome, and
following the best practices proposed by the Genome Ana-
lysis ToolKit [116]. More precisely, secondary alignments
around small InDels were performed and duplications were
excluded before variant calling analysis via local de novo
assembly of haplotypes in active regions. The variants (i.e.
SNPs and InDels) were flagged with SnpSift (version 4.1 g)
[117] and the functional annotations of these variants were
obtained with SNPeff (version 4.1 g without variants from
intron, UTR-5′, UTR-3′, upstream regions, and down-
stream regions) [118]. As previously described, variants
from homologous recombination events were detected with
ClonalFrameML [13] and excluded to build set of 38,837
variants, or not to build set of 178,351 variants, with the
script ‘Clonal_VCFilter’ [11]. The pseudogenomes were
produced with the script ‘VCFtoPseudoGenome’ and cor-
respond to the reference genome where the genotypes of
detected variants were replaced in each genome [11].
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Accessory genome (ii)
With an in-house workflow called ARTwork, the assembly
was performed based on coverage control (i.e. > 100X) with
Bbmap [119], read normalization (i.e. 100X) with Bbnorm
[120], control of read quality with FastQC [121], read trim-
ming (i.e. > 20 of Quality Control) with Trimmomatic
[122], de novo assembly with SPAdes [123], selection of the
closely related reference genomes with MinHash among 74
reference circular genomes [124], scaffolding with MeDuSa
[125], gap filling with GMcloser [126], trimming of small
scaffolds (i.e. < 200 bases) with Biopython [127], as well as
control of assembly quality with QUAST [128], MultiQC
[129] and ggplot2 [130] graphics. Based on these draft ge-
nomes, pangenome was constructed with Roary [131] set-
ting 95% of identity for blastp and a strict definition of the
coregenome (i.e. 100% of isolates with core genes).

Population structure (iii)
The phylogenomic reconstructions were performed based
on the coregenome variants including or excluding variants
from homologous recombination events (i.e. pseudogen-
omes from iVARCall2 [11]), as well as core genes (i.e.
concatenated orthologous genes from Roary [131]). IQ-Tree
[132] was applied on our datasets made up of millions of

aligned sites to perform fast selections of the models of evo-
lution based on Akaike Information Criteria (AIC) [133]
and efficient tree reconstructions by maximum likelihood
based on the most appropriated model of evolution [132].
More precisely, the consensus trees were produced consid-
ering all possible Nearest-Neighbor-Interchanges (NNIs) in-
stead of only surrounded computed NNIs [132]. The search
in the tree space started from a BIONJ tree [132] and an im-
proved version [134] of the ultrafast bootstrap [135] was ap-
plied with 1000 iterations to compute boostrap support
values. UFBoot convergences were checked after the IQ-
Tree computation [132]. As stated in the literature, Salmon-
ella enterica subsp. indica is the subspecies closest to subsp.
enterica and was consequently used as an outgroup to root
the tree of the subspecies enterica [59, 64]. Practically, this
subspecies enterica root was identify using three isolates of
the subsp. indica (SRR1840570, SRR1060719 and
SRR1060512) and three isolates of each studied serovar. The
tree distances were compared numerically with the cophe-
netic function of the ‘dendextend’ R package based on the
Pearson, Kendall and Spearman correlations (i.e. between −
1 and + 1, referring to anti-correlated and correlated dis-
tances) [136]. The tree topologies were compared visually
with the cophylo function of the ‘phytools’ R package [137].

Table 6 Summary of microbial GWAS. Microbial GWAS developed until now are listed comparing their workflows, mutations of
interest, studied phenotypes and genome dataset

Workflow Explicative
mutations

Population structure
correction

Trait Species Sample Reference
a

bespoke Phenotype +
kmer

YES Preferential host Campylobacter jejuni 192 [30]

PhyC Phenotype +
SNP

YES Antibiotic
resistance

Mycobacterium tuberculosis 123 [33]

N/A Phenotype +
SNP

NO Virulence Staphylococcus aureus 90 [32]

Scoary Gene YES Antibiotic
resistance

Streptococcus pneumoniae 3085 [38]

Gemma SNP YES Antimicrobial
resistance

M. tuberculosis, S. aureus, E coli, K.
pneumoniae

3144 [40]

Treewas SNP + Gene +
kmer

YES Antimicrobial
resistance

Neisseria meningitidis ND [41]

PLINK SNP NO Drug resistance Mycobacterium tuberculosis 123 [36]

PhyC SNP ND Drug resistance Mycobacterium tuberculosis 498 [39]

RoadTrips SNP NO Drug Resistance Staphylococcus aureus 75 [34]

PLINK SNP NO Drug resistance Streptococcus pneumoniae 3701 [35]

Scoary Gene YES Geographical origin Salmonella enterica 1327 [28]

DBGWAS kmer YES Antibiotic
resistance

M. tuberculosis, S. aureus, P. aeruginosa 1302, 992,
282

[42]

Scoary +
GEMMA

Gene + SNPs YES Cold persistence Listeria monocytogenes 51 [29]

PLINK SNP NO Drug resistance HIV 343 [140]

PLINK SNP NO Viral load HIV 1071 [31]

FaST-LMM SNP YES Drug resistance Plasmodium falciparum 1063 [37]
a references completed from Power et al. [43]. ND stands for not determined
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The tree distances were also numerically compared comput-
ing the Fowlkes-Mallows index (i.e. between 0 and 1, refer-
ring to dissimilar and similar topologies, respectively) with
the dendrogram function of the ‘dendextend’ R package
[138], and the Robinson-Foulds index (i.e. number of differ-
ent nodes between both tree) with the treedist function of
the ‘phangorm’ R package [139].

Genome wide association study (iii)
Within a range from 51 Listeria monocytogenes [29] to
3701 Streptococcus pneumoniae strains [35] and without
consensus on the appropriated size of genome dataset,
most of the microbial GWAS includes around 500 sam-
ples under clonal and/or panmictic status (Table 6) [43].
Contrary to human GWAS focusing on the effects of
individual SNPs, microbial GWAS has also to access
phenotype associations based on presence/absence of
genes alongside SNPs [43]. In addition, microbial GWAS
has to take into account confounding factors such as
genome selection, homologous recombination events,

population structure related to Linkage Disequilibrium
(LD), and genome wide significance, because they can
induce false positive identifications of seemingly causal
mutations [43, 141]. With regard to the confounding
factors (Additional file 1), we applied the developed mi-
crobial GWAS (Fig. 5) based on GEMMA [40]. This
workflow was applied to 440 genomes, comparing differ-
ent sizes of genome dataset, taking into account variants
from homologous recombination events and checking
population structure corrections. The associated muta-
tions (i.e. Wald tests) refer to polygenicity with regard to
QQ plots from microbial GWAS (i.e. p < 1 × 10− 2), and
present high (i.e. > 5%) and low (i.e. < 5‰) frequencies of
presence or absence (i.e. genes and alternative variants) in
the studied and compared genomes, respectively.

Gene ontology enrichment analysis (iv)
Based on our recently published workflows called ‘Get-
GOxML’ and ‘EveryGO’ aiming at retrieving GO-terms on-
line from coregenome variants and perform GOEA at any

Fig. 5 Developed scripts and published programs (i.e. black letters) with their corresponding effects (i.e. green letters) implemented in the driving
script ‘microbial-GWAS’ performing microbial GWAS integrating Linear Mixed Model (LMM) for population structure correction. Based on the LMM
integrated in GEMMA, the sequential workflow called ‘microbial-GWAS’ is written in R and Python 2.7. It runs successively scripts called ‘binary’,
‘panGWAS’, ‘coreGenVarNb’, ‘overImpacted’ and ‘AllResults’ in order to standardize SNPs, InDels and genes as binary data, compute Kinship matrix,
fit a LMM and perform Wald tests, as well as detect coregenome variants presenting high gene densities (i.e. hotspots of variants) and high
functional impacts (i.e. non-synonymous variants)
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node of a phylogenomic reconstruction [11], we developed
an improved workflow called ‘fastGSEA’ (Fig. 6). This work-
flow ‘fastGSEA’ produces a fast GOEA dependently of a
local Uniprot dataset of GO-terms to decrease the execution
duration, and provide a complete automatic workflow
applicable to many kinds of gene identifiers (i.e. 15 different
gene identifiers) [56]. This workflow can also produce a
slower GOEA dependently of the current version of an ap-
plication programming interface provided by QuickGO (i.e.
‘Annotations’ https://www.ebi.ac.uk/QuickGO/api/index.ht
ml). The driver script ‘fastGSEA’ is written in Python (ver-
sion 2.7) and uses as input a dataset of gene identifiers (i.e.
idmapping.selected.table.gz; current release from Uniprot:
ftp://ftp.uniprot.org/). It requires also two lists of gene iden-
tifiers from the sample of interest and universe, as well as a
file representing the DAG of GO-terms (i.e. go-basic.obo
including eukaryotic and prokaryotic GO-terms or gosub-
set_prok.obo including only prokaryotic GO-terms). The
first step of the workflow ‘fastGSEA’ aims at selecting from
the dataset ‘idmapping’, a subset of gene identifiers linking
the gene identifiers provided by the user, corresponding
Uniprot identifiers and associated GO-terms from the sam-
ple and universe lists locally (i.e. based on GO-terms from

the subset) or online (i.e. based on Uniprot identifiers from
the subset). Secondly, the workflow uses the DAG of GO-
terms to retain prokaryotic GO-terms and avoid obsolete
GO-terms. The third step of the workflow tests the hyper-
geometric distributions of GO-terms (i.e. ‘phyper’ R func-
tion) [142] and corrects the produced p-values based on the
Bonferroni correction (‘p.ajust’ R function) [143]. In parallel
to a file centralizing the results (i.e. GO-terms, number of
hits, GO levels, p-values, ontology), the workflow ‘fastGSEA’
produces finally a graphical representation of the GOEA
with the plotting system ggplot2 [130].

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12864-019-6188-x.

Additional file 1. Confounding factors of microbial GWAS. The
confounding factors of microbial GWAS include the selection of
genomes, homologous recombination events, population structure, as
well as genome wide significance.

Additional file 2. Distribution of source niches and source types
of Salmonella enterica subsp. enterica serovars from Enterobase among
full records in terms of read identifier, serovar, source niche, source niche,
source detail, BioProject accession number of the European Nucleotide

Fig. 6 Developed scripts and published programs (i.e. black letters) with their corresponding effects (i.e. grew letters) implemented in the driving
script ‘fastGOEA’ performing GOEA based on the parent-child approach integrating hypergeometric tests and Bonferroni corrections. This
workflow examines the Uniprot API (i.e. slow mode) or by default a local dataset of gene identifiers (fast mode) from Uniprot (i.e.
idmapping.selected.table.gz) in order to associate GO-terms to gene identifiers provided by the user as two lists referring to the sample and
universe of hypergeometric tests. With regard to a directed acyclic graph (DAG) of GO-terms (i.e. go-basic.obo including eukaryotic and
prokaryotic GO-terms or gosubset_prok.obo including prokaryotic GO-terms), this workflow retains prokaryotic GO-terms and avoids obsolete GO-
terms before to perform GOEA. These scripts were written with Python 2.7 and implement R libraries ‘p.ajust’, ‘phyper’ and ‘ggplot2’. The whole
workflow is automated and the scripts ‘trim’ and ‘enrich’ has to be performed for each GO-terms during trimming and enrichment
steps, respectively
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Archive (ENA), date of isolation and country of isolation. Due to typos
and missing information, the metadata of Enterobase was downloaded
on December 2016 (83,618 records), then curated and synthesized (i.e.
37,747 records) with a homemade python script (version 2.7). The present
study focusing on adaptation to animal sources (n = 13,635 records) does
not include isolates from composite foods of the retail market and
humans, which are considered as vectors of pathogen expositions and
exposed susceptible consumers, respectively.

Additional file 3. Samples of Salmonella enterica subsp. enterica serovars
studied in the present study (n = 440). The read identifier, serovar, source
niche, source detail, BioProject accession number of the European
Nucleotide Archive (ENA), date of isolation and country of isolation were
retrieved from Enterobase on December 2016. ND stands for not
determined and corresponds to three samples added to reach a
balanced dataset of genomes.

Additional file 4. Boxplots (median, 25th percentile, 75th percentile,
minimum and maximum) of depth (A) and breadth (B) coverages,
numbers of scaffolds higher than 1000 bp (C), NG50 (D), genome
fractions (E), and number of genes resulting of pangenome extraction (F)
of Salmonella enterica subsp. enterica serovars (n = 440). Assembly, variant
calling analysis, computing of metrics, and pangenome analysis were
performed with ARTWork, iVARCall2, Quast-MultiQC and Roary, respectively.
Salmonella Typhimurium LT2 (NCBI NC_003197.1) was used as the reference
genome for mapping during variant calling analysis. Black dots represent
the sizes of the closely related reference genomes selected among 74
reference-circularized genomes based on MinHash distances.

Additional file 5. Topology differences of phylogenomic trees
of Salmonella enterica subsp. enterica serovars (n = 440). The
phylogenomic trees were reconstructed by maximum likelihood selecting
the most appropriated models of evolution and checking ultrafast
bootstrap convergences (i.e. IQ-Tree). The compared approaches ‘variants’
and ‘genes’ correspond to phylogenomic reconstructions based on pseu-
dogenomes from variant calling analysis (i.e. iVARCall2) including (A) or
excluding (B) recombination events (i.e. ClonalFrameML), and
concatenated orthologous genes (C) from pangenome analysis (i.e.
Roary), respectively. These graphical representations were produced with
the cophylo function of the ‘phytools’ R package. Most of the branches
of the trees (i.e. 85, 55 and 77% for approaches A, B and C, respectively)
are supported by bootstrap values higher than 90% and the
corresponding newick files are accessible under request.

Additional file 6. Quantile-Quantile (QQ) plots from microbial GWAS
aiming to identify polygenicity during associations of accessory genes
and coregenome variants including homologous recombination events
of Salmonella enterica subsp. enterica serovars (n = 440) with avian (A),
bovine (B), swine (C) and fish (D) sources. The samples were assigned to
potential mono- and multi-animal sources based on a curated and
synthetic version of Enterobase. The absence of GEMMA convergence is
represented by a cross. The red line (i.e. - log10(observed p-values) = -
log10(expected p-values)) corresponds to the reference line reflecting the
level of population structure correction.

Additional file 7. Quantile-Quantile (QQ) plots from microbial GWAS
aiming to identify polygenicity during associations of accessory genes
and coregenome variants excluding homologous recombination events
of Salmonella enterica subsp. enterica serovars (n = 440) with avian (A),
bovine (B), swine (C) and fish (D) sources. The samples were assigned to
potential mono- and multi-animal sources based on a curated and
synthetic version of Enterobase. The absence of GEMMA convergence is
represented by a cross. The red line (i.e. - log10(observed p-values) = -
log10(expected p-values)) corresponds to the reference line reflecting the
level of population structure correction.

Additional file 8. Microbial GWAS results aiming to associate accessory
genes and coregenome variants of Salmonella enterica subsp. enterica
serovars (n = 440) with animal sources (i.e. avian bovine, swine and fish).
The microbial GWAS was performed with the workflow ‘microbial-GWAS’
based on Linear Mixed Model (LMM) for population structure correction
and Wald tests for association. The genome dataset includes both
genomes assigned to potential mono- and multi-animal sources based
on a curated and synthesized version of Enterobase. The associated mu-
tations (i.e. Wald tests) refer to polygenicity with regard to Quantile-
Quantile (QQ) plots from microbial GWAS (i.e. p < 1 × 10− 2) and present

high (i.e. > 5%) and low (i.e. < 5‰) frequencies of presence or absence
(i.e. genes and alternative variants) in the studied and compared ge-
nomes, respectively.

Additional file 9. GO-terms enriched by GOEA applied on accessory
genes and coregenome variants of Salmonella enterica subsp. enterica
serovars (n = 440) associated with animal sources (i.e. avian bovine, swine
and fish). The GOEA was performed with the workflow ‘fastGSEA’ based on
the parent-child approach integrating hypergeometric tests and Bonferroni
corrections. The GOEA input sample is a list of corresponding RefSeq
identifiers of accessory genes (i.e. RefSeq from Roary) and coregenome
variants (i.e. NP from SNPeff 4.1 g) associated by microbial GWAS. The input
universe is a list of RefSeq identifiers of all accessory genes (i.e. RefSeq from
Roary) and all core genes (i.e. NP from SNPeff 4.1 g). BP, MF and CC stand
for Biological Process, Molecular Function and Cellular Component,
respectively.
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