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Introductory paragraph:  31 

Assessing the impact of variation in chloroplast and mitochondrial DNA (collectively termed the 32 

plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from 33 

nuclear derived variation (the nucleotype). Haploid inducer lines can be used as efficient plasmotype 34 

donors to generate new plasmotype-nucleotype combinations (cybrids) (Ravi et al., 2014). We 35 

generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and 36 

extensively phenotyped these lines for 1859 phenotypes under stable and fluctuating conditions. We 37 

show that natural variation in the plasmotype results in additive as well as epistatic effects across all 38 

phenotypic categories. Plasmotypes which induce more additive phenotypic changes also cause more 39 

significant epistatic effects, suggesting a common basis for both additive and epistatic effects. This 40 

quick and precise method allows accurate assessment of the phenotypic effects of natural variation in 41 

organellar genomes on plant performance and efficient screening for favourable nucleotype-42 

plasmotype combinations and thus improve plant performance. 43 

Chloroplasts and mitochondria play essential roles in metabolism, cellular homeostasis and 44 

environmental sensing (Chan et al., 2016). Their genomes contain only a limited set of genes whose 45 

functioning requires tight coordination with the nucleus through signaling pathways that modulate 46 

nuclear and organellar gene expression (Kleine and Leister, 2016). Plasmotype variation can be 47 

strongly additive, such as in the case of chloroplast encoded herbicide tolerance (Flood et al., 2016), 48 

or can manifest in complex cytonuclear interactions as non-additive, non-linear effects (epistasis), 49 

such as found for secondary metabolites (Joseph et al., 2013). The phenotypic consequences of 50 

epistasis can be detected when a plasmotype causes phenotypic effects in combination with some, 51 

but not all nuclear backgrounds. Recent studies suggest that cytonuclear epistasis is the main route 52 

through which variation in the plasmotype is expressed (Zeyl et al., 2005; Montooth et al., 2010; 53 

Joseph et al., 2013; Joseph et al., 2013; Tang et al., 2014; Roux et al., 2016; Mossman et al., 2019) 54 

and that additive effects are both rare and of small effect. 55 

 Plasmotypic variation is relevant from an agricultural as well as evolutionary perspective 56 

(Levings, 1990; Bock et al., 2014; Dobler et al., 2014), but to understand, or utilize it, it is necessary to 57 

separate nuclear from mitochondrial and chloroplastic effects. Reciprocal-cross designs, where 58 

nucleotypes segregate in different plasmotypic backgrounds, have been used to identify plasmotype-59 

specific quantitative trait loci (Joseph et al., 2013; Tang et al., 2014), but are limited to just two 60 
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plasmotypes. A larger number of plasmotypes can be studied using backcross designs where 61 

plasmotypes are introgressed into different nuclear backgrounds (Dowling et al., 2007; Sambatti et al., 62 

2008; Miclaus et al., 2016; Roux et al., 2016), but backcross approaches are lengthy and any 63 

undetected nuclear introgressions may confound the results.  64 

To precisely and rapidly address the contribution of organellar variation to plant phenotypes, 65 

we explored the use of a haploid inducer line available in Arabidopsis (GFP-tailswap) (Ravi and Chan, 66 

2010; Ravi et al., 2014). When pollinated with a wild-type plant, the GFP-tailswap nuclear genome is 67 

lost from the zygote through uniparental genome elimination. This generates haploid cybrid offspring 68 

with a paternally derived nuclear genome and maternally (GFP-tailswap) derived mitochondria and 69 

chloroplasts (Fig. 1B). These haploid plants produce stable diploid (doubled haploid) offspring 70 

following genome duplication or restitutional meiosis (Ravi and Chan, 2010). We set out to test the use 71 

of this approach to investigate how plasmotypic variation affects plant phenotypes and to what extent 72 

this variation manifests itself as additive variation or as cytonuclear epistasis. 73 

Seven different Arabidopsis accessions were selected for our experiment: six that represent a 74 

snapshot of natural variation (Bur, C24, Col-0, Ler-0. Shah, WS-4) and Ely, an accession with a large-75 

effect mutation in the chloroplast-encoded PsbA gene (El-Lithy et al., 2005). This mutation results in 76 

reduced photosystem II efficiency (El-Lithy et al., 2005; Flood et al., 2014) and was included to 77 

evaluate the consequence of a strong plasmotype effect in our test-panel. We first generated haploid 78 

inducers for all seven plasmotypes (Fig. 1A) and then used each inducer to generate cybrid offspring 79 

for all seven nucleotypes (Fig. 1C). Wild-type nucleotype-plasmotype combinations were also 80 

regenerated in this way (hereafter referred to as self-cybrids) to later compare these with their wild-81 

type progenitors. The genomes of all haploid cybrids were resequenced for genotype verification, 82 

resulting in the exclusion of BurC24, (a Bur nucleotype with a C24 plasmotype) and BurBur (see Online 83 

methods; Supplementary Fig. 1). With the exception of ElySha for which we obtained seeds at a later 84 

stage, we obtained doubled haploid seeds from all haploid cybrids resulting in a testpanel of 46 85 

cybrids and 7 wildtype progenitors. To visualize the genetic variation between lines within our panel 86 

we generated neighbor joining trees for the nuclear, mitochondrial and chloroplast genomes 87 

(Supplementary Fig. 2 to 5). The nucleotypes were found to be approximately equidistant, while the 88 

Ler, Ely and Col plasmotypes appear to be more closely related to each other than the other 89 

plasmotypes. 90 
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 91 

Figure 1. Generation of a cybrid test panel. A) Generation of a new haploid inducer (HI) line with a 92 

new plasmotype. The HI expresses a GFP-tagged CENH3/HRT12 in a cenh3/htr12 mutant 93 

background. A cross of a wild type (female) with a HI (male) results in a hybrid F1. A diploid F1 is 94 

selected in which no genome elimination has occurred. Self-fertilization generates an F2 population in 95 

the plasmotype of the wild-type mother. From this an F2 plant is selected that is homozygous for the 96 

cenh3/htr12 mutation and carries the GFP-tailswap transgene. This F2 plant is a new HI line and can 97 

serve as plasmotype donor when used as female in crosses. Vertical bars represent the nucleotype, 98 

and the ovals represent the plasmotype. HI centromeres are indicated in green (signifying GFP-tagged 99 

CENH3/HTR12 proteins as encoded by the GFP-tailswap construct) that cause uniparental genome-100 

elimination. B) HI lines can function as plasmotype donors when used as a female parent. In this case, 101 

uniparental genome elimination (red arrow) leads to a haploid offspring plant with the nucleotype of 102 

the wild-type (WT) male parent, but the plasmotype of the HI mother. C) Full diallel of all nucleotype-103 

plasmotype combinations for which cybrids were generated. The diagonal line highlights the wild-type 104 

(WT) nucleotype-plasmotype combinations that were generated by crossing wild-type plants to 105 

plasmotype donors with the plasmotype of the wild type (self-cybrids).  106 

  107 
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We phenotyped the cybrid panel under constant environmental conditions for absolute and 108 

relative growth rate, biomass accumulation, epinastic leaf movement, photosystem II efficiency (ΦPSII), 109 

non-photochemical quenching (NPQ), and elements thereof (ΦNO, ΦNPQ, qE and qI), a reflectance-110 

based estimate of chlorophyll, flowering time, pollen abortion, germination and primary metabolites. To 111 

simulate more variable conditions that are frequently encountered in the field, we also screened the 112 

panel under fluctuating light for all the above-mentioned photosynthesis-related phenotypes, and 113 

assayed germination rates under osmotic stress and after a controlled deterioration treatment. 114 

Counting individual metabolite concentrations and single time points in the time series separately, we 115 

collected in total 1859 phenotypes (Supplementary Data 1). To avoid overrepresentation of highly 116 

correlated and non-informative phenotypes we selected a subset of 92 phenotypes (Online methods) 117 

comprising 24 from constant growth conditions, 32 from fluctuating or challenging environmental 118 

conditions and 36 primary metabolites for further analysis (Supplementary Table 1).  119 

Comparison of six self-cybrids with their genetically identical wild-type progenitors for these 92 120 

phenotypes did not reveal significant phenotypic differences (Supplementary Table 1) from which we 121 

infer that uniparental genome elimination is a robust method to generate cybrids. To determine the 122 

relative contributions of additive nucleotype and plasmotype effects, as well as their interactions 123 

(epistatic effects) to the observed phenotypic variation, we estimated the fraction of the broad sense 124 

heritability (H2; also called repeatability (Falconer and Mackay, 1996)) explained by each. Across the 125 

entire panel the average contribution to H2 of nucleotype, plasmotype and nucleotype-plasmotype 126 

interaction was 65.9%, 28.2% and 6.0% respectively (Supplementary Table 2 and 3; Supplementary 127 

Data 1). Most of this plasmotype derived variation was caused by the Ely plasmotype, arising from the 128 

psbA mutation. When this plasmotype was excluded from the analysis, the nucleotype, plasmotype 129 

and their interaction account for 91.9%, 2.9% and 5.2% of the genetic variation, respectively 130 

(Supplementary Table 2 and 3; Supplementary Data 1). So, while nucleotype-derived additive 131 

variation is the main genetic determinant of the cybrid phenotype, variation caused by plasmotype 132 

additive effects as well as epistatic effects results in substantial phenotypic differences. 133 

We sought to assess whether there are general patterns in how specific nucleotypes and 134 

plasmotypes interact. To this end we first assessed which plasmotype changes result in additive 135 

phenotypic changes. Plasmotype replacements involving the Ely plasmotype lead to additive changes 136 

in, on average, 50 (out of 92) phenotypes across the 7 nucleotypes. Changes involving the Bur 137 
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plasmotype lead to on average 10 significant additive effects (Table 1A), 8 of which are 138 

photosynthesis-related (Supplementary Data 2). Other plasmotype changes show on average one 139 

additive effect, in predominantly non-photosynthetic phenotypes. Comparison of wild-type cytonuclear 140 

combinations with all their iso-nuclear cybrid lines also shows that plasmotype changes involving Ely 141 

and Bur plasmotypes show the most epistatic effects (on average 43 and 6 respectively) (Table 1B). 142 

The number of epistatic effects resulting from the Bur plasmotype range between 0 (LerLer vs LerBur) to 143 

10 (ShaSha vs ShaBur), indicating high variability. Plasmotype changes involving other plasmotypes 144 

show more modest numbers of significant epistatic effects that range from 0 to 6. Plasmotypes that 145 

result in more additive effects also cause more epistatic effects (correlation coefficient of 0.8) 146 

suggesting a common cause (Supplementary Table x). 147 

  148 
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Table 1. Plasmotype changes cause significant changes in 92 phenotypes. A) Number of 149 

observed significant plasmotype additive effects when a specific plasmotype is changed for another 150 

plasmotype. Note that the replacement of Bur (top row) and Ely plasmotypes (last column) result in 151 

most plasmotype additive effects. For underlying p-values and phenotypes see Supplementary data 2. 152 

B) Number of observed significant epistatic effects in phenotypes between wild-type nucleotype-153 

plasmotype combinations and cybrids with different plasmotypes. Rows indicate the number of 154 

significant effects when comparing self-cybrids to cybrids with identical nucleotype but non-native 155 

plasmotype. Columns indicate specific plasmotype changes. Note that changing the Ely plasmotype 156 

for another plasmotype (bottom row and last column) results in many epistatic effects due to the large-157 

effect mutation in the chloroplast-encoded PsbA gene of the Ely plasmotype. Similar effects, but of 158 

smaller magnitude, result from changing the Bur plasmotype (top row and first column). Posthoc tests 159 

for A done with Hochberg’s test and for B with Dunnet test, α = 0.05. nd = not determined. For 160 

underlying p-values and phenotypes see Supplementary data 2. Yellow cells indicate low number of 161 

significant epistatic effects; blue cells show higher number of significant effects. 162 
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ShaSha 10 2 1 1  2 40 

Ws-4Ws-4 4 3 0 0 4  37 

ElyEly 41 45 44 42 nd 42  

0																																												48 
# of significant phenotypes 

0																																												55 
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Figure 2. The fraction of explained genetic variation (H2) for photosynthesis phenotypes differs 164 

depending on light conditions. A) shows the fraction of H2 for plasmotype epistatic effects. B) shows 165 

the fraction of H2 for plasmotype additive effects. C) shows the light intensity for three consecutive 166 

days with growth under steady light (day 1), sinusoidal light intensity (day 2) and fluctuating light 167 

intensity (day 3). Days are separated by nights (shaded areas). Note that the fraction of H2 for different 168 

phenotypes changes markedly during days 2 and 3. Some phenotypes are explained largely by 169 

additive effects (i.e. qE) while others by interaction (i.e. ΦNPQ). 170 
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171 
Figure 3. Plasmotype changes result in cytonuclear epistasis, and in the case of cybrids with 172 

the Ely and Bur plasmotype also in additive effects. A) Pollen abortion, percentage of dead pollen 173 

out of 250. B) PSII efficiency (ΦPSII) 71.46 hours after start of experiment, after a full day of fluctuating 174 

light with a maximum difference between 500 and 100 µmol/m2/s irradiance (see Fig. 2C for light 175 

treatment). C) NPQ at 38.46 hours after start of experiment, which is at 300 µmol/m2/s on a sigmoidal 176 

light curve starting at 65 µmol/m2/s. D) The rapidly reversible component of NPQ, qE, at 259 µmol/m2/s 177 

after a full day of fluctuating light with a maximum difference between 500 and 100µmol/m2/s. X-axis 178 

are labelled with the plasmotype, and the colours represent the nucleotypes. Any deviation from a 179 

horizontal line represents a potential additive or epistatic effect. Error bars represent the standard error 180 

of the mean. The * in panel A indicates a unique significant difference between the ShaSha cybrid and 181 

other nucleotypes with Sha nucleotype (epistasis) (Hochberg’s test, n=4-10). The letters above panels 182 

B, C and D represent significant differences between plasmotypes regardless of the nucleotype 183 
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(additivity) (Hochberg’s test, n=4*7). For panels B, C and D plants were grown at 200 µmol/m2/s for 21 184 

days prior to starting the experiment. 185 

Though the average total explained variance due to the cytonuclear epistasis is only 5.2%, 186 

these interactions can have strong effects for specific phenotypes or in specific cybrids. Explained 187 

variance for some phenotypes can be markedly higher, for example for projected leaf area this 188 

amounts to 12.3%, for hyponastic leaf movement to 8.3% and for ΦNPQ to 17.8%. A strong epistatic 189 

effect in pollen viability (43.5%) was due to relatively high pollen abortion in ShaSha (Fig. 3A) that we 190 

also observed in Sha wildtype. The only cybrid for which we initially failed to obtain seed was ElySha. 191 

This haploid was regenerated and pollinated with wild-type Ely pollen to increase the chance of seed 192 

set. The diploid offspring were male sterile, indicating that in combination with the Ely nucleotype the 193 

Sha plasmotype results in cytoplasmic male sterility (Supplementary Fig. 7). In combination with the 194 

Sha plasmotype pollen abortion across the seven nucleotypes can range from near zero, to 10% in 195 

ShaSha and to full male sterility in ElySha, highlighting the strong epistasis that can be present. 196 

Cybrids with the Ely plasmotype exhibit clear additive effects: all have a lower PSII efficiency 197 

(ΦPSII) (Fig. 3A) and lower values for other photosynthesis related phenotypes i.e. NPQ, qE and 198 

chlorophyll content (Fig. 3C and Supplementary Fig. 5). This reduced ΦPSII is likely to be responsible 199 

for the concomitant reductions in biomass (Fig. 3B), growth rate and seed size and altered primary 200 

metabolite content (Supplementary Data 2). To check whether this additivity could also be detected at 201 

the level of gene expression we contrasted the transcriptome of ElyEly with those of cybrids with Ler 202 

and Bur plasmotypes. We also studied the Ely, Ler and Bur plasmotypes in a Ler nuclear background 203 

(Supplementary Data 3; for details see Supplementary Fig. 9 and Supplementary table 5). Exchanging 204 

the Ely plasmotype with Ler or Bur, in either the Ler or Ely nuclear background resulted in a consistent 205 

change in the expression of 40 genes (Supplementary Data 3). A GO-term analysis of the gene set 206 

where the Ely plasmotype has an additive impact on expression is significantly enriched for genes 207 

involved in photorespiration (GO:0009853) and in glycine- and serine family amino acid metabolism 208 

(GO:0006544 and GO:0009069) (Supplementary data 3). This is in line with the low serine and glycine 209 

content of cybrids with Ely plasmotypes suggesting reduced photorespiration (Somerville and Ogren, 210 

1980), which can be linked to lower overall photosynthetic activity.  211 

The Ely plasmotype was deliberately included in our panel for its strong additive effect. In 212 

addition to Ely we also observed strong additive effects by the Bur plasmotype which were mainly 213 
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restricted to the photosynthetic parameters. Under normal conditions PSII efficiency is slightly 214 

increased by the Bur plasmotype (1.6%), however when fluctuating the light intensity, this difference 215 

becomes more apparent (3.5% increase) (Fig 3B). This increase in ΦPSII, under fluctuating conditions 216 

results in a corresponding reduction in ΦNO and ΦNPQ of 7.3% and 2.2% respectively. NPQ, qE and qI 217 

are also influenced by the plasmotype, but the time points at which these differences occur differs per 218 

phenotype (Fig. 2A and B). The Bur plasmotype shows an increase for NPQ, with the largest increase 219 

of 5.9% at the beginning of day 2 (38.46h) (Fig. 3C), while the largest rapidly reversible component of 220 

NPQ, qE, has a maximum reduction of 26.6% at the end of day 3 (71.46h) (Fig. 3D). These 221 

photosynthesis-related phenotypes are likely to be due to chloroplast-derived variation. In support of a 222 

chloroplastic origin for this photosynthetic variation, measurements of mitochondrial respiration 223 

suggest that Bur is not an outlier and shows standard respiration rates (Supplementary Fig 10). Based 224 

on coverage plots there are no obvious duplications or deletions in the mitochondrial or chloroplast 225 

sequences of Bur, thus we expect that altered expression or protein activity as opposed to gene gain 226 

or loss is driving the Bur derived phenotypes (Supplementary Fig. 11). We annotated the sequence 227 

variation of all plasmotypes using SNPeff (Cingolani et al., 2012). From this we found no large effect 228 

mutations in the Bur mitochondria. There were, however, unique missense variants in the chloroplastic 229 

genes MATURASE K (MATK), NAD(P)H-QUINONE OXIDOREDUCTASE SUBUNIT 6 (NDHG) and 230 

hypothetical chloroplast open reading frame 1 (YCF1) as well as a frameshift mutation in tRNA-Lys 231 

(TRNK) (Supplementary Data 4). The 7th amino acid of NDHG is changed from Isoleucine to Lysine, 232 

NDHG is part of the NAD(P)H-dehydrogenase-like complex (NDH). NDH is located inside the thylakoid 233 

membrane and acts as a proton pump in cyclic electron flow around photosystem I and 234 

chlororespiration. NDH creates a pH differential that can be causative of the observed non-235 

photochemical quenching phenotypes (Strand et al., 2017; Laughlin et al., 2019). In contrast to Ely, 236 

the plasmotype which evolved in response to the use of herbicides, an anthropogenic selective 237 

pressure (Flood et al., 2016), the Bur plasmotype represents a naturally occurring plasmotype that has 238 

an additive impact on key photosynthetic phenotype. Improving photosynthesis is a key plant breeding 239 

goal, and by testing just seven plasmotypes we have found two that significantly impact 240 

photosynthesis. Expanding our panel one is likely to find many more. Thus, future research aiming to 241 

enhance crop photosynthesis should play close attention to the impact of variation in the plasmotype.  242 
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Our experiments have shown that a clean, systematic exploration of plasmotypic variation in a 243 

plant species is feasible. The development of inducer lines for crop species would allow elite 244 

nucleotypes to be brought into new plasmotypic backgrounds to explore novel plasmotype-nucleotype 245 

combinations (REF). Exploring the potential of plasmotypic variation via the use of inducer lines is 246 

promising both for plant breeding and for understanding the ecological role such variation plays in 247 

plant adaptation (Bock et al., 2014; Dobler et al., 2014). Our data indicate that there is substantial 248 

variation for phenotypes such as NPQ and ΦPSII which are important for plant productivity (Flood et al., 249 

2011; Kromdijk et al., 2016). Finally, the increased impact of plasmotypic variation under fluctuating 250 

and stressful conditions is of interest as it suggests that much of the variation present will only be 251 

captured under specific environmental settings which is in line with studies of mitonuclear interactions 252 

in animals (Dowling et al., 2007; Hoekstra et al., 2013; Mossman et al., 2016; Hill et al., 2019). Thus to 253 

fully understand the impact and functional relevance of plasmotypic variation future studies should 254 

include additional environmental variables. 255 

256 



13 
 

Online Methods 257 

Plant materials: Seven Arabidopsis accessions were chosen for the construction of a full nucleotype-258 

plasmotype diallel. Ely (CS28631) is atrazine resistant due to a chloroplast-encoded mutation in PsbA 259 

which leads to a modified D2 protein that greatly reduces PSII efficiency (El-Lithy et al., 2005). Ws-4 260 

(CS5390) was included for its unusual photosystem II phosphorylation dynamics (Yin et al., 2012). Bur 261 

(CS76105) is commonly used in diversity panels and is a standard reference accession. Sha 262 

(CS76227) was selected based on its capacity to induce cytoplasmic male sterility in some crosses 263 

(Gobron et al., 2013). The set was completed by adding Ler (CS76164), Col (CS76113) and C24 264 

(CS76106) which are three widely used genotypes in Arabidopsis research. Col is the reference 265 

genome for nuclear and chloroplast sequences and C24 for the mitochondrial sequence. The GFP-266 

tailswap haploid-inducer that expresses a GFP-tagged CENTROMERE HISTONE 3 protein in a 267 

cenh3/htr12 mutant background, is in a Col background (Ravi and Chan, 2010).  268 

 269 

Generation of a nucleotype-plasmotype diallel: To generate new nucleotype-plasmotype 270 

combinations, plants of all seven accessions (Bur, C24, Col, Ely, Ler, Sha and Ws-4) were crossed as 271 

males to GFP-tailswap resulting in all cybrids with the Col plasmotype. New HI lines were created by 272 

crossing the original GFP-tailswap line as a male to the six additional plasmotype mothers (Bur, C24, 273 

Ely, Ler, Sha and Ws-4). Genome elimination does not always occur and some of the offspring were 274 

diploid F1 lines. These were selfed and F2 lines homozygous for the cenh3/htr12 mutation and 275 

carrying the GFP-tailswap were selected as new HI lines in different plasmotypic backgrounds (Fig. 276 

1B). Plants of all seven accessions were then crossed as males to these new HI lines and the haploids 277 

arising from these 49 crosses were identified based on their phenotype (as described in Wijnker et al. 278 

(2014)). These haploid lines self-fertilized, either following somatic genome duplication or after 279 

restitutional meiosis (Ravi and Chan, 2010), and gave rise to doubled haploid offspring (Fig. 1A). The 280 

resulting 49 lines comprise a full diallel of 21 pairs of reciprocal nucleotype-plasmotype combinations 281 

(cybrids) as well as seven nucleotype-plasmotype combinations that have, in principle, the same 282 

nucleotype-plasmotype combinations as their wild-type progenitors (self-cybrids; Fig. 1C, diagonal). All 283 

cybrids and the wild-type accessions were propagated for one generation before use in further 284 

experiments, with the exception of ElySha of which the original haploid died without setting seed and 285 
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was recreated at a later stage by generating haploids that were pollinated with Ely wild-type plants to 286 

ensure seed set.  287 

 288 

Genotype confirmation: To confirm that all cybrids in our panel are authentic, all 49 cybrids and 7 wild-289 

type progenitors were whole-genome sequenced at the Max Planck Genome Centre Cologne 290 

(Germany) using Illumina Hiseq 2500 150-bp paired-end sequencing. The cybrids were sequenced at 291 

8.5X coverage and the wild-type progenitors at 40X coverage. To remove erroneous bases, we 292 

performed adapter and quality trimming using Cutadapt (version 1.18) (Martin, 2011). Sequences were 293 

clipped if they matched at least 90% of the total length of one of the adapter sequences provided in 294 

the NEBNext Multiplex Oligos for Illumina® (Index Primers Set 1) instruction manual. In addition, we 295 

trimmed bases from the 5' and 3' ends of reads if they had a phred score of 20 or lower. Reads that 296 

were shorter than 70 bp after trimming were discarded. Trimmed reads were aligned to a modified 297 

version of the A. thaliana Col-0 reference genome (TAIR10, European Nucleotide Accession number: 298 

GCA_000001735.2) which contains an improved assembly of the mitochondrial sequence (Genbank 299 

accession number: BK010421) (Sloan et al., 2018) using bwa mem (version 0.7.10-r789) (Li, 2013) 300 

with default parameters. The resulting alignment files were sorted and indexed using samtools 301 

(version 1.3.1) (Li et al., 2009). Duplicate read pairs were marked using the MarkDuplicates tool of the 302 

GATK suite (version 4.0.2.1), using an optical duplicate pixel distance of 100, as recommended in the 303 

documentation of GATK when working with data from unpatterned Illumina flowcells. Variants were 304 

called using a workflow based on GATK Best Practices. Base quality scores of aligned reads were 305 

recalibrated using GATK BaseRecalibrator with default parameters, using a set of variants of a world-306 

wide panel of 1135 A. thaliana accessions (The 1001 Genomes Consortium, 2016) (obtained from 307 

ftp://ftp.ensemblgenomes.org/pub/plants/release-37/vcf/arabidopsis_thaliana/) as known sites. 308 

Following base recalibration, variants were called in each sample using GATK HaplotypeCaller, 309 

allowing for a maximum of three alternate alleles at each site. Samples were then jointly genotyped 310 

using GATK GenomicsDBImport and GATK GenotypeGVCFs with default parameters. This last step 311 

generated three different VCF files: one containing the calls of the nuclear genome, one containing 312 

calls of the mitochondrial genome and one containing calls of the chloroplast genome.  313 

To remove likely false positive calls, we filtered the callsets using two complementary 314 

approaches. First, we filtered the nuclear callset using GATK VariantRecalibrator and GATK 315 
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ApplyVQSR (--truth-sensitivity-filter-level set at 99.9), using the set of variants called in the world-wide 316 

panel of 1135 A. thaliana accessions as a training and truth set (prior=10.0). This step could not be 317 

performed for the mitochondrial and chloroplast calls, as these lack a golden truth set that can be used 318 

for recalibration. Second, we filtered variants based on their quality by depth score (QD). For the 319 

nuclear callset, we used a QD score of 40, leaving 3.7 million SNPs, for the chloroplast callset a QD of 320 

25, leaving 356 SNPs and for the mitochondrial callset a QD of 20, leaving 135 SNPs. 321 

46 cybrids were found to have the correct genotypes. With one line, BurWs-4, there was a 322 

sample mix-up during library preparation with ShaSha. To confirm sequences we therefore used the 323 

Sha genotype (CS76382) from the 1001 genomes project (The 1001 Genomes Consortium, 2016). 324 

Two other lines, C24C24 and Ws-4Col, had a high number of heterozygous calls, which we attributed to 325 

sample contamination. To ensure that the sample mix-up and the putative event of cross-326 

contamination had occurred in the laboratory, we designed KASPTM makers (LGC, 327 

https://www.lgcgroup.com) and genotyped all lines. These KASPTM markers are designed to be 328 

chloroplast specific,based on the obtained sequence data of the wildtypes (Supplementary Table 7). 329 

All lines showed the correct genotypes, and no heterozygosity was observed in any of the lines, 330 

including C24C24 and Ws-4Col (Supplementary Table x). Unfortunately, the ElySha used for sequencing 331 

died before setting seed and although it has since been recreated, it could not be included in our 332 

phenotypic analyses. We have used the KASPTM marker for the Sha chloroplast, and confirmed it to 333 

be correct (Supplementary Table x).  334 

To check for any incomplete chromosome elimination, we calculated the read coverage for all 335 

cybrids, normalized per chromosome. We did not observe any remaining chromosomes, although we 336 

found a 200kb duplication in BurBur and BurC24. In BurC24 and the self-cybrid BurBur we discovered the 337 

presence of a duplicated segment on chromosome 2. Because this duplicated segment is present 338 

(and identical) in two independent cybrid lines and this segment is of a Bur nuclear origin (i.e. there 339 

are only Bur SNPs in this region), we conclude this segment results from a de-novo duplication in one 340 

of the wild-type Bur lines used to generate these cybrids. Following the exclusion of phenotyping data 341 

for BurBur and BurC24 we limited our analyses to 46 rather than 49 cybrids. The parental lines were 342 

included in the screens to test for possible unforeseen effects of cybrid production (which involves a 343 

haploid growth stage). This brings the number of phenotyped lines in this study to a total of 53 (40 344 

cybrids, 6 self-cybrids and 7 wild types).  345 
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The fuctional effects of the chlorplastic and mitochondrial SNPs and INDELs were predicted 346 

using SnpEff (ref). A SnpEff database was build using the genome, transcriptome and proteome as 347 

released in TAIR10.1. SNPs and INDELs were predicted on the filtered VCF, as mentioned above. In 348 

the analysis we only considered varaints with a “HIGH” or “MODERATE” impact. 349 

 350 

Phenotyping: Cybrids were phenotypically assessed using different platforms. For details on the 351 

number of phenotypes per experiment see Supplementary Table 4. 352 

Growth, PSII efficiency (ΦPSII), chlorophyll reflectance and leaf movement (all parameters at 353 

n=24) was screened in the Phenovator platform, a high-throughput phenotyping facility located in a 354 

climate-controlled growth chamber (Flood et al., 2016). This phenotyping platform measured the plants 355 

for: ΦPSII using chlorophyll fluorescence, reflectance at 480 nm, 532 nm, 550 nm, 570 nm, 660 nm, 356 

700 nm, 750 nm and 790 nm, and projected leaf area (PLA) based on pixel counts of near infra-red 357 

(NIR) images (Flood et al., 2016). The growth chamber was set to a 10 h day/14 h night regime, at 358 

20°C day and 18°C night temperature, 200 µmol m-2 s-1 irradiance, and 70% relative humidity. The 359 

plants were grown on a rockwool substrate and irrigated daily with a nutrient solution as described in 360 

Flood et al. (2016).  361 

Growth (n=24) and subsequently above ground biomass (n=12) was measured in another 362 

high-throughput phenotyping facility (Kokorian et al., 2010), where projected leaf area was measured 363 

three times per day with 14 fixed cameras (uEye Camera, IDS Imaging Development Systems GmbH, 364 

Obersulm, Germany). This growth chamber was set to a 10 h day/14 h night regime, at 20°C day and 365 

14°C night temperature, 200 µmol m-2 s-1 light and 70% relative humidity. Plants were grown on 366 

rockwool and irrigated weekly with a nutrient solution as described before.  367 

Non-fluctuating and fluctuating light treatments were performed in the DEPI phenotyping 368 

facility of Michigan State University (n=4) (Cruz et al., 2016). This facility is able to measure the 369 

chlorophyll fluorescence derived photosynthetic parameters, ΦPSII, ΦNO, ΦNPQ, NPQ, qE, qI. Three 370 

week old plants were moved into the facility, where they were left to acclimatize for 24 hours after 371 

which three days of phenotyping was performed under different light regimes. On the first day the 372 

plants were illuminated with a constant light intensity of 200 µmol m-2 s-1. On the second day the plants 373 

received a sinusoidal light treatment where the light intensity began low and gradually increased to a 374 

maximum of 500 µmol m-2 s-1 light from which it deceased back down to 0. On the third day the plants 375 
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received a fluctuating light treatment ranging between 0 and 1000 µmol m-2 s-1 light in short intervals 376 

(Figure 2C). For the second experiment in the DEPI phenotyping facility the experiment was extent 377 

with 2 days, in which day 4 replicated day 2 and day 5 replicated day 2 (Supplementary Data 1 and 378 

Supplementary Figure 7C). For further details see Cruz et al. (2016).  379 

Bolting time and flowering time were measured on all cybrids (n=10) in a greenhouse 380 

experiment in April 2017, with the exception of Ely nucleotype cybrids which needed vernalisation and 381 

were not included in this experiment. Additional lighting was turned on when the natural light intensity 382 

fell below 685.5 µmol m-2 s-1, and turned off when the light intensity reached 1142.5 µmol m-2 s-1, with a 383 

maximum of 16 h per day. 384 

Seeds for the germination experiments were generated from two rounds of propagation. In the 385 

first-round seeds were first sown in a growth chamber set to a 10 h day/14 h night regime, at 20°C day 386 

and 18°C night temperature. 200 µmolm-2s-1 light intensity, and 70% relative humidity. After three 387 

weeks they were moved to an illuminated cold room at 4°C for six weeks of vernalization. After 388 

vernalization all plants (n=8) were moved to a temperature-controlled greenhouse (20°C) for flowering 389 

and seed ripening. Exceptions to this were LerEly, LerWs-4, and ElyWs-4 for which no doubled 390 

haploid seed was available at the beginning of the first propagation round. LerEly and LerWs-4 were 391 

sown later, during the vernalization stage and flowered at the same time as the vernalized plants. 392 

ElyWs-4 produced haploid seed at a later stage and could not be included in the first propagation 393 

round. Plants were grown in a temperature-controlled greenhouse set at 20°C. In this round only lines 394 

with the Ely nucleotype were vernalized. For the germination experiments seeds were stratified on wet 395 

filter paper for four days at 4°C before being assayed in the Germinator platform (Joosen et al., 2010) 396 

for seed size, germination rate and total germination percentage. Germination under osmotic stress 397 

was performed on filter paper with 125 mM NaCl. For the controlled deterioration treatment, seeds 398 

were incubated for 2.5, 5 or 7 days at 40°C and 82% RH and subsequently assayed in the Germinator 399 

platform without stratification. 400 

 To assess pollen abortion all cybrid lines and wild-type progenitors (except those with the Ely 401 

nucleotype) were grown simultaneously in a growth chamber (Percival) under controlled conditions 402 

(16H/ 8H light cycle, 21º/18º ºC and 50%-60% relative humidity). Pollen abortion was manually 403 

assessed for all the ecotypes by using a differential staining of aborted and non-aborted pollen grains 404 

(Peterson et al., 2010). A total of three plants and three flowers per plant of each cybrid were collected 405 
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on the same day and submerged in a drop of 13 ul of phenol-free Alexander staining solution placed 406 

on a glass slide with a glass cover slip of 18x18 mm. For each flower 250 pollen grains were counted 407 

and the number of aborted pollen therein. 408 

Oxygen consumption of seedlings was measured in 2 mL of deionized water with a liquid-409 

phase Oxytherm oxygen electrode system (Hansatech Instruments) calibrated at the measurement 410 

temperature. Three-day-old seedlings (about 50 mg) were directly imbibed in the electrode chamber. 411 

The rates of oxygen consumption were measured after tissue addition and subtracted from the rates 412 

after addition of 500 µM KCN. The remaining oxygen consumption resulting from the alternative 413 

pathway was assessed after addition of salicylhydroxamic acid (SHAM) to block alternative 414 

oxidase. Results are the mean of at least five measurements. Measurements for different ecotypes 415 

were performed on consecutive days, and to correct for daily variation normalized to Col-0 samples 416 

that were run daily. 417 

 418 

Metabolomics: Plant material for primary metabolite analysis was obtained from the ‘Phenovator’ 419 

photosynthetic phenotyping experiment. Plants were harvested 26 days after sowing, which due to the 420 

10-hr photoperiod was prior to bolting for all lines. Samples were frozen in liquid nitrogen, and samples 421 

of each genotype were subsequently combined into four pools each made up of material of 422 

approximately six replicates. Each pool was ground and homogenized before an aliquot was taken for 423 

further analysis. Reference samples for the metabolite analysis were composed of material from all 424 

seven parents in equal amounts and then homogenized. The method used for the extraction of polar 425 

metabolites from Arabidopsis leaves was adapted from Lisec et al. (2006) as described by Carreno-426 

Quintero et al. (2012). Specific adjustments for Arabidopsis samples were made as follows; the polar 427 

metabolite fractions were extracted from 100 mg of Arabidopsis leaf material (fresh weight, with max. 428 

5% deviation). After the extraction procedure, 100 µL aliquots of the polar phase were dried by 429 

vacuum centrifugation for 16 hours. The derivatization was performed on-line similar as described by 430 

Lisec et al. (2006) and the derivatized samples were analyzed by a GC-ToF-MS system composed of 431 

an Optic 3 high-performance injector (ATASTM, GL Sciences, Eindhoven, The Netherlands) and an 432 

Agilent 6890 gas chromatograph (Agilent Technologies, Santa Clara, California, United States) 433 

coupled to a Pegasus III time-of-flight mass spectrometer (Leco Instruments, St. Joseph, Michigan, 434 

United States). Two microliters of each sample were introduced in the injector at 70°C using 5% of the 435 
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sample (split 20). The detector voltage was set to 1750 Volts. All samples were analyzed in random 436 

order in four separate batches. The systematic variation that inadvertently is introduced by working in 437 

batches, was removed upon analysis of covariance. In this model the batch number was used as a 438 

factor (four levels) and “run number within a batch” as a covariate since it is also expected that (some) 439 

variation will be introduced by the sample run order within each batch. For this the S2 method 440 

described by (Wehrens et al., 2016) was used to perform the least-squares regression. After quality 441 

control and removing metabolites with more than 20% missing data and a broad sense heritability (H2) 442 

of less than 5%, we were left with data on 41 primary metabolites. Metabolites were identified based 443 

on the Level of Identification Standard of the Metabolomics Standards Initiative (Sumner et al., 2007).  444 

 445 

Transcriptome analysis: Using the same material as described in the metabolome analysis, total RNA 446 

was extracted from six cybrids, three in a Ler and three in an Ely nuclear background: LerLer LerEly, 447 

LerBur and ElyLer ElyEly, ElyBur with three replicates per genotype, totaling 18 plants. Library preparation 448 

was done with a selection on 3' polyadenylated tails to preferentially include nuclear mRNA. Read 449 

alignment was done using TopHat (Trapnell et al., 2009). Any chloroplast and mitochondrial genes 450 

remaining were excluded from further analysis. The raw counts were normalized and analyzed using 451 

the DeSeq2 package in R (Love et al., 2014). Genes for which the expression levels were significantly 452 

different between two cybrids were determined by comparing two genotypes using the contrast 453 

function of DeSeq2. P-values were determined using the Wald test, and p-values were adjusted using 454 

the Benjamini-Hochberg correction (α=0.05). GO enrichment analysis was done using default setting 455 

in g:profiler (g:GOSt). The complete set of detected genes in each cybrid was used as a statistical 456 

background in the analysis (Reimand et al., 2016). 457 

 458 

Phenotypic data analysis: We used the self-cybrids as our baseline in phenotypic comparisons to 459 

control for any possible effects of cybrid creation, with the exception of BurBur which was replaced in all 460 

analysis with Bur-WT. Raw data was directly analyzed except for time series data of growth and 461 

chlorophyll reflectance which was preprocessed as follows. Time series data were fitted with a smooth 462 

spline using the gam function from the mgcv package in R (Wood et al., 2016). The fitted B-spline was 463 

subsequently used to derive several curve parameters. In addition, we calculated relative growth rate 464 

per time point by dividing the growth rate, relative to the plant size (Flood et al., 2016). All raw 465 
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parameters and derived parameters were analyzed by fitting either a linear mixed model or a linear 466 

model. The linear mixed model was used when a random correction parameter was present, when 467 

such random correction parameters were absent a linear model was used. The models were analyzed 468 

using the Restricted Maximum Likelihood (REML) procedure for each relevant phenotype using the 469 

lme4 package in R (Bates et al., 2015). As each experiment had a different design, several models 470 

were employed (Supplementary Table 4). The following model was generally used, in some instances 471 

random terms (underlined below) were added: 472 

 473 

𝑌 =  𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑦𝑝𝑒 + 𝑃𝑙𝑎𝑠𝑚𝑜𝑡𝑦𝑝𝑒 + (𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑦𝑝𝑒 ∗ 𝑃𝑙𝑎𝑠𝑚𝑜𝑡𝑦𝑝𝑒) + 𝐵𝑙𝑜𝑐𝑘 +  𝜀            (1) 

 474 

For every model, normality and equal variances were checked. Next for every phenotypic parameter it 475 

was determined whether an interaction model or a plasmotype additive model would suit best. This 476 

was done by ANOVA in which Kenward-Roger approximation for degrees of freedom was used. As 477 

posthoc tests we used a two sided Dunnett’s test, where we tested whether a given cybrid was 478 

different from the self-cybrid control, within one nucleotype. Two side Hochberg’s posthoc tests were 479 

used when all pairwise comparisons were tested within one nucleotype (to test for epistasis) and 480 

across all nucleotypes (to test for additivity). The significance threshold for all posthoc tests was set at 481 

α=0.05. The contribution of the nucleotype, plasmotype and the interaction between the two, was 482 

determined by estimating the variance components in mixed models containing the same terms as in 483 

model (1). However, the fixed terms were taken as random:  484 

 485 

𝑌 =  𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑦𝑝𝑒 + 𝑃𝑙𝑎𝑠𝑚𝑜𝑡𝑦𝑝𝑒 + (𝑁𝑢𝑐𝑙𝑒𝑜𝑡𝑦𝑝𝑒 ∗ 𝑃𝑙𝑎𝑠𝑚𝑜𝑡𝑦𝑝𝑒) + 𝐵𝑙𝑜𝑐𝑘 +  𝜀 , 

 486 

Where the variance components were estimated by the VarCorr function from the lme4 package. Total 487 

variance was calculated by summing all the variance components, after which the fraction explained 488 

variance for every term in the model was calculated. The broad sense heritability, in our case equal to 489 

repeatability (Falconer and Mackay, 1996), is determined by the three genetic components, i.e. 490 

nucleotype, plasmotype and the interaction, together. The fraction of broad sense heritability explained 491 

by the separate genetic components was calculated subsequently. 492 
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In total we measured 1859 phenotypes. After data processing, further analysis was only 493 

conducted on phenotypes with a broad sense heritability higher than 5%, removing phenotypes that 494 

were non-informative, leaving with 1782 phenotypes. Furthermore, to avoid biases in the results due 495 

to overly correlated data when stating summary statistics, we further subset the remaining 1782 496 

phenotypes (Supplementary Data 2). Using a threshold based purely on correlation would favor the 497 

inclusion of variation largely driven by the nucleotype. Because the population is balanced, we 498 

therefore subtracted the averages of the nucleotype values from the cybrid phenotype values,to reveal 499 

the plasmotype effect per cybrid. From these we calculated the correlations for all phenotypes 500 

(Supplementary Figure x). As a result, some phenotypic categories where not represented in a subset 501 

between 50 and 100 phenotypes, as they correlated highly with another phenotype. To be able to give 502 

a good overview of all phenotypes we score, but not to have a bias of one phenotype category, we 503 

decided to manually choose a subset. We therefore selected the following phenotypes. For time series 504 

in which we scored for up to 25 days after germination, we selected mornings of day 8, 13, 18 and 23. 505 

The time series analysis of fluctuating light were only measured for three days in a row, with each day 506 

a different treatment. As these treatments reached their extremes in the middle of the day, both at 507 

these time points and at the end of the day were selected. For the different seed treatments we used 508 

the germination time until 50% of the seeds germinated. In addition, we included biomass, leaf 509 

movement, seed size, flowering time as single phenotypes and all 36 primary metabolites. This 510 

resulted in 92 phenotypes, that are used when giving summary and test statistics (for correlation plot 511 

of the plasmotype effect see Supplementary Figure x). All data on the 1859 phenotypes, with 512 

summary and test statistics, are available in Supplementary Data 1 and Supplementary Table x. 513 

 514 

 515 

  516 
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