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aUniv. Bretagne Sud, UMR 6074 IRISA, 56000 Vannes, France

Abstract

Morphological hierarchies now form a well-established framework for (still) image modeling and processing. How-
ever, their extension to time-related data remains largely unexplored. In this paper, we address such a topic and show
how to analyze image sequences with tree-based representations. To do so, we distinguish between three kinds of
models, namely spatial, temporal and spatial-temporal hierarchies. For each of them, we review different strategies to
build the hierarchy from an image sequence. We also propose some algorithms to update such trees when new images
are appended to the series and we compared the time complexity with tree building from scratch. We illustrate our
findings with the max and min-tree structures built on grayscale data provided by Satellite Image Time Series that are
gathering a growing interest in Earth Observation. Besides, we provide a comparative study for different hierarchies
with classification experiments.

1. Introduction

Mathematical Morphology (MM) is a well-established
framework for spatial analysis of digital images since the
1960s. The two last decades have seen a significant effort
devoted to morphological hierarchies, which led to effi-
cient tools operating on the tree representations instead of
the raw images (Jones, 1999). Many studies have been re-
ported for mathematical morphology on image sequences
(Nhimi et al., 2018; Xu and Corso, 2016; Guttler et al.,
2017) but less have been reported for specifically tree rep-
resentations of image sequences (Salembier et al., 1998;
Alonso-González et al., 2014); while image sequence pro-
cessing is becoming a tremendous tool to analyze spatial-
temporal data in all areas of natural science. An image se-
quence could be built from a continuous video acquisition
or as a combination of multiple observations of the same
scene acquired at different times. In this paper, we will
focus on designing tree representation models for image
sequences. While our findings remain generic, we will il-
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lustrate them with Satellite Image Time Series (SITS) in
the context of Earth Observation (EO).

One of the distinctive feature of SITS is their stream-
ing nature with new acquired images appended to the se-
ries. Indeed, new satellite missions such as Sentinel pro-
vide images for all around the Earth every 5 days (Dr-
usch et al., 2012). Updating tree representation is then
an important challenge to analyze streaming data. Be-
yond exploring how to build a tree from an image time
series, we also focus on how to update such a tree when
the time series is indeed a data stream. In the literature,
this problem of trees changing over time is known as the
dynamic tree problem (Sleator and Tarjan, 1983). Our im-
age streaming algorithms rely on temporal based stream-
ing while there are other perspectives such as spatial im-
age streaming (Gigli et al., 2018). As a related work, au-
thors proposed streaming graph for video segmentation in
(de Souza et al., 2015).

Adding a temporal dimension to a 2D digital image
offers many alternatives to build a morphological hierar-
chy. The spatial and temporal dimensions may be consid-
ered simultaneously or successively. The tree may contain
nodes defined on the spatial, temporal, or spatial-temporal
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domain. Therefore, we focus on spatial, temporal and
spatial-temporal hierarchies, respectively in Sec. 3, Sec. 4
and Sec. 5. For each hierarchy, we explain how it can be
built from an image sequence, relying on existing defini-
tions and algorithms previously introduced on 2D images
with pixels defined as scalars or multivariate data.

To the best of the authors’ knowledge, only a few stud-
ies have been reported related to tree-based representa-
tions exploiting the temporal dimension. Extension of
the binary partition tree was considered in (Palou and
Salembier, 2013), (Vilaplana et al., 2008) and (Falco et al.,
2013), with some spatial and spatial-temporal hierarchies
respectively. These both kinds of hierarchies have also
been explored with the α-tree model in (Soille, 2008).
Conversely to these previous works that focus on a parti-
tioning tree and a specific hierarchy, we provide a compar-
ative study of the available strategies for image sequences
with component tree and extends them with streaming al-
gorithms. Some illustrative experiments have been con-
ducted with filtering and classification tasks on Sentinel-2
data. Another contribution of our paper is the introduction
of temporal-streaming algorithms for each hierarchy.

For the sake of simplicity, we will assume in the sequel
grayscale images (or time series). Nevertheless, extension
of the proposed methods to multivariate data (e.g. color
or multispectral images) can be achieved by relying on
existing solutions for multivariate morphology (Aptoula
and Lefèvre, 2007) and hierarchies (Naegel and Passat,
2009; Carlinet and Géraud, 2015). Similarly, while we
focus here on the component trees, the proposed solutions
can be also easily adapted to other kinds of trees, either
inclusion trees (e.g. tree of shapes) or partitioning tree
(e.g. α-tree, binary partition tree, etc.).

The rest of the paper is organized as follows. Sec. 2
provides the mathematical background. We then focus
on spatial, temporal and spatial-temporal hierarchies in
Sec. 3, Sec. 4 and Sec. 5, respectively. For each of them,
we discuss various options for constructing the hierarchy,
and we explain how to update it in case of streaming data
through the introduction of novel algorithms. Section 6
illustrates the experiments on a satellite image time series,
before conclusion and perspectives are drawn in Sec. 7.

2. Background and notations

The structure of a tree depends on the hierarchy rule,
leading to either inclusion or partitioning trees (Bosilj
et al., 2018). In the former, the leaf nodes are defined as
regional extrema (maxima for a max-tree), which are ex-
tended and merged from leaves to root, which covers the
whole image domain. In the latter, any level cut covers
the whole image domain. The regions built at one level
are obtained by merging the existing adjacent regions at
the previous level (Souza et al., 2016). As already stated,
we focus on the max and min-tree but our methodology
can be applied with other models.

We will note I a grayscale image defined on the domain
Ω ∈ N2 and taking values in V , i.e. I : Ω ∈ N2 → V ∈
Z, (i, j) 7→ I(i, j) = v. For the sake of conciseness, we will
write x = (i, j) the coordinates of a pixel with grayscale
intensity v. We assume the image being equipped with an
ordering relation ≤ (the natural order among scalars).

Given a threshold λ ∈ Z, the upper threshold set is de-
fined as [I ≥ λ] = {x ∈ Ω, I(x) ≥ λ}. We note the upper
level set Lλ(I) = CC([I ≥ λ]) = {x ∈ Ω | CC(I(x) ≥ λ)}
where CC(X) denotes the set of connected components of
X. In a 2D image, a connected component is a group of
adjacent pixels using 4- and 8-connectivity rules. The up-
per level set Lλ(I) provides the hierarchy rule of the max-
tree: two connected components (or nodes of the tree) are
either disjoint or nested, and the leaves correspond to the
regional gray level maxima. We write Nλ a node of the
tree at level λ, so Nλ = CC(Lλ(I)). A node N = (v, e)
consists of pixel values v and their associated edges e. A
tree T = (N , p) is then defined as the set of all nodes
N and their associated edges gathered into a set of paths
p. With image sequences, the coordinates combine both
spatial and temporal information, noted x = (i, j) and t,
respectively. Here t represents one timestamp within the
entire sequence of length n, and we note It the correspond-
ing still image. We also write I(x, t) the value at spatial-
temporal coordinates x and t, and I(x) the time series at
spatial coordinates x. Figure 1 provides the different kinds
of trees that are introduced in the next sections to describe
an image sequence.

In this paper, we also cope with streaming situations.
In such a case, an image sequence or time series is contin-
uously enriched/updated with some new data coming at
a (usually regular) periodicity. Instead of reconstructing
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(a) Spatial hierarchy (b) Temporal hierarchy (c) Spatial-temporal hierarchy

Figure 1: Tree representation strategies: (a) a tree structure is built based on vectors of pixels in time series, (b) a tree structure is built for each
image separately and these trees can be merged optionally, (c) the time series image is considered as a 3D image and a tree structure is built in three
dimensions.

a new tree from scratch, a much more relevant scenario
consists in updating the existing tree with the new infor-
mation brought by the additional image In+1.

3. Spatial hierarchy

Despite the fact that an image sequence combines both
spatial and temporal information (i.e. every data instance
is made of both spatial locations and timestamp), it can
still be modeled by a spatial-only hierarchy. In this case,
the series of image frames Ī = {I1, . . . , In} is first mapped
into a single, representative image Ī (or in other words,
each pixel time series I(x) leads to a single timeless value
Ī(x)). Then, a spatial hierarchy (SH) is built from this
representative image. By doing so, every node of the tree
has a spatial support, similarly to still images (see Sec. 2).
In order to ensure compatibility with the standard max-
tree algorithm, we assume the representative image to be
defined on grayscales, Ī : Ω → Z. We consider here
two strategies to build the representative image: ranking
or projection.

3.1. Ranking

3.1.1. Tree construction
In order to derive a single representative of an image

sequence, and to use it subsequently to build a max-tree,
a first approach consists in ranking all pixel time series
I(x, t). Such a strategy provides a behavior similar to a
standard vector ordering used in multivariate morphology,
with an ordering among pixel time series. Multivariate
morphology has received a lot of attention (Aptoula and
Lefèvre, 2007). We recall that a binary relation that is

reflexive and transitive is called a pre-ordering (or quasi-
ordering). It becomes an ordering if also anti-symmetric.
Both pre-orderings and orderings could be total if the to-
tality property is met, partial otherwise. Totality property
is required here since comparison between all pixel time
series is needed to produce the representative image by
means of ranking.

We thus distinguish between total orderings and total
pre-orderings. The former is the most satisfactory solu-
tion since it ensures a bijection between the set of pixel
time series and their ranks. In other words, such a rank
image can be modeled as a max-tree, processed with ded-
icated algorithms, and the resulting (updated) rank image
reprojected into an image sequence. Indeed, thanks to the
total ordering of all time series, it is possible to replace
every rank by the corresponding initial time series. This
behavior is appealing but unfortunately the total orderings
are often unbalanced in practice (Aptoula and Lefèvre,
2008). Nevertheless, we will experiment such a strategy
with the most popular solution, namely the lexicographi-
cal ordering that compares the first dimension (here times-
tamp), and proceeds to further comparison on the second
dimension only if ties appear on the first one (and so on
until reaching the last dimension to assess a strict equality
between vectors). Lexicographical ordering is common
for color morphology such as in (Perret et al., 2012) but
usage of this ordering for time series morphology is new.

Relaxing the anti-symmetry constraint leads to the so-
called pre-orderings. Ranking time series with a pre-
ordering brings one major drawback. Due to the lack of
anti-symmetry, it is possible for two different vectors (or
time series) to be given the same rank. It does not pre-
vent to obtain a representative image, to build a max-tree
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Table 1: List of operations used in the streaming algorithms.

Operation Description
create(n) creates a node “n”
insert(n,v) adds value “v” to node “n”
link(n,w) creates a path between “n” and “w” nodes
merge(n,w)→ m merges nodes “n” and “w” into the node “m”
cut(n) removes node “n”
remove(v) removes value “v” from its node
neighbors(v) Connected pixels of pixel “v”
findchangedplaces Find the changed locations after new image
findparent(n) Find parent node of “n”

out of it, to process the max-tree and to return a resulting
representative image. Nevertheless, it will not be possible
to reconstruct the image sequence from this updated rank
image without arbitrary choice among time series having
equal ranks. So this strategy is relevant only if the ob-
jective is not filtering (or any other tasks that require re-
construction). The two main categories of pre-orderings
are conditional and reduced orderings. While the former
considers sequentially a subset of dimensions, the latter
reduces vectors to scalar values before ranking them ac-
cording to their natural order. Reduced pre-orderings can
be further categorized into either distance and projection-
based. A popular distance-based approach orders vec-
tors according to their distance from a reference vector
(Celebi, 2009). In (Angulo, 2007), authors proposed sim-
ilar concept for color morphology. In the context of time
series, one can rely on dedicated distance metrics such
as Dynamic Time Warping (DTW) (Müller, 2007). Since
the choice of a reference time series might be a challeng-
ing problem, it is possible to rely instead on the average
distance to a set of reference pixels. Projection-based or-
derings will deserve a specific discussion in Sec. 3.2. The
construction of the representative image is done in two
steps. First, all pixels in the image are ordered by applying
a given vector ordering or pre-ordering on their respective
time series. The pixels are then ranked, starting with rank
0 for the smallest one, and ending with rank |Ω| (in case of
total ordering, lower otherwise) for the largest one. Con-
struction of the max-tree is finally achieved based on the
pixel ranks.

3.1.2. Streaming
The ranking approach requires the comparison of all

time series from the image sequence. With the arrival of
a new image, the ranks most probably need to be calcu-

Algorithm 1 Update SH

Require: T (Ir), I′r
Ensure: Updated Tree: T (I′r)

1: l = f indchangedplaces(I′r − Ir) // changed lo-
cations

2: T (I′r) = T (Ir) // initial tree
3: for each changed location x in l do
4: remove(Ir(x))
5: a = I′r(x)
6: if C(Na) < a < P(Na) then
7: insert(Na, I′r(x))
8: else
9: create(N ′a)

10: insert(N ′a, I
′
r(x))

11: findparent(N ′a)
12: link(N ′a,P(N ′a)
13: if neighbors(a) = ∅ then
14: cut(Na)
15: link(C(Na),P(Na))
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Figure 2: Streaming for spatial hierarchy

lated again. The only exception is with a conditional or-
dering (including the lexicographical ordering) relying on
the chronological order for which only pixels with equal
ranks need to be compared on the new image.

Table 1 provides some operations used in all algorithms
introduced in this paper. Figure 2 illustrates the simple
update of a max-tree after a single pixel change. Ir rep-
resents image of ranks and it is successively updated in
I′r and I′′r . Tree nodes are represented by their level. The
blue number represent changed pixels, and the bold ones
pixels that do not change in the initial image but in the
tree.
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We provide in Algorithm 1 the pseudo-code to update
the spatial max-tree built on ranking. We note Ir(x) the
ranked pixel time series in a location x and I′r(x) its up-
dated value. P and C represent level of the parent node
and child node of their content, respectively. When a new
image appears, Ir will become I′r with some changes. In
that algorithm, first, locations of the changed pixels are
determined by simply calculating difference between Ir

and I′r and locations are stored in l. Then new pixels a
are placed on a tree according to their intensity value and
connectivity. If a changed value is between parent node
level and child node level, it remains to be in the same
node. Otherwise its location will change and a new node
should be created for the new value. This algorithm is
repeated for each changed location. More precisely, the
time complexity increases if the amount of changed value
increases. Lines 13 and 14 remove the node if there is
no connectivity between a changed location and its neigh-
bors. After removal, parent and child nodes are connected
to each other.

3.2. Projection

3.2.1. Tree construction
A specific reduced pre-ordering relies on projections,

i.e. mapping the vectors into scalar values on which the
comparison is performed such as in (Velasco-Forero and
Angulo, 2012) for color images. While this approach still
corresponds to the application of a vector ordering, it of-
fers some specific advantages that calls for additional dis-
cussion. First, applying the vector ordering is straightfor-
ward since it only consists in relying on the natural order-
ing between scalars. Conversely to the previous strategy,
there is no need to rank pixels to build the representative
image.

The projection relies on a function f : Nn → N, x 7→
f (I(x, 1), . . . , I(x, n)). We still write Ī(x) the output scalar
value for this location. Depending on the application con-
text, a wide range of functions are available e.g. mean,
median, standard deviation, range, etc. In the most prob-
able case of a non-injective function, this strategy also
faces the difficulty of reconstructing the image sequence
from the processed max-tree. Here, the projection func-
tion was defined as Nn → N, but max-tree algorithms are
not restricted to natural numbers and can be applied also
on real-valued images.

3.2.2. Streaming
The streaming rules are the same as in Algorithm 1.

To ease updating, one might prefer functions that do not
require a full recomputation (e.g. mean or standard de-
viation if the sum and squared sum are stored). Another
advantage is the fact that the update can be done in paral-
lel, similarly to the initial projection.

4. Temporal hierarchy

Alternatively, the temporal hierarchy (TH) allows us to
process each image and to build the tree representation
for each of them separately. We first explain the tree con-
struction process and then how to update the tree during
the streaming step.

4.1. Tree construction

After building a tree for each image, we have two op-
tions to process them. We can process each tree inde-
pendently (eg. extracting features) and stack the results
together that is called marginal approach (Aptoula and
Lefèvre, 2007). Every image It of the series might have its
own tree T (It). It is a straightforward technique to build
a tree (similarly to the standard still image case), leading
to T (I1), . . . ,T (In). This approach provides marginally
processing such as in (Dalla Mura et al., 2010) and tree
structure comparison (Bracci et al., 2017). The second
option is to merge initial trees together and process the
final tree. The critical merging step is a special case of
streaming that we will explain in next subsection.

4.2. Streaming

In the marginal case, streaming is straightforward and
consists in sequentially adding a new tree to the set of
initial trees. On the other hand, merging trees is not a
straightforward process due to the memory and compu-
tational costs brought by the spatial-temporal connectiv-
ity. Existing methods to build the max-tree usually pro-
ceed by merging trees corresponding to some small parts
in the image separately (Götz et al., 2018), while tree of
shapes (Carlinet and Géraud, 2015) or α-tree (Havel et al.,
2016) have also led to parallel algorithms with merging
and (Moschini et al., 2018) deals with extreme dynamic
range data by merging sub-trees of sub-images.
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Algorithm 2 Update TH

Require: T (I1),T (I2)
Ensure: Tm

1: R(T (m) = merge(R(T (I1)),R(T (I2))) // initial
root

2: for ∀λ ∈ λ1 ∩ λ2 do // for all levels
3: for ∀N1 ∈ T (I1) do
4: for ∀N2 ∈ T (I2) do
5: if N1 ∩ N2 = x and I1(x) = I2(x) then
6: a = I2(x)
7: Na = merge(Na1 ,Na2 )|Na ∈ Tm

8: else if then
9: N1,N2 ∈ Tm

Figure 3 illustrates the merging of two max-trees by in-
creasing the connectivity from 4 to 6 neighbors. The two
images on the left are shown with their respective trees.
The merged tree is given on the right. For the sake of
conciseness, we have omitted intensity values from the
tree representation of the two initial images. Algorithm 2
provides the pseudo-code for merging max-trees. R rep-
resents the root of the tree and Tm is the merged tree. Be-
sides, N1 and N2 represent the nodes for first and second
image respectively. Output of Algorithm 2 is a multidi-
mensional tree i.e. a space-time tree which will be ex-
plained in the next section. More precisely, connectivity
of T (I1),T (I2) is 4 but connectivity of Tm is 6. Since
Tm still includes pixels from previous images, streaming
preserves past information. In that algorithm, first, the
initial root is created. Thus, two trees transform to one
tree. Then, connectivity between nodes is investigated
from root to leaves. If a node has no connectivity to other
tree nodes, it is kept in the tree without merging.

5. Spatial-temporal hierarchy

The last strategy is the spatial-temporal hierarchy
(STH). In this approach, one tree is built for the whole
image time series and processing this tree gives a multidi-
mensional image set.

5.1. Tree construction

The image sequence can be seen as a spatial-temporal
cube, where each date corresponds to one layer, the two
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Figure 3: Tree for each date and streaming by merging. Two images and
their max trees are in the left and merged tree is in the right

other dimensions being the spatial ones. From this cube
it is possible to build a spatial-temporal tree, i.e. a sin-
gle tree that includes all information from the whole time
series (T (I1, . . . , In)). However, building such a complex
tree given a long time series is particularly challenging
due to scalability issues. While 3D data has received less
attention than 2D, still a few works have been proposed to
compute trees on such data, e.g. (Westenberg et al., 2007)
and (Wilkinson et al., 2008) for 3D computed tomogra-
phy (CT) images, or (Alonso-González et al., 2014) for
3D SAR time series.

The major difference with a still image is the change
in terms of connectivity due to the extension to a third
dimension. Conversely to a 2D image that comes with
4- and 8-adjacency, space-time tree offers us 6-, 18- and
26-adjacency. In the specific context of a spatial-temporal
cube, one might prefer anisotropic behavior, thus leading
for instance to a 10-neighborhood (made from the union
of the spatial 8- and temporal 2-adjacency).

5.2. Streaming

The streaming strategy is similar to the one used for
merging trees but here we use only a new image instead
of a new tree. Figure 4 shows an updated space-time max-
tree after the third image. Different colors are used for
different images in order to avoid confusion in the nodes.
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Figure 4: Cube tree and streaming (Two images and their space-time
tree in the left, new image and updated space time-tree in the right)

Two images and their space-time trees are shown on the
left, the new image and the updated space-time tree being
given on the right. Algorithm 3 provides the pseudo-code
for updating a space-time max-tree. Here, connectivity
rule remains to be 6 but nodes are extended to include new
image information. First, all new image is inserted to root.
Then new image pixels are placed on a tree according to
their location and gray values. Similarly to merging trees,
streaming a space-time tree preserves information from
previous images, which is important for time-related EO
applications.

6. Experiments

Tree representation can be used for several applications
such as filtering, classification, segmentation, change de-
tection, or object detection (Bosilj et al., 2018). In this
paper, we consider two use cases related to satellite im-
agery. First, the classification of Satellite Image Time Se-
ries (SITS) that allows quantitative assessment. Second,
image filtering for which visual analysis is provided. We
used an open source node-oriented max-tree toolbox in
our experiments (Souza et al., 2015) and we report the re-
sults in this section. The codes for our classification and

Algorithm 3 Update STH

Require: T (I1, I2), I3
Ensure: T (I1, I2, I3)

1: insert(R(T (I1, I2), I3)) // initial root
2: for ∀x ∈ I2 do
3: if I2(x) = I3(x) then
4: I2(x) ∈ N
5: insert(N , I3(x))
6: insert(N , neighbors(I3(x))
7: else
8: create(NI3(x))
9: findparent(NI3(x))

10: link(NI3(x),P(NI3(x))

filtering experiments are also publicly available 1.

6.1. Classification
We apply classification algorithms to SITS to evaluate

the relevance of the proposed tree representation strate-
gies. We used a sample SITS made of small extracts (1000
px ×1000 px) from 17 Sentinel-2 images (at 10m/px res-
olution) which were acquired in 2016 around Dordogne,
France. We selected only cloud-free images for our ap-
plication. We used level 2A products provided by the
THEIA land data center. We extract labelled data from
the agricultural Land Parcel Information System known
as Registre Parcellaire Graphique (RPG). The studied area
includes 5 land cover classes: urban (yellow), crop (red),
water (blue), forest (green) and moor (pink). Since our
focus is on the image time series, we simplify each mul-
tispectral image into a grayscale one by computing the
Normalized Difference Vegetation Index (NDVI) in each
pixel. In order to achieve classification, we inspire from
the recent work on feature profiles (Pham et al., 2017). We
calculated node attributes such as area, mean gray value,
height and volume, then we used these attributes as a fea-
ture for each location.

Both min and max-tree are used to obtain feature im-
ages. These images are then stacked with the original im-
age time series and the whole set is used for classification.
In our experiments, we split vertically the image into two

1https://github.com/caglayantuna/

Classification-of-SITS-with-Feature-Profiles
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Figure 5: SITS Classification (from left to right): Sentinel-2 extract (date
1), reference map and sample result.

equal parts to obtain independent train and test sets.. The
first part of the image was used for training and valida-
tion, following a 5-fold cross validation procedure. As a
classifier, we used the Random Forest method (Breiman,
2001). We optimized the number of trees and maximum
depth among the variables {100, 200, 300} and {80, 90,
100} during this process. Then, we used the best param-
eters and evaluate the classification performance with the
testing set. As the baseline, we considered original SITS
pixels described by NDVI values as input features and
classified the image. We obtained an overall accuracy of
93.63. Figure 5 provides a qualitative result from the test
area with the first image of the multitemporal Sentinel-2
image and its associated reference map. Each color rep-
resent a specific land cover class (and black for ignored
pixels). Table 2 reports the classification results obtained
with each tree representation strategy and different spatial
features. Results show that the spatial features offer an
efficient way to increase the classification accuracy with
TH and STH strategy comparing to the baseline, i.e. with-
out using spatial features. Table 3 provides an additional
evaluation measure, namely f1 score for each class.

According to these results, SH is not adequate to clas-
sify SITS, but on the other hand, it can be used for other
applications. For example, in our previous work (Tuna
et al., 2019), we proposed a SH approach for change de-
tection, through filtering tree with a projected SITS. 1636,
133374, 2010, 226231 and 5354

Table 2: Comparison of overall classification accuracy

Methods Spatial features
Area Mean gray value Height Volume

SH-Lex. 56.31 57.52 57.14 57.64
SH-DTW 78.52 75.08 77.15 78.26
SH-Mean 60.97 70.38 61.25 75.25

TH-Marginal 94.52 94.44 94.45 94.26
STH-Space-time 94.20 94.11 94.05 94.14

Table 3: Number of samples for training and testing part and F1 score
for each class

Urban Crops Water Forest Moor
Nb. of samples 1381-1636 105214-133374 1754-2010 266649-226231 1901-5354
Without Profile 0.51 0.93 0.59 0.95 0.002

SH-Lex. 0.009 0.18 0.004 0.71 0.001
SH-DTW 0.17 0.68 0.009 0.83 0.003
SH-Mean 0.14 0.64 0.005 0.82 0.003

TH-Marginal 0.54 0.94 0.55 0.96 0.003
STH-Space-time 0.53 0.94 0.57 0.95 0.003

6.2. Filtering

In order to further illustrate the potential of tree repre-
sentations for SITS, we provide a filtering result for one
of the image in our set. Filtering relies on pruning the
tree according to some criteria such as attribute thresh-
olds. First, attributes are calculated for each node sepa-
rately. Then, some nodes are removed if their attributes
are smaller than a user-defined threshold (Jones, 1999).
Pixel values in these nodes are changed according to their
connectivity. Last, the pruned tree is reconstructed and
the filtered image is subsequently obtained.

Figure 6 is the outcome of a filtering experiment con-
ducted with three panchromatic Pleiades images acquired
over the same scene at different date, as provided by
Kalideos2. As a baseline, we built a tree for of each date
and applied a filtering without considering the temporal
information. We also stacked these images and built a
space-time max-tree corresponding to the STH strategy.
We used here the area attribute (i.e. amount of pixels
in a node). We use a unique threshold (1000) to allow
fair comparison. As mentioned in Sec. 2, max-tree leaves
include regional extrema of the image. Therefore, max-
tree filtering allows manipulating bright objects in the im-
age. To emphasize the filtered objects, we show in Fig. 6
the difference between original and filtered images. We

2https://bretagne.kalideos.fr
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can see that cars which are at different places for different
dates are caught by the filtering. However, filtering with
a single frame cannot be used to filter out only cars since
it removes other objects such as the building located at
the bottom left of the scene. Let us recall that this exam-
ple is provided only for the sake of illustration and proper
detection of dynamic objects is left for future work.

6.3. Streaming time complexity

We applied our streaming algorithms to synthetic im-
ages which are shown in Fig. 2, Fig. 3 and Fig. 4. We
compared time complexity of the tree building strategies
with streaming and without streaming in Tab. 4. Without
streaming indicates that a new tree is built from scratch
when a new image appears. The complexity of Algo-
rithm 1 is O(hc) where c is the amount of changed pix-
els and h is the used tree levels for this algorithm. This
depth h value is 1 ≤ h ≤ 2bit − 1 where bit is 8 or 16
depending on the source of the image. Algorithm 2 is
O(hk) where k is the amount of nodes. According to (Car-
linet and Géraud, 2014), tree building for large integers
requires at least a complexity of O(np log np) where np is
the amount of pixels of one image. Since satellite images
are very large, the amount of pixels is usually huge, there-
fore the amount of tree nodes is lower than the amount
of pixels in the image. Although theoretical complexities
for SH, TH and STH are all O(np log np), the actual com-
putational time will be different due to various amounts
of pixels/images. For example, with 3 real Sentinel-2 im-
ages (10980 px × 10980 px), computation times for tree
building are 75s, 133s and 211s and required memories
are 3083MB, 5384MB and 7034MB for SH, TH and STH
strategy respectively. The space-time streaming complex-
ity requires only one image with np pixels while without
streaming requires n times amount of pixels where n is the
amount of images in a set. Besides, the complexity has an
extra hnn caused by the new node creation part.

Table 4: Time complexity comparison (np:Number of pixels, c:changed
pixels, h: search on the tree, k: amount of nodes, nn: amount of new
nodes )

Method Streaming Without streaming
SH O(hc) O(np log np)
TH O(hk) O(np log np)

STH O(np + hnn) O(np log np)

The complexity of the algorithms is further analyzed
in Table 4 where we assess the effect of the streaming
strategy. The SH streaming depends on the number of
changed pixels. The proposed SH streaming algorithm is
more efficient than without streaming when the number of
changed pixels satisfies the following relation:

c <
np log np

h
. (1)

The merging time depends on the amount of nodes in
the tree levels. In the TH streaming complexity, better
efficiency is ensured if k denoting the amount of nodes
satisfies

k <
np log np

h
(2)

Finally, the STH streaming algorithm includes a pro-
cess of creating new nodes. In order the streaming to be
relevant, the upper bound of the number of new created
nodes should follow

nn <
np log np − np

h
(3)

7. Conclusion

While morphological hierarchies have been largely ex-
plored in the literature (both from a theoretical and ap-
plication point of view), their extension to time series re-
mains barely addressed. In this paper, we have discussed
how to build such hierarchies, considering specifically the
max-tree model on gray-scale data. More precisely, we
have distinguished between spatial, temporal and spatial-
temporal hierarchies, that all can be built using various
strategies. Here, we compared tree representation strate-
gies for classification purposes. We also investigated the
case of streaming, where new images or frames are ap-
pended to the series, thus needing to update the under-
lying tree structure in a scalable manner. We proposed
streaming algorithms for all building strategies. We be-
lieve that the proposed approaches will call for further
studies in the field.

Let us note that all our tree models were designed to
deal with temporal information and are sensitive to the or-
der of images. Nevertheless, let us point two cases where
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Figure 6: SITS Filtering (from left to right): composite of original series and its difference with its respective spatial-only filtering, STH filtering
and its difference with the original image. Each triplet of dates is represented by a color image (one channel per date).

shuffling of images will have no effect on the result: 1)
with the SH strategy, it directly depends on the proper-
ties of the projection function (e.g. using the average or
standard deviation is unaffected to shuffle, while using a
projection based on DTW is). 2) with the TH strategy in
the marginal case, it directly depends on the actual pro-
cessing that is considered afterwards.

Future work will include the extension to other tree
models such as tree of shapes, α or ω trees, etc. Besides,
assessing the relevance of such models with time series
data will be of high interest in the EO context. Generic
streaming algorithms will be necessary to handle large
scale EO data. Besides, extending tree representations
with spectral information is worth being studied given the
multispectral nature of EO time series.
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