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Abstract

Two types of sandwich panels are designed by using the periodic structure theory. A double-wall

panel with mechanical links and a sandwich panel with rectangular core are studied. An oriented

optimization of the elastic bending waves’ propagation versus the acoustic wavenumbers is achieved

by using shifted core walls and by keeping the mass and stiffness of the system constant. Standard

and optimized configurations are 3D-printed and sound transmission measurements are carried

out by using a facility with an uncoupled reverberant-anechoic configuration. The experimental

evidences of enlarged bending band-gaps and deformation mechanisms are proved using a reverse

approach based on the acoustic radiation of the panels.
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1. Introduction

In transport industry, the requirements for light and stiff structures often lead to sandwich

structural solutions. The design of the core of sandwich panels can induce different anisotropies

keeping a high stiffness-to-mass ratio. On the other hand, while a reduced mass is an advantage

for fixed structural resistance, it generally induces lower vibroacoustic performance. Therefore,

the design of sandwich panels for reduced acoustic radiation, limiting the mass of the system, has

received more and more attention in the last decades [1, 2, 3, 4].

One of the main reasons for a larger acoustic radiation of sandwich panels is the shear core

effect in the mid-frequencies [1, 2, 3, 4, 5, 6]; the transition from global bending to core shear is

fundamental [7]. The effects of this wavemode transition has been investigated by describing panel

using an equivalent shear core [8, 9, 10].

Some authors tried to design the core geometry in order to optimize the sound transmission.

Palumbo et al. [11] and Grosveld et al. [12] proved experimentally the increase of vibroacoustic

performance of honeycomb-cored sandwich plates when periodical voids and recesses are included

in the original geometry. While this approach creates regions of reduced bending stiffness, a strong

benefit is observed in the sound transmission loss for large frequency bands. A brilliant work is

∗Corresponding author
Email address: fabrizio.errico@ec-lyon.fr (F. Errico)

Preprint submitted to Mechanical Systems and Signal Processing October 14, 2019



also proposed by Hambric et al. in [13] where a complex structural honeycomb panel is optimised

by altering the original design, targeting a different the bending wave speed in the media versus

the acoustic one.

On the other hand, with the rise of modern numerical techniques as the Wave Finite Element

Method (WFEM), detailed investigations on shear-core transitions and the acoustic radiation of

sandwich structures, have been conducted. The WFEM, applied also within this work, is used for

the dynamic analysis of periodic structures by exploiting the periodic links among neighbouring

nodes and substructures [14, 15, 16]. The single elementary cells are modelled instead of the whole

panel, without requiring any homogenisation or analytical description of the core.

Baho et al [17], for instance, used a wavemode energy method, coupled with a wave assurance

criterion, to predict the transition frequency of honeycomb panels modelled using a single periodic

cells. In addition, the core geometry effects on the shear-core transition and sound transmission loss

of honeycomb sandwich plates, are investigated in [18]. Zergoune et al. [18] show the transmission

loss sensitivity to most of the classic topological parameters of honeycomb cored sandwich panels,

such as angles between walls, thickness and deformation of hexagonal core cells.

Similarly, sandwich panels with arbitrary shaped core are studied in [19]. Again, a compara-

tive study of periodic cells that share the same mass-to-stiffness ratio, is performed to achieve a

significant variation of the transition frequency and modal density, compared to classic honeycomb.

Alternative approaches, quite efficient when a narrow-band frequency issue has to be solved,

are connected to the use of resonant periodically distributed elements [20, 21, 22, 23]. In this case,

the drawback is connected to the addition of mass to the structure and to the difficulty in targeting

broadband enhancements of the acoustic performance of the panels.

Within the present paper, two common configurations of sandwich panels are modified using

the periodic structure theory. The aim is to induce alterations of the bending wave propagation

of the panels versus frequency, in order to increase the vibroacoustic performance, keeping the

same mass and, optionally, the same bending stiffness as the original designs. A double-wall panel

with mechanical links and a sandwich panel with rectangular core are optimised using shifted core

walls. In the first case, the periodicity effects are evident and an enlarged band-gap for bending

waves is created. In the second case, the main effects are observed on the shear-core transition

and core energy absorption through an increased deformation mechanism. All considerations and

enhancements are experimentally proved.

It is worth highlight that the optimization proposed here is not connected to any minimization

of a specific cost function or parameter; the main idea of the paper is to prove the performance of

optimised designs guided by the physical analysis of waves propagation characteristics. A proper

topological optimization, exploring a large number of configurations, might lead to different variants

of the proposed design, with higher performance.

The paper is organised as follows: Section 2 describes the numerical procedure used for pre-

dicting the dispersion curves versus frequency; Section 3 describes the proposed designs; Section

4 describes the experimental set-up used for the measurement of sound transmission loss of the
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Figure 1: Cell model extracted from a periodic structural system with periodicity along the x-y plane. a) Illustration

of a cell within a full FEM model. b) Node ordering following the schemese in Section 2.

3D-printed panels; Section 5 presents the numerical and experimental results.

2. A Numerical Approach for Elastic Waves in a Periodic Media

A free wave propagating along a structure is assumed to take the form of a Bloch wave [14].

Any wavefield in the periodic media is linked with a complex propagation constant, function of the

distance among particles. This is physically representative of a magnitude attenuation and phase

shift within the periodic structure. This reflects in periodic systems exhibiting passbands and

stopbands; i.e. each disturbance can propagate freely only in specific frequency ranges, otherwise

they decay with distance [14].

The numerical approach used here to investigate the waves’ dispersion in the periodic media is

the wave finite element method. It is a FE-based method whose advantage stands in requiring the

modelling of a single unit periodic cell, instead of a whole structure (Fig. 1). In fact, by exploiting

the links among nodes using complex propagation constants, the dynamics of the whole periodic

structural system can be analysed [14, 15, 16].

With reference to Fig. 1, the dynamic stiffness equation of the unitary segment can be written

as:

Dq = f + e, (1)

where q, f and e are the vectors of nodal degrees of freedom (DoFs), internal and external forces,

respectively; D is the dynamic stiffness matrix. To analyse the dynamics of the whole periodic

system, displacements (q) and forces (f and e) at any point of the cell can be liked to a reduced

subset of degrees of freedom (qr) by exploiting periodic links, as follows (see Fig. 1 for nodes

subsets ordering):

qA = IλY qF ; qR = IλXqL; q2 = IλXq1; q3 = IλY q1; q4 = IλXλY q1; (2)
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being the propagation constants:

λX = e−ikXLX , λY = e−ikY LY , (3)

where kX and kY are wavenumbers of the waves in the plane x− y; LX and LY represent the cell

lengths along the same directions, respectively, and I is the identity matrix.

For complex structures requiring a fine mesh, a modal reduction is highly suggested to reduce

the order of the model. The displacement vector inside a single unit cell can be substituted by a

subset of stationary constrained internal modes, achieving a significant reduction of the number

of inner DOFs. The displacements vector can be expressed as in Eq. 4, using a projection matrix

(G) that includes static boundary modes (ΨB) and component modes (ΨC):qnI

qI

 = G

 qnI

Pmod

 ; G =

 I 0

ΨB ΨC

 (4)

where Pmod represents modal participation factors vector for the set of retained modes; qnI is

the whole set of degrees of freedom excluded the ones belonging to the internal nodes. The

static boundary modes ΨB and component modes ΨC can be derived as in a Craig-Bampton

(CB) framework [24, 25]. Finally the stiffness and mass matrices of the condensed system can be

calculated by pre and post multiplying for the projection matrix G, defined in Eq. 4:

MC = GTMG; KC = GTKG, (5)

where the subscript C refers to the mass and stiffness matrices of the cell being condensed. Then, at

each frequency step, the modal participation factors can be statically condensed and the condensed

dynamic stiffness equation DC obtained [24, 25]. Assembling the links in Eq. 2 in a global

periodicity matrix Λ and pre-multiplying Eq.1 by the Hermitian of this matrix, a reduced dynamic

stiffness equation can be written:

Drqr = ΛH[DC ]Λqr = ΛHΛfr + ΛHΛer. (6)

where Dr is the dynamic stiffness matrix of the reduced model; qr, fr and er are the displacements,

internal forces and external forces of the reduced model, respectively. Given the equilibrium of the

internal forces between consecutive cells, only potential external forces are considered [16], thus

ΛHΛfr = 0.

The problem in Eq. 6 is a three-parameters eigenproblem in ω, λX and λY , whose eigenvectors

and eigenvalues are the propagating wavemodes and the corresponding constants of propagation. It

is here solved by imposing the frequency and one wavenumber to zero, in order to study singularly

the wave propagation in x and y directions.

3. Shifted-Walls Design

A core design with shifted walls is here proposed for two common types of sandwich panels.
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Figure 2: Cell models extracted from a Double-Wall Panel with Mechanical links. a) Standard design. b) Proposed

Optimal Design.

First a double-wall panel with rectilinear mechanical links (Fig. 2a) is analysed for a trape-

zoidal shape of the stiffener (Fig. 2b). A similar idea has been applied to a sandwich panel with

rectangular core (Fig. 5a), where the core walls have been folded in one direction (Fig. 5b).

The frequency band targeted for the optimization is 250 Hz to 10 kHz, corresponding to the

measurements frequency range available for the facility used within this work (see Sec. 4).

3.1. Double-Wall Panel with Mechanical Links

The initial double-wall panel (Fig. 2a) is 1.06 cm thick (total thickness) and has a 1.0 cm spacing

between consecutive stiffeners, in the periodicity direction (axis x in Fig. 2). The thickness of the

skins and core walls is 0.6 mm. A unit cell, as the one illustrated in Fig. 2a, is modelled with finite

elements (ANSYS Shell181) and the eigenvalue problem developed in Section 2 solved to get the

wave dispersion in the media.

Full geometrical details for the designs analysed are given: the double wall panel with mechan-

ical link is illustrated in Fig. 3, while the sandwich panel with rectangular core is illustrated in

Fig. 4.

The modified design, proposed here for increasing the flexural band-gap region versus frequency,

in the periodicity direction, is characterised by a trapezoidal (top-view) shape of the stiffer (Fig.

2b). The same global thickness and stiffeners’ spacing as the classic double-wall panel is used; the

skins are 0.6 mm-thick and the core walls are 0.45 mm-thick, in order to keep the same mass of

the system.

The idea of using such a geometrical shape comes from the usually low bending and shear

stiffness of this kind of panels in the direction normal to the stiffener envelope (axis x). The

addition of oblique elements, periodically repeated in the x-y plane due to the periodicity of the

system, has a main function: the core shear stiffness increases with respect to the classic design
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Figure 3: Cell model extracted from the optimized double-wall panel with mechanical links. Distances in millimetres.

Figure 4: Cell model extracted from the optimized sandwich panel with rectangular core. Distances in millimetres.
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Figure 5: Cell models extracted from a Sandwich Panel with Rectangular Core. a) Standard design. b) Proposed

Optimal Design with shifted walls.

where the bending of the mechanical link was proving the whole core-shear stiffness in the x

direction.

3.2. Rectangular-Core Panel

For the rectangular-cored panel, the initial design (Fig. 5a) has a total thickness of 1.06 cm

and a 1.0 cm spacing between consecutive stiffeners, in both directions (Fig. 5a). As for the

double-wall panel, both skins and core-walls are 0.6 mm-thick. Similarly to the previous case, the

modified design proposed here is characterised by a trapezoidal (top-view) shape of the stiffener

in one direction (axis y in Fig. 5b), while the rectilinear geometry is kept in the other direction.

To keep the same mass, global thickness and stiffeners spacing of the original system, the skins

are 0.6 mm-thick and the core walls are 0.36 mm-thick. Hereby, the target is to tailor the elastic

waves dispersion in the panel, against the acoustic wavenumbers. Differently from the previous

case, the presence of additional components of the stiffener in the x direction (Fig. 5b) does not

have the function of increasing the core-shear stiffness. The idea is to induce a larger deformation

mechanism for the folded core walls both for bending in y and core-shear in x.

4. Experimental Set-Up

The work flow followed for the analysis and testing of the presented design configurations is

illustrated in Fig. 6. Using the method described in Section 2, the numerical dispersion curves and

transmission loss are computed and compared. Then, a CAD model is developed and transformed

into a CAM input file for a Stratasys Fortus 450mc industrial 3D-printer with a maximum print-

able volume of 40 x 35 x 40 cm3 (Fig. 6). The material used for the modelling and 3D-printing of
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Figure 6: Work-flow scheme for panel design optimisation based on numerical and experimental data.

the panels is the ABS-M30 (Acrylonitrile butadiene styrene) [26]. The material has been experi-

mentally characterised and has the following properties: E = 1.8 GPa; ρ = 988 kg/m2; ν = 0.32.

Both the 3D-printed panels with standard and optimised designs are shown in Fig. 8.

The sound transmission measurements were performed in an un-coupled reverberant-anechoic

room as in Fig. 7. The reverberant room has volume of 2.50 x 1.40 x 1.75 m3 and reflective surfaces

are installed inside to increase the diffusiveness of the reverberant room; the calculated Schroeder

frequency is ≈ 600 kHz [27]. The acoustic excitation is generated using four speakers installed at

the four top corners of the reverberant room, with an uncorrelated white noise input from 50 to

10 kHz.

The transmitted sound power is measured using a Bruel & Kjaer sound intensity probe with

two half-inch microphones and a 6.0 mm spacer (see Fig. 7). The incident sound power is ob-

tained by the sound pressure level measurements in the cabin room, averaged among four half-inch

microphones disposed as in Fig. 7. The anechoic conditions of the receiving room are simulated

by covering the room walls with absorbing layers, whose distance from the tested panel is larger

than 2 m. The sound transmission loss (TL) is finally calculated, assuming that the excited and

radiating surfaces are the same, as:

TL = Lp − Li − 6.18, (7)

where Lp is the average pressure level measured in the reverberant room, Li the average sound

intensity level over the surface of the test-panels in the semi-anechoic room, while the -6.18 factor

arises from reference values in dB conversion [28].

5. Results

5.1. Waves Tailoring versus Acoustic Wavenumbers

The approach presented in Section 2 is used for studying the waves’ propagation in the periodic

structures proposed in Section 3. The main idea is to evidence two phenomena: an increase of the

bending band-gap in the periodicity direction, for the double-wall panel with mechanical links; an
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Figure 7: Illustration of the test facility with un-coupled reverberant-anechoic rooms for transmission loss measure-

ments.

Figure 8: The 3D-printed panels side-view following the standard (up) and optimised(down) designs in: a) Fig. 2 -

Double-Wall panel with mechanical links; b) Fig. 5 - Sandwich panel with rectangular core.
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Figure 9: Dispersion Curves of the Double-Wall Panel designs; eigenvalue solutions of the eigenvalue problem in Eq.

6.

increase of bending wavenumbers versus the acoustic ones, for the sandwich panel with rectangular

core.

In Fig. 9, the dispersion curves for the two designs illustrated in Fig. 2 are compared in the di-

rection orthogonal to the stiffening elements. The band-gap present in the standard design extends

from 3.3 kHz to 5.4 kHz and an acoustic coincidence is observed around 8.4 kHz. Differently, for

the optimized design proposed in Fig. 2, the band-gap is strongly enlarged in frequency from 3.6

kHz to 9.1 kHz, while a coincidence is observed only at the end of the frequency band of interest

(≈ 10 kHz). A double advantage is thus observed both in structural waves’ filtering (band-gap)

and coincidence shift, keeping the same mass of the system.

In Fig. 10 the eigenvectors of Eq. 6, which represent wavemodes of the wave-type propagating

in the media with the wavenumbers of Fig. 9, are showed for two frequencies. In particular, the

wavemodes with the highest wavenumbers of the set of waves propagating at 4.5 kHz and 6.5 kHz

are shown for the two designs in Fig. 2. It is interesting to observe how, in Fig. 10, the cell modal

wave deformations are completely different. The increase of core-shear stiffness in the periodicity

direction, for the optimized design, induces almost null modal out-of-plane displacements of the

skin surfaces. In opposition, the wavemodes of the classic design still present mode-shapes efficient

for sound transmission (non-null out-of-plane displacements).

Differently, for the classic sandwich panel with rectangular core, band-gaps are not present in

the frequency range of interest (see Fig. 11). Here, a coincidence effect is not observed, but the

bending waves follow closely and almost parallel the acoustic wavenumbers versus frequency. This

means that the sound transmission loss is expected to be reduced in a large frequency bandwidth.

The target of the optimised design, in this case, has been to enlarge the distance between the
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of the eigenvalue problem in Eq. 6. a) f = 4.5 kHz; b) f = 6.5 kHz.
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Figure 11: Dispersion Curves of the Sandwich Panel with Rectangular core designs; eigenvalue solutions of the

eigenvalue problem in Eq. 6.

structural and acoustic wavenumbers for a large frequency band, by inducing a larger deformation

mechanism of the folded core walls. Coherently, in Fig. 11, the waves’ dispersion, both in x and y

directions, is characterised by higher wavenumbers: the larger distance from the acoustic ones is

expected to induce an enhanced sound transmission loss. In addition, a band-gap formation in x,

at the end of the frequency band, is also observed for the optimised design. The wave shapes in x

(wavemodes) at 4 and 6 kHz are presented in Fig. 12 for bending waves. As said before, the folded

walls design offers a larger core deformation mechanism and this is clearly observable in Fig. 12

for both frequencies: a part of the vibrational energy is absorbed through the core deformation.

In this way, the shear core waves reduce their speed and the corresponding wavenumbers increase,

as targeted.
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Figure 12: Wavemodes of the Sandwich Panel with Rectangular core designs for waves propagating in x direction;

eigenvector solutions of the eigenvalue problem in Eq. 6. a) f = 4.0 kHz; b) f = 6.0 kHz

5.2. Sound Transmission Loss

The sound transmission loss of the two couples of designs is numerically simulated for equivalent

infinite panels.

The effects of the design optimisation, observed in terms of waves in Figs. 9 and 11, are

specular in the transmission loss curves presented in Fig. 13. In Fig. 13a, the double-wall panel

with mechanical links is studied and the effect of the enlarged band-gap effect is visible in shifting

the coincidence frequency: starting from 1.5kHz, the sound transmission loss of the optimised panel

is constantly larger than the one of the standard plate design with the same mass.

On the other hand, in Fig. 13b, as observed from the dispersion curves, while a real coincidence

region is not observed for the standard sandwich plate design, a drop of the transmission loss is still

evident due to the proximity of the structural and acoustic wavenumbers/wavelengths. Differently,

for the optimised design, the induced distance of structural and acoustic wavenumber results in

a constant increase of the sound transmission loss versus frequency, in absence of evident drops:

from 1.5 kHz to 10 kHz, the new design assures a larger sound transmission loss with the same

global mass of the panel.

To experimentally prove the increase of sound transmission loss for the proposed designs, the

3D-printed panels are installed and clamped in the TL facility, as in Fig. 7. The expected and

real weights of the printed panels are reported in Table 1. It is observed in Table 1 that, when

the geometrical complexity of the single cell design increases (optimised designs), the discrepan-

cies between the expected and real weight of the 3D-printed panels increases too. To compare

mass-normalised results, the approach proposed by De Rosa in [29] is used to scale the measured

transmission loss curves of the optimised panels versus the ones of the lighter (standard; see Table

1) panels.

In Fig. 14, the measured sound transmission losses (mass-normalised) of the two design couples
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Figure 13: Calculated Transmission Loss for infinite panels the proposed designs. a) Double-Wall panels designs;

b) Rectangular-Cored Sandwich panel designs.

Table 1: Expected and Measured weights of the 3D-printed panels

Expected [gr] Measured [gr] Difference [%]

Standard (Fig. 2a) 246 245 - 0.4

Optimised (Fig. 2b) 246 287 + 16.6

Standard (Fig. 5a) 341 346 + 1.4

Optimised (Fig. 5b) 342 360 + 5.3
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Figure 14: Measured Transmission Loss (mass-normalised) for the 3D-printed panels. Total panel surface: 0.40x0.35

m2. Exposed panel surface: 0.34x0.29 m2. a) Double-Wall panels designs; b) Rectangular-Cored Sandwich panel

designs.

proposed in Section 3 are compared. While the total surface of the plates is 0.40 x 0.35 m2, the

exposed panel surface is 0.34 x 0.29 m2. In Fig. 14a, the measured sound transmission loss

trends are in good agreement to the simulated ones for an equivalent infinite plate in Fig. 13a:

as expected, the increase of sound transmission loss starts from 1.5 kHz and continues up to the

end of the frequency band of interest. It must be highlighted that the damping induced by the

3D-printing, the installation and the clamping in the TL cabin might be high. It is also observed by

the measured transmission loss curve around the coincidence region (≈ 8.4 kHz) for the standard

DWP in Fig. 14a, with respect to the simulated drop in Fig. 13a.

Similarly, in Fig. 14b, the same trends of the simulation Fig. 13b, for the sandwich plate with

rectangular core, are experimentally observed. Again, the reduction of transmission loss expected

for the standard design is highly damped with respect to the simulation. However, the agreements

is satisfying and validates the expected trends. The increase of sound transmission loss, as in the

previous case, appears in a very large frequency band that goes from 1 kHz to 10 kHz, at least, for

a fixed mass of the panel.

Although there is a general agreement between expected results and experimental evidence,

some discrepancies are present. For example, in both cases the sound transmission loss increase

starts in frequencies a bit lower than the expected ones. This should be addressed to two factor

that act simultaneously.

First, as discussed before, the Schroeder frequency of the TL cabin is ≈ 600 kHz and this can

have an influence on the reliability of the measurements in the low frequency bands. Furthermore,

the uncertainties connected to the 3D-printing and the effective differences among the ideal models

and the real structures are not perfectly controlled and might, obviously, induce discrepancies by
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the predictions and the measurements.

6. Concluding Remarks

Two types of sandwich panels are analysed in terms of waves’ propagation and sound trans-

mission loss by using periodic structure theory. A double-wall panel with mechanical links and a

sandwich panel with rectangular core are considered. A core optimization using shifted core walls

is proposed targeting the structural waves’ propagation versus the acoustic wavenumbers, forcing

the mass to be fixed to the value of the original designs.For the double-wall panel with mechanical

links an enlarged bending band-gap is achieved in a large frequency band, shifting the acoustic

coincidence almost out of the frequency band of interest. For the sandwich panel with rectangular

core, an increased core deformation mechanisms is achieved distancing the structural(bending) and

acoustic wavenumbers versus frequency.

Standard and optimized configurations are 3D-printed and sound transmission loss measure-

ments are carried out using a small facility with uncoupled reverberant and semi-anechoic config-

uration.

Numerical simulations and experimental tests evidence an increased vibro-acoustic performance

of the new designs. The transmission loss measurements showed that, even keeping the same total

mass of the panels, the sound transmission loss is increased in a very large frequency band that

goes from ≈ 1.5 kHz to 10 kHz.
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