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INTRODUCTION

In the prediction error (PE) identication framework, for the estimate to be consistent, the prediction error must be dierent for dierent values of the to-be-identied parameter vector. If the data used for the identication ensures this property, we say that the data are informative.

The data informativity has been extensively studied in the case of Linear Time-Invariant (LTI) systems. This has been done both for Single Input Single Output (SISO) systems [START_REF] Ljung | System identication: Theory for the user[END_REF][START_REF] Bazanella | Necessary and sucient conditions for uniqueness of the minimum in Prediction Error Identication[END_REF][START_REF] Gevers | Identiability and informative experiments in open and closed-loop identication[END_REF][START_REF] Saukoski | System and circuit design for a capacitive MEMS gyroscope[END_REF][START_REF] Gevers | Identication and the Information Matrix: How to Get Just Suciently Rich[END_REF] and for Multiple Inputs Multiple Outputs (MIMO) systems [START_REF] Bazanella | Closed-loop identication of MIMO systems: a new look at identiability and experiment design[END_REF][START_REF] Colin | Closed-loop Identication of MIMO Systems in the Prediction Error Framework: Data informativity Analysis[END_REF]b;[START_REF] Colin | Identication-Based Approach for Electrical Coupling Compensation in a MEMS Gyroscope[END_REF]d].

While the PE identication framework is generally used for LTI systems, it can also be used as an ecient tool to identify certain classes of non-linear systems. This is, e.g., the case for block-oriented systems with static nonlinearities (Hammerstein/Wiener systems) [START_REF] Giri | Block-oriented nonlinear system identication[END_REF].

Adapting the PE framework to this type of systems entails a number of challenges. As an example, the identication problem boils down to a complex non-convex optimization problem. Consequently, a good initialization of this optimization problem is crucial and the best linear approximation framework can be used for this purpose [START_REF] Schoukens | Parametric identication of parallel Hammerstein systems[END_REF][START_REF] Schoukens | Parametric identication of parallel Wiener-Hammerstein systems[END_REF][START_REF] Schoukens | Identication of block-oriented nonlinear systems starting from linear approximations: A survey[END_REF]. Another issue (the one we will consider in the present paper) is that we have to ensure that the data used for the identication are informative (i.e. yields a different prediction error for all values of the to-be-identied parameter vector). Up to our knowledge, this problem has never been studied in the literature.

In this paper, we will tackle data informativity for a particular type of block-oriented systems with two branches described by y(t) = G 0 (z)u(t) + P 0 (z)u n (t) + v(t) where u is the excitation, y the output, v the measurement noise and n ∈ N. This system is a parallel Hammerstein system with one monomial nonlinearity. For instance, the linear dynamics of the micro-electromechanical structure (MEMS) gyroscope with capacitive instrumentation can be modeled quite accurately with such representation with n = 2 [START_REF] Saukoski | System and circuit design for a capacitive MEMS gyroscope[END_REF][START_REF] Kempe | Inertial MEMS: principles and practice[END_REF].

For this type of Hammerstein systems, we derive results in order to verify whether a given set of data is informative or not. We do that by rewriting the system as an equivalent system with one output and two inputs, i.e., u 1 = u and u 2 = u n and we use informativity results for Multiple Input Single Output (MISO) systems to tackle the data informativity problem for the considered parallel Hammerstein system.

Notations. For all matrices A, A T denotes its transpose. The notation 0 n×m refers to the matrix of size n × m full of zeros. For quasistationary signals x [START_REF] Ljung | System identication: Theory for the user[END_REF]], we dene the operator Ē[x(t)] = lim

N →+∞ 1 N N t=1 E[x(t)]
where E is the expectation operator. Finally, for discretetime systems, z denotes the forward-shift operator.

PREDICTION ERROR FRAMEWORK

Consider the parallel Hammerstein system S with one input u and one output y described by

S : y(t) = G 0 (z)u(t) + P 0 (z)u n (t) + H 0 (z)e(t) (1)
where G 0 (z) and P 0 (z) are stable transfer functions, H 0 (z) is a stable, inversely stable and monic transfer function, e a white noise and n an integer that will be assumed to be known and such that n ≥ 2. We will suppose that u and e are independent (i.e. the identication experiment is performed in open loop). Therefore, u n and e are also independent.

As already mentioned in the introduction, we want to identify a model of S by using the PE identication framework. For this purpose, one could consider a parametrized nonlinear model structure

M = {(f (u(t), θ), H(z, η)) | θ = ( θT , η T ) T ∈ D θ } with f (u(t), θ) a nonlinear function in u(t) dened by f (u(t), θ) = G(z, θG )u(t) + P (z, θP )u n (t)
where G(z, θG ), P (z, θP ) and H(z, η) are parametrized rational transfer functions 1 , θ the parameter vector and θ = ( θT G , θT G ) T . The set D θ ⊂ R m restricts θ = ( θT G , θT P , η T ) T to those values for which G(z, θG ) and P (z, θP ) are stable and H(z, η) is stable and inversely stable.

Instead of choosing this model structure, one can notice that the system S in (1) is equivalent to the following MISO system with the input vector u = (u, u n ) T : S :

y(t) = (G 0 (z), P 0 (z))u(t) + H 0 (z)e(t) (2) 
Therefore, it can be identied within the following MISO (linear) Box-Jenkins (BJ) model structure M described by

M = {(G(z, θG ), P (z, θP ), H(z, η))| θ = ( θT G , θT P , η T ) T ∈ D θ } (3)
In the sequel, we will denote by µ G (resp. µ P ) the dimension of θG (resp. θP ). Moreover, we will consider the so-called full-order assumption for M , i.e., ∃θ 0 = ( θT 0,G , θT 0,P , η T 0 ) T ∈ D θ such that (G(z, θ0,G ), P (z, θ0,P ), H(z, η 0 )) = (G 0 (z), P 0 (z), H 0 (z)). Finally, we will assume that the model structure M is globally identiable at θ 0 , by considering that there is no pole-zero cancellation at θ 0 [START_REF] Bazanella | Necessary and sucient conditions for uniqueness of the minimum in Prediction Error Identication[END_REF].

Assume that we have a set of N input-output data

Z N = {x(t) = (u T (t), y(t)) T | t = 1, • • • , N } collected on S.
From each (G(z, θG ), P (z, θP ), H(z, η)) ∈ M , we construct the one-step ahead predictor ŷ(t, θ) given by ŷ(t, θ) = W u (z, θ)u(t) + W y (z, θ)y(t) = W (z, θ)x(t) (4) where

W u (z, θ) = H -1 (z, η)(G(z, θG ), P (z, θP )) (5) W y (z, θ) = 1 -H -1 (z, η) (6) W (z, θ) = (W u (z, θ), W y (z, θ)). (7) 
Based on the dataset Z N , we compute the optimal parameter vector denoted θN minimizing a least-square criterion on the prediction error (t, θ) = y(t) -ŷ(t, θ): θN = arg min

θ∈D θ V N (θ, Z N ) (8) V N θ, Z N = 1 N N t=1 2 (t, θ) (9) 
We want θN to be a consistent estimate of the true parameter vector θ 0 , i.e., θN → θ 0 with a probability equal to 1 when N → ∞. For that, it is important that M is globally identiable at θ 0 and that the data are informative with respect to (w.r.t.) M . The denition of the latter adapted to our problem is given below: Denition 1. Consider the framework dened above with u T = (u, u n ) and with the data

x(t) = (u T (t), y(t)) T 1 H(z, η) is moreover assumed monic, i.e., H(z = ∞) = 1.
collected by applying a quasi-stationary input u to the true system S in (1)-( 2). Consider the model structure M dened in (3) yielding the predictor ŷ

(t, θ) = W (z, θ)x(t). Dene the set ∆ W = {∆W (z) = W (z, θ ) - W (z, θ ) | θ and θ in D θ }.
The data x(t) are said to be informative w.r.t. the model structure M when, for all ∆W (z) ∈ ∆ W , we have

Ē ||∆W (z)x(t)|| 2 = 0 =⇒ ∆W (z) ≡ 0 1×3 ( 
10) where ∆W (z) ≡ 0 1×3 means that ∆W (e jω ) = 0 1×3 at all or almost all ω.

DATA INFORMATIVITY FOR MISO SYSTEMS IN OPEN-LOOP WITH TWO INPUTS

As already mentioned in the previous section, the nonlinear SISO system S with the input u in (1) can be rewritten as the MISO linear system with the input vector u = (u, u n ) T in (2). Since we want a consistent estimate of (G 0 (z), P 0 (z), H 0 (z)), the objective of this paper is to develop results in order to verify if a given experiment with an excitation u will yield informative data x(t) = (u T (t), y(t)) T w.r.t. the MISO BJ model structure M . To derive these results, we will recall some data informativity results for MISO systems. These results are valid for arbitrary input vectors, i.e., u must not be necessarily equal to (u, u n ) T . For this purpose, let us introduce the following notations:

X(z, θ) = (G(z, θG ), P (z, θP )) and ∆X(z) = X(z, θ ) -X(z, θ ) where θ = ( θT G , θT P ) T . Based on D θ , we dene the set D θ = { θ | θ = ( θT , η T ) T ∈ D θ }. We also dene the set ∆ X = {∆X(z) = X(z, θ ) - X(z, θ ) | θ and θ ∈ D θ }.
Theorem 1. Consider data x(t) = (u T (t), y(t)) T collected on a MISO system (2) in open loop. Consider also a model structure M for this MISO system (see (3)) and the set ∆ X dened above. Then, the data x(t) are informative w.r.t. M if and only if, for all ∆X(z) ∈ ∆ X , we have

Ē ||∆X(z)u(t)|| 2 = 0 =⇒ ∆X(z) ≡ 0 1×2 (11) 
Proof. See [START_REF] Colin | Data Informativity for the Open-Loop Identication of Multivariate System in the Prediction Error Framework[END_REF].

In [START_REF] Colin | Data Informativity for the Open-Loop Identication of Multivariate System in the Prediction Error Framework[END_REF]], we have developed ecient conditions to verify whether a given input vector yields informative data (i.e., satises the condition in Theorem 1). As we will see in the sequel, these conditions may be more dicult to verify in the case of an input vector u = (u, u n ) T . Therefore, we present the following lemmas which give simpler (but more conservative) conditions for data informativity.

Lemma 1. Consider Theorem 1. Assume that we collect the data x(t) = (u T (t), y(t)) T by applying a quasistationary input vector u to the system S in (2). Assume that the power spectrum matrix Φ u (ω) of the input u is strictly positive denite for almost all frequencies ω. Then, the data x(t) are informative w.r.t. a full-order BJ model structure M for S (see ( 3)). This result holds whatever the orders of the transfer functions G 0 , P 0 , and H 0 in (2) may be.

Proof. From Parseval theorem, the left-hand side of ( 11) is equivalent to 1 2π π -π ∆X(e jω )Φ u (ω)∆X * (e jω )dω = 0.

Since Φ u (ω) is positive denite for almost all frequencies ω, we have that Ē ||∆X(z)u(t)||2 = 0 always implies ∆X(z) ≡ 0 1×2 irrespectively of the complexity of ∆X ∈ ∆ X , i.e., a full-order BJ model structure M describing any system S. This concludes the proof.

Lemma 1 cannot be used to verify the data informativity for multisine input vectors (since Φ u is never strictly positive denite in this case). Lemma 2 presents a data informativity condition for this type of excitation vectors.

Lemma 2. Consider Theorem 1 and suppose that the data x(t) = (u T (t), y(t)) T are generated with a multisine input vector u = (u 1 , u 2 ) T . Denote by Φ u1 (resp. Φ u2 ) the power spectral density (PSD) of u 1 (resp. u 2 ). Suppose that Φ u1 (resp. Φ u2 ) is non-zero at s 1 (resp. s 2 ) frequencies in ]-π, π]. Finally, suppose that Φ u1 and Φ u2 are both nonzero at s 1,2 frequencies in this interval (s 1,2 can be equal to zero). Then, the data x(t) are informative w.r.t. M (see (3)) if s 1 ≥ µ G and s 2 -s 1,2 ≥ µ P where µ G and µ P are dened below (3).

Proof. Let us rst observe that the multisine u 2 can be decomposed as follows

u 2 = u ( u1) 2 + u (⊥u1) 2 where • u ( u1) 2
is the multisine whose PSD shares the same frequencies with the PSD of u 1 , i.e., the multisine part of u 2 that is totally correlated to u 1 . The PSD of u

( u1) 2 is non-zero in s 1,2 frequencies. • u (⊥u1) 2
is the multisine whose PSD does not share any frequency with the PSD of u 1 , i.e., the multisine part of u 2 that is not correlated to u 1 (and to u ( u1) 2 too by construction). The PSD of u

(⊥u1) 2 is non-zero in s 2 -s 1,2 frequencies.
Consequently, the left hand side of ( 11) is equivalent to the following equation system, for all ∆X(z) = (∆G(z), ∆P (z)

) ∈ ∆ X ,    Ē ||∆G(z)u 1 (t) + ∆P (z)u ( u1) 2 (t)|| 2 = 0 Ē ||∆P (z)u (⊥u1(t)) 2 (t)|| 2 = 0 (12) 
We have to prove that (12) implies ∆X = (∆G, ∆P ) ≡ 0 1×2 . The PSD of u

(⊥u1(t)) 2
is non-zero in at least µ P dierent frequencies in ] -π, π]. Therefore, the second equation of (12) implies ∆P (z) ≡ 0 [START_REF] Ljung | System identication: Theory for the user[END_REF][START_REF] Gevers | Informative data: How to get just suciently rich?[END_REF]. By injecting the latter in the rst equation of ( 12), we obtain Ē ||∆G(z)u 1 (t)|| 2 = 0. Since the PSD of u 1 is non-zero in at least µ G frequencies in the set ]-π, π] and so Ē ||∆G(z)u 1 (t)|| 2 = 0 implies that ∆G(z) ≡ 0, which concludes the proof from Theorem 1.

As already mentioned, Lemmas 1 and 2 pertain to an arbitrary input vector u. They can therefore also be used in the case where the input vector u = (u 1 , u 2 ) T is of the form u 1 = u and u 2 = u n . This fact will be used in the sequel to derive data informativity results for the Hammerstein system S in (1).

WHITE GAUSSIAN NOISE EXCITATION

As shown in Appendix A, if the input signal u of ( 1) is chosen as a zero-mean Gaussian white noise, the PSD of u = (u, u n ) T is strictly positive denite at (almost) all frequencies (whatever the value of n ≥ 2). Consequently, we have the following result.

Theorem 2. Consider Theorem 1. Assume that we collect the data x(t) = (u T (t), y(t)) T with u = (u, u n ) T by applying a zero-mean white Gaussian noise u to the system S in (1). Then, the data x(t) are informative with respect to a full-order BJ model structure M describing any system S.

Proof. See Appendix A. This type of stochastic excitation is interesting since it can allow to identify any system of the type (1).

MULTISINE EXCITATION

In this section, u is a sum of m cosinusoids given by

u(t) = m l=1 A l cos(ω l t + φ l ) (13) 
where A l > 0 and φ l are respectively the amplitude and the phase-shift of the cosinusoid at the non-zero frequency ω l belonging to the normalized frequency 2 interval ]0, π[. Since u is a multisine, u n is also a multisine, excited at more cosinusoids than u. In [START_REF] Colin | Data Informativity for the Open-Loop Identication of Multivariate System in the Prediction Error Framework[END_REF]], we gave a condition to verify if a given multisine input vector u will yield informative data w.r.t. M by verifying the rank of a matrix depending on the model structure complexity and on the amplitudes, phase-shifts and frequencies of the cosinusoids in u. To apply it to our problem, we have to compute the amplitudes, phase-shifts and frequencies of u n which can become computationally expensive when n and m increase. Fortunately, using Lemma 2, we can derive a sucient condition for data informativity that only requires the knowledge of the number of frequencies present in u n (and not its full expression).

Theorem 3. Consider that the system S in (1) is excited with the multisine (13) where As already mentioned, to use the (sucient) data informativity condition of Theorem 3, we only need to know how many frequencies are present in u n and to compare them with the ones in u (see ( 13)).

ω l (l = 1, • • • , m) ∈ ]0,
For this purpose, one could compute the Fast Fourier Transform (FFT) of the sequence {u n (t) | t = 1, • • • , M } for a suciently large value of M . Another procedure to this end will be derived in the next subsection. In this procedure, we will formally suppose that φ l = 0 (l = 1, • • • , m) in ( 13). See Remark 1 for further details.

Method for the computation of s 2

Let us thus consider (13) with A l > 0, φ l = 0 and ω

l ∈]0, π[ (l = 1, • • • , m) and let us observe that u n (t) = u n-1 (t)u(t), u n-1 (t) = u n-2 (t)u(t), • • • , u 2 (t) = u(t)u(t).
Therefore, to get the cosinusoids of u n , we have rst to determine the ones of u 2 from u, then the ones of u 3 from u 2 , • • • , the ones of u n-1 from u n-2 and nally the ones of u n from u n-1 .

Let us now study how to obtain the frequencies of u p from the ones of u p-1 (p = 2, • • • , n). For this purpose, we know that u p-1 is a multisine and so u p (t) = u p-1 (t)u(t) can be written as the sum of the products of each cosinusoid in u by each cosinusoid in u p-1 . By using the fact that cos(α) cos(β) = 1/2(cos(α + β) + cos(α -β)) ∀(α, β) ∈ R 2 , all the products in this sum can be written as the sum of two cosinusoids.

By doing this, we see that the set of frequencies in u p can be determined by adding and substracting ω l (l = 1, • • • , m) to the frequencies of each cosinusoid present in u p-1 . Of course, in the obtained set, we have to remove the duplicates (e.g., the frequency -ω is equivalent to the frequency ω and the frequency ω + 2kπ with k ∈ Z is equivalent to ω ). We then obtain a set of frequencies in the interval [0, π]. Let us denote by m the number of frequencies in this set. Then, s 2 = 2m if the set does not contain neither the frequency 0 nor π while s 2 = 2m -1 if it contains either 0 or π and s 2 = 2m -2 if it contains both 0 and π.

The above procedure supposes that no terms in the sum of products can cancel out. This is the reason why we suppose that A l > 0 and φ l = 0. Consequently, all the terms in the summation will be characterized by a positive amplitude and a zero phase-shift and no cancellations can then occur.

Let us illustrate the above procedure on an example.

Example 1. Consider n = 3, m = 2 and u(t) = cos(ω 1 t) + cos(ω 2 t) with ω 1 = 0.2 and ω 2 = 0.3. To compute s 2 , we need the frequencies of the cosinusoids in u 3 . For this purpose, we need rst to determine the ones in u 2 from u.

For each frequency in u (i.e., 0.2 and 0.3), we add and subtract ω 1 = 0.2 and ω 2 = 0.3. With ω 1 we obtain the terms 0.4, 0, 0.5, 0.1 and with ω 2 we have 0.5, -0.1, 0.6, 0. By removing the duplicates, we obtain the following frequencies in u 2 : 0, 0.1, 0.4, 0.5 and 0.6.

For each frequency in u 2 (i.e., 0, 0.1, 0.4, 0.5 and 0.6), we add and subtract ω 1 = 0.2 and ω 2 = 0.3. With ω 1 , we obtain the terms 0.2, -0.2, 0.3, -0.1, 0.6, 0.2, 0.7, 0.3, 0.8 and 0.4 and with ω 2 , we have 0.3, -0.3, 0.4, -0.2, 0.7, 0.1, 0.8, 0.2, 0.9 and 0.3. By removing the duplicates, we obtain the 8 following frequencies in u 3 : 0.1, 0.2, 0.3, 0.4, 0.6, 0.7, 0.8 and 0.9, all belonging to [0, π]. We see that m = 8 and that s 2 = 16. Since the frequencies ±0.2 and ±0.3 are also in Φ u , we have that s 1,2 = 4 and thus that s 2 -s 1,2 = 12.

Remark 1. As already mentioned, the above procedure is not guaranteed to yield the right s 2 if the phase-shifts are not all equal to zero. To show this let us consider the following u(t) = 1/2 cos(0.4t) + cos(0.6t) + cos(t + π/2) and let us apply the above procedure for n = 2: we obtain the set of frequencies 0, 0.1, 0.2, 0.8, 0.9, 1, 1.1, and 1.2. However, the frequency 1 does not appear in u 2 due to the cancellations of the terms at this frequency. Note, however, that such a situation is rare in practice and we can therefore carefully use the procedure in this section when the phase-shifts are non-zero. However, a verication using the FFT can be always useful.

Result without computation of s 2

In some cases, we even do not have to compute s 2 to check the data informativity.

Lemma 3. Consider that the excitation of (1) (with n ≥ 2) is given by u(t) = m l=1 A l cos(ω l t) with A l > 0 and ω l ∈]0, π[ (l = 1, • • • , m) and such that the m frequencies nω l are • all dierent between them (modulo 2π).

• all dierent from π and 0 (modulo 2π).

• all dierent from each ω j (j = 1, • • • , m) (modulo 2π).

Then, the data x(t) = (u T (t), y(t)) are informative with respect to M if m ≥ max(µ G /2, µ P /2) where µ G and µ P are dened below (3).

Proof. Following the procedure in Section 5.1, we see that nω 1 , • • • , nω m are frequencies of the multisine u n . Since these m positive frequencies are all dierent (modulo 2π) and dierent from π (modulo 2π), this implies that the PSD of u n will be non-zero at at least 2m frequencies in ]π, π], i.e., s 2 ≥ 2m. Due to the fact that the m frequencies nω l are (modulo 2π) dierent from the frequencies ω j (j = 1, • • • , m) in u, we have also that s 2 -s 1,2 ≥ 2m. The result then follows from Theorem 3.

Remark 2. The idea of Lemma 3 is to give a lower bound for s 2 -s 1,2 which is 2m. However, this bound is conservative. In the example of Section 5.1 where n = 3 and m = 2, we have seen that s 2 -s 1,2 = 12 while the lower bound is equal to 2m = 4.

Synthesis of the results

Let us now summarize the dierent results of this section by giving a general approach to verify the informativity w.r.t. M for a given multisine u. First, we verify that m ≥ µ G /2. If it is not the case, the data x(t) are certainly not informative with respect to M .

If m ≥ µ G /2, we can check whether the (conservative) condition of Lemma 3 is satised. If it is not the case, we compute s 2 and s 1,2 (using the FFT approach or the procedure of Section 5.1) and we verify the (less conservative) condition of Theorem 3. If this condition is still not validated, we need to compute the full expression of u n (with all amplitudes and phase-shifts) and use the results of [START_REF] Colin | Data Informativity for the Open-Loop Identication of Multivariate System in the Prediction Error Framework[END_REF]] on this expression and the one of u (see ( 13)).

REAL LIFE EXAMPLE: MEMS GYROSCOPE

MEMS gyroscope description

The MEMS gyroscope is an inertial sensor used to measure angular rates by using Coriolis eect (see [START_REF] Kempe | Inertial MEMS: principles and practice[END_REF][START_REF] Saukoski | System and circuit design for a capacitive MEMS gyroscope[END_REF] for details of its working principle). By focusing on its main dynamics and from physics laws, the MEMS can be modeled by (1) with n = 2 and where3 

• G 0 (z) illustrates a parasite electrical bond between the excitation and measurement capacitive circuits:

G 0 (z) = 10 -2 9.47z -1 + 6.69z -2 -16.21z -3 1 -0.685z -1 + 0.175z -2 -0.0415z -3 • P 0 (z) describes the mechanical motion of the MEMS which is a resonance with a high quality factor:

P 0 (z) = 10 -3 2.39z -1 -5.47z -2 1 -0.743z -1 + z -2
We will consider that e is Gaussian with a variance of 10 -3 and H 0 (z) = 1 for the sake of simplicity and to verify easily the consistency of the estimator. All data used in this example are simulated from the above true system in order to verify the consistency. The sampling frequency f s is 62500Hz. Finally, we choose the full-order model structure M with the same complexity as (G 0 (z), P 0 (z), H 0 (z)). Consequently, it is globally identiable at θ 0 and the number of parameters to be identied in G(z, θ) (resp. in P (z, θ)) is equal to µ G = 6 (resp. µ P = 4).

White Gaussian noise excitation

From Theorem 2, the data are informative with respect to any rational model structure M when u is a white Gaussian noise. We do 100 Monte-Carlo simulations to illustrate the consistency with 100 realizations of the noise e, with a white Gaussian excitation u of variance 1 and a data number N = 5000 for each identication. By computing the mean of the 100 computed parameter vectors, we obtain the following model:

     G(z, θG ) = 10 -2
9.48z -1 + 6.68z -2 -16.21z -3 1 -0.685z -1 + 0.175z -2 -0.0416z -3 P (z, θP ) = 10 -3 2.32z -1 -5.42z -2 1 -0.743z -1 + z -2 The closeness between the identied model and the true one suggests consistency of the estimator.

Multisine excitation

We consider the following multisine excitation for u u(t) = cos(ω 1 t) + cos(ω 2 t) + 0.5 cos(ω 3 t) where ω 1 , ω 2 and ω 3 are the normalized frequencies4 are given by ω 1 = 0.08, ω 2 = 1.19 and ω 3 = 1.92, corresponding to the true frequencies ω1 = 503 rad/s, ω2 = 74362 rad/s and ω3 = 120001 rad/s respectively. First, we have indeed m = 3 ≥ µ G /2. In this case, the sinusoid frequencies have been chosen such that we can verify the condition of Lemma 3. We have indeed that m = 3 ≥ max(µ G /2, µ P /2) and so the data will be informative w.r.t. M with this excitation. Let us verify it by doing 100 Monte-Carlo simulations to illustrate the consistency with 100 realizations of the noise e, with a data number N = 5000 for each identication. By computing the mean of the 100 computed parameter vectors, we obtain the following model:      G(z, θG ) = 10 -2 9.53z -1 + 6.65z -2 -16.21z -3 1 -0.691z -1 + 0.176z -2 -0.0420z -3 P (z, θP ) = 10 -3 2.40z -1 -5.50z -2 1 -0.743z -1 + z -2 Here again, the closeness between the identied model and the true one illustrates the consistency of the estimator.

CONCLUSION

In this paper, we have studied the data informativity with respect to a particular parallel Hammerstein system with an input monomial nonlinearity. We have considered two commonly used signals in Prediction Error Identication: white Gaussian noise and multisine. In the white Gaussian noise case, we can identify any model structure. For multisine excitation, we give some advice on the number of cosinusoids to use. A real life example has been considered to illustrate the results. For future works, we want to study the data informativity property for most complex Hammerstein/Wiener systems.

The normalized frequency ω l is obtained from the true frequency ωl by ω l = ωl /fs.

The given transfer functions G 0 (z) and P 0 (z) are the ones obtained with the approach in[Colin et al. 2019e].

Recall that the normalized frequencies ω l are obtained from the true ones ωl by ω l = ωl /fs.

Appendix A. PROOF OF THEOREM 4

First, since u is a white Gaussian noise with a non-zero variance, u n is also a white noise with a non-zero variance. We will need the expectation value of u n (t) when u(t) is Gaussian. It is given in the next lemma. Lemma 4. [START_REF] Papoulis | Random Variables and Stochastic Processes[END_REF]]. Consider a zero-mean Gaussian variable X with variance equal to σ 2 . Then,

where the operator !! is dened for odd integer p by

We are going to prove that the power spectrum Φ u (ω) of u is positive denite at almost all frequencies ω, which will conclude the proof from Lemma 1. For that, let us calculate Φ u (ω) by taking the Fourier transform of the correlation matrix R u (τ ) given by

. By using the fact that u and u n are white and that u is zero-mean, we have that, from Lemma 4,

For the calculation of Ē[u n (t)u n (t + τ )], we give here the details since it is not as simple as the previous ones.

First, when τ = 0, we have that

We deduce the expression for Ē[u n (t)u n (t + τ )]:

• when n is even

• when n is odd

By taking the Fourier transform of R u (τ ), the power spectrum matrix Φ u (ω) is given by

when n is odd.

Since the power spectrum matrix Φ u (ω) is positive semi-denite at all frequencies ω, let us prove that the determinant of Φ u (ω) is non-zero for almost all ω to prove that it is strictly positive denite at almost all frequencies ω. When

Let us prove that (2n -1)!! -((n -1)!!) 2 = 0 by proving that (2n -1)!!/((n -1)!!) 2 > 1 when n is non-zero and even. The proof that (2n -1)!! -(n!!) 2 > 1 when n is odd is based on the same principle. Let us rst observe that

The numerator and the denominator of the latter are the product of n/2 factors. Since the minimal factor of the numerator is strictly greater than the maximal factor of the denominator for n ≥ 2, then (2n -1)!! > ((n -1)!!) 2 . Therefore, det(Φ u (ω)) > 0 for almost all ω. With Lemma 1, the conclusion follows.