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Abstract

The sound transmission loss of complex curved aircraft panels under diffuse acoustic field excitation

is experimentally and numerically studied. Two different aircraft sidewall panels are considered:

a thick composite sandwich panel and a thin aluminium panel with stiffening elements (stringers

and frames). Both bare configuration and with attached soundproofing material are tested in

laboratory conditions in coupled rooms. The numerical approach relies on a wave finite element

method including modal order reduction at cell scale and an extension based on the transfer matrix

method, for the inclusion of poroelastic treatments. The results obtained show that the proposed

numerical scheme is efficient for predicting the sound transmission loss of such complex structures.

Keywords: Sound Transmission, Periodic Structures, Curved Composite Structures, Noise

Control Materials

1. Introduction

In the aerospace industry, the requirements for lighter and stiffer structures are often strict and

thus the use of composite laminates and sandwich panels for aircraft panels has become common.

The reduced weight to stiffness ratio of composite sandwich structures is generally not favourable

to a good vibroacoustic performance and possibly results in larger interior noise levels. At the

same time, the increase of structures complexity results in a cumbersome computational cost

for numerical studies extended to a large frequency bandwidth,even for small-sized models. The

numerical study of optimized designs, especially for large-scale models, is thus limited.

The classic Finite Element Method (FEM) is a well-framed and accurate method that requires

a finite element discretisation of the whole model, implicitly limiting its application range [1, 2, 3,

4, 5]. Alternative formulations have also been proposed to reduce the computational effort of the

method [6, 7, 8].

On the other hand, Statistical Energy Analysis (SEA) is an efficient alternative, generally

limited to the high frequency range. In this method, structures and substructures are studied in

terms of energy exchange, strongly reducing the number of variables in the whole system [9, 10].
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The method relies on averaged quantities and is still not preferred for acoustic problems specific

of the low frequencies, even though some extensions in lower frequency bands have been proposed

[11, 12]. Within the SEA framework, different works have been developed to cope with the sound

transmission of composite structures [13, 14].

Analytical approaches have been proposed in the literature to deal with multi-layered panels

lined with porous materials, as in [15]. Liu et al., in [16, 17, 18, 19], then proposed analytical

approaches for double-walled flat and curved panels, lined with porous layers, under both acoustic

sources and mean flow. Biots theory is employed and a transfer matrix equation along with

appropriate boundary conditions is used to solve the system simultaneously [16, 17].

Some recent numerical alternatives have been developed to cope with a large number of en-

gineering applications, while keeping a good compromise between accuracy, calculation time and

flexibility. This is the case of the Transfer Matrix Method (TMM), which makes use of the propa-

gating waves in infinite multilayered structures, to calculate the reflection and transmission coeffi-

cients [3, 4]. Finite size effects, that can have a large influence at low frequencies, can be included

through appropriate corrections leading to a broadband accuracy of the method [20, 21, 22].

The Wave Finite Element Method (WFEM), mainly developed for periodic structures, is based

on the Bloch-Floquet principle and aims to analyse the dynamics of a periodic system by imposing

periodic conditions on a single repetitive cell [23, 24, 25, 26, 27, 28]. A great advantage is that the

complexity of the structural shape is just addressed to the finite element modelling of a unit cell

[29, 30, 31]. This approach has been applied to the analysis of the sound transmission of sandwich

panels and validated under acoustic plane wave load, for flat homogenised models [32, 33], and

homogeneous curved shells for fixed circumferential numbers [34]. The wave finite element method

is also used to calculate SEA parameters to calculate the sound transmission of periodic structures

in [35, 36].

Concerning the specific case of curved structures, alternative methods have also been presented.

A mathematical model for the transmission of noise through the walls of an orthotropic cylindrical

shell has been firstly proposed by Koval [37, 38, 39]. Other semi-analytic approaches, based on a

receptance method, have also been suggested, in order to analyse the sound transmission of aircraft

panels with stringers and ring frames, [40, 41].

Most of the cited methods are affected by limits and approximations, the frequency range of

applicability of classical FEM and SEA methods being first strongly limited by computational

cost or underlying hypotheses.The applicability of analytical models is often restricted to simple

structural models. The TMM approach is not applicable to non-homogenised curved structures,

unless the structural wavenumbers are singularly injected in the model. The previously published

WFE-based approaches, in an FEM framework, are only applicable to flat and homogeneous multi-

layered structures.

In this context, in this paper, a hybrid WFEM formulation is proposed, which originality

stands in with the prediction of the diffuse sound transmission of complex and curved structures

with attached poroelastic layers, and validated with experimental results obtained in coupled
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Figure 1: Example of a FE cell model with periodicity along the X-Y directions.

anechoic-reverberant rooms. The proposed formulation includes a modal order reduction at cell

scale, in order to deal with heavy numerical models, and is coupled with TMM, for the inclusion

of poroelastic treatments. The main aim here is to validate the method for different complex and

non-homogenised cell shapes and combinations with soundproofing treatment. The main advantage

stands in overcoming some of the limits of the previously described methods, aiming to deal with

a wider range of case-studies: complex shapes, curvatures and attached porous layers.

2. The Numerical Approach

The wave finite element method is an FE-based method applicable to periodic structures. The

first step is to perform a FE discretisation of the unit cell and extract the mass and stiffness

matrices, M and K respectively. Classic meshing considerations for an appropriate wavelength

description are valid as in any FE framework. With reference to Fig. 1, the dynamic stiffness

equation of the segment can be written as:

Dq = f + e, (1)

where q, f and e are the vectors of nodal degrees of freedom (DoFs), internal and external

forces, respectively; D is the dynamic stiffness matrix. For periodic structures, assuming time and

space harmonic excitation, the periodicity conditions are translated in a magnitude and phase link

among each point belonging to the periodic pattern, based on complex propagating constants for

each elastic wave. Displacements and forces at any point of the cell can thus be connected to the

ones of a limited subset, exploiting periodic links, as follows:

qA = IλY qF ; qR = IλXqL; q2 = IλXq1; q3 = IλY q1; q4 = IλXλY q1; (2)

with

λX = e−ikXLX , λY = e−ikY LY , (3)

where kX and kY are wavenumbers of the propagating wave in the periodicity directions X and Y ,

while LX and LY represent the cell lengths along the same directions, respectively; I is the identity
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Figure 2: Example of a FE cell curved rotating the local nodal references.

matrix. Assembling in a block-diagonal form the periodicity condition matrices, as in Eq. 2, a

periodicity matrix Λ can be used to link the total displacements and forces vectors to a reduced

subset of degrees of freedom. Pre-multiplying Eq.1 by ΛH , where H stands for the hermitian

operator, the dynamic stiffness matrix of the reduced model (DS) is given by Eq. 4.

DS = ΛH[K− ω2M]Λ. (4)

Given the equilibrium of the internal forces between consecutive cells, only potential external forces

are considered [25].

The problem in Eq. 4 represents a three-parametric eigenproblem in ω, λX and λY , that can be

solved by imposing two of the variables at each step [25]. In this way, the propagating wavemodes

and the corresponding constants of propagation can be derived.

The present work being focused on curved structures, the local nodal coordinate system, in the

FE mesh of the unit cell, can be rotated to simulate the desired curvature. This way, imposing the

periodicity conditions as shown in Eq. 3, the wave propagation is automatically analysed along

the curved local path. To model the curved cell, as in Fig. 2, a rotational matrix is assembled in a

block diagonal matrix, Rot, [42, 43]. Hence, the mass and stiffness matrices of the singly curved

periodic structure can be calculated as in Eq. 5.

Mcurv = RotTMRot; Kcurv = RotTKRot, (5)

where the subscript curv refers to the mass and stiffness matrices of the cell being simulated

as curved. The waves analysed along the locally curved reference are circumferential waves [26].

Forcing wavenumbers, imposed after Eq. 5, represent helical waves, in general.

2.1. Modal Order Reduction at cell scale

The use of modal reduction is highly suggested for fine meshes. In these cases, the internal

degrees of freedom, are substituted by the modal participation factors to achieve a significant

reduction of the number of inner DOFs [44]. The displacement vector q defined in Eq. 1, is here
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partitioned in [qJ , qB ]. The vector qB represents the degrees of freedom of the nodes belonging

to subset on the borders of the structure in both X, Y and Z. On the contrary, qJ represents the

nodes belonging to the inner part of the cell. This way, Eq. 1 takes the form of Eq. 6.(KBB KBJ

KJB KJJ

− ω2

MBB MBJ

MJB MJJ

)qB

qJ

 =

fB

fJ

 , (6)

where fJ is null, since no load is applied on this subset of nodes. The displacements vector can

be expressed as in Eq. 7, using a reduced basis that involves the static boundary modes ΨB and

component modes ΨC : qB

qJ

 = G

qB

PJ

 ; G =

 I 0

ΨB ΨC

 (7)

where PJ is the set of retained modal participation factors and G is the projection matrix for

the new basis. The static boundary modes ΨB and component modes ΨC can be derived as in a

Craig-Bampton (CB) framework (Eq. 8).

ΨB = K−1
JJKJB ; (KJJ − ω2MJJ)ΨC = 0. (8)

So, the displacements inside a unit-cell can be expanded on a subset of stationary modes [44].

Finally the stiffness and mass matrices can be written in the reduced set of coordinates using the

projection matrix G defined in Eq. 7:

MCond = GTMG,

KCond = GTKG,
(9)

where the subscript cond refers to the mass and stiffness matrices of the cell being condensed. The

set of retained modal participation factors, PJ , can be then statically condensed at each frequency

step.

2.2. The Sound Transmission Problem

Lets assume a structural model made of two external skins, i.e. a sandwich plate or a ribbed

panel. When an acoustic plane wave of amplitude pI impinges on one face of the infinite structure,

it vibrates and sound pressure waves are transmitted and reflected in the fluid adjacent to the

excited and radiating surfaces of the structures. Subscripts exc and rad are now used to identify

the subset of DoF, quantities and domains connected to the excited and radiating parts of the

structure, respectively. The degrees of freedom that do not belong to these two subsets, are

identified using the subscript In.

Taking the X-Y plane as a reference plane (Fig. 1), an acoustic plane wave can be defined, on

the surface of the cell, omitting the time harmonic dependence, as:

p(X,Y, Z, ω) = pIe
−i(kXX+kY Y−kZ,excZ), (10)

where the trace wavenumber components kX and kY are defined following the angles of incidence

(θ and φ; see Fig. 3) and the acoustic wavenumber (k0), as in Eq. 11.
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Figure 3: Incident acoustic wave on the X-Y plane of the structure.

kX = kexc sin θ cosφ; kY = kexc sin θ sinφ; kZ,exc =
√
k2exc − k2X − k2Y . (11)

The wavenumber components kX and kY are conserved along the structure, if we assume ho-

mogenised layers. For non-homogenised layers, since the numerical procedure includes periodic

links (Eq. 2), the multiple harmonics resulting from the periodicty of the structural system are

automatically included in the response of the radiating surface for each forcing wave of wavenum-

bers kX and kY . The kZ component can vary with the nature of the fluid; it the case here studied

both domains are made of air so kexc and krad coincide and are equal to k0 (= ω/c0).

From continuity of the normal particle velocity on the excited and radiating surfaces, the

dynamic stiffness of the fluids can be derived.

Df,exc =
−iρexcω

2

kZ,exc
; Df,rad =

−iρradω
2

kZ,rad
, (12)

where ρexc and ρrad are the fluid densities in the two domains and Df,exc and Df,rad the dynamic

stiffness of the fluid in the incident and radiating domains, respectively, linking the displacements

to the sound pressure amplitude in the two domains. It is worth clarify that the present procedure

is applicable also to curved structures. The curvature simulation exploited in Eq. 5, leads to a

local wavemode reference. The wavenumbers kX and kY become the local circumferential and

axial wavenumbers and thus Eq. 10 is representative of an helical wave: the load is decomposed

in a local reference which is coherent with the simulated curved structure. In this way, the load

must not be decomposed into spherical waves as in [37, 14, 13].

The load imposed on the plate, by the forcing plane wave (Eq. 10), can be simply lumped on

the wetted (excited) nodes of the finite element model. This way, the force vector of the subset of

nodal degrees of freedom as in Eq. 2, can be partitioned as in Eq. 13:

erexc = S · (pI + pR); erIn = 0; errad = S ·pT , (13)

where S is the vector of the free nodal areas of each excited node and pI , pR and pT are the nodal

pressure vectors representing the incoming, reflected and transmitted sound wave amplitudes,
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respectively. The dynamic stiffness matrix can be rearranged in the same way as the forces in Eq.

13, condensing all the non-excited nodes and resulting in Dc
S . Including the relations of Eq. 12,

the dynamic problem results in:[
Dc
S

]pI − pR

pT

 =

S ·Df,exc · (pI + pR)

S ·Df,rad · (pT )

 . (14)

The algebraic system in Eq. 14 can be solved in pR and pT obtaining the sound power transmission

coefficient τ .

τ(θ, φ) =
(kZ,exc/ρexc)S|p2

T |
(kZ,rad/ρrad)S|p2

I |
. (15)

Finite size effects can be included through correction factors in order to increase the accuracy at

low frequencies. While a formal and accurate spatial windowing approach is presented in [22], the

computational cost associated with this step might be high. Asymptotic formulas as in [21] are

used to reduce the computational cost, when homogeneous structures are analysed, even if these

lead to a loss of accuracy with respect to proper windowing at low frequency.

To simulate the sound transmission loss under a diffuse acoustic field, an integration of the

transmission coefficient is performed between zero and the maximum angle of incidence θmax, as

in Eq. 16.

τd(ω) =
1

π

∫ 2π

0

∫ θmax

0

τ(θ, φ) sin θ cos θdθdφ. (16)

Some issues in numerically evaluating this integral might arise when the values of θmax approach

90 degrees [45]. The sound transmission loss, TL, under a diffuse acoustic field is then computed

as:

TL(ω) = −10 log10(τd(ω)). (17)

2.3. A TMM-based extension for attached porous layers

While some works have been developed directly to model and analyse porous materials using

WFE [46, 47], here a simple approach is proposed to couple the present approach with the modelling

of infinite porous layers using TMM. Lets consider two laterally infinite sections, as in Fig. 4, where

the first one represents a potential periodic structure analysed using WFE-based approach and the

second one a porous material attached to the previous layer. By considering the continuity of the

velocities at the interface between the structural cell and the porous layer (plane 2 in Fig. 4), the

incoming pressure in the second layer can be derived using the surface impedance of the porous

layer itself, assuming the surface to be fully covered by the subsequent one. First, by solving Eq.

14 and substituting pT in Eq. 12, the averaged vibrational velocity, on the radiating side of the

first layer, is calculated. Then, once the nature of the second layer is established, the surface

impedance (ZS) can be derived and p2 calculated, using the equivalent fluid layer theory [3, 48].

In addition, no interaction between nodes on a face or cross face of the porous layer is assumed

[3, 48]. Finally, the sound pressure in the radiating side (plane 3 in Fig. 4) is evaluated using the

classic Transfer Matrix Method, as in Eq. 18.p2
v2

 =

 cos kZhp iZc sin kZhp

iZ−1
c sin kZhp cos kZhp

p3
v3

 , (18)
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Figure 4: Illustration of the two laterally infinite sections representing the structural layer and the porous one.

where hp represents the thickness of the porous layer, Zc its characteristic impedance and the sub-

scripts 2 and 3 are used to identify the sound pressure and the particle velocity at interface/plane 2

and 3 (Fig. 4), respectively. The transmission coefficient of the cell including the porous treatment

equals the product of the transmission coefficients of the single stations 1 − 2 and 2 − 3 (see Fig.

4).

This extension, while exact and immediate for homogenised structures, it is an approximation

for complex-shaped cells. A proper coupling for each structural part exposed or in contact with

the subsequent fluid layer is not performed, but, as will be shown in the following sections, this

approximation still provides accurate and predictive results in the case of complex shaped cells.

3. Experimental Set-Up

3.1. Transmission Loss Measurements

The measurements were performed in the coupled reverberant-anechoic rooms at Groupe d’

acoustique de Université de Sherbrooke, following closely the standard (ISO 15186-1: 2000), as in

[49, 50] (see Fig. 5). The reverberant room has dimensions 7.5 x 6.2 x 3 m3 with an averaged

reverberation time (T60) of 5.5 s in the frequency band [50-1000] Hz (Schroeder frequency =

2000
√
T60/V ≈ 400 Hz; [51]). The acoustic excitation is generated using loudspeaker installed

close to a corner of the room, with a white noise input from 50 to 5000 Hz.

The transmitted sound power is estimated using a sound intensity probe in the receiving semi-

anechoic room: a Bruel & Kjaer sound intensity probe composed of two half-inch microphones

and a 12 mm spacer was used. In a diffuse sound field, the incident sound power is related to

the spatially-averaged mean quadratic sound pressure. This quantity can be obtained either using

several fixed microphones in the reverberant room, or a single moving (traverse) microphone which

is used here using a rotating boom as in Fig. 5. The sound transmission loss (TL), now defined at

Eq. 17, is finally calculated, assuming that the excited and radiating surfaces are the same, as:

TL = Lp − Li − 6, (19)
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Figure 5: Illustration of the test facility with coupled reverberant-anechoic rooms. TL measurement following

pressure-intensity standard.
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Figure 6: Standard deviation of the whole set of TL measurements following pressure-intensity standard. a) Com-

posite Panel; b) Ribbed Panel

where Lp is the average pressure level measured in the reverberant room, Li the average sound

intensity level over the surface of the test-panels in the semi-anechoic room, while the -6 factor

arises from reference values in dB conversion [45].

The tests have been performed multiple times,so as to evaluate mesaurement dispersion, and

the curves presented in Fig. 8 and 10 represent a global average, in third octave bands. The

standard deviation of the sound transmission loss, for the two tested panels, is reported in Fig. 6.

3.2. Tested Panels

A thick sandwich composite panel and a thin aluminium stiffened with frames and stringers

are considered (Fig. 7). The composite panel has dimensions 1.54 m x 1.62 m, with a 0.94 m

radius of curvature. The ribbed panel has dimensions 1.45 m x 1.70 m, with a 1.30 m radius

of curvature. For each of the two panels, two different configurations are tested and numerically

simulated: a bare configuration and one with a 5cm-thick melamine layer attached (see Fig. 7).

The material and property data for the sandwich composite panel are provided in Table 1; the

physical properties of the melamine foam are given in Table 2; the geometrical parameters for the

ribbed aluminium panel are in Table 3, while the material is aluminium for all its substructures.
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Figure 7: A view, from the semi-anechoic chamber, of the two test panels mounted in the linking window. Sandwich

curved panel configurations: a) bare; b) with attached porous layers. Ribbed fuselage panel configurations: c) bare;

d) with attached porous layers.

Table 1: Material properties for the thick curved composite sandwich panel.

Skins Core

E1 (GPa) 46.0 0.01 x 10−3

E3 (GPa) 46.0 0.179

G1,2 (GPa) 17.7 1.0 x 10−3

G1,3 (GPa) 17.7 26.0 x 10−3

G2,3 (GPa) 17.7 56.0 x 10−3

ν1,2 0.3 0.45

ν1,3 0.3 0.01

ρ (kg/m3) 1570 64

h (mm) 0.98 25.5

Table 2: Physical properties for the porous layers attached to the panels.

Thickness Open porosity Flow resistivity Tortuosity Viscous length Thermal length

5 cm 0.99 7920 [Nm−4s] 1.02 132 [µm] 149 [µm]

Table 3: Geometrical parameters of the ribbed fuselage panel.

Frames Stringers Skin

Thickness (mm) 1.8 1.2 1.2

Height (mm) 72 28

Spacing (mm) 40.6 15.2
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A double wall system links the rooms with a 2.44 m x 1.63 m test window, decoupled by a 12.7

mm air gap. Both panels were mounted in the test window using frames of adapted sizes, that

were made of plywood with acoustic sealant made of neoprene adhesive and silicone. Only the

panels skin was actually clamped over approximately 20 mm in the mounting frame (stiffeners of

the aluminium panel were thus not clamped). The frames and surrounding surfaces were finally

covered with a flexible decoupled barrier material composed of an open-cell foam and a heavy

PVC layer. Great care was used in mounting to avoid leakage and excellent repeatability of the

experiments was observed.

4. Numerical Results and Validation

4.1. Thick Sandwich Panel

First, the numerical results obtained with the presented method are compared with the mea-

surements of the sound transmission for the curved composite sandwich panel. The unit cell is

modelled using 20 solid elements (ANSYS SOLID45) through the thickness of the plate and using

Eq. 5 to simulate the curvature. The porous layer is simulated using an equivalent fluid model [3].

The results in Fig. 8 show that, above the 400 Hz third octave, the numerical and experimental

results are in agreement. The TMM-based extension for porous layers, described in Section 2, is

here exact and gives excellent predictive results. Some discrepancies are present below 400 Hz and

are attributable to a lack of accuracy of the measurements below the Schroeder frequency and to

the way finite-size affects are accounted in the model. Being below the ring frequency region (≈ 500

Hz), a strong stiffness of the shell, in the circumferential direction increases the sound transmission

loss in that frequency band. The averaged contribution for all the integration angles of a diffuse

acoustic field, induces an horizontal trend of the TL curves versus frequency, as observed in the

literature [37, 13].

A high level of damping is observed in the experimental TL curves (Fig. 8), since both the

ring frequency (≈ 500 Hz; numerically calculated from dispersion curves; Eq. 4) and the acoustic

coincidence (≈ 1.5 kHz; calculated from experimental dispersion curves) are characterised by very

smooth dips. The structural damping is 3% in the whole frequency band, to simulate the increased

damping added by the installation in the test window, leading to a good agreement of the numerical

and experimental curves.

4.2. Ribbed Fuselage Panel

Next, the sound transmission for a curved and ribbed fuselage panel (Fig. 7 (c) and (d)), is

measured and compared to the presented model. The averaged TL curves, in third octave bands,

are presented in Fig. 10.

A numerical simulation is performed using the method presented in Section 2. The unit cell is

illustrated in Fig. 9; shell elements (ANSYS SHELL181) are used for all structural parts, while

joints and connections are not included in the model. In the real model, the stringer passes through
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Figure 8: The Transmission Loss of a thick curved sandwich panel under diffuse acoustic field excitation. A

comparison of the numerical results in log-space with measurements in third octave bands.

Figure 9: The unit cell used for the WFE simulation. The cell has global sizes given by the spacing of frames and

stringers (Table 3).

a small hole in the frame; this is omitted in the cell model since not considered relevant for a sound

radiation problem. In addition, the real panel is not perfectly periodic: some bays between the

two last frames (on the left side, Fig. 7) are not coincident to the other ones in the whole panel,

while the two frames at the lateral borders of the panel do not have the same geometry and size

of the ones in the middle. Differences between the real structure and the ideally periodic model

are thus present.

The modelled periodic cell has almost 2.9 · 104 degrees of freedom; the modal order reduction

reduces this number to less than 4000. More than 10 elements per wavelength are used to guarantee

mesh convergence for the sound transmission up to 3 kHz. This was a trade-off choice to guarantee

accurate results and keep a relatively low computational cost. For this reason the numerical results

are plotted just up to this frequency and not before 200 Hz, being the measured data not reliable

below 400 Hz.

In Fig. 10, a good agreement with the numerical method is observed in the 300 Hz - 2500

Hz frequency range. Both for the bare configuration (Fig. 7 (c)) and the one with attached
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Figure 10: The Transmission Loss of the ribbed fuselage panel for a diffuse acoustic load. A comparison of the

numerical results with measurements in third octave bands.

soundproofing material (Fig. 7 (d)), the numerical TL curves closely follows the experiments. The

ring frequency (≈ 670 Hz; [40]) gives a dip in the transmission loss, which is well described by

the simulation, proving that the curvature simulation presented in Eq. 5 is still applicable even

for large cell periods. Thus, unless small curvatures must be simulated, the periodic cell can be

modelled as flat and Eq. 5 applied to simulate the desired curved shape.

Using the approach described in subsection 2.3 a proper fluid-structure coupling at cell scale

is not performed. In addition, the air-gap between the radiating skins of the panel, between the

fuselage bays, and the porous layer, have not been modelled. Considering the approximations

regarding the handling of the sound package and the size effect, the discrepancies between the real

structure and the model, the results observed in the test-case with the attached melamine layer,

are accurate enough.

5. Concluding Remarks

A wave-based method involving an FE-modelled unit cell of a periodic structure, is validated

using experimental tests on two complex curved test-panels: a thick sandwich composite panel

and a doubly-ribbed aluminium one. The tests are performed in a facility equipped with semi-

anechoic-reverberant coupled rooms. The transmitted power is estimated using a sound intensity

probe in the receiving semi-anechoic room, while the incident power is obtained by the averaged

sound pressure level in the source room measured using a rotating boom microphone, following

closely the standard ISO 15186.

The measured sound transmission loss are compared to the present numerical approach in

two different configurations per test-case: bare configuration and with an attached noise control

material. The method involves the use of periodic conditions on a unit-cell, modelled with finite

elements, and, for large number of degrees of freedom, a modal order reduction performed to cell

scale. The structure-borne radiation is described using continuity of normal displacements at the

13



interface with the excited and radiating fluid domains. Equivalent nodal forces are expressed by

means of the dynamic stiffness of the fluid. A simple approximation to simulate the coupling

with multiple layers of different nature, as the case where the porous layers are attached to the

structural model, is developed in a transfer matrix framework. The curvatures of the panel are

imposed by manipulating the mass and stiffness matrices of the cell modelled as flat. The final

structural response is computed integrating the single response to a set of forcing circumferential

and axial waves (helical wavefields).

The ring frequency and acoustic coincidences are efficiently estimated numerically, in all the

test-cases analysed. The sound transmission losses are validated for all the configurations tested,

above the Schroeder frequency of the room.
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