
HAL Id: hal-02392081
https://hal.science/hal-02392081v1

Submitted on 20 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Linking dissipation, anisotropy, and intermittency in
rotating stratified turbulence at the threshold of linear

shear instabilities
Annick Pouquet, Duane Rosenberg, R. Marino

To cite this version:
Annick Pouquet, Duane Rosenberg, R. Marino. Linking dissipation, anisotropy, and intermittency in
rotating stratified turbulence at the threshold of linear shear instabilities. Physics of Fluids, 2019, 31
(10), pp.105116. �10.1063/1.5114633�. �hal-02392081�

https://hal.science/hal-02392081v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Linking dissipation, anisotropy, and intermittency
in rotating stratified turbulence at the threshold
of linear shear instabilities

A. Pouquet,1,2 D. Rosenberg,3 and R. Marino4

AFFILIATIONS
1Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, Colorado 80309, USA
2National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado 80307, USA
31401 Bradley Dr., Boulder, Colorado 80305, USA
4Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS, École Centrale de Lyon, Université Claude Bernard Lyon 1,
INSA de Lyon, Écully F-69134, France

ABSTRACT
Analyzing a large database of high-resolution three-dimensional direct numerical simulations of decaying rotating stratified flows, we show
that anomalous mixing and dissipation, marked anisotropy, and strong intermittency are all observed simultaneously in an intermediate
regime of parameters in which both waves and eddies interact nonlinearly. A critical behavior governed by the stratification occurs at
Richardson numbers of order unity and with the flow close to being in a state of instability. This confirms the central dynamical role, in
rotating stratified turbulence, of large-scale intermittency, which occurs in the vertical velocity and temperature fluctuations, as an adjustment
mechanism of the energy transfer in the presence of strong waves.
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I. INTRODUCTION, EQUATIONS, AND DIAGNOSTICS

A signature of fully developed turbulence (FDT) is its intermit-
tency, i.e., the occurrence of intense and sparse small-scale structures
such as vortex sheets, filaments, and fronts. This translates into non-
Gaussian Probability Distribution Functions (PDFs) of velocity and
temperature gradients, as well as chemical tracer gradients. On the
other hand, the atmosphere and the ocean are also known for their
intermittency in large scales, with strong wings in the PDFs of the
vertical velocity and temperature fields themselves. Such high ver-
tical velocities are observed in the nocturnal planetary boundary
layer;1 this leads to strong spatial and temporal variations of the
rate of kinetic energy dissipation, as measured in oceanic ridges.2,3

Similarly, microstructures, observed in the frontal Antarctic Cir-
cumpolar Current, are formed by quasigeostrophic eddies flowing
over bottom topography.4 These structures are due to bathymetry,
which has recently been assessed with increased accuracy.5 Such
interactions between turbulence and stratification can affect many
processes in the atmosphere and the ocean, such as rain formation6

or the lifetime of melting ice shelves.7

Large-scale intermittency is also found in high-resolution
Direct Numerical Simulations (DNS) of stratified flows, with or
without rotation,8,9 with a direct correlation to high levels of dis-
sipation. However, isotropy is classically assumed when estimating
energy dissipation of turbulent flows, from laboratory experiments
to oceanic measurements, even though it has been known for a long
time that small-scale isotropy recovers slowly in terms of the con-
trolling parameter, such as in wakes, boundary layers, and pipe or
shear flows.

A lack of isotropy can be associated with intermittency, as well
as with the long-range interactions between large-scale coherent
structures and small-scale dissipative eddies.10 In the purely rotat-
ing case, vertical Taylor columns form and, using particle image
velocimetry, space-time dependent anisotropy has been shown to be
important.11 Spectra follow weak turbulence arguments for strong
rotation,12 and pressure acts on nonlocal interactions between
strong vortices at small scales and large-scale fluctuations.13 In the
case of pure stratification, its role on small-scale anisotropy was
studied experimentally in detail.14 Spectral data and dissipation
data are mostly stream-wise anisotropic because of the shear, on
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top of the anisotropy induced by the vertical direction of strati-
fication.15 The vertical integral length scale does not grow, con-
trary to its horizontal counterpart,16 and vertical scales are strongly
intermittent.

Different components of the energy dissipation tensor have
been evaluated, for purely stably stratified flows or wall turbulence,
as a function of governing parameters,17–20 and a slow return to
isotropy is found only for rather high buoyancy Reynolds num-
bers,17 of the order of RB ≈ 103 (see Eqs. (3)–(13) for definitions
of parameters). With strong imposed shear and using anisotropic
boxes, anisotropy is found to be strongest when turbulence is
weakest, as expected, and anisotropic eddies in the small scales
depend on the effective scale-separation between the large-scale
energy-containing eddies, or the buoyancy scale for stratified flows,
and the dissipative scale of the turbulence.17 Part of the difficulty in
assessing the return to isotropy in either large or small scales, how-
ever, is that there is a strong coupling between scales, through the
interactions of gravity waves and fine-structure shear layers,21 as well
as in fronts.

In this context, we evaluate quantitatively the link between mix-
ing and dissipation, anisotropy and intermittency in the presence of
both rotation and stratification, and as a function of the intensity
of the turbulence. This is accomplished in the framework of a large
series of unforced DNS runs for the Boussinesq equations. With P
as the total pressure, u = u� + wêz as the velocity, θ as the tem-
perature fluctuation (normalized to have dimensions of a velocity),
and ∇ ⋅u = 0 because of incompressibility, we have in the unforced
case

∂u
∂t

+ ω × u + 2Ω × u = −Nθêz −∇P + ν∇2u, (1)

∂θ
∂t

+ u ⋅ ∇θ = Nw + κ∇2θ, (2)

where ν is the viscosity, κ is the diffusivity, ω =∇ × u is the vorticity,
and N is the Brunt-Väisälä frequency. Rotation, of intensity Ω = f /2,
and stratification are in the vertical (z) direction.

We use the pseudo-spectral Geophysical High Order Suite for
Turbulence (GHOST) code with hybrid MPI/OpenMP/CUDA par-
allelization and linear scaling up to at least 130 000 cores.22 The
GHOST-generated database considered here consists of 56 simula-
tions on grids of 10243 points, as well as three at 5123, 12 at 2563, and
two at 1283 resolutions, all in a triply periodic box.23,24 Initial condi-
tions for most runs are isotropic in the velocity; thus, at t = 0, w/u�
≲ 1, and we take zero temperature fluctuations so that θ develops in
a dynamically consistent way. Initial conditions in quasigeostrophic
(QG) equilibrium have also been considered,23 in that case with N/f
≈ 5, w(t = 0) = 0, and θ(t = 0) ≠ 0. The analysis of the QG set of
runs, indicated in the figures by star symbols, has not introduced any
major change in the conclusions,24 although it displays more inter-
mittency and anisotropy (see Figs. 4 and 5 below). Finally, with �
referring to the horizontal direction, k =

√
∣k⊥∣2 + k2

z is the isotropic
wavenumber.

The dimensionless parameters of the problem are the Reynolds,
Froude, Rossby, and Prandtl numbers,

Re = U0Lint
ν

, Fr = U0

LintN
, Ro = U0

Lintf
, Pr = ν

κ
, (3)

where U0 is the rms velocity and Lint = ∫[Ev(k)/k]dk/Ev is the
isotropic integral scale, both evaluated at the peak of dissipation. For
all runs, we set Pr = 1. The kinetic, potential, and total energies Ev ,
Ep, and ET = Ev + Ep, of respective isotropic Fourier spectra Ev,p,T(k),
and their dissipation rates ϵ̄v,p,T are

Ev = ⟨∣u∣2/2⟩, ϵ̄v = DEv/Dt = νZV , ZV = ⟨∣ω∣2⟩, (4)

Ep = ⟨θ2/2⟩, ϵ̄p = DEp/Dt = κZP, ZP = ⟨∣∇θ∣2⟩, (5)

with ϵ̄T = ϵ̄v + ϵ̄p and where ZV ,P are the kinetic and poten-
tial enstrophies. Spectra can also be expressed in terms of k� or
kz [as in Eq. (11) below]. It may also be useful to define other
derived parameters. For example, the Richardson number Ri, buoy-
ancy Reynolds number RB, buoyancy interaction parameter RIB, and
gradient Richardson number Rig are written as

Ri = (N/S)2, RB = ReFr2, (6)

RIB = ϵ̄v/(νN2), Rig = N(N − ∂zθ)/S(x)2, (7)

with S = ⟨S(x)⟩ = ⟨∂zu⊥⟩ representing the internal mean shear
that develops in a dynamically consistent way and in the absence
of imposed external shear. Rig is a point-wise measure of buoyancy
instability; it can be negative when the vertical temperature gradient
is locally larger than the (constant) Brunt-Väisälä frequency, indica-
tive of strong local overturning. We should note here that different
definitions can be found in the literature. In particular, the buoyancy
Reynolds number is often expressed as25 ϵ̄v/[νN2], corresponding to
RIB here. The distinction between RB and RIB is physically important.
Indeed, we can also define β as a global measure of the efficiency of
kinetic energy dissipation, with respect to its dimensional evaluation
ϵD∼ U3

0/Lint ,

β ≡ ϵ̄v/ϵD = τNL/Tv , (8)

τNL = Lint/U0, Tv = Ev/ϵ̄v . (9)

τNL and Tv are the two characteristic times defining nonlinear trans-
fer and energy dissipation; one can also define the wave periods
as τBV = 2π/N and τf = 2π/f. Consequently, in the intermediate
regime of wave-eddy interactions, one has the following simple
relationship:

RIB = βRB. (10)

This can be justified through a dimensional argument corroborated
by numerical results.24 Note that, in fully developed turbulence, one
has Tv = τNL and β = 1. We also showed that the characteristic times
associated with the velocity and temperature and based on their
respective dissipation rates, Tv and Tp = Ep/ϵ̄p, vary substantially
with governing parameters, being comparable in a narrow range
of Froude numbers when large-scale shear layers destabilize.26 The
direct numerical simulations cover a wide range of parameters,24,26,27

10−3 ≤ Fr ≤ 5.5, 2.4 ≤ N/f ≤ 312, 1600 ≤ Re ≤ 18 590.

RB and RIB vary roughly from 10−2 to 105, values which, at the
upper end, are relevant to the ocean and atmosphere. A few purely
stratified runs are considered as well.



Anisotropy has been studied extensively for a variety of flows,28

and many diagnostics have been devised. Here, we concentrate on
the following set, starting with the integral scale, the subscript μ
representing z, �:

Lint,μ
2π
=
Σk−1

μ Ev(kμ)
ΣEv(kμ)

, (11)

with Lint representing the integral scale for the isotropic case, which
is in terms of isotropic wavenumber. Integral scales are known to
increase with time in FDT, and it has been shown to do the same
in rotating and/or stratified turbulence. This is a manifestation of
the interactions between widely separated scales that feed the large-
scale flow through what is known as eddy noise together with, in the
rotating case in the presence of forcing, the occurrence of an inverse
cascade of energy.

Other signatures of anisotropy can be obtained through the
properties of the following tensors:

bij =
⟨uiuj⟩
⟨ukuk⟩

− δij
3

, dij =
⟨∂kui∂kuj⟩
⟨∂kum∂kum⟩

− δij
3

, (12)

gij =
⟨∂iθ ∂jθ⟩
⟨∂kθ ∂kθ⟩

− δij
3

, vij =
⟨ωiωj⟩
⟨ωkωk⟩

− δij
3

. (13)

These tensors are equal to zero in the isotropic case. For refer-
ence, we also write the pointwise dissipation, ϵv(x) = 2νsijsij, where
sij(x) = 1

2(∂iuj +∂jui) is the strain rate tensor. We define as usual the
second- and third-order invariants of a tensor Tij as TII = TijTji and
TIII = TijTjkTki. For the tensors above, they are denoted, respectively,
bII ,III , dII ,III , gII ,III , and vII ,III (see, for example, the work of Browne
et al.,10 Smyth and Moum,17 Sagaut and Cambon,28 and Antonia
et al.29 for details and interpretation). They refer, in particular, to
the geometry of the fields (one-dimensional or 1D vs 2D, 3D, and
axisymmetric, oblate or prolate). In what follows, all anisotropy ten-
sors and their invariants are computed from a snapshot of the data
cube at the peak of total enstrophy ZT = ⟨∣ω∣2 + ∣∇θ∣2⟩ (and thus, at
the peak of dissipation ϵ̄T) for each run, as are all PDFs and quanti-
ties associated with buoyancy flux, e.g., Γf defined in Sec. II. All other
quantities that are plotted are computed based on spectra that are
averaged in time over the peak in enstrophy. Specifically, the chosen
time intervals, different for different runs, are taken so that the vari-
ation of the total enstrophy in each case is no more than 2.5% from
its peak value when the turbulence is fully developed. This ensures a

lack of correlation between data points within the parametric study.
Note that most of the symbols used throughout the paper, together
with their definitions, are provided for convenience in Appendix,
Table I.

II. AT THE THRESHOLD OF SHEAR INSTABILITIES
Rotating stratified turbulence (RST) consists of an ensemble of

interacting inertia-gravity waves and (nonlinear) eddies. It can be
classified into three regimes, I, II, and III, with dominance of waves
in I for a small Froude number (and small RIB) and dominance of
eddies in III for high RIB: then, the waves play a secondary role and
dissipation recovers its fully developed turbulence isotropic limit ϵ̄D,
within a factor of order unity.30 In the intermediate regime (regime
II), one finds (i) β ∼ Fr, as required by weak turbulence arguments;
this is the first central result by Pouquet et al.,24 together with the fol-
lowing two other laws: (ii) kinetic and potential energies are propor-
tional (but not equal), with no dependence on governing parameters
in regime II where waves and nonlinear eddies strongly interact,
and (iii) similarly for the ratio of vertical to total kinetic energy,
Ez/Ev .

With these three constitutive laws [(i)–(iii)], one can recover
and establish a large number of scaling relationships, such as for
the ratio of characteristic length scales,24 or for the mixing efficiency
defined as

Γf ≡ Bf /ϵ̄v , Bf = N⟨wθ⟩, (14)

with Bf being the buoyancy flux. One finds Γf ∼ R−1
B ∼ Fr−2 in

regimes I and II, and ∼ R−1/2
IB ∼ Fr−1 in regime III. Such scal-

ings, predicted from simple physical arguments in Ref. 24, have
been observed at high RIB, for example, in oceanic data.31 Defining
Γ∗ ≡ ϵ̄p/ϵ̄v as the reduced mixing efficiency provides another simple
measure of irreversible mixing by looking at how much dissipation
occurs in the potential and kinetic energy, respectively. It is easily
shown using the laws given above that, for the saturated regime III,
Γ∗ ∼ Fr−2 since the Ellison scale LEll = 2πθrms/N becomes compa-
rable to Lint in that case (see Fig. 6 in that paper). These scaling
laws extend smoothly to the purely stratified flows we have analyzed,
where, for regime II, the reduced mixing efficiency was found to vary
linearly with the Froude number.9 These results are also compatible
with other results obtained for that case.19,20,25,32,33

We thus begin our investigation by examining mixing and dis-
sipation. We show in Fig. 1 the dissipation efficiency β = ϵ̄v/ϵD as a

FIG. 1. Left: Variation with the Richard-
son number of the kinetic energy dissi-
pation efficiency β. The Roman numerals
at the bottom delineate the three regimes
of rotating stratified turbulence.24 Right:
Variation with the buoyancy interaction
parameter RIB of the mixing efficiency
Γf defined in Eq. (14). Colored symbols
indicate Rossby number ranges (see the
inset).



function of Richardson number. Unless specified otherwise, data are
binned in the Rossby number [refer to the legend in Fig. 1 (left)], as
in most subsequent scatter plots, with roughly the same number of
runs in each bin. For runs initialized with random isotropic condi-
tions, the color and symbol of a given data point both indicate which
Rossby number bin it resides in. Star symbols are used for quasi-
geostrophic initial conditions, with a balance between the pressure
gradient, Coriolis force, and gravity, and the color alone indicates
the bin range it belongs to. For all scatter plots, the size of a symbol
is proportional to the viscosity of the run, with the smallest symbols
denoting runs on grids of 10243 points and higher Reynolds num-
bers, and the two largest symbols denoting the two runs on grids of
1283 points at the lowest Re.

Note in the plot of β(Ri) the presence of an inflection point for
Ri ≲ 1/4, and the two plateaux starting at Ri ≈ 10−2 and ≈10 with an
approximate scaling β ∼ Ri−1/2 in the intermediate regime, consistent
with β ∼ Fr, as found before.24 As stated earlier, this defines the three
regimes of rotating stratified turbulence, I, II and III, in a similar
fashion as for the case of purely stratified turbulence.25

The mixing efficiency Γf is plotted in Fig. 1 (right) as a func-
tion of buoyancy interaction parameter RIB. The three data points
with RIB ≳ 104 have Froude numbers above unity. It also follows
approximately two scaling laws. It can become singular in the quasi-
absence of kinetic energy dissipation (when measured in terms of
buoyancy flux), and indeed, Γf takes high values for the runs at
low Fr. Its slower decay with RIB for strongly turbulent flows starts
at a pivotal value of RIB ≈ 1, a threshold which will be present in
most of the data analyzed herein. The decay of Γf to low values is
inexorable in the absence of forcing and with zero initial conditions

in the temperature field, which, at high RIB, becomes decoupled from
the velocity and evolves in time in a way close to that of a passive
scalar.

Figures 2(a)–2(c) display the variation with time of the kinetic
energy and enstrophy, Ev and Zv , where the time is expressed in
units of turn-over time, τNL, defined in Eq. (9). The specific runs
are computed on grids of 10243 points. There is roughly a factor
of 10 in Froude number from regimes I to II and from II to III;
specifically, we have run 5, with Fr ≈ 0.007, N/f ≈ 31, Re ≈ 14 000,
RB ≈ 0.75 in regime I; run 32, with Fr ≈ 0.07, N/f ≈ 42, Re ≈
12 200, RB ≈ 65 in regime II; and run 58, with Fr ≈ 0.89, N/f ≈
2.5, Re ≈ 4700, RB ≈ 3760 in the third regime.23,24 Note the different
scales on both axes, and the different ranges of values for enstro-
phy in the three regimes: there is more enstrophy (and hence more
dissipation) as we move from regime I to regime III. There are fast
oscillations in the first regime [Fig. 2(a)]. They are a signature of the
fast exchanges (compared to the turn-over time) of energy between
the kinetic and potential modes. In regime II [Fig. 2(b)], the oscil-
lations are slower and become more complex once the maximum
of enstrophy is reached and the flow is a superposition of nonlin-
early interactive modes. Finally, the higher enstrophy values in the
last regime [Fig. 2(c)] are related to strong small-scale dissipative
structures. The maximum of kinetic enstrophy (and thus of kinetic
energy dissipation) is reached at a later time in regime I than in the
other two regimes, corresponding to a slower development of small
scales through weak nonlinear mode coupling. Also, as expected,
the energy decays faster as we approach the fully turbulent regime.
Similar results hold for the potential energy and its dissipation (not
shown).

FIG. 2. [(a)–(c)] Temporal variations, in units of turn-over time, of kinetic energy (left, blue axis in each plot) and of kinetic enstrophy ZV = ⟨∣ω∣2⟩ (right, red axis in each plot).
All runs are performed on grids of 10243 points and are in one of the three regimes identified in Fig. 1 (see text for parameters): I (a), II (b), and III (c). [(d)–(f)] Joint PDFs of
point-wise kinetic energy dissipation ϵv (x) and gradient Richardson number Rig(x) for the same three runs as above. Rig = 1/4 is indicated by the thin vertical lines. All plots
use the same color bar given at the left.



Joint PDFs of the pointwise gradient Richardson number and
kinetic energy dissipation, for the same runs as in the top panels,
are shown in Figs. 2(d)–2(f). The threshold of shear instability, Rig =
1/4, is indicated in all three plots by a thin vertical line. For regime
II [Fig. 2(e)], most points in the flow are close to (but still slightly
above) the threshold, Rig ≳ 1. The pointwise kinetic energy dissipa-
tion is centered on ≈3 × 10−3 but covers locally a range of values
almost two orders of magnitude wide for Rig ≈ 1. For runs in regime
I [Fig. 2(d)], no data point reaches Rig = 1, and rather dissipation
values are found in a narrow band extending to high Rig . On the
other hand, in the opposite case of strongly turbulent flows [regime
III in Fig. 2(f)], the bulge of points around Rig ≈ 1/4 is much nar-
rower with a flow almost everywhere at the brink of linear instability,
reaching higher values of local dissipation, and with a larger exten-
sion in its local values, over 2.5 orders of magnitude; this can be
seen as being indicative of intermittent behavior, as we shall analyze
below in Fig. 4. This high number of data points, for a given setup,
with local gradient Richardson numbers close to 1/4 (or zero for
convective instability) has been noted before by several authors. For
example, an equivalent result based on an earlier analysis of oceanic
data34 (see Fig. 15) shows that in that case, most of the points are cen-
tered at Rig ≈ 0.4, with also roughly four orders of magnitude in the
variation of the local energy dissipation rate. Such a high density of
values for Rig ≈ 1/4 has recently been interpreted as a manifestation
of self-organized criticality,35 with flow destabilization occurring in
a wide range of intensity displaying power-law behavior, as analyzed
on observations of oceanic microstructures.

We now focus on the anisotropy of these flows. Large-scale
anisotropy can be measured by the ratio Lint ,z/Lint ,�. As shown in
Fig. 3(a), it increases with RIB at a slow rate, starting at RIB ≈ 1 before
settling sharply to a value close to unity for high RIB ≈ 103. At small
RIB, the larger vertical integral scale (with respect to its horizontal
counterpart), indicative of a lesser anisotropy for strong rotation and
stratification (blue triangles), can be attributed to initial conditions
that are isotropic together with, in that range, weak nonlinear cou-
pling. Note that, at a given RIB, vertical scales are almost a factor of
2 larger for stronger rotation, with a clear clustering of points with
Ro ≤ 0.3 (blue triangles) at intermediate values of RIB. This can be
associated with a stronger inverse energy transfer due to rotation,
although an inverse energy cascade is not directly observed in the
absence of forcing, but can appear, for long times, as an envelope to
the temporal decay behavior of a turbulent flow.36

In Figs. 3(b) and 3(c) are shown the second invariants, d1/2
II and

v
1/2
II of the velocity gradient and vorticity tensors [see Eq. (13) for

definitions], again as functions of RIB. While anisotropy expressed
in terms of d1/2

II seems to show an approximate power law decrease
toward isotropy (with power law index −1/3), in v

1/2
II the three

regimes of mixing are again visible. In the latter, a sharp transition
is observed at RIB ≳ 100. In terms of Froude number, the interme-
diate regime is bounded by Fr ∈ [0.03, 0.2], and in terms of RB,
it is bounded by RB ∈ [10, 300]. Note that the Fr bounds encom-
pass that for which the large-scale intermittency is strongest in the
case of purely stratified forced flows, as measured by the kurtosis of
the vertical Lagrangian velocity9 (see also Fig. 4). Note also that, for
the highest values of the buoyancy interaction parameter, we have a
small d1/2

II ≈ 10−3, whereas in terms of the vorticity tensor, the ten-
dency toward isotropy is much slower, with a lowest value of order
10−1, indicative of vorticity structures that retain a signature of the
imposed anisotropy.

This variable anisotropy associated with strong mixing prop-
erties is also accompanied by marked intermittency, at small scales
and also in large scales. We first analyze in Fig. 4 the PDFs of the
vertical temperature gradients, either normalized (a, left) or without
normalization (b, middle). Both are binned in N/f = Ro/Fr, and at
the left, the dotted line represents the corresponding Gaussian distri-
bution. As expected, the PDFs are non-Gaussian for all parameters,
with wings the intensity of which varies somewhat with N/f. We note
however that such wings are present from purely stratified flows to
strongly rotating (and stratified) flows with Ro ≤ 0.3. Gradients favor
small scales, but large scales are intermittent as well, as found already
for purely stratified flows,8 at least for an interval of parameters.9 As
an example of such large-scale intermittency, we plot at right (c) the
kurtosis of the vertical component of the Eulerian velocity, w, at the
peak of dissipation, with the kurtosis defined as Kw = ⟨w4⟩/⟨w2⟩2.
When considering only the runs with isotropic initial conditions, the
increase in Kw is rather smooth and with a peak at RIB ≈ O(10)
of Kw ≲ 4. What is particularly striking, however, is the “bursty”
behavior seen in the runs with QG initial conditions (indicated by
stars) with a peak of Kw ≈ 7.5 at RIB ≳ 1, or at Fr ≈ 0.07, in good
agreement with what is found for forced flows.9 The high values we
see in Kw are comparable to those observed in the atmosphere.1,37

Note however that the peaks in Kw , Kθ are intermittent in time,9

whereas our analysis is done at a fixed time close to the maximum

FIG. 3. As a function of buoyancy interaction parameter RIB = ϵ̄v/[νN2], we plot (a) the ratio of vertical to horizontal integral scales [see Eq. (11)], (b) d1/2
II , and (c) v1/2

II

[see Eq. (13) for definitions of second tensor invariants for the velocity and vorticity, d1/2
II and v

1/2
II ]. Binning is in the Rossby number.



FIG. 4. (a) Normalized PDFs of ∂zθ with binning in N/f (see legend). The dotted black line is the corresponding Gaussian distribution. (b) The same PDFs without the
normalization. (c) Kurtosis of vertical velocity as a function of RIB, with binning in the Froude number as indicated in the legend.

dissipation of the flows, in order to maximize the effective Reynolds
number of each run.

The behavior of the QG runs with significantly higher kur-
tosis is probably due to the fact that their initial conditions are

two-dimensional and with w = 0. In such a case, for a small
Froude number and at least for small times, the advection term
leads to smooth fields, and the flow has to develop strong verti-
cal excitation characteristics of stratified turbulence, through local

FIG. 5. Velocity and temperature invari-
ants defined in Eq. (13): (a) b1/2

II vs RIB,

(b) g1/2
II vs Ri, (c) b1/2

II vs b1/3
III , and (d) β

vs b1/2
II , showing the three regimes as in

Fig. 1. In (e) is given the mixing efficiency
Γf vs b1/2

II , with a best-fit reference line
for Fr > 0.05. In (a)–(c), color binning is
done in terms of the Rossby number (see
the inset of Fig. 1), whereas in (d) and (e)
it is in terms of Fr.



instabilities, in order to catch up with energy dissipation and with
emerging tendencies toward isotropy in small scales. The tempera-
ture (not shown) displays for most runs a relatively flat kurtosis at
close to its Gaussian value, K(G)θ ≈ 3, but still exhibits a rather sharp
increase to Kθ ≳ 4.2 in the QG-initialized runs at RIB ≈ 1, as well as
for smaller values of the Froude number and buoyancy interaction
parameter RIB.

We provide in Fig. 5 the parametric variations for some of
the velocity- and temperature-related anisotropy tensor invariants
defined in Eq. (13). Figures 5(a) and 5(b) show bII as a function of
RIB and gII as a function of Ri, respectively. Both have a peak at RIB
≈ 1, Ri ≈ 1 (corresponding also to Fr ≈ 0.075, RB ≈ 10, not shown);
however, we note that gII ,III have a maxima for slightly smaller values
of Fr. The final transition to a plateau approaching isotropic values,
seen in Fig. 5(a), occurs for high RIB ≈ 103, as advocated on the basis
of oceanic and estuary measurements38 or from DNS.17,20

Having scaled nonlinearly both the second and third invariants
of tensors in order for them to have the same physical dimension, we
find that third invariants have similar scaling with control parame-
ters, except that they can and do become negative, in ways compara-
ble to what is found for purely stratified flows.17 We illustrate this in
Fig. 5(c) in a scatter plot of the second and third invariants of bij that,
to a large degree, fills in Fig. 6 of Ref. 17 for b1/2

II < 0.2; it highlights
the fact that at the peak of enstrophy, the majority of our runs are
dominated by oblate axisymmetric structures, in the form of sheets.
This is complementary to what is performed by using many tempo-
ral snapshots, when one can probe more of the permissible bII–bIII
domain.17

We do note that there are two straggler points at high bII ,
gII , and low negative bIII , and in vII as seen in Fig. 3(c). These
runs, indicated by blue stars, have quasigeostrophic initial condi-
tions and are at low Froude, Rossby, and buoyancy Reynolds num-
bers (RB ≲ 1); specifically, they are24 runs Q9 and Q10 (see their
Table 2). Again, the quasi-two-dimensional nature of such flows
at the peak of enstrophy is confirmed in Fig. 5(c), which places
these QG-initialized runs on the upper left branch. This indicates
that these flows are dominated by quasi-two-dimensional sheets17

(see, e.g., their Fig. 6). Indeed, the high anisotropy observed in the
vicinity of RB ≈ 1, RIB ≈ 1, Fr ≈ 0.07 in Fig. 3(c) corresponds to
two-dimensional structures in the form of shear layers with strong
quasivertical gradients at low Fr and which eventually roll-up as they
become unstable.

Figure 5(d) shows the dependence of the kinetic energy dissipa-
tion efficiency, β, on the second invariant of the velocity anisotropy
tensor, this time with binning in Fr. The figure serves to comple-
ment both Fig. 1(c) of Ref. 24 and Fig. 1 (right), illustrating behavior
in the three RST regimes, where β is low at reasonably high mea-
sures of (large-scale) anisotropy (as measured by bij) in regime I,
approaches its highest value at largely constant b1/2

II in regime II, and
as anisotropy begins to diminish at the end of regime II, remains
essentially constant in regime III, as the anisotropy continues to
decrease with decreasing stratification.

Finally, in order to render more explicitly the correlation
between mixing and anisotropy, we show in Fig. 5(e) the mixing effi-
ciency Γf , displayed against b1/2

II , again with binning in the Froude
number. One observes an approximate power law increase in mix-
ing efficiency as anisotropy grows with stratification, from large to

moderate Fr, with a best fit slope of ≈1. Using the definitions
for β and Γf in terms of the buoyancy flux, we can write Γf
= [βFr]−1⟨wθ⟩/⟨u2⟩. Noting again that in regime III, β is indepen-
dent of anisotropy [Fig. 5(d)] and that bzz is remarkably linear in
(indeed, nearly equal to) b1/2

II for all runs (not shown), the power law
dependence of Γf on b1/2

II mainly results from the increasingly pas-
sive nature of the scalar in transitioning from regime II to regime III
and continuing to larger Fr. There is also an abrupt increase in Γf
in the smallest Fr range, corresponding to regime I with negligible
kinetic energy dissipation. The transitory regime (green diamonds)
in the vicinity of the peak of vertical velocity kurtosis also corre-
sponds to maximum bII , i.e., maximum anisotropy, together with
mixing efficiency of order unity. The accumulation of points for
Froude numbers in the intermediate range of values has large bII
and a mixing efficiency around unity, with quasibalanced vertical
buoyancy flux and kinetic energy dissipation.

III. CONCLUSION AND DISCUSSION

We have shown in this paper that, in rotating stratified tur-
bulence, a sharp increase in dissipation and mixing efficiency is
associated, in an intermediate regime of parameters, with large-scale
anisotropy, as seen in the velocity tensor bij, and large-scale intermit-
tency, as observed in the vertical velocity through its kurtosis. The
return to isotropy is slow and takes place mostly for buoyancy inter-
action parameters RIB larger than ≈103. The temporal persistence of
anisotropic structures at a given Froude number could be related
to the slow decay of energy in the presence of waves, particularly
when helicity is strong.39 Furthermore, rotation plays a role in large
scales, with a larger vertical integral scale at a given Froude number
for small Rossby numbers [see Fig. 3(a)]. The return to large-scale
isotropy, as measured by Lz/L� ≈ 1, is very sharp. These results evoke
threshold behavior and avalanche dynamics, as analyzed for numer-
ous physical systems40–43 in the context of the solar wind and as
found as well recently in observational oceanic data.35

In order to determine whether a given system is undergoing
self-organized criticality (SOC) in the form of so-called avalanches,
and if so what SOC class the system belongs to, one needs to resort
to spatiotemporal analysis, although proxies are possible, such as
using static snapshots of dissipative structures and applying the
law of probability conservation.41 Furthermore, different conclu-
sions may be drawn whether one examines structures in the iner-
tial range of turbulent flows or whether one is in the dissipative
range.41 Perhaps, localized Kelvin-Helmholtz overturning vortices
merge into larger regions, as a reflection of nonlocality of interac-
tions in these flows, together with sweeping of small eddies by large-
scale ones, close to the linear instability for Rig = 1/4, and leading to
rare large-amplitude dissipative (avalanche) events. In that context,
long-time dynamics, in the presence of forcing, should be investi-
gated to see whether correlations emerge. A threshold analysis could
be performed in these flows in terms of the number of excited sites,
say above a local dissipation rate ϵ̄C, as a function of a control param-
eter, likely the local gradient Richardson number. Temporal dynam-
ics should also be analyzed in terms of life-time of overturning
structures, as performed classically, for example, for pipe flows.44,45

The burstiness of these rotating stratified flows is accompa-
nied by a turbulence collapse. This takes place once the energy has



been dissipated at a rate close to that of homogeneous isotropic
turbulence. However, we note that this rate has been found to be
dependent on the ratio of the wave period controlling the waves
to the turn-over time (in other words, the Froude number), in an
intermediate regime of parameters.24 This type of behavior has been
studied, e.g., for shear flows, emphasizing both the interscale inter-
actions between large and small eddies with rather similar statis-
tics46 and the importance of sharp edges in frontal dynamics.47

This has been analyzed in the laboratory at the onset of instabil-
ities including for Taylor-Couette flows or for pipe flows,45,48 and
it may be related to frontal dynamics observed in the atmosphere
and ocean,49,50 given the tendencies of such flows to be, at least in
the idealized dynamical setting studied herein, at the margin of such
instabilities.

Recent observations,35 modeling,49 and numerous DNS indi-
cate that indeed the gradient Richardson number resides mainly
around its classical threshold for linear instability (≈1/4), as also
observed in our results, exhibiting a strong correlation with dissi-
pation. In that light, it may be noted that the range of parameters
for the mixing efficiency to be comparable to its canonical value
observed in oceanic data is close to the instability threshold: Γf ≈
0.2 for 0.02 ≲ Fr ≲ 0.1. Similarly, the kurtosis of the temperature and
vertical velocity Kθ,w are high9 in a narrow window around 0.07 ≤
Fr ≤ 0.1. As a specific example of marginal instability behavior in
the framework of a classical model of turbulence51,52 extended to the
stratified case, it can be shown53 that the flow remains close to the
stable manifold of a reduced system of equations governing the tem-
poral evolution of specific field gradients, involving, in particular,
the vertically sheared horizontal flows through the second and third
invariants of the velocity gradient matrix and a cross-correlation
velocity-temperature gradient tensor.

The link between localized intermittency, anisotropy, and dis-
sipation is also found in fully developed turbulence, in the form
of strong vortex filaments, non-Gaussianity of velocity gradients,
and localized dissipative events. It has also been shown that a Kol-
mogorov spectrum Ev(k) ∼ k−5/3 can still be observed when the
small scales are anisotropic.54 The new element in rotating stratified
flows is what the wave dynamics brings about, namely, a fluid in a
state of marginal instability, almost everywhere close to the thresh-
old of linear instability in terms of Rig ≈ 1/4. It is already known
that in magnetohydrodynamics (MHD), when coupling the veloc-
ity to a magnetic field leading to the propagation of Alfvén waves,
there is stronger small-scale intermittency than for FDT, as found
in models of MHD,55,56 in DNS,57,58 as well as in observations of the
solar wind.59 In RST, the added feature is having intermittency in
the vertical component of the velocity and temperature fluctuations
themselves, thus at large scale, as found in many observations in the
atmosphere and in climatology as well,60,61 and limited to a narrow
range of parameters9 centered on the marginal instability thresh-
old. Thus, not only does this interplay between waves and nonlinear
eddies not destroy these characteristic features of turbulent flows,
but in fact it acts in concert with them and can rather enhance them
as well.

The large database we use is at a relatively constant Reynolds
number, Re ≈ 104, and thus, an analysis of the variation of anisotropy
with Re for fixed rotation and stratification remains to be done, in
the spirit of earlier pioneering studies62,63 for fluids. Also, scale by
scale anisotropy might be best studied with Fourier spectra. This will

be accomplished in the future, together with a study of the role of
forcing.

This paper is centered on a large parametric study of rotating
stratified turbulence. Each flow taken individually is strongly inter-
mittent in space and thus presents zones that are active as well as
zones that are quiescent. It was proposed recently to partition a given
flow in such zones, with strong layers delimiting such patches,64

depending on the buoyancy interaction parameter RIB, and with
threshold values, of roughly 1, 10, and 100. The intermediate range
corresponds, in our DNS runs, to the peak of anisotropy and inter-
mittency together with mixing efficiency being close to its canonical
value, Γf ≈ 0.2. In this regard, it will be of interest to perform such a
local study for a few given runs of our database in the three regimes.

Many other extensions of this work can be envisaged. For
example, one could perform a wavelet decomposition to examine the
scale-by-scale anisotropy and intermittency in such flows.65 More-
over, kinetic helicity, the correlation between velocity and vorticity,
is created by turbulence in rotating stratified flows.66,67 It is the first
breaker of isotropy since flow statistics depend only on the modu-
lus of wavenumbers, but two defining functions (energy and helicity
density) are necessary to fully describe the dynamics. In FDT, helic-
ity is slaved to the energy in the sense that Hv(k)/Ev(k) ∼ 1/k, i.e.,
isotropy is recovered in small scales at the rate 1/k. In the stratified
case, its scale distribution changes with Brunt-Väisälä frequency,39

as measured for example in the planetary boundary layer (PBL),68

and it undergoes a direct cascade to small scales, while energy goes
to large scales in the presence of strong rotation and forcing.69 What
role helicity and the nonlinear part of potential vorticity, namely,
ω ⋅ ∇θ, will play in the fast destabilization of shear layers, their
intermittency, anisotropy, and criticality are topics for future work.

We conclude by noting that a deeper understanding of the
structure of small-scale rotating stratified turbulence, and of the
nonlocal interactions between small scales and large scales, will allow
for better modeling in weather and climate codes. Many models of
anisotropic flows have been proposed70–73 including artificial neu-
ral networks. They extend isotropic formulations for kinetic energy
dissipation by adding several off-diagonal terms, and assuming (or
not) isotropy in the orthogonal plane,14,15 including for two-point
closures.28 This modeling strategy has already been found useful in
models of turbulent mixing in oceanic simulations.74,75
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APPENDIX: SYMBOL DEFINITIONS
We put together in the following table, for convenience, the var-

ious symbols that are used in the paper, with their definitions and
names.



TABLE I. List of most symbols used in the paper, with definitions and names (refer as well to the main text). One can also define perpendicular and vertical integral scales, when
using the spectra based on perpendicular and vertical wavevectors (see main text). Also note that, in the third regime of rotating stratified turbulence, RB = RIB because now
ϵ̄v = ϵD. For all entries, a boldface type indicates a vector quantity.

Symbol Definition Description Remarks

u Velocity fields of components [u�, w]
ω ω =∇ × u Vorticity field
S ⟨∂zu⊥⟩ Internal mean vertical shear Of local density S(x)
θ Temperature fluctuations
P Pressure
k Wavevector of modulus k = [k2

⊥ + k2
z]1/2

U0 Characteristic velocity
Ev(k) ∫ Ev(k)dk = ⟨∣u∣2/2⟩ Isotropic kinetic energy spectrum
Lint 2π∫[Ev(k)/k]dk/Ev Integral scale
Ep(k) ∫ Ep(k)dk = ⟨θ2/2⟩ Isotropic potential energy spectrum Total energy ET = Ev + Ep
N Brunt-Väisälä frequency
f 2Ω Rotation frequency Ω: imposed rotation rate
ν Viscosity
κ Diffusivity

Zv ⟨∣ω∣2⟩ Kinetic enstrophy
Zp ⟨∣∇θ∣2⟩ Potential enstrophy Total enstrophy ZT = Zv + Zp
ϵ̄v νZv Mean kinetic energy dissipation
ϵ̄p κZp Mean potential energy dissipation Total dissipation ϵ̄T = ϵ̄v + ϵ̄p
ϵD U3

0/Lint Dimensional kinetic energy dissipation
sij(x) (∂iuj + ∂ jui)/2 Pointwise strain rate tensor ϵv(x) = 2νsij(x)sij(x)

η [ν3/ϵv]1/4 Kolmogorov (dissipation) scale
τNL Lint/U0 Dimensional eddy turn-over time
Tv Ev/ϵv Effective transfer and dissipation time For the kinetic energy
Tp Ep/ϵp Effective transfer and dissipation time For the potential energy

Re U0Lint/ν Reynolds number Four governing parameters
Fr U0/(LintN) Froude number
Ro U0/(Lintf ) Rossby number
Pr ν/κ Prandtl number Equal to unity for all runs

RB ReFr2 Buoyancy Reynolds number Four derived parameters
RIB ϵ̄v/(νN2) Buoyancy interaction parameter At times called buoyancy parameter25

Ri N2/S2 Richardson number
Rig N(N − ∂zθ)/S(x)2 Pointwise gradient Richardson number Close to instability threshold

Bf ⟨wθ⟩ Vertical buoyancy flux
Γf Bf /ϵ̄v Mixing efficiency
Γ∗ ϵ̄p/ϵ̄v Reduced mixing efficiency
ℓOz 2π[ϵ̄v/(N3)]1/2 Ozmidov scale ℓOz/η ∼ R3/4

IB

LEll 2πθrms/N Ellison scale LEll/Lint ∼ Fr in regime II
β ϵ̄v/ϵD Dissipation efficiency β ∼ Fr in regime II

β quantifies the changing role of the waves See the work of Pouquet et al.24

bij ⟨uiuj⟩/⟨ukuk⟩ − δij/3 Velocity tensor, zero for isotropy Invariants bII , bIII
dij ⟨∂kui∂kuj⟩/⟨∂kum∂kum⟩ − δij/3 Velocity gradient tensor, zero for isotropy Invariants dII , dIII
vij ⟨ωiωj⟩/⟨ωkωk⟩ − δij/3 Vorticity tensor, zero for isotropy Invariants vII, vIII
gij ⟨∂iθ ∂jθ⟩/⟨∂kθ ∂kθ⟩ − δij/3 Temperature gradient tensor, 0 for isotropy Invariants gII , gIII

Kw ⟨w4⟩/⟨w2⟩2 Kurtosis (of vertical velocity) 3 for a Gaussian PDF
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