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Abstract

We study the properties of the entanglement spectrum in gapped non-interacting non-
Hermitian systems, and its relation to the topological properties of the system Hamil-
tonian. Two different families of entanglement Hamiltonians can be defined in non-
Hermitian systems, depending on whether we consider only right (or equivalently only
left) eigenstates or a combination of both left and right eigenstates. We show that their
entanglement spectra can still be computed efficiently, as in the Hermitian limit. We
discuss how symmetries of the Hamiltonian map into symmetries of the entanglement
spectrum depending on the choice of the many-body state. Through several examples in
one and two dimensions, we show that the biorthogonal entanglement Hamiltonian di-
rectly inherits the topological properties of the Hamiltonian for line gapped phases, with
characteristic singular and energy zero modes. The right (left) density matrix carries dis-
tinct information on the topological properties of the many-body right (left) eigenstates
themselves. In purely point gapped phases, when the energy bands are not separable,
the relation between the entanglement Hamiltonian and the system Hamiltonian breaks
down.
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1 Introduction

Topology has become one of the main aspects of condensed matter physics over the last few
decades [1–6]. The classification of topological phases led to numerous advances in the under-
standing of electronic condensed matter and to a plethora of new resilient phenomena [7–12].
One of the core principles of topology in condensed matter physics is the bulk-boundary corre-
spondence [6,13,14]: topological properties in the bulk of the system lead to the appearance
of particular edge states at its boundaries. As these states originate from bulk properties,
they are resilient to local perturbations that do not change the topological classification of
the system—for instance by breaking the relevant symmetries. This bulk-boundary correspon-
dence also affects the entanglement properties of the different eigenstates, and in particular
the ground state, of the Hamiltonian.

Entanglement has proved to be an efficient probe of many-body physics. Entanglement en-
tropy scaling laws are for example able to discriminate between different universality classes
of gapless phases, in particular in one dimension [15–18], but also can include terms that
have a topological origin and characterize the fundamental topological excitations of the sys-
tem [19, 20]. Of relevance to this work is the notion of the entanglement Hamiltonian—the
logarithm of the reduced density matrix of a subpart of the total system—and its eigenspec-
trum, the entanglement spectrum [21–24]. Due to the bulk-boundary correspondence, if the
selected subsystem does not break any symmetry, the entanglement Hamiltonian in a topo-
logical system has similar properties and edge states as the original Hamiltonian with open
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boundary conditions, even when starting from a periodic system [21, 25–27]. As such, it has
been a remarkably useful tool to characterize topological systems.

Non-Hermitian Hamiltonians are an extension of standard quantum mechanics that de-
scribe dissipative systems in a minimalistic fashion. Instead of considering density matrix
evolutions such as Lindblad’s equations, dissipation is represented as non-Hermitian terms
that either give a finite life-time or amplify the different eigenstates of the Hamiltonian [28].
Numerous experiments have been realized, showcasing the many differences between these
systems and their Hermitian counterparts [29–38]. Similarly, the extension of the topological
concepts developed for Hermitian quantum mechanics to these new systems has been a fruitful
field of research [39]. Symmetry-based applications have been proposed [40–43], but several
notions are still actively discussed—the bulk-boundary correspondence being one [39,44–55].
Indeed, the phase diagram of the same model can vary significantly depending on the choice
of boundary conditions (open or periodic), a phenomenom dubbed the non-Hermitian skin
effect. The correspondence can actually be redefined in two different ways: One can redefine
an effective Brillouin zone for the periodic Hamiltonian where the momentum can take com-
plex values [48,56]; the topological invariants computed on this new Brillouin zone are then
in agreement with the phase diagram of the open system. Conversely, the correspondence can
be based on the singular value decomposition (SVD) of the Hamiltonian instead of the eigen-
value decomposition [40,42,43,57]. The SVD-based phase diagrams of the open and periodic
systems coincide, and topological phases are characterized by the presence of edge-localized
singular zero modes.

In this article, we study the entanglement spectrum in non-Hermitian systems and its rela-
tion to the topology of the original Hamiltonian, as a first step towards a better understanding
of non-Hermitian topology in many-body physics. After a quick reminder of the properties of
the density matrix and the entanglement Hamiltonian in Hermitian systems, we propose two
complementary definitions of the density matrix, depending on whether we want to focus on
the biorthogonal interpretation of non-Hermitian quantum mechanics [58], or if we are more
interested in the structure of the right or left eigenstates of the Hamiltonian. We also show
that Wick’s theorem and Peschel’s formula [59] are still valid in non-Hermitian systems which
allows us to efficiently compute the entanglement spectrum of free fermionic theories. We
then discuss the different symmetries that can protect the topology of non-Hermitian Hamil-
tonians, and how they translate into symmetries of the reduced density matrix and the en-
tanglement Hamiltonian depending on the choice of many-body state. In particular, for right
density matrices, symmetries of the Hermitian entanglement Hamiltonian might differ from
the symmetries of the non-Hermitian system Hamiltonian, leading to a different topological
classification of the former. After briefly introducing the non-Hermitian Su-Schrieffer-Heger
(SSH) model [48, 60–65], we use it to exemplify how and when the entanglement spectrum
inherits topological properties from the original Hamiltonian. We find that when bands can
be separated, the biorthogonal entanglement Hamiltonian perfectly reproduces the physics
of the corresponding periodic system Hamiltonian, with the presence of singular and energy
edge modes accurately predicted by the bulk topological invariants. The right entanglement
Hamiltonian describes the topology of the right eigenstates themselves, and its classification
differs from the system Hamiltonian due to the emergence of different symmetries. Finally,
we verify that our results are also valid on a variety of two-dimensional models.
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2 Density matrices and entanglement spectrum in non-Hermitian
systems

In this Section, we discuss the possible definitions of a density matrix in a non-Hermitian
setting. Let us introduce the following notation: We denote by H the many-body Hamiltonian
and assume it can be diagonalized, i.e, it has only 1× 1 Jordan blocks,

H =
∑

n

En

�

�ψR
n

� 


ψL
n

�

� , with



ψL
n

�

�ψR
m

�

= δm,n. (1)

�

�ψR
n

�

(



ψL
n

�

�) are the right (left) eigenvectors of the many-body Hamiltonian. Any many-body
state

�

�φR
�

for such system can be decomposed into the eigenstates
�

�ψR
n

�

, i.e.,
�

�φR
�

=
∑

n
φn

�

�ψR
n

�

.

We define the corresponding left vector
�

�φL
�

∝
∑

n
φn

�

�ψL
n

�

. For convenience, in the rest of

this paper, we always take the following normalization convention:

||
�

�φR
�

||2 = 1 and



φL | φR
�

= 1. (2)

In this paper, we focus on non-interacting fermionic models such that

H = ~c †H~c. (3)

~c † = (c†
1, ..., c†

N ) is a vector of N fermionic creation operators satisfying the usual anticommu-
tation algebra

{c†
i , c j}= δi, j , {ci , c j}= 0. (4)

H is the single particle Hamiltonian that can be diagonalized as

H =
∑

n

En |Rn〉 〈Ln| , (5)

with 〈Ln |Rm〉= δm,n and 〈Rn |Rn〉= 1.
We define d†

n,R ( d†
n,L ) as the creation operator related to the one-body eigenstate |Rn〉

(|Ln〉):
d†

n,R =
∑

j

〈 j|Rn〉 c
†
j . (6)

They satisfy the modified fermionic anticommutation rule:

{d†
m,R, dn,L}= δm,n, {d†

m,R, d†
n,R}= {dm,L , dn,L}= 0. (7)

The other anticommutators do not have a simple expression.

2.1 Density matrices

In Hermitian systems, the density matrix describing a system is the positive-definite Hermitian
operator ρ that verifies that the expectation value of any observable O is given by

〈O〉= Tr(ρO), (8)

where 〈 . 〉 is the expectation value. If the system is in a pure state |φ〉, the density matrix
ρ is simply the projector |φ〉 〈φ|, while a thermal state is given by ρ = Z−1 exp(−βH), with
Z = Tr[exp(−βH)]. The time evolution of ρ is given by the Heisenberg equation (we set
ħh= 1)

i
dρ
d t
= [H,ρ]. (9)

4

https://scipost.org
https://scipost.org/SciPostPhys.7.5.069


SciPost Phys. 7, 069 (2019)

The reduced density matrix ρA characterizing the state of a subsystem A can be obtained from
ρ by taking the partial trace over all degrees of freedom not in A:

ρA = TrA ρ. (10)

In non-Hermitian systems, the difference between left- and right- eigenstates leads to dif-
ferent possible definitions of the density matrix. This definition choice depends on which
properties we want to preserve or emphasize, even for a pure state. We focus in this paper on
static properties, but we will mention some of the dynamical properties.

Following the biorthogonal interpretation of non-Hermitian quantum mechanics [58], ob-
servables are computed using both the left- and right- states of a system:

〈O〉RL =



φL
�

�O
�

�φR
�

. (11)

This naturally leads to the biorthogonal density matrix

ρRL =
�

�φR
� 


φL
�

� . (12)

The reduced density matrices can be obtained from Eq. (10), and the Heisenberg equation is
left unchanged. The trace of ρRL is conserved during time evolution. On the other hand, ρRL

is neither Hermitian nor positive-definite.
If we consider instead a more conventional approach where non-Hermitian systems are

effective models for dissipative dynamics without quantum jumps [66–70], the average values
of observables are given by

〈O〉R =



φR
�

�O
�

�φR
�

. (13)

The natural density matrix is therefore the right density matrix

ρR =

�

�φR
� 


φR
�

�

Tr |φR〉 〈φR|
. (14)

By convention, we take
�

�φR
�

to be of norm 1 such that Tr
�

�φR
� 


φR
�

� = 1. Equation (10) is
still valid, and ρR and all associated reduced density matrices are Hermitian positive-definite
operators. ρR then satisfies the equation [71]

i
dρR

d t
= HρR −ρRH† −ρRTr

�

HρR −ρRH†
�

. (15)

Enforcing the constraint Tr ρR = 1 leads to non-linearity in the time evolution of ρR. If
�

�φR
�

is a right eigenstate, then ρR is constant. We denote by ρL the equivalent density matrix
replacing right by left vectors.

2.2 Entanglement spectrum

The entanglement Hamiltonian HE of a subsystem A is given by

ρA = exp(−HE). (16)

The entanglement spectrum of ρ is the spectrum of HE . When the total system is in a pure
state and we use ρR as the density matrix, the entanglement spectrum of ρR

A is directly related
to the Schmidt decomposition of

�

�φR
�

. Indeed, the Schmidt decomposition writes as:

�

�φR
�

=
∑

n

λn

�

�

�φR
n,A

¶

⊗
�

�

�φR
n,A

E

, (17)

5

https://scipost.org
https://scipost.org/SciPostPhys.7.5.069


SciPost Phys. 7, 069 (2019)

where λn > 0 and {
�

�

�φR
n,A

¶

} ({
�

�

�φR
n,A

E

}) is a set of orthonormal vectors of A (A) satisfying

¬

φR
m,A|φ

R
n,A

¶

=
D

φR
m,A
|φR

n,A

E

= δm,n. (18)

Due to the orthogonality conditions,

ρA = TrA
�

�φR
� 


φR
�

�=
∑

n

λ2
n

�

�

�φR
n,A

¶¬

φR
n,A

�

�

� , (19)

and consequently, the eigenvalues Ξn of HE are nothing but −2 logλn. For the biorthogonal
density matrix ρRL , there is no simple relation between the Schmidt decomposition of the
eigenvectors and the eigenvalues of the entanglement Hamiltonian.

If HE = ~c †HE~c+zId, z ∈ C, the reduced density matrix is a generalized fermionic Gaussian
state [72] (z is a irrelevant normalization factor that will not be discussed in the following).
The eigenvalues ξn of HE form the single particle entanglement spectrum, and its eigenvectors
the entanglement modes. In the rest of the paper, as we only discuss such Gaussian states, we
refer to ξn and HE as the (single-particle) entanglement spectrum and Hamiltonian.

3 Entanglement spectrum of Gaussian states and Wick’s theorem

In Ref. [59], Peschel derived a technique to efficiently compute the entanglement spectrum of
eigenstates of quadratic Hermitian Hamiltonian (Slater determinants) or of Gaussian density
matrices. It can be summarized as follows: any correlation function for such states can, accord-
ing to Wick’s theorem, be obtained from a combination of two-fermion correlation functions.
Moreover, computing the correlation functions restricted to any subsystem A only requires
two-fermion correlators restricted to that subsystem. Let C be the two-site correlation matrix
defined by Ci, j =

¬

c†
j ci

¶

in such a state, and CA, the restriction of C to the subsystem A. CA
can be diagonalized into

CA =
NA
∑

n=1

sn

�

�RA
n

� 


RA
n

�

� with 0≤ sn ≤ 1. (20)

NA is the number of fermionic modes in A. The Gaussian state defined through Eq. (16) with
the (single-particle) entanglement Hamiltonian HE =

∑

n
ξn

�

�RA
n

� 


RA
n

�

� with ξn = ln(s−1
n − 1)

gives the same correlation matrix CA. Note that if sn = 0 or 1, ξn is formally −∞ or +∞.
In practice, this limiting case does not occur as long as A is not the entire system, though the
smallest and largest values of sn get exponentially close to the extrema with increasing system
size. Since the Gaussian state also satisfies Wick’s theorem, all fermionic correlators have the
same expectation value whether using ρA or the above Gaussian state. Therefore, necessarily,

ρA = exp(−~c †HE~c ), (21)

and the entanglement spectrum can be directly obtained from the eigenvalues of the reduced
correlation matrix, which can be computed polynomially in system size.

To apply a similar trick to non-Hermitian systems, we need first to verify that Wick’s theo-
rem applies to both formulation of density matrices in Eqs. (12) and (14), as well as to non-
Hermitian Gaussian states. Secondly, we should verify that fermionic Gaussian states generate
all possible non-Hermitian correlation matrices.

We start with the biorthogonal density matrix ρRL and Wick’s theorem. We consider eigen-
states of the Hamiltonian that can be written as |φR〉 =

∏

n d†sn
R |0〉, with sn = 0 or 1. The
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corresponding left-eigenstate is |φL〉 =
∏

n d†sn
L |0〉. In the biorthogonal case, straightforward

algebra mapping c† to d†
R and c to dL leads to

CRL =
∑

n

sn |Rn〉 〈Ln| , where CRL
i, j = Tr(c†

j ciρ
RL), (22)

which has eigenvalues 0 or 1, i.e., the occupation numbers are the eigenvalues of CRL . |Rn〉
(resp. 〈Ln|) are the right (resp. left) eigenstates of the single-particle Hamiltonian H. This
mapping also offers a proof of Wick’s theorem: once expressed in the correct left and right
basis, the correlators of the non-Hermitian system behave exactly as if the system was Her-
mitian. Similarly, non-Hermitian Gaussian states of the form ρ = e−~c

†HE~c also verify Wick’s
theorem; if HE is diagonalizable, this follows trivially from the Hermitian case. By continuity
of the matrix exponentiation and the trace, it is also true for non-diagonalizable HE .

Now we need to prove that all non-Hermitian correlation matrices also admit a Gaussian
antecedent. In App. A, we exhibit the antecedent of any correlation matrix that forms a single
Jordan block of arbitrary size. The generalization to arbitrary correlation matrix is straightfor-
ward. Similarly to the Hermitian case, eigenvalues 0 or 1 of the correlation matrix correspond
to divergent energies for the Gaussian states. If the correlation matrix is diagonalizable, the
corresponding entanglement Hamiltonian is also diagonalizable, and its eigenmodes are the
eigenvectors of the correlation matrix. If the correlation matrix is not diagonalizable, the en-
tanglement Hamiltonian HE is also not diagonalizable. It follows naturally from App. A that the
correlation matrix and the entanglement Hamiltonian have the same Jordan block structure
(same number of Jordan blocks of the same size). Matching Jordan blocks in the correlation
matrix and the entanglement Hamiltonian act on the same eigenspace. The canonical basis
of this eigenspace that leads to the Jordan form will generically be different in the two matrices.

When considering the right density matrix ρR, it is convenient to work in an orthonormal-
ized basis of the occupied states. Let (i1, ...im) be the indices of the occupied modes, with m
the number of occupied states. Further let Q = (|Q1〉 , ..., |Qm〉) be an orthonormal basis of
Span(

�

�Ri1

�

, ...,
�

�Rim

�

) and

q†
j =

∑

j




j|Q j

�

c†
j , (23)

such that
�

�φR
�

=
m
∏

j=1

q†
j |0〉 . (24)

We can complete Q into an orthonormal basis of the single particle space.
�

�φR
�

is then the

ground state of the Hermitian Hamiltonian H′ =
N
∑

j=m+1
q†

j q j −
m
∑

j=1
q†

j q j . From this follows that

ρR verifies Wick’s theorem and that its reduced density matrices are Hermitian Gaussian states.
Finally, the correlation matrix can be efficiently obtained from the eigenvalue decomposition

of H. Let Pm =
m
∑

n=1

�

�Rin

�

〈n| be the N ×m matrix of occupied states, with |n〉 an orthonormal

basis of Cm. The matrix Q =
m
∑

n=1

�

�Q in

�

〈n| is obtained from the QR decomposition of P and

C =QQ†.

Both definitions of the density matrices lead to Gaussian reduced density matrices. We can
efficiently compute the two-site correlation matrix from the diagonalization of the single-site
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Hamiltonian, and thus the entanglement spectrum.

ξn = log
�

s−1
A,n − 1

�

, (25)

where sA,n is an eigenvalue of the correlation matrix CA restricted to the subsystem A we
consider. Note that the formula (25) is the same as in the Hermitian case. Since the en-
tanglement Hamiltonian might have complex eigenvalues, the entanglement spectrum is only
defined modulo 2iπ. We will choose the phases such that the symmetries of the correlation
matrix are respected. If CA is diagonalizable, the left and right entanglement modes are its
left and right eigenvectors.

4 Symmetries and entanglement Hamiltonian

Symmetries play a fundamental role in the behavior of the entanglement spectrum in Hermi-
tian systems [25,73]. A natural prescription to study topological effects on the entanglement
spectrum for symmetry-protected topological phases is to select a (ground) state that does not
break any of the protecting symmetries. The correlation matrix, and by extension all reduced
density matrices, will have the same symmetries, and the entanglement Hamiltonian can po-
tentially be in the same topological phase as the initial one. In this section we demonstrate
that this prescription is still natural in the non-Hermitian case. More precisely, we discuss
the effects of symmetries on the correlation matrix and reduced density matrices, in relation
with the band structure of the eigenvalues. Indeed, two types of gaps can be defined in non-
Hermitian systems [43], as illustrated in Fig. 1. The system is said to be point gapped if it
possesses no eigenvalues in the neighborhood of a single point of the complex energy plane,
usually E = 0, as depicted in Fig. 1(a). In sharp contrast with the (anti-)Hermitian case, bands
need not be separable. Conversely, the system is said to be line gapped if there exists a one-
dimensional manifold in the complex energy plane with no eigenvalues in its neighborhood,
separating the energies into two sets or bands, as shown in Fig. 1(b-c). Due to symmetry, this
manifold is generally either the real or the imaginary axis. An Hamiltonian then admits a real
line gap if the real part of its eigenvalues is gapped in the Hermitian meaning of the word.
Depending on the type of gap, Hamiltonians will have different topological classification and
the obtained correlation matrices will have different symmetries.

4.1 Conserved quantities

Let O be an operator that commutes with H. Then O and H preserve each other’s left and
right eigenspaces, and eigenspaces of H can be labeled by the eigenvalues o of O. Let A be a
part of the system such that O = OA +OA, with OA (OA) acting only on A (the rest of the
system). Using Schmidt decomposition, one can write any eigenstate of H as

�

�ψR/L , o
�

=
∑

oA+oA=o

∑

n

λn
oA,oA

�

�

�ψ
R/L
A,n, oA

¶

⊗
�

�

�ψ
R/L

A,n
, oA

E

. (26)

As
D

ψL
A,m

, oAψ
R
A,n

, o′
A

E

= δoA,o′
A
δm,n, the biorthogonal reduced density matrix is:

ρRL =
∑

oA

∑

n

 

∑

oA

|λn
oA,oA

|2
!

�

�

�ψR
A,n, oA

¶¬

ψL
A,n, oA

�

�

� . (27)

The reduced density matrix therefore commutes with OA , whose eigenvalues are still good
quantum numbers.
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−2 0 2
Re(E)

−0.2

−0.1

0.0

0.1

0.2
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(E

)
(a)

−1 0 1
Re(E)

−0.2

−0.1

0.0

0.1

0.2
(b)

−1 0 1
Re(E)

−1.0

−0.5

0.0

0.5

1.0
(c)

Figure 1: Three different types of band structure for non-Hermitian two-level sys-
tems. In (a) the band structure is non-separable while still having a point gap. It is
a fundamentally non-Hermitian structure, which admits both purely imaginary and
real energies. Only (b) and (c) have well-defined line gap. This line gap can be the
imaginary (b) or the real (c) axis, which relates naturally to a Hermitian (b) or an
anti-Hermitian (c) limit. Purely imaginary (real) energies are then forbidden.

Now we turn to the right density matrix. Schmidt decomposition applied to each (oA, oA)

sector ensures that
D

ψR
A,m

, oAψ
R
A,n

, oA

E

= δm,n. If the eigenspaces of O are orthogonal (for

example if O is a normal operator, i.e., O†O =OO† or Hermitian), then
D

ψR
A,m

, oAψ
R
A,n

, o′
A

E

is zero if oA 6= o′
A

. The reduced density matrix is then given by

ρR =
∑

oA

∑

n

 

∑

oA

|λn
oA,oA

|2
!

�

�

�ψR
A,n, oA

¶¬

ψR
A,n, oA

�

�

� . (28)

It also commutes with OA and the symmetry is preserved. On the other hand, if O is not
normal, then its eigenspaces are no longer orthogonal and OA a priori does not commute
with the right reduced density matrix. The O symmetry is then broken in the entanglement
Hamiltonian.

4.2 Z2 (anti-)unitaries symmetries for biorthogonal density matrices ρRL

We now focus on the Z2 unitary and anti-unitary symmetries used in topological classification
of Hermitian and non-Hermitian Hamiltonian. Four types of symmetries have been proposed to
classify non-Hermitian Hamiltonians through the Bernard-LeClair symmetry classes [74–77]:

Ch : H = −ucHu†
c , with ucu

†
c = I , u2

c = I ,

Tεt
: H = εtut H

∗u†
t , with utu

†
t = I , utu

∗
t = ηt I ,

Pεp
: H = εpupHT u†

p, with upu†
p = I , upu∗p = ηp I ,

PHεph
: H = εphuphH†u†

ph, with uphu†
ph = I , u2

ph = I ,

where the ε’s and η’s can take values ±1. Ch is a chiral symmetry, T and P are two flavors of
particle-hole (ε = −1) or time-reversal (ε = 1) symmetries and PH is pseudo-hermiticity. All
unitary transformations (uc , ut , up and uph) are required to be compatible with the subsystem
A: If the correlation matrix C verifies some symmetry relations, there exists reduced unitaries
defined on A such that CA also satisfies the same relation.
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Table 1: The symmetry conditions for both the Hamiltonian and the two-site correla-
tion matrix. The first column is the symmetry verified by the Hamiltonian. The sec-
ond column marks how energies appear in pairs (e.g., (En,−En)means that energies
appear in pairs of opposite signs). The third column is the symmetry transformation
obeyed by the correlation matrix, while the fourth summarizes the corresponding
conditions on the occupancy numbers of the many-body state. The table can be in-
terpreted in two ways. Starting from a symmetric Hamiltonian, the fourth column
indicates the constraints on the occupancy numbers of the many-body state such
that the entanglement Hamiltonian also admits the same symmetries. Conversely,
starting from a Gaussian state with a symmetric HE , the third column indicates the
symmetries verified by the correlation matrix.

H symm En C sn

Ch (En,−En) ucCu†
c + C = I sn + s−n = 1

T+ (En, E∗n) ut C
∗u†

t = C sn = s∗n∗
T− (En,−E∗n) ut C

∗u†
t + C = I sn + s∗−n∗ = 1

P+ None upC T u†
p = C None

P− (En,−En) upC T u†
p + C = I sn + s−n = 1

PH+ (En, E∗n) uphC†u†
ph = C sn = s∗n∗

PH− (En,−E∗n) uphC†u†
ph + C = I sn + s∗−n∗ = 1

For simplicity, we now assume that H has no degenerate eigenvalues. We use the short-
hand notations |Rn∗〉 for the eigenvector associated to E∗n and |R−n〉 to −En, and similarly for
all related quantities.

�

�R∗n
�

is the complex conjugate of |Rn〉.

Depending on the state we consider, a symmetry in the Hamiltonian can translate into two
different symmetries on the correlation matrix, and therefore on the entanglement Hamilto-
nian. Here we discuss explicitly the case of the pseudo-Hermitian PH− symmetry, the other
cases following straightforwardly.

The symmetry on the Hamiltonian translates into

uph |Rn〉= eiαnNn |L−n∗〉 , (29)

uph |Ln〉= eiαnN−1
n |R−n∗〉 , (30)

with eigenvalues coming in pairs (En,−E∗n). For simplicity, we skip for now the case of purely
imaginary energies. eiαn is a complex phase and Nn is the normalization constant || |Ln〉 ||−1.
Following Eq. (22), we obtain

uphC†u†
ph =

∑

n

s∗n |R−n∗〉 〈L−n∗ | . (31)

If s∗n + s−n∗ = 1, we obtain
uphC†u†

ph + C = 1. (32)

This relation can be satisfied by simply occupying the states with negative (or positive) real
part of the energy in the many-body state we consider. Such a choice coincides with the
conventional choice of the ground state for Hermitian systems with particle-hole symmetry at
half-filling, and is a consistent choice if the Hamiltonian admits a real line gap as in Fig. 1(b).
Correspondingly, if an entanglement Hamiltonian verifies the PH− symmetry, it will satisfy
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Eq. (32). Conversely, up to the 2iπ degrees of freedom in the definition of entanglement
energy, assuming there are no degeneracies, if the correlation matrix verifies Eq. (32), the
entanglement Hamiltonian is necessary PH− symmetric. Another interesting relation emerges
if we take s∗n = s−n∗ . In a Hermitian system, such a condition makes very little physical sense:
it attributes the same occupancy to states with opposite energies. In the non-Hermitian case,
it cannot be rejected a priori. If the spectrum has an imaginary line gap, such as shown in
Fig. 1(c), selecting the band with either positive or negative imaginary part results in such a
relation. In other words, it corresponds to the natural occupation of the anti-Hermitian limit
of the Hamiltonian. The correlation matrix then satisfies

uphC†u†
ph = C , (33)

which is the PH+ symmetry. Similarly, the corresponding entanglement Hamiltonian will have
the same PH+ symmetry, with eigenvalues coming in pairs (ξn,ξ∗n).

Finally, let us discuss the case of purely real or imaginary eigenmodes. If the Hamiltonian
H admits some purely imaginary eigenvalues, then uph maps the right eigenvectors to the cor-
responding left eigenvectors if there are no degeneracies. Then, Eq. (32) cannot be satisfied
by any of the eigenstates of H as it requires sn+s∗−n∗ = 1. The PH− symmetry is spontaneously
broken. On the other hand, such a mode is still compatible with the emergent PH+ symmetry.
If the Hamiltonian now has purely real eigenvalues, then the relation s∗n = s−n∗ requires to
attribute the same occupancy to states with opposite energies, which is generally unphysical
when studying half-filling properties. When the Hamiltonian has both purely real and imag-
inary eigenenergies, for example for the non-separable bands shown in Fig. 1a, then there is
no natural choice of many-body state that leads to a surviving symmetry in the entanglement
Hamiltonian. Note that in finite systems, picking adequate boundary conditions and system
sizes can prevent the symmetry breaking, as we will exemplify in Secs. 6.1.1 and 7.2.

Such a change of the symmetry representation occurs for most of previously considered
symmetries. In Table 1, we summarize the required conditions on the many-body state oc-
cupancies in order to have the exact same symmetry in the system Hamiltonian and the en-
tanglement Hamiltonian. These conditions are generically compatible with (and natural in)
the Hermitian limit. In each case, the corresponding entanglement Hamiltonian will have the
same symmetry as the Hamiltonian if C and sn satisfy the indicated relation, and therefore
the energy pair constraint is also valid for the entanglement Hamiltonian. In Table 2, we
summarize the required conditions to have the previously described change in the symmetry
representation. With the exceptions of the Ch and P− symmetries, these conditions would
be natural in the anti-Hermitian limit of the Hamiltonian. The choice of the more physically
relevant many-body state depends on the band structure of the original Hamiltonian.

4.3 Z2 (anti-)unitaries symmetries for right density matrices ρR

We now turn to the right density matrices and investigate how symmetries of the system Hamil-
tonian can map to the entanglement Hamiltonian. Some non-Hermitian symmetries relate
left and right eigenvectors of the Hamiltonian, while only the latter are involved in the com-
putation of the density matrix and the associated correlation matrix. Additionally, the right
eigenvectors do not form an orthogonal basis, which also affect some symmetry relations. Let
us consider here the example of group BDI† [43] (group 14 in Ref. [42]), characterized by
the presence of the symmetries P+, T− and PH−. In itself, this group is topologically trivial
in dimension 1. The symmetries enforce the following relations on the eigenvectors of the
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Table 2: Conditions to obtain an alternate symmetry representation in the entan-
glement Hamiltonian of the different symmetries of the system Hamiltonian. The
original symmetry of the Hamiltonian (first column), under the suitable choice of
many-body state (second column) leads to different symmetry properties for the cor-
relation matrix (third column), which means that HE will have a different symmetry
(last column). Two special cases emerge. The chiral symmetry leads to the appear-
ance of a new conserved quantity, corresponding to the chiral operator uc . The P+
symmetry does not appear in this table. Under the assumption that there are no de-
generacies in H, the entanglement Hamiltonian is also always P+ symmetric. It is
interesting to note that the P− symmetry then leads to a doubly degenerate entangle-
ment Hamiltonian. Except from Ch and P−, these symmetry conditions are natural
in the anti-Hermitian limit.

H sym. sn C HE sym.
Ch sn = s−n [uc , C] = 0
T+ sn + s∗n∗ = 1 ut C

∗u†
t + C = I T−

T− sn = s∗−n∗ ut C
∗u†

t = C T+
P− sn = s−n upC T u†

p = C P+
PH+ sn + s∗n∗ = 1 uphC†u†

ph + C = I PH−
PH− sn = s∗−n∗ uphC†u†

ph = C PH+

Hamiltonian (assuming no energy degeneracies):

P+ : |Rn〉=Nneiαp
nup

�

�L∗n
�

,

|Ln〉=N−1
n eiαp

nup

�

�R∗n
�

,

T− : |Rn〉= eiαt
nut

�

�R∗−n∗
�

,

|Ln〉= eiαt
nut

�

�L∗−n∗
�

,

PH− : |Rn〉=N−n∗e
iαph

n uph |L−n∗〉 ,

|Ln〉=N−1
−n∗e

iαph
n uph |R−n∗〉 ,

with Nn the normalization factor || |Ln〉 ||−1 and the eiα’s are complex phases. Let us start
with PH− and consider a state where all modes with negative real part of the energy are
occupied. We assume that there are no purely imaginary modes. As eigenvalues come in
pairs (En,−E∗n), the system is at half-filling and the corresponding biorthogonal density matrix
verifies all three symmetries. Let Q = {|Qn〉}n be the Schmidt orthonormalization of the family
of occupied modes introduced in Section 3. By construction Q spans half the single-particle
Hilbert space. The set uphQ is orthogonal to Q as 〈Rm|Ln〉 = δm,n (using u2

ph = I) and is also
an orthonormal family as uph is unitary. It is therefore the orthogonal complement of Q such
that (Q, uphQ) forms a complete basis of the single-particle Hilbert space. The right correlation
matrix associated to this eigenstate is

CR =
∑

n

|Qn〉 〈Qn| , (34)

and consequently CR is chiral symmetric:

CR + uphCRu†
ph =

∑

n

|Qn〉 〈Qn|+
∑

n

uph |Qn〉 〈Qn|u
†
ph = I . (35)
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Table 3: Summary of how the different non-Hermitian symmetries of the Hamilto-
nian can induce the standard Atland-Zirnbauer [78] symmetries on the right entan-
glement Hamiltonian. The first column lists the non-Hermitian symmetry, the sec-
ond column indicates the induced Hermitian symmetry, and in the last column, we
present the required conditions on the many-body state (expressed in the occupancy
of the different eigenmodes of the initial Hamiltonian). It is interesting to note that
the pseudo Hermitian symmetry PH− (resp. PH+) requires that the spectrum has no
purely imaginary (resp. real) eigenvalues in the absence of spectrum degeneracies.

nH sym. H sym Condition on occupancies
P− PHS sn + s−n = 1
T+ TRS sn = sn∗

T− TRS sn = s−n∗

PH− Chiral sn + s−n∗ = 1
PH+ Chiral sn + sn∗ = 1

On the other hand, let us consider the effect of P+ on the same state. upQ is also an or-
thonormal family, but it is a priori neither orthogonal to Q nor generated by it, and we obtain
no special relation on the density matrix. In this state, the P+ (and therefore also the T−
symmetry) is broken as it actually maps the right density matrix to the left. If there are no ad-
ditional symmetries, the right-density matrix then falls into the Hermitian AI symmetry class,
which is topologically non-trivial in one dimension.

As we have seen, only considering either the right or left density matrices might lead to
radically different symmetry properties of the entanglement Hamiltonian, and thus reveal dif-
ferent properties of the system Hamiltonian. In the presence of PH−, the natural choice of
many-body eigenstate can lead to the emergence of a chiral symmetry in the right-density ma-
trix, even though it is not present in the original Hamiltonian. The additional chiral symmetry
may lead to topological signatures and features in the entanglement hamiltonian and conse-
quently in left and right eigenstates of the original Hamiltonian even though the Hamiltonian
is in principle trivial.

This result is similar but not equivalent to the line-gap classification obtained in Ref. [43].
In particular, while the T− and P+ symmetries are relevant to the line gap classification, they
only map the right density matrix ρR to the left density matrix ρL , which does not put any
strong constraints on ρR itself, and therefore does not constrain its topological properties. For
example, in the case of T+, T− and Ch symmetry (group AI + S+), the line gap classification
predicts a Z topological invariant while the right density-matrix is only T+ symmetric and
therefore topologically trivial according the standard Hermitian classification. In Table 3, we
summarize how the different non-Hermitian symmetries can transform into a symmetry in the
right entanglement Hamiltonian, and the conditions on the many-body states in order for such
a symmetry to exist.

This potential discrepancy between the topological properties of the entanglement Hamil-
tonian and of the system’s Hamiltonian is in particular relevant when studying dissipative
trajectories with post-selection [66–70]. The post-selection allows us to simplify the Lindblad
evolution into a purely non-Hermitian Hamiltonian problems, and the density matrix of the
system is exactly the right density matrix that we consider. While the topological properties
of the Hamiltonian still matter as far as the existence of zero-modes are concerned [70], the
existence of topologically stable observables will be governed by the properties of the right
eigenvectors only.
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5 The non-Hermitian SSH chain

The non-Hermitian Su-Schrieffer-Heeger [48, 60–65] (SSH) model is an extension of the cel-
ebrated SSH model with additional non-Hermitian terms. Its Hamiltonian reads

H = −(t1 + γ)
∑

j

c†
j,Bc j,A− (t1 − γ)

∑

j

c†
j,Ac j,B

− t2

∑

j

�

c†
j+1,Ac j,B + c†

j,Bc j+1,A

�

+ iµ
∑

j

(n j,A− n j,B) . (36)

t1 (t2) is an intra- (inter-) unit-cell coupling, γ is a non-reciprocal contribution to the hopping,
and µ encodes alternating losses and gains. j denotes the unit-cell while A/B is the sublat-
tice index. We consider a system of L unit cells. In the following, we denote with σα with
α = x , y, z the Pauli operators acting on the sublattice degrees of freedom. In the rest of the
paper, we assume for simplicity t1, t2,µ,γ≥ 0 and fix our energy scale to t2 = 1.

The non-Hermitian SSH model possesses topological and trivial phases that are directly
connected to the corresponding phases in the Hermitian SSH model. More saliently, it hosts
a topological phase specific to non-Hermitian models. When γ 6= 0, it exhibits the so-called
non-Hermitian skin-effect [39, 44–52], i.e., a break-down of the conventional bulk-boundary
correspondence of topological systems. The eigenvalues and eigenvectors of the system with
open boundary conditions (OBC) strongly differ from the ones of the system with periodic
boundary conditions (PBC). Consequently, the conventionnal phase diagram—where a phase
transition is characterized by the closing of the gap in the energy spectrum—depends on the
choice of boundary conditions. With OBC, eigenstates tend to localize towards one of the
boundary of the system. On the other hand, the singular value phase diagram — where a
phase transition is based on the closing of the gap in the singular value decomposition of
the single-particle Hamiltonian H — does respect the bulk-boundary correspondence. We
summarize here the phase diagram and the main properties of the model.

The PBC phase diagram can be easily computed and is shown in Fig. 2. In the chiral limit
µ = 0 [48, 64, 65], the Hamiltonian is time-reversal T+ symmetric with ut = Id, particle-hole
T− symmetric with ut = σz and chiral Ch symmetric. It falls in the non-Hermitian AI+S+ [43]
class (group 36 in Ref. [42]), with two Z topological invariants. Several formulations have
been proposed for these invariants [40,43,49,57,64,79,80]. In this paper we use

ν+ =
i

2π

∫

BZ

Tr(Q†
k∂kQk), (37)

ν− =
i

2π

∫

BZ

Tr(σzQ†
k∂kQk), (38)

where BZ is the Brillouin zone and Qk is the singular-flattened Hamiltonian [57] at momentum
k. Namely, if the singular value decomposition of the Bloch Hamiltonian Hk associated to the
single-particle counterpart of H in Eq. (36) is Hk = UkΛkV †

k , withΛk a positive diagonal matrix
and Uk and Vk two unitary matrices, then

Qk = UkV †
k . (39)

The phase “H-Topo” (resp. “nH-Topo”) has non trivial winding number and is characterized by
two (resp. a single) zero singular values when the system is open . “H-Topo” is adiabatically
connected to the Hermitian topological phase, while “nH-Topo” is purely non-Hermitian, with
(point-)gapped energy bands that are nonetheless non-separable. “H-Triv” is connected to the
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Figure 2: Phase diagram of the extended non-Hermitian SSH model as a function of
t1 and γ for (a) µ = 0, (b)µ = 0.5, and as a function of t1 and µ for (c) γ = 0 and
(d) γ = 0.5. The different phases are labeled by the topological invariants (ν+,ν−).
While ν− is quantized only for µ = 0, it also acts as a good order parameter in the
specific model we consider even when µ 6= 0. (.) marks continuously varying values
of ν− in the phase. The phases “nH-Topo” and “nH-Topo b” are connected without
gap closing, the label discriminate between the absence and presence of symmetries,
and thus the quantization of ν−.

Hermitian trivial phase, while “nH-Triv” is connected to a trivial anti-Hermitian limit.
In the pseudo-hermitian limit γ= 0 [61–63], the system is pseudo-time-reversal P+ symmetric

with up = Id, particle-hole T− symmetric with ut = σz and pseudo-hermitian PH− symmetric.
The system now falls into the non-Hermitian class BDI† [43] (group 14 in Ref. [42]), which is
trivial following point-gap classification, but has the Z topological invariant ν− for a real line
gap. In this limit, the OBC and PBC phase diagrams coincide. “H-Topo” now admits purely
imaginary edge modes, which are topologically stable (using the line gap criterium) and that
partially survive in the gapless phase “Gapless” [64,81].

Finally, when both γ and µ are non-zero, the system is only particle-hole symmetric. It
then falls into class D† (group 34 in Ref. [42]) which admits ν+ as a Z topological invariant
following the point gap classification, and ν−/2 mod 2 as a Z2 topological invariant following
the line gap classification. The “nH-Topo b” phase, i.e., the extension of “nH-Topo” to non-zero
µ, is non-trivial according to ν+. The “H-Topo” phase has non-trivial ν−. It is also character-
ized by non-separable energy bands surrounding E = 0.

Finally, we introduce the real space formulation of the previous topological winding num-
bers: [82–85]
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ν+ = AvTrl:L−l

�

Q†(QX − XQ)
�

, (40)

ν− = AvTrl:L−l

�

σzQ†(QX − XQ)
�

, (41)

where Q is the singular flattened Hamiltonian [57] (similar to Eq. (39) but in real space) and X
is the position operator. AvTrl:L−l means that we compute the average of the diagonal elements
between sites l and L − l. Note that these two formulations are subject to finite-size effects,
caused by the presence of boundaries, and as such are not perfectly quantized in numerical
computations. We generally take l to be L/4 to limit these boundary effects.

6 Low-energy entanglement spectrum in the periodic chain

In this Section, we explore the properties of the entanglement spectra defined in Section 2.2
in the different phases of the extended SSH chain. In particular, we want to exemplify how
the choice of either the biorthogonal or right reduced density matrix gives different insights
into the topological properties of the Hamiltonian and the chosen many-body state. We con-
sider a periodic system, and work with different many-body states at half-filling, depending
on the structure of the energy bands in the complex plane. We compute both the eigenvalues
and the singular values of the biorthogonal entanglement Hamiltonian, and compare them
to the corresponding open Hamiltonian. While the open Hamiltonian can also present edge
eigenstates, the conventional bulk-boundary correspondence holds for the singular value de-
composition [40,42,43,57]We only study the eigenvalues of the right entanglement matrices
as they coincide with singular values in Hermitian matrices.

Diagonalization of a non-Hermitian Hamiltonian presents significant numerical noise, whose
bound increases exponentially with the matrix size. In this paper, we present data from rela-
tively small subsystems of 40 unit-cells for clarity. We performed a scaling analysis including
subsystems of up to 100 unit-cells to confirm our results.

6.1 Chiral symmetric limit µ= 0

The different phases of the system are here characterized by the two Z topological invariants
ν+ and ν− in Eqs. (40) and (41). We investigate whether the entanglement Hamiltonians
inherit the topological properties of their system Hamiltonian.

6.1.1 Biorthogonal density matrix

We focus first on the biorthogonal entanglement spectrum. The numerical results are summa-
rized in Fig. 3. We use the inverse participation ratio (IPR) to visualize the spatial extension
of the eigenstates. It is a measure of the support of the eigenmodes: a state perfectly localized
to a single site of the lattice will have an IPR of 1, while a state fully delocalized on all unit-
cells and both sublattices will have an IPR of 2L. The exact definitions employed are given in
App. B.

In the phases “H-Topo” and “H-Triv” of Fig. 2, the PBC energy bands form two disconnected
ellipsoids separated by the imaginary axis as in Fig. 1(b). It is therefore natural to compute the
entanglement spectrum at half-filling from the state |φR〉 =

∏

n d†sn
R |0〉, with sn = δRe(En)<0.

These two phases are adiabatically connected to the Hermitian phases, and this definition is
compatible with their respective Hermitian limit. The entanglement Hamiltonian then also
respects all three symmetries (T+, T− and Ch), and the entanglement spectrum is represented
in Fig. 3.
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Figure 3: Singular values (a) and eigenvalues (b-d) of the biorthogonal entanglement
Hamiltonian HRL

E as a function of t1 for γ = 0.5 and µ = 0. The total system is of
length L = 201 and we consider a subsystem of size l = 40 unit-cells. In (a-b), colors
represent the bilocalized inverse participation ratio of the corresponding singular
modes I PRSV D and of the eigen modes I PRRL (see Eqs. (55) and (55) in App. B).
In (c-d), we have highlighted (orange) the modes with the lowest real energies in
absolute values. Phase transitions occur at t1 = 0.5 and t1 = 1.5 — marked by the
dashed vertical gray lines—, characterized by an entanglement gap closing in the
singular values and the presence of extended states at low-energy. We also indicate
the degeneracy of the lowest-lying states. In the Hermitian topological phase, both
the singular and eigen decompositions admit two zero modes which are localized
at each end of the subsystem. In the non-Hermitian topological phase, we do not
observe the zero singular mode that characterizes the open system.

The biorthogonal entanglement spectrum reveals the phase transitions occurring in the
periodic system, and, despite being effectively open, shows a phase diagram matching the
PBC one, when considering either eigen or singular values. “H-Topo” is characterized by the
presence of two zero singular value modes, as expected from the OBC Hamiltonian. We also
observe two corresponding zero energy modes in the whole phase. Each of these modes is
localized at one end of the wire, up to finite-size effects, with the corresponding left- and
right- eigenvectors exponentially localized on the same end. “H-Triv” is a trivial phase, and as
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such, does not present any low entanglement energy excitation. We numerically compute the
topological winding numbers from their real-space formula, and we show in Fig. 4 that, within
numerical accuracy, the entanglement Hamiltonian indeed inherits the topological properties
of the system Hamiltonian in these two phases .

In “nH-Triv”, the PBC bands form two disconnected ellipsoids now separated by the real
axis as in Fig. 1(c). This phase is in particular adiabatically connected to a purely anti-
Hermitian trivial limit, which makes the more natural choice of occupation number in the
many-body state to be sn = δIm(En)>0 if one wants to probe the topological property of the
imaginary bands. Following the discussion in Section 4.2, this choice switches the roles of
T+ and T− symmetries, while conserving the chiral symmetry. The entanglement Hamiltonian
satisfies

σzH∗Eσ
z = HE and H∗E = −HE . (42)

The biorthogonal density matrix therefore still belongs to the same symmetry class. We observe
no low energy or singular states and the topological invariants are zero. The modes with
smallest absolute real part of the energy have an imaginary part close to iπ but have significant
finite real part. For larger real parts, we expect a similar result, but we are limited by numerical
accuracy and floating point precision.

Finally, in the phase “nH-Topo” the two bands are not separated but form a single ellipsoid
encircling E = 0 as in Fig. 1(a). There is no longer any natural “ground state” allowing the
study of a single band. We can either choose to select an arbitrary half-plane in energy space to
populate, or to select states which can be smoothly deformed into each other. More precisely,
choosing a mode

�

�Rk0,n

�

at momentum k0, we select at k = k0 + δk the eigenstate
�

�Rk,m

�

that maximizes |



Lk0,n|Rk,m

�

|. In practice, these two definitions coincide. Here we select the
energy modes with negative real part, but similar results are obtained by using the negative
imaginary ones. Our choice protects the chiral symmetry. The other symmetries would break
in the thermodynamic limit due to the presence of purely imaginary modes. By taking L
odd (another possible choice is L even and antiperiodic boundary conditions), we prevent
the spontaneously breaking of the symmetries using finite-size effects, without affecting our
results. We observe in this phase that the entanglement Hamiltonian breaks bulk-boundary
correspondence: it has no zero singular value instead of the expected one. This is not a finite
size effect, and is stable to perturbations. In fact, both real space topological invariants in
Eqs. (40) and (41) are no longer quantized as the entanglement Hamiltonian becomes long
range (approximately power-law decay of the hopping terms with strong oscillations, that
saturate at a finite value independent of the subsystem size).

Such a breakdown of the bulk-boundary correspondence through the entanglement Hamil-
tonian is in sharp contrast with the ersatz of entanglement spectrum introduced in our own
previous work [57]. This ersatz is based on the singular value decomposition of the single-
particle Hamiltonian instead of a many-body eigenstate. The single-particle entanglement
spectrum built from this SVD perfectly reproduces the physics of both the open and closed
system.

6.1.2 Right density matrix

We now focus on the right density matrix and perform a similar analysis. Studying the left
density matrix leads to the same results. Its entanglement spectrum is represented in Fig. 5.
Only the time reversal symmetry T+ is preserved — when it is also preserved in the biorthogo-
nal case (in phase “nH-Triv”, it is the new T− symmetry that is preserved). The entanglement
Hamiltonian therefore belongs to the Hermitian AI class. The breakdown of the particle-hole
symmetry can be understood from the following simple argument: The non-Hermitian term γ

18

https://scipost.org
https://scipost.org/SciPostPhys.7.5.069


SciPost Phys. 7, 069 (2019)

0.0 0.5 1.0 1.5 2.0
t1

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

ν +
,

ν −

H-Topo nH-Topo H-Triv

ν+ for ρRL

ν− for ρRL

ν+ for ρR

ν− for ρR

Figure 4: Topological invariants ν+ and ν− of the biorthogonal and the right en-
tanglement Hamiltonian in the chiral limit γ = 0.5 and µ = 0, as a function of the
hopping t1. We consider a system of size L = 801 and a subsystem of size l = 40.
The vertical dashed lines mark the PBC phase transitions. For the biorthogonal den-
sity matrix, in phase “H-Topo” and “H-Triv”, the topological invariant takes the same
values as in the original Hamiltonian. On the other hand, in the intermediate phase
“nH-Topo”, the real space topological invariant are no longer quantized as the Hamil-
tonian becomes long ranged. The phase transitions are nonetheless well marked. For
the right density matrices, ν+ = 0 while ν− is not quantized, as expected from a Her-
mitian Hamiltonian of class AI .

favors concentrating the wave function to the right of each unit cell. This means that B sites
tend to have larger occupancy number, hence breaking particle-hole and chiral symmetry. The
class is trivial, and we do not observe any stable zero modes, whether in the singular or en-
ergy decomposition. In the “H-Topo” phase, the low singular or energy modes acquire a finite
splitting in the presence of both t1 and γ, though the low-energy modes stay localized on the
boundaries. It can also be understood as a consequence of the larger occupancy of B sites
compared to A sites. Note that this result means that line gap classification does not coincide
with right density matrix classification. Indeed, the line-gap approach predicts a surviving Z
classification, compatible with ν−, which is not observed here. The phase transitions are not
characterized by a gap closing in the entanglement Hamiltonian. It is not just an effect of
an ill-defined state in the intermediate phase. We performed a scaling analysis with respect
to both L and the length of the subsystem A. Arbitrarily close to the transition in any line
gapped phases, the entanglement Hamiltonian has a finite gap. Instead, the entanglement
Hamiltonian transitions by becoming long-range.

6.2 Pseudo-Hermitian limit γ= 0

For γ= 0, the system falls into the class BDI†, which is trivial following point gap classification
but with the Z topological invariant ν− in the presence of a real line gap. The system with
open-boundary conditions is argued to have topologically protected edge states with purely
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Figure 5: Absolute eigenvalues of the right entanglement Hamiltonian HR
E as a func-

tion of t1 for (a) γ= 0.5, µ= 0 and (b) γ= 0, µ= 0.5. The total system is of length
L = 201 and we consider a subsystem of size l = 40 unit-cells. Colors represent the
inverse participation ratio of the corresponding singular and eigen modes and phase
transitions are marked by the vertical dashed lines. We also indicate the degeneracy
of the lowest eigenvalues. In the chiral limit, phase transitions are no longer visible
and we observe no protected low-energy mode in the topological phase “H-Topo”. In
the pseudo-hermitian limit γ= 0, in phase “H-Topo”, the right entanglement Hamil-
tonian has two zero-energy singular and energy entanglement modes protected by
an emerging chiral symmetry. Interestingly, the gapless phase “Gapless” is gapped for
the entanglement Hamiltonian. Separation between phases “Gapless” and “H-Triv”
is not marked by a gap closing but by the coalescence of the lowest energy modes.

imaginary energies. We focus on the presence of such localized states directly in the entangle-
ment spectrum.

6.2.1 Biorthogonal density matrix

Starting with the biorthogonal entanglement spectrum, we obtain similar results as in the
previous section, as depicted in Fig. 6. We also observe here that the eigenvalues and singular
values have a simultaneous change of behavior precisely where a phase transition occurs in
the PBC system.

In “H-Topo”, the energy spectrum of the system Hamiltonian is fully real and gapped, form-
ing two separable bands with a real line gap. We select the state where all negative energy
modes are occupied, by analogy with the Hermitian limit. This choice preserves the three
symmetries P+, T− and PH−. The entanglement Hamiltonian is trivial according to the point
gap classification of Refs. [42, 43]. As such, the singular and energy spectra of the entangle-
ment Hamiltonian have no zero modes. Nonetheless, the BDI† class admits the Z topological
invariant ν− following line gap classification. As shown in Fig. 7, ν− is also quantized in the
entanglement spectrum. Correspondingly, the singular spectrum admits two well separated
low modes which correspond to two eigenmodes with purely imaginary energies. These two
modes are exponentially localized at each edge of the subsystem, and match the corresponding
edge modes observed in the OBC system.

When increasing t1, we observe the transition to the gapless phase “Gapless”. The spectrum
of the PBC Hamiltonian now forms a cross on the real and imaginary axes. Selecting the many-
body state following the deformation argument described in Section 6.1.1, we take sn = 1 if
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En is real negative or imaginary positive. This indeed allows us to select one state at each
momentum, and while it breaks both T− and PH− symmetries, it preserves the pseudo-time
reversal symmetry. Note that PH− cannot be recovered in any many-body eigenstate: the
imaginary modes cannot be avoided using finite-size effects and it is then not possible to satisfy
the relation sn+ s∗−n∗ = 1 (in the absence of degeneracies in the spectrum). The entanglement
Hamiltonian then falls into the trivial class AI† (group 6). It is gapless, with extended eigen
and singular modes. While in the OBC Hamiltonian the localized edge states survive in the
gapless phase, they are not present in the entanglement Hamiltonian, indicating their more
fragile nature as the edge modes can interact through the extended gapless modes. In the
trivial phase “nH-Triv”, the spectrum is again gapped and fully real, and we select the state
with all negative modes occupied, respecting all symmetries. The entanglement Hamiltonian
is correspondingly gapped, without low energy modes.

Finally, in the anti-Hermitian phase “nH-Triv”, the energy spectrum is purely imaginary
and we select states with negative imaginary parts. As discussed in Section 4.2, it transforms
the symmetries T− and PH− into T+ and PH+ such that the entanglement Hamiltonian now
verifies:

σzH∗Eσ
z = HE and σzH†

Eσ
z = HE . (43)

It does not change the symmetry classification of the entanglement Hamiltonian and we ob-
serve no stable low singular or energy modes.

6.2.2 Right density matrix

We turn now to the right entanglement Hamiltonian. Similar to the previous limit, some sym-
metries are always spontaneously broken by our choice of states. As discussed in Section 4.3,
the pseudo-Hermitian symmetry of the Hamiltonian leads to an emergent chiral symmetry of
the right density matrix in phases “H-Topo” and “H-Triv”. The entanglement Hamiltonian then
falls into the AIII Hermitian class, which is topologically non-trivial, with ν− the correspond-
ing topological invariant. In the “H-Topo” region, we observe two exact zero modes localized
at each side of the subsystem, shown in Fig. 5 and ν− is quantized to 2, as shown in Fig. 7.
The entanglement Hamiltonian is consequently topologically non-trivial. This means that the
eigenvectors of the PBC Hamiltonian have a doubly degenerate Schmidt decomposition even
though the Hamiltonian is trivial following the point-gap classification. The emergent sym-
metry also explains the quantization and stability of the right or left Berry phase observed in
this limit in the periodic Hamiltonian [63, 79, 80]. In the “Gapless” phase, the initial density
matrix and the entanglement Hamiltonian break all symmetries and are therefore trivial. The
entanglement Hamiltonian is nonetheless gapped while the original Hamiltonian is gapless,
with low but finite eigen modes power-law localized at each extremities of the subsystem, and
higher-energy extended states. Finally, in “H-Triv”, the chiral symmetry is restored, but the
entanglement Hamiltonian is trivial.

6.3 Generic model

When both µ and γ are non-zero, only the T− symmetry survives. The system then falls into
the class D† [43] (group 34 [42]), which admits the Z topological invariant ν+ following the
point gap classification and the Z2 topological invariant ν−/2 mod 2 in a presence of a real
line gap. The features of the entanglement spectrum and the state selection are then straight-
forwardly inherited from the two previous limits. In the “H-Topo”, “H-Triv” and “nH-Triv”
phases, the spectrum is line-gapped leading to a natural choice for the many-body state. Re-
sults are shown in Fig. 8. As in the two previous limits, singular values and eigenvalues show
similar behavior and transition when the periodic system also goes through a critical point. For
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Figure 6: Singular values (a) and eigenvalues (b-d) of the biorthogonal entanglement
Hamiltonian HRL

E as a function of t1 for γ = 0 and µ = 0.5. The total system is of
length L = 201 and we consider a subsystem of size l = 40 unit-cells. In (a-b), colors
represent the bilocalized inverse participation ratio of the corresponding singular
modes I PRSV D and of the eigen modes I PRRL (see Eqs. (55) and (55) in App. B).
The two gapped phases “H-Topo” (t1 <

1
2) and “H-Triv” (t1 >

3
2) are separated by

the gapless phase “Gapless”. The biorthogonal entanglement Hamiltonian presents
a similar phase diagram. The noise in entanglement values is characteristic of finite
size-effects in gapless phases. In (c) and (d), we highlight the eigenvalues with lowest
absolute real part. In the “H-Topo” phase, we observe purely imaginary eigenstates
exponentially localized at each extremity of the subsystem. The phase transitions are
marked by the dashed vertical lines, and occur simultaneously for singular values
and eigenvalues, at the parameter values predicted by the periodic system. While
the corresponding edge states survive in the gapless phase for the OBC system, this
is not the case for the entanglement Hamiltonian.

the biorthogonal entanglement spectrum, the “H-Topo” phase is characterized by the presence
of modes with purely imaginary modes of the energy which are exponentially localized at the
boundaries of the entanglement Hamiltonian (here localized), as in the open system (though
phase boundaries do match the PBC phase diagram). The entanglement Hamiltonian corre-
spondingly has non-trivial ν−. On the other hand, the right density matrix does not present
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Figure 7: Topological invariants ν+ and ν− of the biorthogonal and the right entan-
glement Hamiltonian in the pseudo-Hermitian limit γ= 0 and µ= 0.5, as a function
of the hopping t1. We consider a system of size L = 401 and a subsystem of size
l = 40. The vertical dashed lines mark the PBC phase transitions. ν− is a good topo-
logical invariant for both the biorthogonal density matrix ρRL and the right density
matrix ρR in the two line gapped phases “H-Topo” and “H-Triv”. The results for ρRL

and ρR exactly match in these two regions.

any stable low-energy mode. The γ term, which preserves the chiral symmetry of the Hamilto-
nian breaks the chiral symmetry of the right density-matrix. The “H-Triv” and “nH-Triv” phases
are topologically trivial and as such do not present any new features.

Finally, the “nH-Topo b” phase which is topologically non-trivial, has non-separable bands.
As was the case in the previous examples, the entanglement spectrum then behaves differ-
ently from the system Hamiltonian. The entanglement Hamiltonian is long-range, with a non-
quantized ν+, using the real space formula.
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Figure 8: Singular values (a) and eigenvalues (b-d) of the biorthogonal entangle-
ment Hamiltonian HRL

E as a function of t1 for γ = µ = 0.5. The total system is of
length L = 201 and we consider a subsystem of size l = 40 unit-cells. In (a-b), col-
ors represent the bilocalized inverse participation ratio of the corresponding singular
modes I PRSV D and of the eigen modes I PRRL (see Eqs. (55) and (55) in App. B).
In (c) and (d), we highlight the eigenvalues with lowest absolute real part. In the
phase “H-Topo”, we observe two localized edge states with purely imaginary ener-
gies. These states are nonetheless not topologically stable. The intermediate phase
“nH-Topo” has non-separable energy bands, which leads to a non-local entanglement
Hamitlonian and delocalized modes. The phase transitions occurs at t1 = 1± 1p

2
, as

predicted by the PBC Hamiltonian, and are marked by the dashed vertical lines. Sin-
gular values and eigenvalues transition simultaneously.

7 Two-dimensional models: from Chern insulators to non-Hermitian
topology

In this Section, we compute the entanglement spectrum of several two-dimensional non-
Hermitian topological models in order to illustrate the properties and limits of our approach.
Using three different models, we study the two entanglement spectra, obtained from ρR and
ρRL , in different topological phases and discuss when they give insight on the properties of
the system Hamiltonian. In all the following examples, the Hamiltonian is defined on a two-
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dimensional torus with periodic boundary conditions. The subsystem we use to define the
entanglement spectrum is a cylinder, periodic in the x-direction, but finite in the y-direction.
In simulations, we take systems with 100× 100 unit cells, and the cylinder has a length of 40
unit-cells. This cylinder geometry is also what we denote by open boundary conditions in this
section.

7.1 Non-Hermitian Chern insulator

We start by studying the generic non-Hermitian extension of a Chern insulator introduced in
Refs. [86,87]. Its Bloch Hamiltonian reads

HChern =
∑

~k

(c†
~k,↑

, c†
~k,↓
)
�

~n(~k) + i ~d(~k)
�

· ~σ (c~k,↑, c~k,↓)
T , (44)

with ~σ = (Id,σx ,σ y ,σz) the vector of Pauli matrices, c†
~k,α

the fermionic creation operator at

momentum ~k with spin α=↑, ↓ and

~n(~k) = (0,∆x sin kx ,∆y sin ky ,−µ− t cos kx − t cos ky), (45)

~d(~k) = (0,γx ,γy ,δµ). (46)

Here µ corresponds to a Zeeman field, t a hopping between lattice sites, ∆x and ∆y are spin
orbit couplings, and γx and γy are constant dissipative spin-flip terms, while δµ is a local
source or drain coupled to the spin polarization. In the following, for simplicity, we take
t = ∆x = ∆y = 1. In the Hermitian limit ~d(~k) = ~0, the system is topologically non-trivial for
|µ| < 2t. Two topological phases with opposite Chern number ±1 are separated by a gapless
line at µ= 0. These two phases are characterized by the presence of chiral edge-modes when
considering open boundary conditions. Similar structures are observed in the entanglement
spectrum [73, 82, 88, 89]. When µ > 2t, the system becomes trivial. The topological phases
are not protected by any symmetry, though the Hermitian model is particle-hole symmetric.

When all parameters are non-zero, the system has no special symmetries and falls into
class A (D† if δµ = 0), which is topologically trivial following point-gap classification, but
admits a Z topological invariant following the line-gap classification [43]. This topological
invariant is nothing but the Chern number, and the corresponding phases are the extension of
the Hermitian phases. In this section, we therefore limit ourselves to this extension, i.e., we
introduce non-Hermitian terms without breaking the line gap (and hence the point gap). Due
to this line gap, the eigenvalues are well separated into two different energy bands. When we
consider a cylinder geometry, the system still admits one localized chiral edge-mode at each
edge. The two modes have opposite chirality, and one is amplified while the other is dissipated.

The system presents a real line gap as shown in Fig. 9(a). We therefore select the many-
body state at half-filling where the levels with negative real part are occupied, and compute the
entanglement spectrum over a cylinder periodic in the x direction. In the topological phases,
the biorthogonal entanglement spectrum presents chiral edge modes as shown in Fig. 9(c-d),
and the entanglement spectrum has the same Chern number as its system Hamiltonian. The
edge modes are dissipative, with finite imaginary part, similarly to the original Hamiltonian
with open-boundary conditions. The chirality of the amplified and dissipated modes are the
same in the entanglement Hamiltonian HRL

E and the system Hamiltonian. The right entan-
glement Hamiltonian—whose spectrum is shown in Fig. 9(b)—also falls into class A, and has
similar topological properties with the same Chern number as the initial Hamiltonian. In the
trivial phase, the entanglement Hamiltonians do not have any special feature. Transitions
occur as predicted by the PBC Hamiltonian.

In this model, the entanglement spectrum is therefore able to correctly predict the proper-
ties of the line-gapped topological phases.
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Figure 9: (a) Energy spectrum of the non-Hermitian Chern insulator for γx = 0.2,
γy = 0.3, δµ = 0.1 and µ = 1, deep in the non-Hermitian topological phase on a
cylinder geometry. Two edge modes of opposite chirality with finite imaginary part
are present. (b) Right entanglement spectrum obtained for the same parameters as a
function of the conserved momentum kx . Topological edge modes are also present.
(c-d) Real and imaginary part of the biorthogonal entanglement spectrum. The chiral
edges have the same sign of the imaginary part as in the original Hamiltonian close
to kx = 0.

7.2 Non-Hermitian Z topological phase

We now turn to a simple model in class DIII†, whose Bloch Hamiltonian is parametrized by

~n(~k) = (0,∆x sin kx ,∆y sin ky , 0), (47)

~d(~k) = (µ− t x cos kx − t y cos ky , 0, 0,δ(sin kx + sin ky)), (48)

using the notations of Eq. (44). t x , t y are dissipative hopping terms, ∆x and ∆y are normal
spin-orbit hoppings, µ is a spin-dependent source and drain and δ is a dissipative spin-orbit
contribution. The model has a T− symmetry with ut = σx , P+ symmetry with up = σ y and
a pseudo-Hermitian symmetry PH−. It admits a Z topological invariant following point gap
classification [42, 43]. DIII† is also non-trivial in the line gap classification. We discuss an
example in the following section. We fix t x = t y = ∆x = ∆y = 1. This model was briefly
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discussed in Ref. [42] in the limit δ = 0. Then, for |µ| < 2, the Hamiltonian is topologically
non-trivial. The two-bands are not separable as shown in Fig. 10(a). and the OBC Hamiltonian
admits two degenerate singular zero modes, while nonetheless it has no edge modes in the
energy spectrum, as shown in Fig. 10(b-c).

We compute the entanglement spectrum in the topological phase. We select the many-body
state where all states with negative real energy are selected, to preserve the T− symmetry. The
PH− symmetry can also be preserved by considering an antiperiodic torus, though this choice
does not significantly affect the obtained entanglement spectra. In the following, we only show
the entanglement spectrum computing the many-body state of the more conventional periodic
torus geometry. In the limit δ = 0, the non-Hermitian terms are diagonal in momentum
space and ρRL and ρR coincide as the many-body state is the ground state of a gapless Dirac
Hermitian Hamiltonian. It has four Dirac cones at the protected momenta ~k = (0,0), (0,π),
(π, 0) and (π,π). The entanglement spectrum of such a many-body state does not present
any stable zero modes, though it still supports some low-energy gapped modes due to the
presence of the two sets of two Dirac cones with opposite chirality. For small non-zero δ, in
the topological phase, this picture is still valid, as shown in Fig. 10(d-f).

7.3 Non-Hermitian pseudo-Hermitian Z2 insulator

Finally, we introduce a non-Hermitian extension of a Z2 insulator in the same DIII† class.
We now focus on line gap classification and show that the topological properties of the two
entanglement Hamiltonians can differ due to the presence of an emergent chiral symmetry
in the right entanglement Hamiltonian. The class admits a Z2 topological invariant in the
presence of a real line gap [43], which can be expressed as an extension of the Kane-Mele
invariant [1]. By analogy with the Hermitian DIII class, we consider a model with four bands.
The toy Hamiltonian reads

HKM =∆x sin kxσ
x x +∆y sin kyσ

x y + (µ− 2t x cos kx − 2t y cos ky)σ
y0 + iγσzz , (49)

where σαβ = σα ⊗ σβ , α,β = x , y, z, 0. The system is T− symmetric with ut = σ y y , P+
symmetric with up = σx y and PH− symmetric with uph = σz0. In the Hermitian limit γ = 0,
it has been introduced in Ref. [90], and is topologically non-trivial for |µ|< 2|t x |+2|t y |. In a
cylinder geometry, it presents two free chiral edge modes with opposite chirality at each edge.
Introducing a small anti-Hermitian parameter γ does not break the real line gap (Fig. 11(a)),
and preserve the topological phases. Indeed, as shown in Fig. 11(b-c), both singular and eigen
decompositions of the Hamiltonian still present similar zero edge modes.

Since this model has a real line gap, we compute the entanglement spectrum of the many-
body state where all states with negative real part of the energy are occupied, in the topolog-
ical phase. Results are shown in Fig. 11(d-f). The biorthogonal entanglement Hamiltonian
presents the same edge states as the open model, both in its singular value decomposition and
itś eigendecomposition. It therefore faithfully captures the topological properties of the initial
Hamiltonian. On the other hand, the right entanglement Hamiltonian has gapped low-energy
modes and is actually topologically trivial. Indeed, as discussed in Sec. 4.3, the pseudo-
Hermitian symmetry of the non-Hermitian Hamiltonian transforms into a chiral symmetry for
the right entanglement Hamiltonian. On the other hand, our choice of non-Hermitian pertur-
bation prevents the T− and P+ symmetry to carry over to HR

E . HR
E then falls into the trivial

Hermitian class D.
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Figure 10: We fix µ= 0.5 and δ = 0.1. (a) Energy spectrum of the model in Eq. (48)
for periodic boundary conditions. (b) Energy spectrum on a cylinder geometry. The
highlighted bands are not edge states but two fixed momentum bands (kx = 0 for
the negative imaginary parts and kx = π for the positive imaginary parts). The
discontinuity in the band structure is due to the instability of the eigenvalues in non-
Hermitian systems [57]. (c) Singular value spectrum of the OBC model. Two degen-
erate zero singular modes appear and are topologically protected. (d) Entanglement
spectrum of the right density matrix. (e) Singular values of the biorthogonal entan-
glement Hamiltonian. (f) Real part of the biorthogonal entanglement Hamiltonian.
In (d-f), we observe low energy gapped edge modes which are caused by the pres-
ence of two set of Dirac cones with opposite chirality, but no stable zero modes as in
the singular value decomposition of the Hamiltonian
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Figure 11: We fix t x = t y = 2, ∆x = ∆y = µ = 1 and γ = 0.7. (a) Energy spectrum
of the model in Eq. (49) for periodic boundary conditions. (b) Energy spectrum
on a cylinder geometry. The highlighted bands are the states with the lowest real
part of the energy at each momentum kx . The low-energy edge modes are stuck
on the real axis. (c) Singular value spectrum of the OBC model. Two chiral zero
singular modes appear at each edge and are topologically protected. The dotted
orange line is a guide to the eye. (d) Entanglement spectrum of the right density
matrix: the edge modes are not protected and become gapped (e) Singular values
of the biorthogonal entanglement Hamiltonian. (f) Real part of the biorthogonal
entanglement Hamiltonian. In (e-f), we observe the same low energy edge modes as
in the open Hamiltonian.
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8 Conclusions and discussions

In this work, we have discussed the properties of the many-body density matrices and en-
tanglement Hamiltonian in topological non-Hermitian systems. After discussing two possible
definitions of density matrices, we have shown that both Wick’s theorem and Peschel’s formula
are valid in non-interacting non-Hermitian settings, even for non-diagonalizable Hamiltonians.
We have then studied how the symmetries of the Hamiltonian maps onto the density matrices
and the entanglement Hamiltonian. As opposed to Hermitian models, the choice of a many-
body state, like a filled band for insulator, is not always unambiguous. We propose to base this
choice on symmetry. For the biorthogonal density matrix, depending on the choice of many-
body state, different symmetries can be realized at fixed half-filling. For the right (or left)
density matrix, most of the symmetries of the starting Hamiltonian do not naturally carry on
to the entanglement Hamiltonian, contrarily to what happens in Hermitian system. Nonethe-
less, the pseudo-Hermitian symmetry PH− : H = −uphH†u†

ph may lead to an emergent chiral
symmetry which translates into topologically non-trivial right and left wave-functions.

To exemplify these different approaches, we have studied the entanglement Hamiltonian of
several archetypal models in one and two dimensions. Starting from the periodic Hamiltonian,
we have found that the biorthogonal entanglement spectrum inherits the topological proper-
ties of the initial Hamiltonian as long as the system has separable bands. The singular and
edge modes present in the open Hamiltonian are present in the entanglement Hamiltonian,
and the corresponding topological invariants carry on. On the other hand, the right entangle-
ment spectrum does not reproduce all the features of the original Hamiltonian. As symmetries
of the system Hamiltonian do not straightforwardly carry to the right entanglement Hamilto-
nian, the latter can present topological features in phases that are trivial following the point
gap classification, or conversely be trivial in topological phases. For non-separable bands, both
entanglement Hamiltonians fail to reproduce the characteristic topological properties of the
original Hamiltonian, in contrast with the singular value approaches discussed in Ref. [57].
The singular zero-modes typically present in these phases are not present in the entanglement
Hamiltonian, for all the many-body states we have considered. It appears then, that the bulk-
boundary correspondence holds for the ES in line-gapped Hamiltonians, when considering
the bi-orthogonal density matrix. We have indeed analytically shown that the entanglement
Hamiltonian belongs to the same symmetry class as the original Hamiltonian, under symmetry
dependent assumptions (e.g., the absence of purely imaginary eigenmodes) which are generi-
cally valid in line-gapped phases, and numerically shown that their corresponding topological
invariants then match. This result can be seen as a consequence of the fact that line-gapped
non-Hermitian Hamiltonians are smoothly deformable into (anti-)Hermitian ones [43], for
which we know the bulk-boundary correspondence generally holds. The right density matrix
carries information on the topological properties (degeneracies and zero modes in the entan-
glement spectrum, Chern number of the corresponding entanglement Hamiltonian...) of the
many-body right eigenstates themselves. The subject of the classification of these matrices
following from the topological properties of the system Hamiltonian can be relevant to exper-
iments with post-selection.

The approach we develop in this paper is a first step towards the generalization of the non-
Hermitian topological classifications to true many-body physics. Indeed, it is highly non-trivial
to generalize the approaches introduced in Refs. [40, 42, 43], as the point gap classification
relies on the singular value decomposition of the single-body Hamiltonian, which cannot be
simply related to the eigen or singular decomposition of the many-body Hamiltonian. Asking
the question whether the many-body states have topological properties, characterized by their
entanglement spectrum, allows us to circumvent this difficulty.

Performing a similar analysis starting from an open system could further improve our un-
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derstanding of the structure of these states. A complete study is left for future works due
to more challenging numerics. Similarly, it would be interesting to generalize this approach
to interacting systems [91], either through standard exact computation or through modified
MPS algorithm, though the numerical instabilities inherent to non-Hermitian system may limit
these approaches. In this paper, we considered non-interacting fermionic models because it
allowed us to use Peschel’s formula and study much larger systems. The rest of our approach
should be directly applicable to interacting systems.

Following this work, a similar approach was developed in Ref. [92] to study the entangle-
ment entropy and therefore the effective low-energy conformal field theory describing critical
points in non-Hermitian models.
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A Antecedent of non-Hermitian correlation matrices with Jordan
blocks

In this Appendix, we show how to find the Gaussian antecedent of a correlation matrix that
forms an arbitrary Jordan block of size n. Generalization to an arbitrary correlation matrix
is straightforward. Each eigenspace (corresponding to independent Jordan blocks) can be
treated separately.

We start by computing the correlation matrix obtained when the entanglement Hamilto-

nian is a single Jordan block of size n. Let HE =
n
∑

j=1
εc†

R, jcL, j +
n−1
∑

j=1
c†
R, jcL, j+1 = ~c

†
R J(ε)~cL with

J(ε) the n−dimensional Jordan block with eigenvalue ε, in some arbitrary biorthogonal ba-
sis. Then the corresponding two-site correlation matrix M defined by Mi, j =

¬

c†
R, jcL,i

¶

is the
banded matrix

M =









m1 m2 · · · · · ·
0 m1 m2 · · ·
...

. . . . . . . . .
0 · · · 0 m1









, (50)

with m1 =
eε

1+eε and m2 = −
eε

(1+eε)2 (the higher diagonals are generally non-zero, but they are
not relevant to our discussion). As m2 is non-zero, this matrix cannot be diagonalized and
forms a single n−dimensional Jordan block. We denote by Q the invertible matrix such that
M =QJ(m1)Q−1.

We now prove that any correlation matrix forming a single Jordan block admits a Gaus-
sian antecedent. Let C be a correlation matrix, and P an invertible matrix be such that
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C = PJ(s)P−1. Using

Tr
�

c†
αcβ e−~c

†HE~c
�

=
∑

m,n

Pβ ,mTr
�

f †
R,n fL,me− ~f

†
R P−1HE P ~fL

�

P−1
n,α, (51)

where ~f †
R = ~c

†P and ~fL = P−1~c, the non-Hermitian Gaussian state defined by the entangle-
ment Hamiltonian

HE = PQ−1J(log
�

s−1 − 1
�

)QP−1, (52)

has C for its correlation matrix. Due to the matrix P, the basis in which HE takes a Jordan
form is not the same as in C .

B Inverse participation ratio

In this Section, we introduce the definitions of the inverse participation ratio (IPR) we use in
the main text to visualize the spatial support of the eigenmodes of the entanglement Hamilto-
nian. In a Hermitian context, it is defined as follows

I PR(|Rn〉) =

�

∑

j,σ=A/B
| 〈 j,σ|Rn〉 |2

�2

∑

j,σ=A/B
| 〈 j,σ|Rn〉 |4

, (53)

where {| j,σ〉} is the (canonic) real space basis of the single-particle Hilbert space, where j
denotes the unit-cell and σ = A/B the sublattice. The inverse participation ratio estimates the
support of the mode |Rn〉 in the basis {| j〉}: It is equal to 1 for a perfectly localized state on a
single site, and 2l for a state fully delocalized on l unit-cells and both sublattices. We use this
definition for the eigenstates of the right entanglement Hamiltonian.

When using the biorthogonal formulation of quantum mechanics, we evaluate observables
by computing

〈O〉RL =



φL
�

�O
�

�φR
�

. (54)

We are therefore interested more in the (bi)localization of the product
�

�φL
�

and
�

�φR
�

, i.e. in
the localization of




n j,σ

�

RL . It is therefore more coherent to study the ratio

I PRRL(|Rn〉) =

�

∑

j,σ=A/B
| 〈Ln| j,σ〉 〈 j,σ|Rn〉 |

�2

∑

j,σ=A/B
| 〈Ln| j,σ〉 〈 j,σ|Rn〉 |2

. (55)

It coincides then with localization of the expectation values



n j

�

=



n j,A

�

+



n j,B

�

of the corre-
sponding many-body wave-function, as defined in Eq. (36).

Finally, when studying the singular value decomposition of the entanglement Hamiltonian
HE = UΛV †, we choose for similar reasons

I PRSV D(|Un〉) =

�

∑

j,σ=A/B
| 〈Vn| j,σ〉 〈 j,σ|Un〉 |

�2

∑

j,σ=A/B
| 〈Vn| j,σ〉 〈 j,σ|Un〉 |2

, (56)

where |Un〉 (|Vn〉) is the nth column of U (V ) respectively.
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