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Voigt points represent propagation directions in anisotropic crystals along which optical modes
degenerate, leading to a single circularly polarized eigenmode. They are a particular class of ex-
ceptional points. Here, we report the fabrication and characterization of a dielectric, anisotropic
optical microcavity based on nonpolar ZnO that implements a non-Hermitian system and mimicks
the behavior of Voigt points in natural crystals. We prove the exceptional-point nature by monitor-
ing the complex-square-root topology of the mode eigenenergies (real and imaginary parts) around
the Voigt points. Polarization state analysis shows, that these artificially engineered Voigt points
behave as vortex cores for the linear polarization and sustain chiral modes. Our findings apply to
any planar microcavity with broken cylindrical symmetry and, thus, pave the way to exploiting
exceptional points in widespread optoelectronic devices as VCSELs and RCLEDs.

The search for topologically non-trivial, photonic sys-
tems [1–5] has raised interest in exceptional points
(EPs), i.e. non-Hermitian degeneracies of complex-valued
eigenenergies that represent topological charges [6–11].
Such branching points have been found in the eigenmodes
of various optical resonators [12–18]. A special kind of
EPs in optical systems is associated with propagation of
circularly polarized light, earlier known as Voigt waves
[19]. One key requirement for such EPs is optical biax-
iality. It can be established by anisotropic materials in
planar microcavities, which are essential building blocks
in optoelectronic technology (e.g. VCSELs).

In anisotropic crystals, optical mode degeneracies are
connected to different types of singularities, depending
on whether the material is transparent or absorptive: In
transparent biaxial media, classic optic axes are diaboli-
cal points in momentum space, known as Dirac or Hamil-
ton points [20]. The mode dispersion displays a conical
intersection that in turn leads to conical refraction [21–
23]. If biaxial materials are absorbing, classic optic axes
split into pairs of singular optic axes [24, 25]. For prop-
agation along them, the eigenspace of optical modes be-
comes one-dimensional, allowing only either right or left
circularly polarized wavefronts to travel without change
of polarization. Only for these directions both, real
(refractive index) and imaginary (extinction coefficient)
part of the propagation constants degenerate simultane-
ously. Thus, singular optic axes are EPs in momentum
space. Analogously to the diabolical Hamilton points, we
term them Voigt points, going back to their discovery by
Woldemar Voigt in 1902 [26, 27]. With circularly polar-
ized eigenmodes, Voigt points are an elegant demonstra-
tion of chirality which is a fingerprint of EPs [16, 28, 29].
We note that the second requirement for the natural oc-

currence of Voigt EPs, besides the optical biaxiality, is
the presence of (polarization-dependent) absorption.

Bulk absorption (or gain) are intrinsic material prop-
erties and hard to modify. To circumvent this limitation
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FIG. 1. (a): Sketch of the planar microcavity and coordi-

nates of the in-plane wave-vector ~k‖ related to the detected
light. The material’s optic axis (~c) is aligned with the y di-
rection. (b): Schematic position of one Voigt point in the

first ~k‖-quadrant (yellow dot), and trajectory for encirclement
(blue-to-red dots, cf. Fig. 4). (c,d): Schematic shape of the
complex-energy surface of the modes near this Voigt point
(yellow sphere), illustrating the complex-square-root topol-
ogy. Blue lines mark trajectories of degenerate energy E1,2

and broadening Γ1,2 which overlap only at Voigt points.
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we consider a conventional planar microcavity and count
on the dissipation caused by photon loss rather than ma-
terial absorption. The design degrees of freedom (e.g.
mirror reflectivities, cavity and mirrors’ central wave-
lengths, etc.) allow a planar microcavity of fully transpar-
ent, anisotropic materials to display Voigt points readily
accessible within the vacuum light cone [15]. In this let-
ter, we report the fabrication and optical characterization
of such a system based on m-plane oriented ZnO. We
have measured Stokes vector spectra in the entire two-
dimensional momentum space (~k‖, Fig. 1 (a)) of the cav-
ity photon modes and determined their complex-energy
dispersion by modeling them with an effective Hamilto-
nian. We prove simultaneously the complex-square-root
topology of the energy surface of the eigenmodes, the
generation of linear-polarization vortices, and the corre-
lation between Voigt points and circular polarization.

THEORETICAL CONSIDERATIONS

Light may interfere constructively in a microcavity if
its wavelength is commensurable with the effective op-
tical thickness of the cavity layer, giving rise to stand-
ing waves (eigenmodes). We first consider a hypothet-
ical anisotropic microcavity without losses. The two
polarization-dependent resonance energies of a cavity
mode are given by the eigenvalues of a real-valued, Her-
mitian 2× 2 Hamiltonian Ĥ0:

Ĥ0 = E01̂ +Aσ̂x +Bσ̂z , (1)

where E0 is the mean mode energy, A expresses polar-
ization mixing due to the anisotropy of the cavity ma-
terial (if kx, ky 6= 0, cf. Fig. 1 (a)) and B reflects the
energetic mode splitting due to different, polarization-
dependent dispersions. 1̂ and σ̂x,z denote the unit matrix
and Pauli spin matrices, respectively. Since the optical
thickness of the cavity depends on the propagation an-
gle, the Hamiltonian and its coefficients are functions of
the in-plane wave-vector ~k‖ = (kx, ky). Parallel to the
material’s optic axis (kx = 0), the modes are purely TE
and TM -polarized (A = 0). For our cavity configuration,
the mode energies become degenerate at ky = ±k0y [15].
These are two diabolical points which occur at opposite
in-plane momenta due to the orthorhombic symmetry of
the microcavity. Near them, a linear expansion gives
A ∝ kx, B ∝ |ky| − |k0y| and E0 ∝ |ky|. Thus, they are
type-II Dirac points [30].

A real microcavity is leaky and the cavity modes cou-
ple to the outside. Using the Mahaux-Weidenmüller
formula [31], this can be described by a 2 × 4 matrix
Ŵ which couples four incoming field components (TE-
and TM - polarization on top and bottom side of the
microcavity) to the two modes. Effectively, the modes
turn into resonances with complex-valued eigenenergies
Ẽ1,2 = E1,2 − iΓ1,2 whose imaginary part describes

the exponential decay of the electromagnetic field of a
mode. The mode energies are the eigenvalues of the
non-Hermitian Hamiltonian Ĥ = Ĥ0 − iŴ Ŵ †. For a
microcavity that is symmetric under reflection along the
z-axis, we can decompose Ŵ = (ŵ ŵ) with a 2×2 matrix
ŵ, where

ŵ =

√
1

2

(√
Γ0 − C 0

0
√

Γ0 + C

)(
u −v∗
v u∗

)
, (2)

with real-valued parameters Γ0, C with Γ0 ≥ |C|, and
u, v ∈ C with |u|2 + |v|2 = 1. Γ0 is mean mode broad-
ening (photon loss) and C indicates the polarization-
dependence of the loss. To lowest order near the mode
degeneracies, Γ0 and C are constant. The transforma-
tion matrix described by u and v allows adjusting the
polarization (see below). Consequently, it holds

Ĥ = Ĥ0 − iΓ01̂ + iCσ̂z . (3)

The eigenvalues are

Ẽ1,2 = E0 − iΓ0 ±
√
A2 + (B + iC)2. (4)

They coincide, Ẽ1 = Ẽ2, when B = 0 and |C| = |A|.
In linear approximation near a diabolical point of Ĥ0,
we find this fulfilled at kx = k0x ∝ ±C, ky = k0y. These

locations are EPs where the Hamiltonian Ĥ has degen-
erate eigenvalues, but cannot be diagonalized. Thus, a
polarization-dependent loss C 6= 0, due to the optical
anisotropy of the microcavity, will cause each diabolical
point to split into a pair of EPs. They are connected by
a curve of coinciding real parts, E1 = E2, characterized
by B = 0 and |A| < |C| (cf. blue line in Fig. 1 (c)). The
pairs of EPs are connected by a curve with coinciding
imaginary part, Γ1 = Γ2, where B = 0 and |A| > |C|
(blue line in Fig. 1 (d)). The characteristic feature of an
EP is the square-root topology of the complex eigenvalue
surface [6, 32]: When varying the wave vector ~k‖ in order
to encircle an EP once, continuously following the first
mode Ẽ1(~k‖) will end up in the second mode Ẽ2 when
the loop returns to its starting point, thus exchanging
the modes.

The link between the effective non-Hermitian Hamilto-
nian (3) and experimentally measured optical spectra is
provided by the Mahaux-Weidenmüller formula [31]. For
a microcavity that is symmetric under reflection along
the z-axis, the reflection Jones matrix is given as

Ĵ(E) = 1̂− 2iŵ†(E1̂− Ĥ)−1ŵ . (5)

In the experiment, we measured the energy-resolved
Stokes vector when unpolarized light was reflected from
the microcavity. From Eq. (5) we can directly compute
the Müller matrix as a function of photon energy E. Its
first column corresponds to the Stokes vector from the ex-
periment. Strictly speaking, the above form of the Jones
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matrix requires a specific choice of the polarization ba-
sis for the incoming light. But we can ignore this in
our case, since we illuminate the microcavity with com-
pletely unpolarized light. The Hamiltonian Eq. (3) de-
pending on the real-valued parameters A,B,C,E0,Γ0 is
the most general way to express a 2 × 2 matrix up to a
unitary basis change. A complementary parametrization
of the coupling matrix ŵ by parameters u and v (Eq. (2))
controls the polarization of the outgoing light. See also
supplemental material (SM) [33].

EXPERIMENTAL APPROACH

We have fabricated an anisotropic ZnO-based pla-
nar microcavity: First, a 16× ZnO/Mg0.29Zn0.71O dis-
tributed Bragg reflector (DBR) and the ZnO cavity layer
have been grown on m-plane oriented ZnO substrate by
molecular-beam epitaxy [34]. The optical thickness of the
cavity layer corresponds to 9/8 of the central wavelength
of the DBR (≈ 400 nm), as previous numerical computa-
tions indicated this detuning well suitable for the obser-
vation of well-separated Voigt points [15, 35]. All ZnO
and Mg0.29Zn0.71O layers arem-plane oriented and reveal
interface roughnesses below 1 nm [34]. The top-DBR was
prepared non-epitaxially by pulsed laser deposition and
consists of 6 pairs Al2O3 and YSZ (Y-stabilized ZrO2),
all layers being optically isotropic [36]. While the top
and bottom DBR are made from different materials, we
have matched their reflectivities. The microcavity can be
regarded as approximately mirror-symmetric along the
vertical axis. All materials are transparent in the energy
range of the cavity photon modes (3 eV).

We applied polarization-resolved reflection experi-
ments depending on the angle of incidence θ (10-75◦

from the surface normal) and sample azimuth angle φ
(0-360◦). Almost 700 configurations (θ, φ) were used
to map the momentum space of the radiative cavity
modes; see Fig. 3. Unpolarized white light from a Xe
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FIG. 2. Representative experimental data (blue dots) and
modeling according to Eq. (5) (solid red lines) of normalized

Stokes vector spectra ~S(E) at ~k‖ ≈ (6.4 µm−1,−6.4µm−1),
not far from a Voigt point. Dashed red lines represent the
baselines. No positive S3/S0 occurs.

lamp was reflected off the sample and the Stokes vector
~S = (S0, S1, S2, S3) obtained [37]. S0 represents unpo-
larized reflectance. S1, S2 and S3 are the intensity I
differences between the light linearly polarized parallel
to x and y, linearly polarized +45◦ and −45◦ versus x,
and right- and left-circularly polarized, respectively. For
each configuration (θ, φ), the four Stokes parameter spec-

tra ~S(E) have been modeled simultaneously in a spectral
range of 100 meV around the cavity modes. See SM [33]
for further details. Measuring the polarization allows us
to discriminate both modes even when they overlap in
the total intensity S0(E). Exemplary spectra are shown
in Fig. 2 and in the SM [33].

RESULTS AND DISCUSSION

The eigenvalues of the fitted Hamiltonian are shown in
Fig. 3 for the entire momentum space (~k‖); their differ-
ences (Fig. 3 (c,f)) reveal the locations where degeneracy
of either the mode energies (∆E = 0) or broadenings
(∆Γ = 0) occurs. Four Voigt points are found at ap-
proximately (±kx,±ky) ≈ (±4 µm−1, ±8 µm−1). These
experimental positions agree with theoretical computa-
tions (see Fig. A12 (m-r) in [33]). Figure 3 is already
hinting at the complex-square-root topology: While E1

and E2 increase continuously with increasing |~k‖| in any
direction, Γ1 and Γ2 are discontinuous along ky. This
is the result of sorting the modes such that E1 ≤ E2:
the modes are exchanged upon degeneracy (E1 = E2).
Resorting the modes to resolve the discontinuity in Γ1,2

would result in a discontinuity for E1,2 along ∆Γ = 0.
To verify the complex-square-root topology of the

mode-energy surface, we encircle the EPs in momentum
space [12, 38, 39]. See Fig. 4; the path and colors refer
to Fig. 1 (b), going clock-wise, starting and finishing at
~k‖ ≈ (0 µm−1, 6µm−1). One roundtrip in momentum
space yields a continuous exchange of the two modes, i.e.
the energetically higher (and spectrally narrower) mode
becomes the energetically lower (and broader) one and
vice versa. Only encircling the Voigt point twice restores
the initial situation. As discussed above, another proof
for the existence of EPs is parameter C being non-zero
while E1 = E2. Indeed, we obtain values on the order of
-3 meV between the Voigt points (see SM [33]).

Once the EP character of the Voigt points has been
proven, we analyze their light polarization. Figure 2
shows that only one circular polarization of the reflected
light is detected in the vicinity of a Voigt point (S3(E))
although the linear polarization is still opposite for the
two modes (S1,2(E)). Opposite linear polarizations are
expected as long as a Voigt point is not exactly met.
Figure 5 depicts the polarization patterns in momen-
tum space. It shows the measured Stokes vector values
at energies corresponding to the real part of the mode
obtained energies (Fig. 3 (a,b)). The ~k‖-dependencies of
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FIG. 3. Complex mode energies Ẽ1,2 = E1,2−iΓ1,2 depending on the in-plane wave-vector ~k‖ from fitting the Hamiltonian. (a,b):
mode energies E1,2, (c): their difference ∆E = |E2−E1|. (d,e): mode broadening Γ1,2, (f): their differences ∆Γ = |Γ2−Γ1|. The
positions of the four Voigt points are marked by black circles. Only here, both ∆E and ∆Γ vanish simultaneously. Modes are
sorted such that E1 ≤ E2. For comparison, theoretical expectations from numerical computations are shown in Fig. A12 (o,r)
in the SM [33].

S1/S0 and S2/S0 display vortices for the linear polariza-
tion: When encircling a pair of Voigt points, the linear
polarization changes to the opposite and back. Hence,
the pair is a vortex center with winding number 1. As
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FIG. 4. Clockwise encircling of a Voigt point in ~k‖ space
along the trajectory shown in Fig. 1 (b) with the same color
code. (a): mode energies degenerate near the fourth point;
(b): mode broadenings degenerate near the twelfth. Encir-
cling once flips one mode to the other, encircling twice yields
the initial situation (complex-square-root topology). For bet-
ter visibility, the mean values are subtracted in (c,d). See
further trajectories in the SM [33].

expected, S1/S0 is discontinuous along ky when ∆E = 0
[15]. The experimentally determined degree of circu-
lar polarization (S3/S0), however, hardly exceeds 10%.
Slightly higher degrees of circular polarization have been
observed from the same sample in photoluminescence and
transmission experiments [33, 35], which might be related

to the discrete ~k‖ scan. In principal, a non-symmetric
matrix operator could result in EPs representing elliptic
polarization [40]. That could be caused e.g. by the sub-
strate of the sample. However, numerical computations
with proper account of the substrate show that even in
this case circularly polarized EPs can be expected (see
SM [33]). The lack of high degrees of circular polariza-
tion in the experiment seems to be a common problem for
polarization-resolved experimental studies in chiral pho-
tonic structures [41] and reflects the high sensitivity of
EPs to perturbations in general [42, 43]. Nonetheless, it
is clear from the experimental data that the vicinity of a
Voigt point is related to circular polarization.

CONCLUSION

In summary, we have implemented a non-Hermitian
model system mimicking a biaxial and absorbing crystal
by fabricating an entirely dielectric, planar microcavity
with an anisotropic cavity layer (m-plane oriented ZnO).
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Fitting an effective Hamiltonian to our polarization-
resolved reflectance data allowed us to obtain the op-
tical mode energies and their degeneracies in the two-
dimensional momentum space. We have proven the exis-
tence of exceptional points by analyzing the complex-
square-root topology of the eigenenergy surface. The
measured polarization reveals the circularity of these ex-
ceptional points and their role as vortex centers for the
linear polarization. We suggest the usage of the term
Voigt points for this special kind of exceptional points.

The advantages of our anisotropic microcavity are that
i) reliable tracking of the modes upon their exchange is
possible thanks to the polarized light spectra, ii) investi-
gating the microcavity under different angular constella-
tions easily allows scanning the relevant parameter space
for investigation of the Voigt exceptional points. Finally,
it should be noted that our findings apply to any pla-
nar microcavity with broken cylindrical symmetry and,
thus, pave the way to exploiting exceptional points in
widespread optoelectronic devices based on planar mi-
crocavities as VCSELs and RCLEDs.
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Nature 525, 354 (2015).

[9] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and
F. Nori, Phys. Rev. Lett. 118, 040401 (2017).

[10] T. Goldzak, A. A. Mailybaev, and N. Moiseyev, Phys.
Rev. Lett. 120, 013901 (2018).
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