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. In addition to considering plastic flow and hardening only due to SSDs (statistically stored dislocations) as in the classic EVPFFT framework, the proposed method accounts for the evolution of GND (geometrically necessary dislocations) densities solving a hyperbolic-type partial differential equation, and GND effects on both plastic flow and hardening. This allows consideration of an enhanced strain-hardening law that

Introduction

The response of polycrystalline metals to mechanical loading is notably dependent on grain size, which is in turn dictated by thermo-mechanical processing [START_REF] Hall | The deformation and ageing of mild steels[END_REF][START_REF] Petch | The cleavage strength of polycryystals[END_REF][START_REF] Armstrong | The plastic deformation of polycrystalline aggregates[END_REF][START_REF] Meyers | Grain size strengthening (chapter 14)[END_REF][START_REF] Hansen | Polycrystalline strengthening[END_REF][START_REF] Hansen | Hall-Petch relation and boundary strengthening[END_REF].

The microstructure of metallic polycrystals induces additional hardening compared with single crystals due to the presence of grain boundaries [START_REF] Hirth | The influence of grain boundaries on mechanical properties[END_REF][START_REF] Thompson | The dependence of polycrystal work hardening on grain size[END_REF][START_REF] Mecking | Low-temperature deformation of polycrystals[END_REF]. In polycrystals, different effects need to be considered in a crystal plasticity formulation to predict the polycrystal's behavior [START_REF] Hirth | The influence of grain boundaries on mechanical properties[END_REF][START_REF] Berveiller | Contribution à l'étude du comportement plastique des textures de déformation des polycristaux métalliques[END_REF]. First of all, plastic incompatibilities inducing long range internal stresses (at the scale of the mean grain diameter) as well as inter-granular accommodation due to multiple slip in grains with different crystallographic orientations should be considered. Such effects can be accounted for using mean-field approaches like the elasto-plastic (EPSC) [START_REF] Kröner | Zur plastischen Verformung des Vielkristalls[END_REF][START_REF] Budiansky | Theoretical prediction of plastic strains of polycrystals[END_REF][START_REF] Hill | Continuum micromechanics of elastoplastic polycrystals[END_REF][START_REF] Berveiller | An extension of the self-consistent scheme to plastically-flowing polycrystals[END_REF][START_REF] Masson | An affine formulation for the prediction of the effective properties of non linear composites and poly-crystals[END_REF], visco-plastic (VPSC) [START_REF] Molinari | A self-consistent approach of the large deformation polycrystal viscoplasticity[END_REF][START_REF] Lebensohn | A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals[END_REF] or elasto-viscoplastic (EVPSC) [START_REF] Sabar | A new class of micro-macro models for elastic-viscoplastic heterogeneous materials[END_REF][START_REF] Mercier | Homogenization of elasticviscoplastic heterogeneous materials: self-consistent and Mori-Tanaka schemes[END_REF][START_REF] Wang | A finite strain elasticviscoplastic self-consistent model for polycrystalline materials[END_REF][START_REF] Mareau | An affine formulation for the self-consistent modeling of elasto-viscoplastic heterogeneous materials based on the translated field method[END_REF] self-consistent schemes. However, consideration of the effect of grain size is difficult in the context of such approaches. Different refined micromechanical mean field models have been proposed to extend such self-consistent schemes, by considering intra-granular back-stresses with associated internal length scales related to dislocation loops or slip bands constrained at grain boundaries [START_REF] Berbenni | Intra-granular plastic slip heterogeneities: Discrete vs. Mean Field approaches[END_REF][START_REF] Richeton | Grain-size dependent accommodation due to intragranular distribution of dislocation loops[END_REF][START_REF] Collard | Role of discrete intragranular slip bands on the strain-hardening of polycrystals[END_REF] or due to GND densities [START_REF] Ashby | Deformation of plastically non-homogeneous materials[END_REF], see e.g. [START_REF] Pipard | A new mean field micromechanical approach to capture grain size effects[END_REF] and [START_REF] Taupin | On particle size effects: An internal length mean field approach using field dislocation mechanics[END_REF]. Moreover, the effect of neighboring grains, grain and grain boundary shapes and the presence of triple junctions, all inducing non uniform intra-granular mechanical fields also need to be accounted for. This can be achieved using full field CP-FEM [START_REF] Mika | Effects of grain interaction on deformation in polycrystals[END_REF][START_REF] Delaire | Plastic heterogeneities of a copper multicrystal deformed in uniaxial tension: experimental study and finite element simulations[END_REF]Barbe et al., 2001b,a) or EVPFFT [START_REF] Lebensohn | An elasto-viscoplastic formulation based on Fast Fourier Transforms for the prediction of micromechanical fields in polycrystalline materials[END_REF][START_REF] Suquet | Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep[END_REF]. However, such formulations are based on conventional continuum crystal plasticity. Therefore, even though these methods are able to consider plastic anisotropy owing to the grain's crystallographic orientations and shapes, they do not account for internal length scale effects or non local effects due to slip gradients and dislocation pileups at grain boundaries. As a consequence, their main shortcoming is that the predicted microscopic and macroscopic field responses are grain size independent.

A simple way of introducing size effects is to consider an explicit grain size dependence in the constitutive equation at the level of grains or slip systems [START_REF] Weng | A micromechanical theory of grain size dependence in metal plasticity[END_REF].

This method revealed to be efficient for considering grain size distribution effects on the macroscopic flow stress of polycrystals [START_REF] Berbenni | Impact of the grain size distribution on the yield stress of heterogeneous materials[END_REF][START_REF] Lavergne | Effects of grain size distribution on the stress heterogeneity on yield stress of polycrystals[END_REF] but the size effect does not come from deformation gradients that exist at more local scale reflecting the inhomogeneous nature of slip in the presence of grain boundaries. These intra-granular spatial gradients of lattice orientation, e.g. lattice curvatures, can be measured with Electron Back-Scatterred Diffraction (EBSD) [START_REF] Randle | The deformation behaviour of grain boundary regions in polycrystalline aluminium[END_REF][START_REF] Scheriau | Influence of grain size on orientation changes during plastic deformation[END_REF][START_REF] Beausir | Spatial correlation in grain misorientation distribution[END_REF][START_REF] Perrin | Role of discrete intragranular slip on lattice rotations in polycrystalline Ni: Experimental and micromechanical studies[END_REF]. Using the relationship between lattice curvature and the GND density tensor (also called Nye tensor) given by [START_REF] Nye | Some geometrical relations in dislocated crystals[END_REF] and later by [START_REF] Kröner | Kontinuumstheorie der Versetzungen und Eigenspannungen[END_REF] or [START_REF] Kröner | Continuum theory of defects[END_REF], GND densities in polycrystalline metals are nowadays commonly measured using white beam micro-diffraction [START_REF] Barabash | Gradients of geometrically necessary dislocations from white beam microdiffraction[END_REF] or using scanning electron microscopy equipped with two-or three-dimensional EBSD set up [START_REF] Pantleon | Resolving the geometrically necessary dislocation content by conventional electron backscattering diffraction[END_REF][START_REF] Calcagnotto | Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[END_REF][START_REF] Allain-Bonasso | A study of the heterogeneity of plastic deformation in IF steel by EBSD[END_REF][START_REF] Konijnenberg | Assessment of geometrically necessary dislocation levels derived by 3D EBSD[END_REF][START_REF] Jiang | Evolution of intragranular stresses and dislocation densities during cyclic deformation of polycrystalline copper[END_REF][START_REF] Wallis | Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction[END_REF].

Alternatively, Discrete Dislocation Dynamics (DDD) methods first developed by [START_REF] Kubin | Dislocation microstructure and plastic flow : a 3-d simulation[END_REF] and later by [START_REF] Van Der Giessen | Discrete dislocation plasticity: A simple planar approach[END_REF], [START_REF] Verdier | Mesoscopic scale simulation of dislocation dynamics in FCC metals: Principles and applications[END_REF], [START_REF] Schwarz | Simulation of dislocations on the mesoscopic scale I. Methods and examples[END_REF] among others, are able to naturally account for internal length and grain size effects considering discrete distributions of dislocation sources, dislocation mobility, Peach-Koehler force [START_REF] Peach | The forces exerted on dislocations and the stress fields produced by them[END_REF] on dislocation line or segments and impenetrable grain or phase boundaries. For example, DDD was used to study plasticity size effects on internal stresses in thin films [START_REF] Espinosa | An interpretation of size scale plasticity in geometrically confined systems[END_REF][START_REF] Espinosa | Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding FCC thin films[END_REF], micro-specimens [START_REF] Kiener | Cyclic response of copper single crystal micro-beams[END_REF], grain size effects on the strengthening of polycrystals and Hall-Petch relationship [START_REF] Biner | A two-dimensional discrete dislocation simulation of the effect of grain size on strengthening behaviour[END_REF][START_REF] Lefebvre | Yield stress strengthening in ultrafinegrained metals: A two-dimensional simulation of dislocation dynamics[END_REF][START_REF] Balint | Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals[END_REF][START_REF] Jiang | Effects of the grain size and shape on the flow stress: A dislocation dynamics study[END_REF] and Bauschinger effect [START_REF] Nicola | Plastic deformation of freestanding thin films: experiments and modeling[END_REF][START_REF] Guruprasad | A discrete dislocation analysis of the Bauschinger effect in microcrystals[END_REF][START_REF] Balint | Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals[END_REF][START_REF] Jiang | Effects of the grain size and shape on the flow stress: A dislocation dynamics study[END_REF][START_REF] Waheed | A unifying scaling for the Bauschinger effect in highly confined thin films: a discrete dislocation plasticity study[END_REF].

On the other hand, strain gradient plasticity continuum theories [START_REF] Fleck | A phenomenological theory of strain gradient plasticity[END_REF][START_REF] Smyshlyaev | The role of strain gradients in the grain size effect for polycrystals[END_REF][START_REF] Fleck | Reformulation of strain gradient plasticity[END_REF][START_REF] Niordson | Non-uniform plastic deformation of micron scale objects[END_REF][START_REF] Gudmundson | A unified treatment of strain gradient plasticity[END_REF][START_REF] Zeghadi | Cosserat continuum modelling of grain size effects in metal polycrystals[END_REF][START_REF] Gurtin | Thermodynamics applied to gradient theories involv-ing accumulated plastic strain: The theories of Aifantis and Fleck and Hutchinson and their generalization[END_REF][START_REF] Niordson | Strain gradient effects on cyclic plasticity[END_REF][START_REF] Fleck | A mathematical basis for strain-gradient plasticity theory-Part I: scalar plastic multiplier[END_REF][START_REF] Fleck | Guidelines for constructing strain gradient plasticity theories[END_REF][START_REF] El-Naaman | An investigation of back stress formulations under cyclic loading[END_REF] are also able to predict size dependent responses of polycrystals like Hall-Petch behavior and reversible plasticity effects due to GNDs. These theories integrate the Nye tensor characterizing the plastic deformation incompatibility and strain gradient effects in continuum crystal plasticity simulations. Strain gradient plasticity theories were also coupled with crystal plasticity framework with both SSDs and GNDs (Arsenlis andParks, 1999, 2002;[START_REF] Acharya | Lattice incompatibility and a gradient theory of crystal plasticity[END_REF][START_REF] Acharya | Grain size effect in viscoplastic polycristals at moderate strains[END_REF][START_REF] Evers | Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation[END_REF][START_REF] Evers | Non-local crystal plasticity model with intrinsic SSD and GND effects[END_REF][START_REF] Gurtin | Gradient single-crystal plasticity with free energy dependent on dislocation densities[END_REF][START_REF] Han | Mechanism-based strain gradient crystal plasticity-i. theory[END_REF][START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF][START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF][START_REF] Niordson | Computational strain gradient crystal plasticity[END_REF][START_REF] Wulfinghoff | Strain gradient plasticity modeling of cyclic behavior of laminate structures[END_REF].

In between these two formulations (DDD and continuum phenomenological strain gradient plasticity), another continuum approach, called phenomenological Mesoscopic Field Dislocation Mechanics (here abbreviated MFDM throughout the paper) has been proposed as an efficient method to model size-dependent plasticity at the mesoscopic scale (Acharya and Roy, 2006;Acharya et al., 2006;[START_REF] Roy | Size effects and idealized dislocation microstructure at small scales : Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics : Part II[END_REF][START_REF] Roy | Phenomenological mesoscopic field dislocation mechanics, lower-order gradient plasticity, and transport of mean excess dislocation density[END_REF]. This theory combines continuum dislocation mechanics theory and strain gradient crystal plasticity integrating the mobilities of both GNDs and SSDs [START_REF] Acharya | A model of crystal plasticity based on the theory of continuously distributed dislocations[END_REF][START_REF] Acharya | Driving forces and boundary conditions in continuum dislocation mechanics[END_REF][START_REF] Roy | Finite element approximation of field dislocation mechanics[END_REF]Acharya and Roy, 2006;[START_REF] Acharya | Microcanonical entropy and mesoscale dislocation mechanics and plasticity[END_REF]. In this mesoscale theory, the constitutive equations for strain-hardening models, slip rule for SSD and velocity of GND need to be specified phenomenologically. MFDM requires numerically solving the GND density transport equation together with stress balance field equation, which allows predicting the collective arrangement of GNDs and associated long range stresses. This was done with finite elements in Roy andAcharya (2005, 2006) and in [START_REF] Varadhan | Dislocation transport using Galerkin/least squares formulation[END_REF]. Different size effects for single crystalline materials and multicrystalline thin films have been predicted with the MFDM theory as reported in [START_REF] Roy | Size effects and idealized dislocation microstructure at small scales : Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics : Part II[END_REF], [START_REF] Puri | Modeling dislocation sources and size effects at initial yield in continuum plasticity[END_REF] and [START_REF] Puri | Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics[END_REF]. Grain size distribution and crystallographic orientation effects in multicrystalline thin films were discussed in [START_REF] Puri | Plastic deformation of multicrystalline thin films: Grain size distribution vs. grain orientation[END_REF]. The role of GND density transport in ice single-or multi-crystals was studied in [START_REF] Taupin | Effects of size on the dynamics of dislocations in ice single crystals[END_REF] and [START_REF] Richeton | Modelling the transport of geometrically necessary dislocations on slip systems: application to single and multi-crystals of ice[END_REF]. [START_REF] Varadhan | Lattice incompatibility and strain-aging in single crystals[END_REF] and [START_REF] Gupta | Strain rate jump induced negative strain rate sensitivity (nsrs) in aluminium alloy 2024: Experiments and constitutive modeling[END_REF] coupled the MFDM equations with a dynamic strain aging model in order to predict the strain-aging behaviors of single crystalline and polycrystalline Al alloys. More recently, dislocation pattern formation and associated size effects was investigated by [START_REF] Arora | Dislocation pattern formation in finite deformation crystal plasticity[END_REF] using finite deformation MFDM. However, all these contributions reported simulations on polycrystals with a small number of grains due to limiting CPU and memory requirements, needed to solve MFDM equations with the finite element method.

FFT-based methods were initially developed and further applied to composite materials (Moulinec andSuquet, 1994, 1998;[START_REF] Eyre | A fast numerical scheme for computing the response of composite using grid refinement[END_REF][START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF], in which the heterogeneity is given by the spatial distribution of phases with different mechanical properties, and later adapted to polycrystals [START_REF] Lebensohn | N-site modeling of a 3D viscoplatic polycrystal using Fast Fourier Transform[END_REF], where the heterogeneity is related to the spatial distribution of anisotropic crystals with different orientations. This original CP-FFT implementation showed the feasibility of efficiently solving the micromechanical behavior of complex polycrystalline unit cells. Subsequent numerical implementations of the FFT-based method for polycrystals have been developed, for different constitutive descriptions of the behavior of each single crystal material point. The different constitutive regimes solved with FFT-based methods include: linear elasticity [START_REF] Lebensohn | N-site modeling of a 3D viscoplatic polycrystal using Fast Fourier Transform[END_REF][START_REF] Brenner | Elastic anisotropy and yield surface estimates of polycrystals[END_REF]; linear viscosity [START_REF] Lebensohn | Study of the antiplane deformation of linear 2-D polycrystals with different microstructures[END_REF]; linear elasticity with eigenstrains or thermoelasticity [START_REF] Vinogradov | An accelerated FFT algorithm for thermoelastic and non-linear composites[END_REF][START_REF] Anglin | Validation of a numerical method based on fast Fourier transforms for heterogeneous thermoelastic materials by comparison with analytical solutions[END_REF][START_REF] Donegan | Simulation of residual stress and elastic energy density in thermal barrier coatings using fast Fourier transforms[END_REF][START_REF] Eloh | Development of a new consistent discrete Green operator for FFT-based methods to solve heterogeneous problems with eigenstrains[END_REF]; rigid-viscoplasticity [START_REF] Lebensohn | N-site modeling of a 3D viscoplatic polycrystal using Fast Fourier Transform[END_REF][START_REF] Lebensohn | Orientation imagebased micromechanical modelling of subgrain texture evolution in polycrystalline copper[END_REF][START_REF] Lebensohn | Modeling viscoplastic behavior and heterogeneous intracrystalline deformation of columnar ice polycrystals[END_REF][START_REF] Lee | Modeling the viscoplastic micromechanical response of two-phase materials using Fast Fourier Transforms[END_REF][START_REF] Rollett | Stress hot spots in viscoplastic deformation of polycrystals[END_REF]; small-strain crystal plasticity elasto-viscoplasticity, i.e. CP-EVPFFT [START_REF] Lebensohn | An elasto-viscoplastic formulation based on Fast Fourier Transforms for the prediction of micromechanical fields in polycrystalline materials[END_REF][START_REF] Grennerat | Experimental characterization of the intragranular strain field in columnar ice during transient creep[END_REF][START_REF] Suquet | Multi-scale modeling of the mechanical behavior of polycrystalline ice under transient creep[END_REF]; large-strain elasto-viscoplasticity [START_REF] Eisenlohr | A spectral method solution to crystal elasto-viscoplasticity at finite strains[END_REF][START_REF] Shanthraj | Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials[END_REF][START_REF] Kabel | Mixed boundary conditions for FFTbased homogenization at finite strains[END_REF][START_REF] Vidyasagar | Deformation patterning in finite-strain crystal plasticity by spectral homogenization with application to magnesium[END_REF][START_REF] Lucarini | On the accuracy of spectral solvers for micromechanics based fatigue modeling[END_REF]; dilatational plasticity [START_REF] Lebensohn | Dilatational viscoplasticity of polycrystalline solids with intergranular cavities[END_REF][START_REF] Lebensohn | Modeling void growth in polycrystalline materials[END_REF]; lower-order [START_REF] Haouala | Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization[END_REF] and higher-order [START_REF] Lebensohn | Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms[END_REF] straingradient crystal plasticity; curvature-driven plasticity [START_REF] Upadhyay | A higher order elasto-viscoplastic model using fast fourier transforms: Effects of lattice curvatures on mechanical response of nanocrystalline metals[END_REF]; transformation plasticity [START_REF] Richards | Interplay of martensitic phase transformation and plastic slip in polycrystals[END_REF][START_REF] Otsuka | FFT-based modelling of transformation plasticity in polycrystalline materials during diffusive phase transformation[END_REF]; twinning [START_REF] Mareau | Micromechanical modelling of twinning in polycrystalline materials: Application to magnesium[END_REF][START_REF] Paramatmuni | A crystal plasticity FFT based study of deformation twinning, anisotropy and micromechanics in HCP materials: Application to AZ31 alloy[END_REF], fatigue [START_REF] Rovinelli | Assessing reliability of fatigue indicator parameters for small crack growth via a probabilistic framework[END_REF][START_REF] Rovinelli | Predicting the 3-D fatigue crack growth rate of short cracks using multimodal data via Bayesian network: in-situ experiments and crystal plasticity simulations[END_REF][START_REF] Lucarini | On the accuracy of spectral solvers for micromechanics based fatigue modeling[END_REF]; and quasi-brittle damage [START_REF] Li | A damage model for crack prediction in brittle and quasi-brittle materials solved by the FFT method[END_REF][START_REF] Sharma | FFT-based interface decohesion modelling by a nonlocal interphase[END_REF]. FFT-based methods were also applied to field dislocation mechanics (FDM) and field disclination mechanics [START_REF] Brenner | Numerical implementation of static Field Dislocation Mechanics theory for periodic media[END_REF][START_REF] Berbenni | A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics[END_REF][START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF][START_REF] Berbenni | A fast Fourier transform-based approach for generalized disclination mechanics within a couple stress theory. Generalized Continua as Models for Classical and Advanced Materials[END_REF][START_REF] Djaka | Field disloca-tion mechanics for heterogeneous elastic materials: A numerical spectral approach[END_REF][START_REF] Berbenni | Fast Fourier Transform-based micromechanics of interfacial line defects in crystalline materials[END_REF], and discrete dislocation dynamics (DDD) problems [START_REF] Bertin | A FFT-based formulation for efficient mechanical fields computation in isotropic and anisotropic periodic discrete dislocation dynamics[END_REF][START_REF] Graham | Fast fourier transform discrete dislocation dynamics[END_REF][START_REF] Bertin | A FFT-based formulation for discrete dislocation dynamics in heterogeneous media[END_REF], providing the efficiency needed for the implementation of these powerful and numerically-demanding formulations.

In the case of polycrystalline materials, MFDM numerical implementation may take advantage of FFT-based methods, which were already proven to be numerically efficient for elasto-static FDM [START_REF] Berbenni | A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics[END_REF][START_REF] Brenner | Numerical implementation of static Field Dislocation Mechanics theory for periodic media[END_REF][START_REF] Djaka | Field disloca-tion mechanics for heterogeneous elastic materials: A numerical spectral approach[END_REF] and for the resolution of the dislocation density transport equation at constant applied GND velocity [START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF] or together with stress equilibrium for two-phase laminate structures [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF]. Therefore, the objective of this paper is to develop an EVPFFT-based method for MFDM (named MFDM-EVPFFT throughout the paper) for describing grain size effects on flow stress of polycrystals at small strains due to both GNDs and SSDs and local GND dislocation density evolution in the course of monotonic and reversible plastic deformation. Specifically, we use MFDM-EVPFFT to study grain size effects on local mechanical fields of FCC polycrystalline aggregates and the role of GND densities and mobilities during a Bauschinger test. We aim at showing the effect of GND density pile ups as predicted by MFDM-EVPFFT on stress heterogeneity during reversible loading.

Starting from the EVPFFT formulation developed by [START_REF] Lebensohn | An elasto-viscoplastic formulation based on Fast Fourier Transforms for the prediction of micromechanical fields in polycrystalline materials[END_REF], here designated as conventional CP-EVPFFT, MFDM-EVPFFT is based on a modified expression of the Jacobian for the augmented Lagrangian scheme, a spectral resolution of the dislocation density transport equation required by the MFDM theory and a hardening law accounting for GND density. A method based on finite differences and discrete Fourier transforms to treat both lattice incompatibility and integral Lippmann-Schwinger equations is used. The present work extends the preliminary study of [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF] for laminate microstructures to polycrystalline microstructures and investigates how grain size affects intra-granular micromechanical fields like plastic strain, equivalent Von Mises stress and GND density. With that purpose, the effect of average grain size of idealized polycrystals with 27 and 100 grains and random orientations is studied. The tensile and tension-compression-tension (cyclic) responses of these polycrystals are simulated with the MFDM-EVPFFT model and are compared with CP-EVPFFT. The material parameters are the same as the ones used in [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF] for Al-based laminate microstructures. No special interface conditions at grain boundaries are considered here, although such physically motivated interface conditions can be included in the MFDM theory [START_REF] Acharya | Jump condition for gnd evolution as a constraint on slip transmission at grain boundaries[END_REF][START_REF] Puri | Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics[END_REF].

The paper is organized as follows: in section 2, the MFDM constitutive equations are summarized and the MFDM-EVPFFT formulation is presented. Section 3 presents an application of MFDM-EVPFFT to polycrystalline aggregates with different grain sizes and reversible (cyclic) plasticity to study the grain size dependence of the Bauschinger effect.

2 Theory and numerical spectral implementation

Notation

A bold symbol denotes a tensor or a vector. The symmetric part of tensor A is denoted A sym . Its skew-symmetric part is A skew . The tensor A • B, with rectangular Cartesian components A ik B kj , results from the dot product of tensors A and B, and A ⊗ B is their tensorial product, with components A ij B kl . The vector A • V, with rectangular Cartesian components A ij V j , results from the dot product of tensor A and vector V. The symbol " : " represents the trace inner product of the two second order tensors A : B = A ij B ij , in rectangular Cartesian components, or the product of a higher rank with a second rank tensor, e.g., A : B = A ijkl B kl . The cross product of a second rank tensor A and a vector V, the div and curl operations for second rank tensors are defined row by row, in analogy with the vectorial case. For any base vector e i of the reference frame:

(A × V) t • e i = (A t • e i ) × V (1) (div A) t • e i = div(A t • e i ) (2) (curl A) t • e i = curl(A t • e i ) (3) 
In rectangular Cartesian components:

(A × V) ij = e jkl A ik V l (4) (divA) i = A ij,j (5) (curl A) ij = e jkl A il,k = -(grad A : X) ij (6)
where e jkl is a component of the third rank alternating Levi-Civita tensor X and the spatial derivative with respect to a Cartesian coordinate is indicated by a comma followed by the component index. The notation A(ξ) will be used for the Fourier transform of A(x). Other notations will be specified in the text.

Constitutive equations of the reduced MFDM theory

To obtain the displacement u, the strain ε and the stress σ fields using fast Fourier transform-based micromechanics, a small deformation setting is considered for elastoviscoplastic materials with periodic microstructure. The field equations are solved at any point x of a unit cell V with periodic boundary conditions:

div σ = 0 σ = C : ε e U = grad u = U e + U p u-< ε > •x periodic, σ • n anti-periodic (7) 
where < • > denotes a volume average over V , ε e = (U e ) sym and C is the fourth order elastic stiffness tensor with classic minor and major symmetries, which is known at each point x of V . Generally, macroscopic strain < ε >= E or stress < σ >= Σ (or mixed ones) are prescribed.

In the presence of dislocation ensembles both the average plastic distortion U p , which results from dislocation motion, and the average elastic (or lattice) distortion U e are incompatible fields. In non local crystal plasticity and depending on the resolution scale, dislocation ensembles can be categorized as GNDs [START_REF] Ashby | Deformation of plastically non-homogeneous materials[END_REF] and SSDs. The mesoscale FDM theory is based on an average value of the Nye tensor α describing GND density, which is here considered as a periodic field. Here, a simplified version of the MFDM is considered (Acharya and Roy, 2006;[START_REF] Roy | Phenomenological mesoscopic field dislocation mechanics, lower-order gradient plasticity, and transport of mean excess dislocation density[END_REF], such that the average plastic distortion rate writes:

Up = α × v + L p (8)
The mobility of SSDs is represented by the mesoscale plastic distortion rate denoted L p where the averaging procedure was defined in Acharya and Roy (2006). The space-time evolution of the average dislocation density tensor α is prescribed as:

α = -curl Up (9)
Constitutive specifications on the dislocation velocity v and on the slip distortion rate L p are obtained from thermodynamic considerations, see Acharya and Roy (2006) for details. Furthermore, plastic flow incompressibility is considered, i.e. L p ii = 0 and e ikl α ik v l = 0. The GND velocity v is prescribed as follows:

v = g |g| v with v ≥ 0 ( 10 
)
where g is the glide force parallel to v and v is the magnitude of v. The constitutive equation adopted for v is based on Orowan law for GND mobile dislocations:

v = η 2 b N µ τ c 2 N s=1 | γs | ( 11 
)
where N is the total number of slip systems (N = 12 for FCC metals), γs is the slip rate on slip system s, η is a material constant close to 1/3 [START_REF] Ashby | Deformation of plastically non-homogeneous materials[END_REF], b is the magnitude of the Burgers vector, τ c is the resolved shear strength and µ is the isotropic elastic shear modulus of the material. Furthermore, g writes in component form (see details in Acharya and Roy (2006) and in Djaka et al. ( 2019)):

g r = e ikr α jk s ij -e ikr α ik s mn α np (α mp -α pm ) α ij (α ij -α ji ) , (12) 
where

s ij = σ ij - 1 3 σ kk δ ij denotes the deviatoric stress tensor.
Plastic distortion rate tensor L p due to slip from SSDs is defined as:

L p = N s=1 γs b s ⊗ n s = N s=1 γs m s , (13) 
where m s is the non-symmetric Schmid tensor defined as m s = b s ⊗ n s . For each slip system s, the unit vector b s denotes the slip direction and n s the slip plane unit normal. The constitutive equation for γs introduced in eqs. 11 and 13 is given by a classic power law:

γs = γ0 |τ s | τ c 1/m sgn(τ s ) ( 14 
)
where m is the strain rate sensitivity of the material, τ s = m s : σ is the resolved shear stress, γ0 is a reference slip rate and τ c is considered identical for all slip systems. The cumulated slip rate on all slip systems is given by:

Γ = |α × v| + N s=1 | γs | (15)
where |α × v| is the Euclidian norm of α × v.

The evolution law for the shear strength τ c follows the same hypotheses as the strain-hardening models developed by Acharya and Roy (2006), [START_REF] Puri | Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics[END_REF] and [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF]:

τc = θ 0 τ s -τ c τ s -τ 0 Γ + k 0 η 2 µ 2 b 2 (τ c -τ 0 ) N s=1 |α • n s | | γs | + N s=1 |α • n s | |α × v| (16)
where τ 0 is the yield strength due to lattice friction (which is low for FCC metals), τ s is the saturation stress, θ 0 is the stage II hardening rate for FCC metals, k 0 is related to a geometric mean free path due to GND forest on slip system s. In eq.

16, |α • n s | is the L 2 norm of α • n s .
For the space-time evolution of the dislocation density tensor (see eq. 9), an explicit forward Euler scheme was implemented to numerically solve this equation using a

Taylor expansion at first order of α t+ t ij where t is the time step, see [START_REF] Varadhan | Dislocation transport using Galerkin/least squares formulation[END_REF] and [START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF] for details.

MFDM-EVPFFT numerical implementation

An elasto-viscoplastic crystal plasticity formulation is adopted in a small deformation setting. Using a backward Euler implicit time discretization and the generalized Hooke's law, the expression of the stress tensor σ at t + t is given by:

σ t+ t = C : ε e,t+ t = C : ε t+ t -ε p,t -εp,t+ t (σ t+ t ) t , (17) 
In what follows, the supra-indices t + t are omitted for sake of simplicity, and only the fields corresponding to the previous time step t will be explicitly indicated.

The unknown total strain field ε is solved through an integral Lippmann-Schwinger equation:

ε(x) = ε - V Γ 0 (x -x ) : τ (x )dV (18)
where ε represents the average value of ε in V, Γ 0 is the Green operator associated with the homogeneous elastic moduli C 0 and τ = σ-C 0 : ε is the stress polarization field. In the following, eq. 18 is solved using the FFT-based augmented Lagrangian scheme introduced by [START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF]. As in [START_REF] Lebensohn | Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms[END_REF], the homogeneous elastic moduli tensor is taken as the Voigt average of C(x) over the unit cell V such that C 0 = C .

In Fourier space, ξ is the Fourier vector of magnitude ξ = √ ξ • ξ and components ξ i . The imaginary unit is i = √ -1. Let ε(ξ) and Γ 0 (ξ) be, respectively, the Fourier transform of ε(x) and Γ 0 (x). The Fourier transform of the integral Lippmann-Schwinger equation (eq. 18) yields:

ε(ξ) = -Γ 0 (ξ) : τ (ξ) ∀ξ = 0 ε(0) = ε (19)
The calculation of the components of the Green operator in Fourier space Γ 0 ijkl as part of the solution of the Lippmann-Schwinger equation is performed using a centered finite difference scheme on a rotated grid introduced by [START_REF] Willot | Fourier-based schemes for computing the mechanical response of composites with accurate local fields[END_REF], see also [START_REF] Djaka | Field disloca-tion mechanics for heterogeneous elastic materials: A numerical spectral approach[END_REF][START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF].

Let us assume now that λ

(n)
ij and e

(n) ij are, respectively, the auxiliary guess stress and strain fields at iteration (n). The stress polarization tensor becomes: τ

(n) ij = λ (n) ij -C 0 ijkl e (n)
kl . An alternative fixed-point expression, which requires computing the Fourier transform of the stress field instead of that of the polarization field was reported in [START_REF] Michel | A computational scheme for linear and non-linear composites with arbitrary phase contrast[END_REF]:

e (n+1) ij (ξ) = e (n) ij (ξ) -Γ 0 ijkl (ξ) λ (n) kl (ξ) ∀ξ = 0 e (n+1) ij (0) = ε (n) ij (20) Once e (n+1) ij = FFT -1 ( e (n+1) ij (ξ)
) is obtained in the real space by using the inverse Fourier transform (FFT -1 ), the nullification of the residual R, which depends on the stress and strain tensors σ (n+1) and ε (n+1) , is solved: is given by:

R ij (σ (n+1) ) = σ (n+1) ij + C 0 ijmn ε (n+1) mn (σ (n+1) ) -λ (n) ij -C 0 ijmn e (n+1)
σ (n+1,p+1) ij = σ (n+1,p) ij - ∂R ij ∂σ mn σ (n+1,p) -1 R mn σ (n+1,p) (22) 
Using the constitutive specifications, the Jacobian in the above expression reads:

∂R ij ∂σ mn σ (n+1,p) = δ im δ jn + C 0 ijkl C -1 klmn + t C 0 ijkl ∂ εp kl ∂σ mn σ (n+1,p) (23) 
The expression of ∂ εp kl /∂σ mn considering the constitutive equations of the MFDM theory yields [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF]:

∂ εp kl ∂σ mn σ (n+1,p) = 1 2 ∂L p kl ∂σ mn + ∂L p lk ∂σ mn σ (n+1,p) + 1 2 ∂ (α × v) kl ∂σ mn + ∂ (α × v) lk ∂σ mn σ (n+1,p) (24) 
An approximation expression of ∂L p kl /∂σ mn is given by:

∂L p kl ∂σ mn σ (n+1,p) n γ0 N s=1 m s kl P s mn |P s mn σ mn | n-1 (τ c ) n (25) 
where P s = (m s ) sym is the symmetric Schmid tensor. The determination of the expression of ∂ (α × v) kl /∂σ mn is an addition to the standard EVPFFT formulation and is computed as follows [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF]:

∂(α × v) kl ∂σ mn σ (n+1,p) = e lqr α kq ∂ (g r /|g|) ∂σ mn v + g r |g| ∂v ∂σ mn σ (n+1,p) (26) 
with, using eq. 12:

∂ (g r /|g|) ∂σ mn = δ rs |g| 2 -g r g s |g| 3 e oks α qk -e iks α ik α qp (α op -α po ) α ij (α ij -α ji ) δ om δ qn - 1 3 δ mn δ oq (27) 
and:

∂v ∂σ mn σ (n+1,p) n γ0 η 2 b N µ τ c 2 N s=1 P s mn |P s mn σ mn | n-1 (τ c ) n (28) 
In eqs. 25 and 28, the approximation lies in the fact that the derivatives ∂τ c /∂σ and ∂P s /∂σ are neglected.

Once the convergence is achieved on σ (n+1) and ε (n+1) , the new guess for the auxiliary stress field λ is given using the Uzawa descent algorithm:

λ (n+1) ij = λ (n) ij + C 0 ijkl e kl (n+1) -ε kl (n+1) (29) 
and the algorithm is stopped when the normalized average differences between the stress fields σ and λ, and the strain fields ε and e, are smaller than a given threshold error (typically 10 -5 ). Following [START_REF] Lebensohn | An elasto-viscoplastic formulation based on Fast Fourier Transforms for the prediction of micromechanical fields in polycrystalline materials[END_REF], this condition implies the fulfillment of both stress equilibrium and strain compatibility up to sufficient accuracy.

In the algorithm described above, an overall macroscopic strain E = ε (n) is applied to the periodic unit cell V in the form of:

E ij = E t ij + Ėij t (30) 
In cases of mixed boundary conditions with imposed macroscopic strain rate Ėij and stress Σ ij , the (n + 1)-guess of the macroscopic strain E The direct and the inverse Fourier transforms are computed here by using Fast Fourier Transform (FFT) algorithm. The spatial periods of the unit cell are T 1 , T 2 and T 3 in the x 1 , x 2 and x 3 directions, respectively, and discretized by a regular rectangular grid with N 1 × N 2 × N 3 voxels with position vector x = (i 1 δ 1 , i 2 δ 2 , i 3 δ 3 ),

where

i 1 = 0 → N 1 -1, i 2 = 0 → N 2 -1, i 3 = 0 → N 3 -1 and δ 1 , δ 2 , δ 3 are the voxel
sizes in the x 1 , x 2 and x 3 directions (here

δ 1 = δ 2 = δ 3 = δ). The computational grid is constituted of a total of N tot = N 1 × N 2 × N 3 voxels.
Let α(ξ) be the Fourier transform of α(x). Following [START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF][START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF], the components of the Nye tensor are updated in the Fourier space as:

α t+ t ij =κ (η) α t ij -t i ξ k (α ij v k ) t -(α ik v j ) t -t i ξ k e jkl (L p il ) t ( 31 
)
where an exponential second order spectral low-pass filter κ (η) is used to stabilize the numerical approximation. This spectral filter allows eliminating high frequencies responsible for spurious oscillations. The exponential filter is defined as function of discrete frequencies η j = m j /N j with ξ j = 2πm j /T j [START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF][START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF]:

κ m 1 N 1 , m 2 N 2 , m 3 N 3 = exp -β m 1 N 1 2p + m 2 N 2 2p + m 3 N 3 2p , (32) 
where m j (j = 1 → 3) are arranged in Fourier space as follows [START_REF] Moulinec | A numerical method for computing the overall response of nonlinear composites with complex microstructure[END_REF]:

m j = - N j 2 + 1 , - N j 2 + 2 , ..., -1, 0, 1, ..., N j 2 -1 , N j 2 (33)
if N j is even, and

m j = - N j -1 2 , ..., -1, 0, 1, ..., N j -1 2 (34) if N j is odd.
The damping parameter β is defined as β = -log ε M , where ε M is a low value parameter that was optimized by [START_REF] Djaka | A numerical spectral approach to solve the dislocation density transport equation[END_REF]. For applications, M = 0.2 and p = 1.

To fix the time step t in eq. 31 in order to satisfy stability requirements for numerically solving the dislocation density transport equation, a user-specified fraction denoted c = 0.25 of Courant-Friedrichs-Lewy (CFL) limit is used such that:

t CF L = c δ v max ( 35 
)
where δ is the voxel size and v max is the maximal GND velocity. Finally, the time step is given by t = min ( t CF L , t ε ) where t CF L is defined in eq. 35 and the time step t ε is the classic time step used in EVPFFT.

Use of finite difference schemes for spatial derivatives

The need for better numerical performance and stability in spectral approaches to avoid spurious oscillations of the local fields, known as Gibbs phenomenon or aliasing, motivated the development of modified Green operators for the calculation of the displacement field and gradients of the latter in Fourier space [START_REF] Willot | Fast Fourier transform computations and build-up of plastic deformation in 2D, elastic-perfectly plastic, pixelwise disordered porous media[END_REF]. For this, a successful numerical strategy [START_REF] Berbenni | A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics[END_REF][START_REF] Lebensohn | Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms[END_REF] based on earlier works [START_REF] Müller | Mathematical vs. experimental stress analysis of inhomogeneities in solids[END_REF][START_REF] Müller | Fourier transforms and their application to the formation of texture and changes of morphology in solids[END_REF][START_REF] Dreyer | An approximate analytical 2Dsolution for the stresses and strains in eigenstrained cubic materials[END_REF] consists in approximating first and second derivatives in Cartesian space using finite difference (FD) schemes, and taking discrete Fourier transforms from these FD expressions. Among these FD-based schemes, we choose a modified discrete Green operator based on centered FD on a rotated grid proposed [START_REF] Willot | Fourier-based schemes for computing the mechanical response of composites with accurate local fields[END_REF] and adopted in different subsequent FFT-based implementations [START_REF] Djaka | Field disloca-tion mechanics for heterogeneous elastic materials: A numerical spectral approach[END_REF][START_REF] Bertin | A FFT-based formulation for discrete dislocation dynamics in heterogeneous media[END_REF][START_REF] Lucarini | On the accuracy of spectral solvers for micromechanics based fatigue modeling[END_REF][START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF][START_REF] Haouala | Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization[END_REF] given its good numerical performance. The FFT-resolution of the Lippmann-Schwinger used a DFT-scheme coupled to a rotated centered finite difference scheme. It was observed [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF] that in the MFDM-EVPFFT formulation, the latter scheme does not modify very much the number of Newton-Raphson iterations needed for numerical convergence of the augmented Lagrangian scheme in comparison with the CP-EVPFFT and lead to more accurate fields near discontinuities than when using the classic Green operator.

3 Application to polycrystalline aggregates: grain size effect and reversible plasticity

Material and simulation parameters

In the following numerical simulations, Al polycrystalline aggregates made of 100 grains or 27 grains resulting from periodic Voronoi tessellations are considered, see similar procedure was used by [START_REF] Lebensohn | Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms[END_REF] to generate 3D polycrystals with different mean grain sizes using periodic Voronoi tessellations.

The material parameters related to elastic constants (Al), slip rule, GND velocity ( γ0 , m and η) and hardening (τ 0 , τ s , θ 0 and k 0 ) are consistent with pure Al.

Here, the parameters are the same as in [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF] and a specific fit of experimental data has not been carried out. The Burgers vector magnitude for Al is b = 2.86 × 10 -10 m. The reference material parameters used for numerical simulations are reported in Table 1. As reported in eq. 7, periodic boundary conditions are used and the unit cell is submitted to tensile (resp. compression) loading in the x 3 -direction at macroscopic strain rate Ė33 = 10 -3 s -1 (resp. Ė33 = -10 -3 s -1 ) with mixed macroscopic strain/stress boundary conditions. We have chosen k 0 = 20 fol- lowing the value identified by [START_REF] Acharya | Grain size effect in viscoplastic polycristals at moderate strains[END_REF] for the case of FCC polycrystals and by [START_REF] Roy | Size effects and idealized dislocation microstructure at small scales : Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics : Part II[END_REF] for MFDM. In the context of MFDM-EVPFFT, starting from k 0 = 20, the role of k 0 on overall strain hardening and GND density pile-ups was recently studied in [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF] for two-phase laminate microstructures. For conventional crystal plasticity (CP-EVPFFT), the materials parameters used were the same except that α = 0 (no mobile GND density and no GND density in the strain-hardening law). However, in CP-EVPFFT, α can be computed a posteriori using the definition of the Nye tensor in a small strain setting: α = -curl U p together with a centered finite difference scheme as detailed in [START_REF] Berbenni | A numerical spectral approach for solving elasto-static field dislocation and g-disclination mechanics[END_REF], [START_REF] Lebensohn | Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms[END_REF] and [START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF].

Table 1 List of material parameters used for numerical simulations The macroscopic tensile stress-strain curves are obtained and are compared to the results obtained from CP-EVPFFT simulations using same material parameters for slip rule and Kocks-Mecking's hardening law [START_REF] Mecking | Kinetics of flow and strain-hardening[END_REF].

E (GPa) ν γ0 (s -1 ) m η b (m) τ 0 (MPa) τ s (MPa) θ 0 (MPa) k 0 69 0.
Using MFDM-EVPFFT in a plausible range of physical grain sizes for current metals and alloys, a grain size effect on the macroscopic tensile response of the Al polycrystalline aggregate is observed in Fig. 2(a) for the RVE constituted of 100 grains with 128 × 128 × 128 voxels (0.25µm to 100µm) and in Fig. 2(b) for the RVE constituted of 27 grains with 64 × 64 × 64 voxels (0.25µm to 154.72µm). Such size effect is not predicted using the conventional CP-EVPFFT that leads to grain size-insensitive response (see the dotted lines in Fig. 2(a,b)).

The scaling law for the macroscopic tensile flow stress as a function of the mean grain size d is now investigated in Fig. 3. For the chosen default material parameters reported in Table 1 and for these two polycrystalline RVEs (100 and 27 grains), a linear fit shows that a Hall-Petch law with exponent -0.5 is found for d ranging from 0.25µm to 154.72µm. This figure shows that the overall tensile flow stress at E p 33 =< ε p 33 >= 0.2% is well fitted in this grain size range (with a square correlation coefficient close to 1) by the Hall-Petch's relationship for both RVEs:

< σ 33 >=< σ ∞ 33 > +K dn , (36) 
where n = -0.5, < σ ∞ 33 >= 20M P a (RVE: 100 grains) or < σ ∞ 33 >= 19.8M P a (RVE: 27 grains) is the grain size independent flow stress that is obtained from conventional crystal plasticity (CP-EVPFFT), K = 71.6M P a.µm 0.5 (RVE: 100 grains) or K = 63.3M P a.µm 0.5 (RVE: 27 grains). Note that the size-dependent part K dn is due to non local GND-based plasticity in the MFDM-EVPFFT and the values reported here for K and n appear to be realistic at low strains. However, we did not attempt to calibrate K (the so-called Hall-Petch's slope) and < σ ∞ 33 > directly from experimental data as reported for instance in [START_REF] Cordero | Six decades of the Hall-Petch effect: a survey of grain size strengthening studies on pure metals[END_REF], so that simulation predictions remain qualitative.

It is noteworthy that grain-size dependent behaviors for FCC polycrystals were also studied by other theories based on lower order strain gradient plasticity models [START_REF] Acharya | Grain size effect in viscoplastic polycristals at moderate strains[END_REF][START_REF] Cheong | A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts[END_REF][START_REF] Haouala | Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization[END_REF] or based on higher order strain gradient plasticity models [START_REF] Ohno | Higher-order stress and grain size effects due to selfenergy of geometrically dislocations[END_REF][START_REF] Ohno | Grain size dependent yield behavior under loading, unloading and reverse loading[END_REF][START_REF] Cordero | Size effects in generalised continuum crystal plasticity for two-phase laminates[END_REF][START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF][START_REF] Lebensohn | Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms[END_REF]. Using 3D FE simulations for Ni, [START_REF] Acharya | Grain size effect in viscoplastic polycristals at moderate strains[END_REF] obtained the following scaling law < σ >∝ K d-4/5 at higher strains (5% -20%) with average grain sizes ranging Galerkin approach for lower strain gradient crystal plasticity. For a grain size range d between 10µm and 80µm, they obtained a Hall-Petch's relationship depending on the initial dislocation density in the material and a scaling law for Al as dn with n = -0.69 and n = -0.59 for overall strains of 1% and 5% respectively. In the case of higher order stress theories and due to the large number of degrees of freedom involved in these theories, only two-dimensional RVEs with 2D periodic Voronoi tessellations [START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF] or 2D unit cells with 16 hexagonal grains [START_REF] Ohno | Grain size dependent yield behavior under loading, unloading and reverse loading[END_REF] were considered with the FE method assuming periodic boundary conditions. Therefore, crystal plasticity was limited to 2D planar double slip. This limitation may modify the scaling law compared to simulations considering 3D polycrystals. Using single spherical or tetrakaidecahedron model grains and the higher order stress model of [START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF], [START_REF] Ohno | Higher-order stress and grain size effects due to selfenergy of geometrically dislocations[END_REF] found a grain size effect on the flow stress at 0.2% strain resulting from self-energy of GND and a scaling law as < σ >∝ K d-1 (for d larger than d = 0.1µm). In [START_REF] Ohno | Grain size dependent yield behavior under loading, unloading and reverse loading[END_REF], a strong grain size effect was reported on 2D polycrystals but only three mean grain sizes ( d = 1µm, 10µm, 100µm) were considered in their FE simulations but the scaling law was not reported. It is interesting to compare predictions of the present model with the 2D numerical results of [START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF] for polycrystals deformed at low strains. Like in [START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF], the present 3D MFDM-EVPFFT simulation results exhibit a Hall-Petch's relationship for the flow stress at low strains.

In the model of [START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF], the Hall-Petch's exponent was identified in a phenomenological way by calibrating the generalized moduli relating higher order stresses to micro-deformations.

Grain size dependence of intra-granular mechanical fields

Let us now study grain size effect on the spatial distribution of intra-granular mechanical fields. To that purpose, three mechanical field outputs are particularly analyzed:

(i) the Von Mises equivalent stress σ eq to study stress hotspots in the polycrystalline aggregate. The Von Mises equivalent stress σ eq is defined as:

σ eq = 3 2 s : s ( 37 
)
where s is the deviatoric stress tensor.

(ii) the equivalent cumulated plastic strain ε p eq to study plastic strain localization in the polycrystal. ε p eq is defined as:

ε p eq = t 0 2 3 εp : εp dt ( 38 
)
where εp is the symmetric part of Up .

(iii) the scalar GND density ρ GN D defined from the Nye tensor α as:

ρ GN D = √ α : α b (39) 
The examination of the spatial distribution of this scalar GND density is preferred to the full analysis of each particular tensor components (9 components). The equivalent Von Mises stress statistics extracted from MFDM-EVPFFT are provided using 100 bin values. Fig. 5 reports the histograms of σ eq (Fig. 5(a)) and σ eq /Σ eq (Fig. 5(b)) as a function of average grain size d, where Σ eq =< σ eq > is the volume average of σ eq over the RVE. For comparisons, the statistics on σ eq and σ eq /Σ eq using CP-EVPFFT local formulation are also reported on Fig. 5. It is first

shown that the distributions of σ eq are quite heterogeneous and the stress amplitudes between the maximal and minimal values increase as d decreases using the MFDM-EVPFFT formulation. The stress amplitude given by conventional crystal plasticity (CP-EVPFFT) is lower than the other ones given by MFDM-EVPFFT.

Considering now the field statistics on the relative stress σ eq /Σ eq , it is observed that the distributions are sharper for lower grain sizes. For d = 0.25µm, the stress values are quite high and are closer to the average stress which is strong. This trend is consistent with high stress hotspots (see Fig. 4). Conversely, the case d = 10µm exhibits a behavior closer to the one obtained from CP-EVPFFT with a large number of regions where stresses are much lower than the average stress Σ eq , see Fig. 5(b).

The contour plots of the equivalent cumulated plastic strain ε p eq are reported on Fig. 6(a-c) using MFDM-EVPFFT. For all grain sizes, it is seen that ε p eq is quite heterogeneous and deformation bands occur. A significant evolution of ε p eq is observed when d is decreasing from 10µm (Fig. 6(c)) to 0.25µm (Fig. 6(a)), where a network of strain localization bands occurs using MFDM-EVPFFT. At lower grain sizes, the regions where plastic strain cannot develop are larger inside grains due to stronger slip gradients. This explains why plastic strain described by ε p eq becomes more localized in deformation bands and stronger inside them for lowest grain size d = 0.25µm. Conversely,Fig. 6(d) shows that plastic strain is more homogeneous in the case of CP-EVPFFT. This is confirmed by the histograms reported on Fig. 7 using 100 bin values. For a same overall plastic strain (E p 33 = 0.2%), higher peaks centered at smaller values of ε p eq are observed for small grain sizes, i.e. d lower than 1µm. As shown in Fig. 7, the polycrystal with smallest grain size ( d = 0.25µm) exhibits a longer tail regarding the distribution of ε p eq . Therefore, for a same overall plastic strain, ε p eq is large in some regions corresponding to localized deformation bands crossing grains. Conversely, large grain sized polycrystals simulated with MFDM-EVPFFT or conventional plasticity simulated by CP-EVPFFT do no exhibit such long tails on the histograms of ε p eq , see Fig. 7. This corresponds to a more homogeneous plastic deformation distribution inside grains as given in Fig. 6(d).

The contour plots of ρ GN D expressed in m -2 obtained from the MFDM-EVPFFT model are reported on Fig. 8(a-c) for the three different grain sizes using the same scale range to study grain size effect on the spatial distributions of ρ GN D . These figures show that ρ GN D is increasing from grain interiors to grain boundaries and the magnitude of ρ GN D increases when d decreases. The ρ GN D field is high close to grain boundaries and spreads over the grain interiors. This is consistent with the assumption of a finite grain boundary affected zone used in internal length mean field shows that in the case of conventional (local) plasticity, the calculated GND density is only localized at grain boundaries, i.e. only inter-granular GNDs. Indeed, there is no GND density pile up spreading inside the grain from grain boundaries and the magnitude of ρ GN D is much less important than in the case of the predictions given simulations with d = 1µm. In addition, conventional plasticity is responsible for a narrow distribution of α with too low values, which appear to be inconsistent at least qualitatively with GND profiles obtained from EBSD measurements for deformed polycrystals [START_REF] Calcagnotto | Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD[END_REF][START_REF] Allain-Bonasso | A study of the heterogeneity of plastic deformation in IF steel by EBSD[END_REF][START_REF] Konijnenberg | Assessment of geometrically necessary dislocation levels derived by 3D EBSD[END_REF][START_REF] Jiang | Evolution of intragranular stresses and dislocation densities during cyclic deformation of polycrystalline copper[END_REF][START_REF] Wallis | Geometrically necessary dislocation densities in olivine obtained using high-angular resolution electron backscatter diffraction[END_REF]. Overall grain size effects (Hall- Petch law) are due to the high level of GND densities for smaller grain sizes compared to larger ones and the spatial gradients of GND density. This is consistent with DDD results, where accumulation of geometrically necessary dislocations in the form of pile-ups is at the origin of the grain size effect of these microstructures [START_REF] Lefebvre | Yield stress strengthening in ultrafinegrained metals: A two-dimensional simulation of dislocation dynamics[END_REF][START_REF] Balint | Discrete dislocation plasticity analysis of the grain size dependence of the flow strength of polycrystals[END_REF].

These numerical results demonstrate that a strong dependence on the grain size was observed on both cumulated plastic strain and on GND density in the course of a monotonous tensile test at low strains. However, even though stress hot spots obtained with MFDM-EVPFFT appears to be located where high GND densities are present (near grain boundaries or triple junctions), there is no clear spatial correlation between GND densities and cumulated plastic slip. Similar conclusions were ob- tained with the higher-order strain-gradient plasticity Gurtin's model [START_REF] Gurtin | A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations[END_REF] implemented in the EVPFFT formulation by [START_REF] Lebensohn | Numerical implementation of non-local polycrystal plasticity using fast Fourier transforms[END_REF] or in the case of the micromorphic approach developed for polycrystals by [START_REF] Cordero | Grain size effects on plastic strain and dislocation density tensor fields in metal polycrystals[END_REF].

Reversible plasticity and Bauschinger effect

In addition to monotonic tensile loadings, tension-compression stress-strain responses and reversible plasticity are investigated using a RVE with 64×64×64 voxels and 27 grains, see Fig. 1(b). Same materials parameters as before are used and comparisons are made between MFDM-EVPFFT and CP-EVPFFT to see the differences on the Bauschinger stress X. X is defined as the difference between the first stage tensile flow stress at E 33 = 0.2% and the second stage compressive plastic flow stress at initial yielding in compression (deviation from the elastic slope at reversible loading).

Then, the mechanical tests were stopped at E 33 = 0% during compressive loading after forward tensile loading up to E 33 = 0.2%. Tension-compression responses simulated with MFDM-EVPFFT are reported on Fig. 10 for four mean grain sizes d: 0.25µm, 1.5472µm, 15.472µm and 154.72µm, respectively. These ones are also compared to the tension-compression responses given by the grain size independent CP-EVPFFT formulation. The Bauschinger stresses X are reported in ρ GN D distributions are mainly located at the grain boundaries and exhibit some variations (essentially at states B' and D'), which are lower than the ones reported with MFDM-EVPFFT. This demonstrates that the Bauschinger stress found with CP-EVPFFT is mainly due to classic inter-granular stress accommodation as found by self-consistent models applied to metals, see e.g. [START_REF] Mareau | An affine formulation for the self-consistent modeling of elasto-viscoplastic heterogeneous materials based on the translated field method[END_REF].

With the MFDM-EVPFFT formulation, the development of internal stress during forward tensile loading, their relaxation and their re-building with inverse polarization during reverse loading is due to polarized dislocation microstructures formed in forward tensile loading, its annihilation and inverse polarization at reverse loading. This observation was also highlighted in different contributions using MFDM with the FE method for thin films [START_REF] Roy | Size effects and idealized dislocation microstructure at small scales : Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics : Part II[END_REF][START_REF] Puri | Mechanical response of multicrystalline thin films in mesoscale field dislocation mechanics[END_REF], composite materials [START_REF] Richeton | Continuity constraints at the interfaces and their consequences on the work hardening of metal-matrix composites[END_REF][START_REF] Taupin | Size effects on the hardening of channel-type microstructures: a field dislocation mechanics-based approach[END_REF] and ice single and multi-crystals [START_REF] Taupin | Effects of size on the dynamics of dislocations in ice single crystals[END_REF][START_REF] Richeton | Modelling the transport of geometrically necessary dislocations on slip systems: application to single and multi-crystals of ice[END_REF]. The corresponding evolutions of the stress field (σ eq ) for MFDM-EVPFFT ( d = 0.25µm) in comparison with CP-EVPFFT are reported for corresponding states A (resp. A') to E (resp. E') on D exhibits the lowest values of α with a peak centered around 2mm -1 (at this state D, α is partly removed). At the end of state E, the highest values of α are found. In this state, the histogram shows a sharper peak around 6mm -1 . Hence, the spatial variation of GND densities is more localized compared to previous states due to partial annihilation and rebuilding of GND density during the whole cycle.

In comparison, the CP-EVPFFT simulations exhibit a decrease of GND densities at states B' and D' (in D' α takes the lowest values) and a small increase with a same distribution profile between A' and E', i.e. a strong peak centered around a low value of α = 0.02mm -1 . Internal stress histograms (Fig. 15) first show that during the whole cycle the values of σ 33 -< σ 33 > spread over a range of -50M P a to 50M P a for MFDM-EVPFFT, while it is only around -30M P a to -30M P a for CP-EVPFFT. This explains the larger values of X observed with MFDM-EVPFFT compared to CP-EVPFFT, see Table 2. In the cases of states B and D, the histograms of σ 33 -< σ 33 > obtained with MFDM-EVPFFT exhibits narrower distributions due to internal stress relaxation and GND density annihilations in these two intermediate states. A rebuilding of new larger internal stress state is obtained at the end of the cycle with a broader distribution at state E.

Conclusions

A spectral formulation called MFDM-EVPFFT was developed as an extension of the EVPFFT model [START_REF] Lebensohn | An elasto-viscoplastic formulation based on Fast Fourier Transforms for the prediction of micromechanical fields in polycrystalline materials[END_REF] that includes both GNDs and SSDs.

The MFDM theory was earlier developed by Acharya and Roy (2006) and [START_REF] Roy | Size effects and idealized dislocation microstructure at small scales : Predictions of a Phenomenological model of Mesoscopic Field Dislocation Mechanics : Part II[END_REF] and implemented in finite elements to study small scale plasticity responses. The present FFT-based approach is able to efficiently account for average grain size effects on the flow stress of large 3D polycrystalline unit cells following a 

  was solved by[START_REF] Lebensohn | An elasto-viscoplastic formulation based on Fast Fourier Transforms for the prediction of micromechanical fields in polycrystalline materials[END_REF] using a Newton-Raphson type scheme. The (p + 1)-guess for the stress field σ (n+1) ij

Fig. 1 .

 1 Fig. 1. The Voronoi polyhedra characterize the grains and their shapes. In the present study, two different voxelized polycrystalline RVE obtained with periodic Voronoi tessellations are used with different grain sizes: 128 × 128 × 128 voxels (Fig. 1 (a)) and 64 × 64 × 64 voxels (Fig. 1 (b)).The crystallographic orientations of the grains are randomly distributed and are characterized by three Euler-Bunge angles: φ 1 , Φ, φ 2 . Twelve (111) < 110 > slip systems are considered. The microstructure is characterized by a single internal length scale parameter which is the average grain size denoted d. The latter is deduced from H the period of the unit cell as d = H/ 3 √ 27 and d = H/ 3 √ 100 for RVE with 27 grains or 100 grains respectively. A

Figure 1 .

 1 Figure 1. Different voxelized polycrystalline RVE obtained with periodic Voronoi tessellations and used for the present numerical simulations: 100 randomly oriented grains discretized with 128 × 128 × 128 voxels (a) and 27 randomly oriented grains discretized with 64 × 64 × 64 voxels (b).

Figure 2 .

 2 Figure 2. Grain size dependent tensile responses up to 1% strain for FCC polycrystals as predicted by the MFDM-EVPFFT formulation (solid lines) with grain sizes: (a) d ranging from 0.25µm to 100µm using a RVE of 100 randomly oriented grains with 128 × 128 × 128 voxels, (b) d ranging from 0.25µm to 154.72µm using a RVE of 27 randomly oriented grains with 64×64×64 voxels. For comparison, the tensile responses given by conventional plasticity (CP-EVPFFT) are also reported for both RVEs (dotted lines).

Figure 3 .

 3 Figure 3. Grain size effect reported on the overall flow stress at 0.2% overall plastic strain (E p 33 = 0.2%) and comparison with a Hall-Petch's type scaling law (linear fits: dotted lines). The numerical simulations are performed with the MFDM-EVPFFT formulation with a RVE of 100 grains and 128 × 128 × 128 voxels and with a RVE of 27 grains and 64 × 64 × 64 voxels.

  from 20µm to 200µm. For Cu and Al,[START_REF] Cheong | A study of microstructural length scale effects on the behaviour of FCC polycrystals using strain gradient concepts[END_REF] performed 3D FE simulations with the commercial code ABAQUS and found a scaling law as < σ >∝ K d-1/2 at low strains (0.2%) based on a non local GND-based crystallographic model first developed by[START_REF] Busso | Gradient-dependent deformation of two-phase single crystals[END_REF]. To fit the Hall-Petch's curves, these authors also consider the role of initial dislocation densities present at grain boundaries using different SSD densities. Recently,[START_REF] Haouala | Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization[END_REF] also simulated the Hall-Petch effect in different FCC polycrystalline metals (Cu, Al, Ag, Ni) using a FFT-based
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 4 Figure 4. Spatial distribution of equivalent Von Mises stress σ eq in MPa recorded at E p 33 = 0.2% for three grain sizes d (MFDM-EVPFFT) with same scale range: 0.25µm (a), 1µm (b), 10µm (c). Simulation results with CP-EVPFFT (d). The scale range for CP-EVPFFT is different to show the detailed fields.

Figure 5 .

 5 Figure 5. Histograms of σ eq (a) and σ eq /Σ eq (b) recorded at E p 33 = 0.2% for different average grain sizes d with MFDM-EVPFFT and comparison with CP-EVPFFT.

Figure 6 .

 6 Figure 6. Spatial distribution of equivalent cumulated plastic strain ε p eq recorded at E p 33 = 0.2% for three average grain sizes d (MFDM-EVPFFT) with same scale range: 0.25µm (a), 1µm (b), 10µm (c). Simulation results with CP-EVPFFT (d) with same scale range.
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 7 Figure 7. Histograms of ε p eq recorded at E p 33 = 0.2% for different average grain sizes d with MFDM-EVPFFT and comparison with CP-EVPFFT.

Figure 8 .

 8 Figure 8. Spatial distribution of GND densities ρ GN D in m -2 recorded at E p 33 = 0.2% for three average grain sizes d (MFDM-EVPFFT) with same scale range: 0.25µm (a), 1µm (b), 10µm (c). Simulation results with CP-EVPFFT (d) with a different scale range.

Figure 9 .

 9 Figure 9. Histograms of GND densities ρ GN D recorded at E p 33 = 0.2% obtained with MFDM-EVPFFT at different grain sizes (a) and obtained with CP -EV P F F T (zoom up) (b).

Figure 10 .

 10 Figure 10. Reversible tension-compression tests performed with MFDM-EVPFFT (solid lines) for four average grain sizes d: 0.25µm, 1.5472µm, 15.472µm, 154.72µm and comparison with CP-EVPFFT (dotted line).

Figure 11 .

 11 Figure 11. Tension-compression-tension cyclic tests performed with MFDM-EVPFFT (solid line) for d = 0.25µm and with CP-EVPFFT (dotted line) for comparisons of the evolution of the macroscopic stress during cyclic loading. Different states A, B, C, D, E (resp. A', B', C', D', E') are marked on the figure using the MFDM-EVPFFT (resp. CP-EVPFFT) formulation.

Fig. 11 )

 11 Fig. 11) and during the second tensile stage (states D (resp. D') and E (resp. E') on Fig. 11). The notations A, B, C, D, E are used for the MFDM-EVPFFT simulation and A', B', C', D', E' are used for the CP-EVPFFT simulation.

Fig. 13 .

 13 Fig.13. The reference scale for σ eq in Fig.13is taken at state A (resp. A'). Like ρ GN D , stronger variations in magnitudes of σ eq are observed using MFDM-EVPFFT compared to CP-EVPFFT.

Figure 13 .

 13 Figure 13. Evolution of σ eq in M P a during tension-compression-tension using present MFDM-EVPFFT (states A to E) with d = 0.25µm (left figures), using conventional CP-EVPFFT (states A' to E') (right figures).

Figure 14 .

 14 Figure 14. Histograms of the norm of the Nye tensor α (mm -1 ) following the cycling loading simulated with MFDM-EVPFFT and recorded at the five states A, B, C, D, E (a), with CP-EVPFFT and recorded at the five states A', B', C', D', E' (b).

Figure 15 .

 15 Figure 15. Histograms of internal stress field σ 33 -< σ 33 > (MPa) following the cycling loading simulated with MFDM-EVPFFT and recorded at the five states A, B, C, D, E (a), with CP-EVPFFT and recorded at the five states A', B', C', D', E' (b).

Hall-

  Petch law. Numerical simulations with different voxelized polycrystalline RVEs obtained with periodic Voronoi tessellations and different grain sizes were performed with 128 × 128 × 128 voxels (100 grains) and 64 × 64 × 64 voxels (27 grains). In this non local formulation including a spectral resolution of the space-time evolution of GND densities, the size dependence is related to the generation of higher GND density from grain interiors to grain boundaries as opposed to conventional crystal plasticity, which only describes low GND densities at grain boundaries. Statistical analyses with 100 bin histograms of mechanical fields show that GND density and equivalent plastic strains are not correlated. Higher GND densities are present in dislocation pile-ups from grain interior to grain boundaries and more localized accumulated slip in grain interior is observed for smaller grains sizes. These results extend to polycrystals the ones obtained by[START_REF] Djaka | A FFT-based numerical implementation of mesoscale field dislocation mechanics: application to two-phase laminates[END_REF] for two-phase laminate microstructures. Besides, reversible plasticity is studied for polycrystals considering tension-compression-tension cycle. A grain size dependent Bauschinger translational strain-hardening is simulated for polycrystals with the MFDM-EVPFFT formulation.

Table 2

 2 

	and

By specifically comparing the cyclic responses over a complete cycle: tension (up to E 33 = 0.2%) -compression (up to E 33 = -0.2%) -tension (up to E 33 = 0.2%)

Table 2

 2 Bauschinger stress X expressed in M P a for four simulations using MFDM-EVPFFT and

	CP-EVPFFT				
	CP-EVPFFT	MFDM-EVPFFT MFDM-EVPFFT MFDM-EVPFFT MFDM-EVPFFT
	size independent	154.72µm	15.472µm	1.5472µm	0.25µm
	13.14	14.98	21.53	33.6	41.48
	obtained from CP-EVPFFT and from MFDM-EVPFFT with d = 0.25µm, it is
	observed on Fig. 11 that the MFDM-EVPFFT exhibits both stronger kinematic
	hardening at the origin of the Bauschinger stress X and stronger isotropic hardening

as well. Therefore, it is interesting to study the evolution of both GND density and equivalent Von Mises stress from state A (resp. A') at the end of first tensile stage in Fig.

11

, during the compression stage (states B (resp. B') and C (resp. C') on
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