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γβ β-phase indicator
gβ Macroscopic pressure gradient (ML−2T−2)
Kλ Scalar permeability (L2)
λ Direction of the intrinsic average velocity
Aβσ Domain of the fluid–solid interface
V Domain of the REV
Vβ Domain of the β-phase
μβ Dynamic viscosity of the fluid (ML−1T−1)
νβ Kinematic viscosity of the fluid (L2T−1)
pβ Pressure field (ML−2T−2)
ψ Generic field
R Real space
ReC, Rek Critical- and permeability-based Reynolds number
ρβ Density of the fluid (ML−3)
�0 Dimension of the REV (L)
vβ Flow velocity field (LT−1)
f Extension of Darcy’s law (L−2)
KD Darcy permeability (L2)
r General position vector (L)
sβ Constant source term (LT−2)
yβ = r − x Position vector relative to the centroid of the REV (L)
〈
vβ

〉β
,
〈
pβ

〉β Intrinsic averages
ṽβ, p̃β Spatial deviations
v∗, p∗ Dimensionless spatial deviations
b Nonlinear part of Ergun’s equation (L−1T)
Lv Macroscopic length scale (L)
V Measure of the REV (L3)
v Magnitude of the intrinsic average velocity (LT−1)
Vβ Measure of the β-phase inside the REV (L3)

1 Introduction

A fluid flowing through a porous medium experiences three main transition phenomena with 
increasing flow rate (Schneebeli 1955; Chauveteau and Thirriot 1967; Dybbs and Edwards 
1984; Fand et al. 1987; Seguin et al. 1998a, b; Lage 1998; Venkataraman and Rao 1998; 
Hlushkou and Tallarek 2006). The first one is a transition from the creeping flow regime to the 
non-Darcian, inertial steady regime. Then, the flow evolves to successive unsteady regimes. 
The last transition occurs when turbulence appears, characterized by unsteady, chaotic flow 
features in the porous medium. This latter regime presents several open modeling issues 
(Masuoka and Takatsu 1996; Antohe and Lage 1997; Kuwahara et al. 1998; Nakayama and 
Kuwahara 1999; Chandesris et al. 2006; De Lemos  2012; Jin et al. 2015; Jin and Kuznetsov 
2017). Since the filtration law in porous media strongly depends on the flow regime, it is 
of importance to characterize these transitions. This has applications to natural and as well 
as industrial systems, including modeling the transport of chemical species (Whitaker 1967; 
Vafai and Tien 1982; Hoffmann et al. 1997; Souto and Moyne 1997; Wood 2007) and heat 
(Hong et al. 1987; Amiri and Vafai 1994; Goyeau et al. 1996; Quintard et al. 1997; Kim 
et al. 2000; Aydın and Kaya 2008; Chikhi et al. 2016) in, e.g. , packed-bed column reactors,



soil percolation, microscopic heat exchangers and the fluid–structure coupling in flexible
canopies (Ghisalberti and Nepf 2002, 2005; Gosselin 2009; Favier et al. 2009; Gosselin and
de Langre 2011).

Under a macroscopic pressure gradient gβ ,
1 a fluid initially at rest in a porous medium

accelerates2 until the internal viscous dissipation of the flow balances the rate of work of gβ .
In the steady regime, the flow reaches a state characterized by a spatially averaged velocity〈
vβ

〉β . This velocity can be written as

〈
vβ

〉β = vλ, (1)

with λ the unit vector defining the mean flow direction and v the amplitude of
〈
vβ

〉β . To

a given gβ corresponds a unique
〈
vβ

〉β , and vice versa. We write this as a filtration law,
gβ = gβ (λ, v). A priori the nature of gβ (λ, v) depends on the topology of the porous
medium, the flow regime and the physical properties of the fluid (Forchheimer 1901; Carman
1937; Klinkenberg 1941; Ergun 1952; Brace et al. 1968; Jackson and James 1986;Wong et al.
1997).

In “Appendix A.1,” we show that for a fluid under constant volume force sβ , the macro-

scopic pressure gradient can be related to the gradient of the intrinsic average pressure∇ 〈
pβ

〉β

as
gβ = ∇ 〈

pβ

〉β − ρβsβ, (2)

where εβ is the porosity of the medium. In the creeping flow regime, gβ (λ, v) is Darcy’s law
(Darcy 1856), which amounts to write

∇ 〈
pβ

〉β − ρβsβ = −εβμβK
−1
D · λv, (3)

where μβ is the dynamic viscosity of the fluid. The ”·” symbol in Eq. 3 refers to the usual
inner product. KD (a second-order tensor) is the permeability of the porous medium. We can
further define a scalar characterizing the permeability for a flow in the λ direction as

K−1
λ = ||K−1

D · λ||. (4)

Beyond the creeping flow regime, nonlinear effects at the pore scale modify the flow pattern,
and the filtration law becomes non-Darcian (Hassanizadeh and Gray 1987; Mei and Auriault
1991; Firdaouss et al. 1997; Ma and Ruth 1997; Rojas and Koplik 1998; Skjetne and Auriault
1999; Panfilov et al. 2003; Zimmerman et al. 2004; Lasseux et al. 2011). We can extend
Darcy’s law as

∇ 〈
pβ

〉β − ρβsβ = −εβμβ

(
K−1
D · λ + f

)
v. (5)

A simple way of characterizing the range of validity of Darcy’s law is by considering the
Forchheimer number (Ruth and Ma 1992; Andrade et al. 1999; Lage and Antohe 2000; Zeng
and Grigg 2006; Muljadi et al. 2016)

Fλ = ||f||
K−1

λ

, (6)

which is the ratio of the nonlinear to the linear part of the filtration law. Darcy’s law remains
valid as long as Fλ � 1 and the inertial transition occurs when Fλ ∼ 1.

1 See Sect. A.1 and Eq. 54 for a detailled derivation of gβ with respect to the microscopic fields.
2 This initial transient regime is generally neglected in macroscopic models.



To capture the inertial transition a priori, a Reynolds number ReC is of practical interest.
Let νβ be the kinematic viscosity of the fluid (μβ = νβρβ ). In general, ReC is expressed as a
ratio of the advection time to the viscous diffusion time, in terms of v, νβ , and a length scale
� as

ReC = �v

νβ

. (7)

The choice of the characteristic length scale to define such a Reynolds number is widely
discussed in the literature (Lage and Antohe 2000; Lasseux et al. 2011; Venkataraman and
Rao 1998; Beavers and Sparrow 1969; Mcdonald et al. 1979; Philipse and Schram 1991;
Li and Ma 2011a,b; Muljadi et al. 2016). For a given porous medium, � should be easy to
identify, and such that ReC past a well-defined threshold indicates the inertial transition. A
simple choice for � is a characteristic pore size �β (Amiri andVafai 1994; Li andMa 2011a,b;
Andrade et al. 1995; Clavier et al. 2015, 2017). However, such a microscopic length scale
may not be well defined for porous media that exhibit non-trivial or complexmicrostructures,
such as sandstones.

If we have an explicit filtration law, we can use the Forchheimer number as a Reynolds
number (Andrade et al. 1999; Lage and Antohe 2000; Zeng and Grigg 2006). For example,
the classical filtration law (Ergun’s equation, Ergun 1952) takes into account inertia effect on
the filtration law via a quadratic form. For a one-dimensional filtration process, this quadratic
filtration law is a scalar relation given by

gβ (λ, v) = εβμβK
−1
λ (1 + bv) v. (8)

Inertia effects are small as long as the quadratic part is small against the linear part. Taking

the ratio of the quadratic part to the linear part (i.e. ,
bv

1
), and identifying it with ReC, i.e. ,

bv

1
= �v

νβ

, (9)

we obtain � as
� = bνβ. (10)

This means that if we use this expression for the characteristic length scale � in Eq. 7,
ReC compares directly the relative influence of the linear and inertial contributions in the
macroscopic filtration law. Unfortunately in practice, either experiments or direct numerical
simulations (DNS) are needed to determine the parameter b. Moreover, Eq. 8 assumes a
quadratic form, which is questionable when going from the linear to the nonlinear regime
(Mei and Auriault 1991; Firdaouss et al. 1997; Rojas and Koplik 1998; Skjetne and Auriault
1999; Clavier et al. 2015;Wodie and Levy 1991; Lucas et al. 2007). In Sect. 3.2.1 we propose
an expression for the Forchheimer number.

Yet another possibility is the use of a permeability-based Reynolds number (Beavers
and Sparrow 1969; Vafai and Tien 1981; Nield and Bejan 1999; Papathanasiou et al. 2001;
Dukhan et al. 2014; Muljadi et al. 2016) defined as

Rek = v

√
Kλ/εβ

νβ

. (11)

One of the main advantages of this definition is that � = √
Kλ/εβ is not a pure geometrical

length scale. � defined as such is associated with Stokes flow in the specific structure of
interest and characterizes the overall viscous dissipation in the porous medium. Therefore,
� = √

Kλ/εβ should be much better than a geometrical pore length scale at characterizing



viscous effects for the purpose of comparing them to inertial effects, which is the point of a
Reynolds number. Unfortunately, even Rek is inaccurate in predicting the inertial deviation,
as will be shown later on for a variety of porous structures (Sect. 3.2.2). An obvious example
of this is the case of cylindrical pores, for which the non-Darcian, steady regime simply does
not exist (Skjetne and Auriault 1999). This is due to the fact that in cylindrical pores, the
streamlines (i.e. , lines that are parallel to the vβ -field) are locally orthogonal to velocity
gradients ∇vβ . Under such circumstances, in the momentum part of the Navier–Stokes
equations

vβ · ∇vβ︸ ︷︷ ︸
advective term

= − 1

ρβ

∇ pβ + νβ∇2vβ + sβ, (12)

the advective term vanishes identically, canceling inertia effects. In this case the Navier–
Stokes equations reduce to the linear Stokes equations, until the first transition to a non-
Darcian, unsteady turbulent regime, which is due to a flow instability that starts several
orders of magnitude beyond the stage Rek = 1 (e.g. , Sharp and Adrian 2004).

In this paper, we use the framework of volume averaging to derive a filtration law for
weakly inertial flows in periodic porous media. We carefully define the volume-averaging
operator and apply it to the Navier–Stokes equations in the porous medium. We make a
separation of scales assumption to derive the volume-averaged equations, which are closed
by a model of the average hydrodynamic force. This requires the modeling of small scale
fields and leads to a closure problem (CP) over a representative elementary volume (REV).

We further use the CP to derive the expression for the Reynolds number, ReC.We proceed
by evaluating the order of magnitude of the advective term in the CP, and this allows us to
correct Rek with a new parameter Cλ, thus yielding ReC. Cλ characterizes the likeliness of
the flow in themicrostructure to deviate fromDarcy’s law and is thus the inertial sensitivity of
the microstructure. The filtration law is evaluated from direct numerical simulations (DNS)
on a variety of porous structures, and it is shown that ReC is much better suited than Rek to
predict the non-Darcian transition and resolves the pathological case of cylindrical pores. We
finally use this new scaling to derive a generalized Forchheimer law in a highly anisotropic
porous medium.

2 Nonlinear Effects

In this section, we propose a framework to study the effect of inertia on the filtration law of
a porous medium.

2.1 Pore Scale FlowModel

We consider a rigid periodic porous medium, saturated with a Newtonian fluid. We call β

the fluid phase and σ the solid phase within the domain, cf. Fig. 1. We focus on steady and
incompressible flows as a response to a constant source term sβ . Hence, the fluid phase is
driven by the steady Navier–Stokes equations, i.e. ,

∇ · (vβvβ

) = − 1
ρβ

∇ pβ + νβ∇2vβ + sβ, (13a)

∇ · vβ = 0, (13b)

vβ = 0 at Aβσ , (13c)





F‖ = λ·f
K−1

λ

, (16a)

F⊥ =
∣∣∣∣

∣∣∣∣(I − λλ) · f
K−1

λ

∣∣∣∣

∣∣∣∣ , (16b)

ω =
(

(I − λλ) · gβ

εβμβK
−1
λ v

,n1

)
. (16c)

The triplet (F‖, F⊥, ω) completely determines f according to the relation

f = K−1
λ

(
F‖λ + F⊥ (cos (ω)n1 + sin (ω)n2)

)
. (17)

The advantage of the decomposition expressed by Eq. 16 will become clear in the following.

2.2 Asymptotic Analysis

In this section, we want to check that the form of our closure problem is compatible with
results from the literature (Mei and Auriault 1991; Firdaouss et al. 1997; Wodie and Levy
1991). The end result of our analysis here is an asymptotic generalized Forchheimer law
(AGF); the developments starts with the identification of a parameter δ given by

δ = �

νβ

v, (18)

and with the search of an asymptotic form of Eq. 14 when δ � 1. According to Eq. 64, we
assume that the v∗ and p∗ fields can be approximated as

v∗ = v∗
0 + δv∗

1 + δ2v∗
2 + O

(
δ3

)
, (19a)

p∗ = p∗
0 + δ p∗

1 + δ2 p∗
2 + O

(
δ3

)
. (19b)

This yields

f =
N∑

i≥0

f(i)δi , with f(i) = K−1
D · 〈v∗

i0

〉β
, (20)

where v∗
i0 are solutions of Stokes problems (see “Appendix B”). This yields the asymptotic

form of Eq. 14

gβ = −εβμβK
−1
D ·

⎛

⎝λ −
N∑

i≥1

〈
v∗
i0

〉β
δi

⎞

⎠ v, (21)

which is our asymptotic generalized Forchheimer law. In Sect. 3, the AGF expressed in Eq. 21
is compared with data from DNS for different microstructures.

Numerical and experimental evidences (Rojas and Koplik 1998; Skjetne and Auriault
1999; Clavier et al. 2015; Lucas et al. 2007) indicate that f(1) vanishes, leading to a first cubic
correction to Darcy’s law. This regime is referred to as the cubic regime, or weak inertia
regime, and was studied by two-scale asymptotics (Mei and Auriault 1991; Firdaouss et al.
1997;Wodie and Levy 1991), with theoretical results for periodic porousmedia. In particular,
Firdaouss et al. (1997) have shown that f(1) must be zero for periodic porous media which
verify the reversibility assumption

gβ (−λ, v) = −gβ (λ, v) + O
(
δ2

)
. (22)



For example, a square array of cylinders verifies exactly the reversibility assumption, due to
symmetry properties. It has further been shown (Mei and Auriault 1991; Wodie and Levy
1991) that F (1)

‖ = 0 in periodic porous media, while the orthogonal term F (1)
⊥ is a priori

nonzero. This yields a partial cubic regime in the general case, or the cubic regime in the
specific case of porous media for which F⊥ vanishes due to characteristics of the microstuc-
ture. Such media are defined as isotropic, but it is likely that a zero F⊥ requires a disordered
microstructure, or a symmetry condition. Indeed ordered porous media may be isotropic with
respect to the permeability (KD = KλI), while the F⊥ term is nonzero (e.g., Koch and Ladd
1997).

Mei and Auriault (1991), Firdaouss et al. (1997) and Wodie and Levy (1991), asymptotic
expansions are performed on both the Reynolds number ReC, and the ratio of microscopic
and macroscopic scales

εl = �β

Lv
, (23)

where for technical reasons intrinsic to the asymptotic method, the value of ReC is related
to the value of εl. Although there are cases for which this relation is justified, there is no
physical reasons for this relation in the general case, as εl and ReC are a priori independent
parameters. In particular, the assumption εl � 1 does not require ReC to be small. Even
for turbulent flows where ReC 	 1, the length scales separation assumption holds (εl � 1)
in homogeneous porous media (Jin et al. 2015). Moreover, a creeping flow may encounter
strong shear, yielding ReC � 1 while εl ∼ 1.

Our approach recovers all these theoretical results from the literature.We show that F (1)
‖ =

0 (see “Appendix C”) for any periodic porous medium. For media that satisfy the reversibility
assumption, F (1)

⊥ = 0 is required for our AGF to be consistent. In the framework of volume
averaging, we have derived the closure problem before carrying out the perturbation analysis
in ReC, keeping εl and ReC independent. The form of our closure problem is further validated
by DNS in Sect. 3.2.1.

2.3 Inertial Sensitivity Parameter

We use the closure problem (Eq. 64) to develop a dimensionless number that characterizes
the Darcy/non-Darcy transition. To do so, we use Eqs. 5 and 14 and rewrite the first equation
in System 64 as

�v

νβ

v∗ · ∇∗v∗

︸ ︷︷ ︸
(I)

= −∇∗ p∗ + ∇∗2v∗ + εβ�2
(
K−1
D · λ + f

)

︸ ︷︷ ︸
(II)

. (24)

In the creeping flow regime, term (I) in Eq. 24 is negligible and term (II) is the only source
term. As the flow rate increases, f becomes important via the increasing importance of term
(I). We thus consider the ratio of the orders of magnitude of terms (I) and (II). As term (II)
is of order εβ�2K−1

λ at the Darcy/non-Darcy transition, we have

(I)

(II)

 �v

νβ

ζ (v∗ · ∇∗v∗)
εβ�2K−1

λ

, (25)

where the symbol ζ defines a norm for the field v∗ · ∇∗v∗. ζ is essential in the evaluation of 
the order of magnitude of term (I). Any choice for ζ is acceptable, depending on the goal of



the study. A choice of ζ is proposed in Sect. 3, where our goal is to find the proper Reynolds
number to assess the validity of Darcy’s law for a variety of porous media.

We now wish to eliminate � from Eq. 24 and start from the consideration that, at steady
state, the total rate of work of the pressure gradient balances the total internal viscous dissi-
pation over the REV

∫

Vβ

vβ · (−gβ

)
dV =

∫

Vβ

μβ∇vβ :T ∇vβ dV . (26)

We integrate a second time over Vβ and recall Eq. 50 to obtain

− 〈
vβ

〉β · gβ = μβ

〈∇vβ :T ∇vβ

〉β
. (27)

Rewriting the left-hand-side with definition 5 yields

〈∇vβ :T ∇vβ

〉β = λ · εβ

(
K−1
D · λ + f

)

 λ · εβK

−1
D · λ, (28)

at the Darcy/non-Darcy transition. Using the change of variables of Eq. 57, we can write

�2λ · εβK
−1
D · λ = 〈∇∗v∗ :T ∇∗v∗〉β . (29)

This gives an expression for �, as

� =
√√√√

〈∇∗v∗ :T ∇∗v∗〉β

λ · εβK
−1
D · λ

, (30)

which we use in Eq. 25

(I)

(II)

 v

νβ

√
Kλ

εβ

ζ (v∗ · ∇∗v∗)
√〈∇∗v∗ :T ∇∗v∗〉β

√√√√λ · K−1
D · λ

K−1
λ

. (31)

We approximate v∗ by v∗
0, a zero-order approximation in terms of δ (see Eq. 19), and obtain

(I)

(II)

 v

νβ

√
Kλ

εβ

ζ
(
v∗
0 · ∇∗v∗

0

)

√〈∇∗v∗
0 :T ∇∗v∗

0

〉β

√√√√λ · K−1
D · λ

K−1
λ

. (32)

We now define ReC as

ReC = v

νβ

√
Kλ

εβ

Cλ, (33)

with the inertial sensitivity, Cλ, defined as

Cλ = ζ
(
v∗
0 · ∇∗v∗

0

)

√〈∇∗v∗
0 :T ∇∗v∗

0

〉β

√√√√λ · K−1
D · λ

K−1
λ

, (34)

such that by construction

ReC 
 (I)

(II)
. (35)



The length scale � therefore corresponds to

� =
√

Kλ

εβ

Cλ. (36)

The distribution pattern of the advective term v∗
0 ·∇∗v∗

0 is closely related to themicrostructure
and the flow direction, as shown in Fig. 5, Sect. 3.2.2. The effect of inertia on Darcy’s law
is driven by the shape of the microstructure, and the topological parameter Cλ measures the
ability of inertia to affect Darcy’s law. The inertial sensitivityCλ is specific to both the porous
medium and the flow direction λ. We can distinguish among different cases:

– Cλ 
 1:
√

Kλ/εβ is the proper length scale to measure the effects of inertia.
– Cλ � 1: Rek = 1 does not capture the inertial transition, as illustrated by the limit case

of cylindrical pores. In this case, Cλ identically vanishes as streamlines are orthogonal to
velocity gradients. Therefore, Darcy’s law is correct for any Rek in the laminar regime
and breaks down only when transition to unsteady flow occurs (Skjetne and Auriault
1999).

– Cλ 	 1: This situation is opposite to the previous one. Effects of inertia impact the
macroscale Darcy’s law early, while Rek � 1 still holds. There are no obvious examples
of geometry for this case, but it is more likely that tortuous geometries generate large
values of Cλ (see later Table 1).

This classification resolves the issue encounteredwith certain porousmedia forwhich Rek �
1 is not the correct order of magnitude to assess the validity of Darcy’s law. The relevance
of ReC is further assessed in Sect. 3.2.2 by the interpretation of numerical experiments over
a variety of porous structures.

3 Numerical Results

We test the AGF and validate the relevance of ReC in describing the inertial transition on
model and realistic porous media with various microstructures (Fig. 2). We consider

– Two-dimensional arrangements of cylinders,
– Two-dimensional convergent-divergent unit cells of equal throat size,
– Two- and three-dimensional geometries exhibiting complex, realistic geometrical fea-

tures, obtained by x-ray tomography imaging of a sandstone.

The acronyms of all studied geometries are provided in Table 1.

3.1 Method

Flow simulations are carried out with the C++ toolbox Open∇FOAM® , which allows for 
the development of numerical solvers, and comes up with pre- and post-processing utilities 
for computational fluid dynamics (CFD). Open∇FOAM® is released as free and open-source 
software, and this allows the user to customize the source code in order to implement her/his 
own problem. This aspect of Open∇FOAM® is crucial, because in order to compute the 
coefficients of the asymptotic form of F‖, we need to solve Stokes problems obtained in 
“Appendix B” with specific source terms. We use a classical finite-volume discretization 
method. For each cell of the mesh, an integral form of the equations to solve is obtained 
by integrating the momentum- and mass- conservation law over the volume of the cell. The

















ReC = v
√

Kλ/εβ

νβ

Cλ. (44)

We show that this definition of ReC is appropriate to measure the effect of microscopic
inertia on the filtration law. Further, we find that a possible application of this new scaling is
the derivation of a correction to Darcy’s law for weakly inertial flows in highly anisotropic
porous media, where the tensorial Darcy’s law collapses.

Finally, our study focuses on the evolution of F‖, while the examination of the orthogonal
component F⊥ and of the angle ω (Eq. 16) is left for future work. Anisotropic, ordered,
three-dimensional microstructures are expected to generate varying features of F⊥ and ω

with increasing ReC; such features are the object of current research efforts.
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ADerivation of the Filtration Law

In this section, we give some technical details of the derivation of the filtration law by the
volume-averaging method.

A.1 Upscaling via Volume Averaging

We volume-average Eq. 13 in order to obtain a representation at the macroscopic scale. To
do so, we first recall a few fundamental steps. Letψ be a generic field, and γβ be the β-phase
indicator. We define the averaging volume V (x) of characteristic length �0, whose centroid
is located in x (which can be in any of the two phases, see Fig. 1). The intrinsic average of
ψ at point x is defined in a general way as

〈ψ〉β |x =
∫

R3
m (r − x) γβ (r) ψ (r) dV (r) , (45)

where r = x + yβ . This definition of the intrinsic average 〈ψ〉β |x allows to choose m so
that the resulting intrinsic average is suitable to the porous medium that we volume-average
(Quintard and Whitaker 1994a; Davit and Quintard 2017). m is a kernel normalized so that

∫

R3
m (r) γβ (r) dV (r) = 1. (46)

In the following we drop the |x subscript when there is no ambiguity regarding the point
where the average is evaluated.

The volume-averaging method uses a perturbation decomposition of the fields. Each field
ψ is decomposed as the sum of an average field, 〈ψ〉β , and a spatial deviation, ψ̃ , so that

ψ = 〈ψ〉β + ψ̃, (47)

with the underlying idea that
||∇ 〈ψ〉β || � ||∇ψ̃ ||. (48)





In Eq. 52, we neglected macroscopic advection and diffusion terms, provided separation
of microscopic and macroscopic length scales of the velocity field (Whitaker 1996)

||∇ 〈
vβ

〉β || � ||∇ṽβ ||. (55)

This assumption is reasonable in homogeneous porous media, far from macroscopic bound-
aries. Thus, for example, the region under study should not lie in a strong shear layer, nor
near a wall or a crack.

A.2 The Closure Problem for Spatial Deviations

Equation 52 is a form of the volume-averaged Navier–Stokes equations which needs addi-
tional equations (i.e. , a closure) for the surface integral term to be evaluated. To derive
these equations, we first need to decompose Eq. 13 applying Eq. 47 to vβ and pβ . By virtue
of Eq. 55, we neglect gradients of macroscopic velocities against those of the microscopic
velocities in the momentum transport equation and obtain

(〈
vβ

〉β + ṽβ

)
· ∇ṽβ = − 1

ρβ
∇ p̃β + νβ∇2ṽβ − gβ

ρβ
, (56a)

∇ · ṽβ = 0, (56b)

ṽβ = − 〈
vβ

〉β on Aβσ . (56c)

At this stage, it is common to introduce a tensorial relation between space deviations and
the intrinsic average of the velocity

〈
vβ

〉β (Whitaker 1996). This mapping is adapted to the
linear, creeping flow regime, as it expresses the fact that the microscopic flow field is a linear
combination of the flow in three independent directions of space. Clearly this is not adapted
here due to the nonlinear term in Eq. 56. We therefore drop the linear closure relationship
of Whitaker (1996) and keep working with the deviation fields. We introduce the modified
dimensionless perturbations v∗ and p∗ defined as

v∗ = ṽβ

v
+ λ, p∗ = �

p̃β

μβv
, (57)

with � as yet undefined. Under such circumstances

∇ṽβ = v

(

∇v∗ + ∇v

v
v∗ − ∇ 〈

vβ

〉β

v

)

, ∇ p̃β = v
μβ

�

(
∇ p∗ + p∗ ∇v

v

)
. (58)

We inject Eqs. 57 and 58 into Eq. 56. Under the assumption given by Eq. 55 we obtain

�

νβ

v|x+yβ

(
v∗ · ∇∗v∗) = −∇∗ p∗ + ∇∗2v∗ + εβh

∗, (59)

where

h∗ = − �

εβVβ

∫

Aβσ

nβσ · (−Ip∗ + ∇∗v∗) d A, (60a)

∇∗ = �∇. (60b)

The weighting function m does not appear in the surface integral, due to the spatially periodic 
model that we introduce later for the closure variables v∗ and p∗ (Quintard and Whitaker



1994b). Compared to the linear case, a non-local term remains in Eq. 59. As we intend to
solve for v∗ and p∗ on a REV of characteristic size �0, we linearize

v|x+yβ
= v

[

1 + yβ

�
· ∇∗v

v
+ O

(
�0

Lv

)2
]

. (61)

We also have that
〈
vβ

〉β = 〈
v∗v

〉β (62a)

= v

[
〈
v∗〉β +

〈
v∗ yβ

�

〉β

· ∇∗v
v

+ O

(
�0

Lv

)2
]

, (62b)

hence
〈
v∗〉β = λ −

〈
v∗ yβ

�

〉β

· ∇∗v
v

+ O

(
�0

Lv

)2

. (63)

We define the REV as the unit cell of our periodic porous medium. This is consistent with the
flowregimes considered. Inmany systems theremaybe transport processeswith characteristic
length scales much larger than the unit cell of the microstructure, as argued in, e.g. , Jin et al.
(2015), Agnaou et al. (2016) and de Carvalho et al. (2017). In such cases, one cannot reduce
the REV to the unit cell of the porous medium and would need to determine an actual REV
size for the flow process to be represented adequately.

We add periodic conditions at the boundaries of the REV since source terms of the prob-

lem are periodic themselves. By virtue of Eq. 53,
∇∗v
v

terms are negligible. We therefore

determine the closure variables v∗, p∗ through the approximate system

�v
νβ

(v∗ · ∇∗v∗) = −∇∗ p∗ + ∇∗2v∗ + εβh
∗, (64a)

∇∗ · v∗ = 0, (64b)

v∗ = 0 at Aβσ , (64c)

〈v∗〉β = λ. (64d)

Here it should be clear that the surface integral in Eq. 52 is well approximated by h∗v issued
from Eq. 64, only if length scale assumptions stated by Eqs. 53 and 55 are acceptable. The
filtration law is then given from Eq. 52 by

�2

μβ

gβ (λ, δ) = −h∗v. (65)

Depending on v, the equation above gives the macroscopic pressure drop for a steady inertial
flow in the λ direction.

B The Asymptotic Generalized Forchheimer Equation

We inject the expansion Eq. 19 into Eq. 64 to derive the asymptotic generalized Forchheimer
equation (AGF). Order i ≥ 0 corresponds to

S∗
i = −∇∗ p∗

i + ∇∗2v∗
i + εβh

∗
i , (66a)

∇∗ · v∗
i = 0, (66b)

v∗
i = 0 at Aβσ , (66c)



with

S∗
0 = 0, (67a)

S∗
1 = v∗

0 · ∇∗v∗
0, (67b)

S∗
i = ∑

k+p=i−1

(
v∗
k · ∇∗v∗

p + v∗
p · ∇∗v∗

k

)
,∀i � 2, (67c)

and

h∗
i = − �

εβVβ

∫

Aβσ

nβσ · (−Ip∗
i + ∇∗v∗

i

)
dA. (68)

To solve System 66 we proceed with this change of variables

v∗
i = v∗

i0 + B∗
0 · h∗

i , (69a)

p∗
i = p∗

i0 + b∗
0 · h∗

i , (69b)

with

0 = −∇∗b∗
0 + ∇∗2B∗

0 + εβ I, (70a)

∇∗ · B∗
0 = 0, (70b)

B∗
0 = 0 at Aβσ , (70c)

and

S∗
i = −∇∗ p∗

i0 + ∇∗2v∗
i0, (71a)

∇ · v∗
i0 = 0, (71b)

v∗
i0 = 0 at Aβσ . (71c)

From Eq. 63 we have 〈v∗〉β = λ. Hence, the coefficients of expansion in Eq. 19 verify
〈
v∗
0

〉β = λ, (72a)
〈
v∗
i

〉β = 0,∀i ≥ 1. (72b)

Taking the average of order 0 in Eq. 69, we obtain

λ = 〈
v∗
00

〉β + 〈
B∗
0

〉β · h∗
0. (73)

Clearly, v∗
00 and p∗

00 are both zero, and Eq. 14 at order 0 reads

gβ = −μβ

�2

(〈
B∗
0

〉β)−1 · λv = −μβ

�2

(〈
B∗
0

〉β)−1 · 〈vβ

〉β
, (74)

which is the well-known (Darcy 1856; Whitaker 1999) Darcy’s law (Eq. 3). The Darcy
permeability tensor, KD, can be identified as

KD = εβ�2
〈
B∗
0

〉β
. (75)

Darcy’s law is a zero-order approximation with regard to our perturbation analysis in δ. As
the flow rate increases, inertia effects at the pore scale become increasingly important. The
system goes beyond the creeping flow regime and deviates from Darcy’s law.

The average of Eq. 69 gives
〈
v∗
i

〉β = 〈
v∗
i0

〉β + 〈
B∗
0

〉β · h∗
i ,∀i ≥ 1. (76)



Recalling Eqs. 72 and 75 we obtain

h∗
i = −εβ�2K−1

D · 〈v∗
i0

〉β
,∀i ≥ 1. (77)

Hence, Eq. 14 at order N ≥ 1 is (AGF)

gβ = −εβμβK
−1
D ·

⎛

⎝λ −
N∑

i≥1

〈
v∗
i0

〉β
δi

⎞

⎠ v. (78)

C The Cubic Regime

Eq. 78 at order one gives (KD is symmetric3)

1

μβ

gβ = −εβv

⎛

⎜
⎝ K−1

D · λ
︸ ︷︷ ︸
Darcy term

− 〈
v∗
10

〉β · K−1
D δ

︸ ︷︷ ︸
first-order correction

+O
(
δ2

)
⎞

⎟
⎠ . (79)

We note that v∗
0 , v

∗
10 , B

∗
0 verify a no-slip condition onAβσ and periodic boundary conditions

over the REV. b∗
0 verifies periodic boundary conditions over the REV.We start by contracting

Eq. 70 with v∗
10

0 = −v∗
10 · ∇∗b∗

0 + v∗
10 · ∇∗2B∗

0 + εβv∗
10. (80)

As v∗
10 is divergence free, we can rewrite the first term as a divergence

v∗
10 · ∇∗b∗

0 = ∇∗ · (v∗
10b

∗
0

)
. (81)

Also

v∗
10 ·

(
∇∗2B∗

0

)
= v∗

10 j∂
∗
i

(
∂∗
i B

∗
0 jm

)
(82a)

= ∂∗
i

(
v∗
10 j∂

∗
i B

∗
0 jm

)
− ∂∗

i v
∗
10 j∂

∗
i B

∗
0 jm, (82b)

Hence, taking the average of Eq. 80, applying Gauss theorem and using boundary conditions
for v∗

0 and v
∗
10 we obtain

εβ

〈
v∗
10

〉β = 〈T∇∗v∗
10 : ∇∗B∗

0

〉β
. (83)

We contract the order 1 of Eq. 71 with B∗
0

(
v∗
0 · ∇∗v∗

0

) · B∗
0 = − (∇∗ p∗

10

) · B∗
0 +

(
∇∗2v∗

10

)
· B∗

0, (84)

rewrite
(∇∗ p∗

10

) · B∗
0 = ∇∗ · (B∗

0 p
∗
10

)
, (85a)

(
∇∗2v∗

10

)
· B∗

0 = ∇∗ · (∇∗v∗
10 · B∗

0

) −T ∇∗v∗
10 : ∇∗B∗

0, (85b)

and take the average ofEq. 84.ApplyingGauss theoremand recalling the boundary conditions
for v∗

0 and v
∗
10, we have

〈
v∗
0 · ∇∗v∗

0 · B∗
0

〉β = − 〈T∇∗v∗
10 : ∇∗B∗

0

〉β
. (86)

3 One can show using Eq. 70 that KD is symmetric [see proof in Whitaker (1999)].



With Eq. 83 we obtain
εβ

〈
v∗
10

〉β = − 〈
v∗
0 · ∇∗v∗

0 · B∗
0

〉β
. (87)

Let vd such as
vd = �2B∗

0 · K−1
D · d, (88)

with d a unit vector along a generic direction. The component along d of the first-order
correction to Darcy’s law reads

εβ�2f(1) · d = εβ�2
〈
v∗
10

〉β · K−1
D · d = − 〈

v∗
0 · ∇∗v∗

0 · vd
〉β

. (89)

Let us rewrite the
〈
v∗
0 · ∇∗v∗

0 · vd
〉β term using

v∗
0 · ∇∗v∗

0 · vd = v∗
0 · ∇∗ (

v∗
0 · vd

) − v∗
0 · ∇∗vd · v∗

0 (90a)

= ∇∗ · (v∗
0v

∗
0 · vd

) − v∗
0 · ∇∗vd · v∗

0, (90b)

so that
εβ�2f(1) · d = − 〈

v∗
0 · ∇∗v∗

0 · vd
〉β = 〈

v∗
0 · ∇∗vd · v∗

0

〉β
. (91)

This is a general equation that gives information on the component in the d direction of the
first correction to Darcy’s law.

C.1 Drag Component F‖

The direction d = λ corresponds to
εβvd = v∗

0. (92)

With Eq. 91 we clearly have that

εβvd = v∗
0 implies

〈
v∗
0 · ∇∗v∗

0 · vd
〉β = 0, (93)

which is equivalent to F (1)
‖ = 0 due to Eq. 89, so that in a periodic porous medium

1

μβ

λ · gβ (λ, v) = −εβv
[
λ · K−1

D · λ + O
(
δ2

)]
, (94)

i.e. , the first drag inertial correction to Darcy’s law of our AGF is cubic in terms of the
average velocity.

C.2 Orthogonal Component F⊥

Let λ⊥ be a unit vector orthogonal to the flow direction λ. Unfortunately, Eq. 91 does not
help to prove that F (1)

⊥ = 0. We can, however, show that F (1)
⊥ must be zero under specific

assumptions on the microstructure of the porous medium.
Equation 91 gives the information that �2f(1) · d is quadratic in λ, hence

f(1)(+λ) = f(1)(−λ) (95)



If we consider a porous medium that verifies the reversibility assumption (Eq. 22), as in
Firdaouss et al. (1997), we have at order 1

−εβv
[
K−1
D · (−λ) + f(1)(−λ)δ + O

(
δ2

)]

︸ ︷︷ ︸
gβ (−λ,v)

= −
(
−εβv

[
K−1
D · (+λ) + f(1)(+λ)δ + O

(
δ2

)])

︸ ︷︷ ︸
−gβ (+λ,v)

,

(96)
so that if our AGF equation is correct, we must have

f(1) (−λ) = −f(1) (+λ) , (97)

which implies that f(1) = 0, or equivalently

F (1)
‖ = F (1)

⊥ = 0. (98)

We have already shown that our asymptotic development yields F (1)
‖ = 0 for any periodic

porous media. Hence, the new information in Eq. 98 is that F (1)
⊥ must be zero for our

AGF expression to be valid in porous media where the reversibility assumption is verified.
Interestingly, Eq. 91 does not allow to conclude (to our knowledge) that F (1)

⊥ = 0 when
d = λ⊥ a direction orthogonal to the flow direction λ, and yet, this has to be the case under
the reversibility assumption.
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