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Introduction

A fluid flowing through a porous medium experiences three main transition phenomena with increasing flow rate [START_REF] Schneebeli | Expériences sur la limite de validité de la loi de Darcy et l'apparition de la turbulence dans un écoulement de filtration[END_REF][START_REF] Chauveteau | Régimes d'écoulement en milieu poreux et limite de la loi de Darcy[END_REF][START_REF] Dybbs | A new look at porous media fluid mechanics-Darcy to turbulent[END_REF]Fandetal.1987;Seguin et al. 1998a, b;Lage1998;[START_REF] Venkataraman | Darcian, transitional, and turbulent flow through porous media[END_REF][START_REF] Hlushkou | Transition from creeping via viscous-inertial to turbulent flow in fixed beds[END_REF]. The first one is a transition from the creeping flow regime to the non-Darcian, inertial steady regime. Then, the flow evolves to successive unsteady regimes. The last transition occurs when turbulence appears, characterized by unsteady, chaotic flow features in the porous medium. This latter regime presents several open modeling issues [START_REF] Masuoka | Turbulence model for flow through porous media[END_REF][START_REF] Antohe | A general two-equation macroscopic turbulence model for incompressible flow in porous media[END_REF][START_REF] Kuwahara | Numerical modeling of turbulent flow in porous media using a spatially periodic array[END_REF][START_REF] Nakayama | A macroscopic turbulence model for flow in a porous medium[END_REF][START_REF] Chandesris | A macroscopic turbulence model for flow in porous media suited for channel, pipe and rod bundle flows[END_REF]DeLemos 2012;[START_REF] Jin | Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study[END_REF][START_REF] Jin | Turbulence modeling for flows in wall bounded porous media: an analysis based on direct numerical simulations[END_REF]. Since the filtration law in porous media strongly depends on the flow regime, it is of importance to characterize these transitions. This has applications to natural and as well as industrial systems, including modeling the transport of chemical species [START_REF] Whitaker | Diffusion and dispersion in porous media[END_REF][START_REF] Vafai | Boundary and inertia effects on convective mass transfer in porous media[END_REF][START_REF] Hoffmann | Experimental study on combustion in porous media with a reciprocating flow system[END_REF][START_REF] Souto | Dispersion in two-dimensional periodic porous media. Part I: hydrodynamics[END_REF][START_REF] Wood | Inertial effects in dispersion in porous media[END_REF]) and heat [START_REF] Hong | Effects of non-darcian and nonuniform porosity on vertical-plate natural convection in porous media[END_REF][START_REF] Amiri | Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media[END_REF][START_REF] Goyeau | Numerical study of double-diffusive natural convection in a porous cavity using the Darcy-Brinkman formulation[END_REF][START_REF] Quintard | Two-medium treatment of heat transfer in porous media: numerical results for effective properties[END_REF][START_REF] Kim | Flow and heat transfer correlations for porous fin in a plate-fin heat exchanger[END_REF][START_REF] Aydın | Non-Darcian forced convection flow of viscous dissipating fluid over a flat plate embedded in a porous medium[END_REF][START_REF] Chikhi | Pressure drop and average void fraction measurements for two-phase flow through highly permeable porous media[END_REF] in, e.g. , packed-bed column reactors, soil percolation, microscopic heat exchangers and the fluid-structure coupling in flexible canopies (Ghisalberti andNepf 2002, 2005;[START_REF] Gosselin | Mécanismes d'interactions fluide-structure entre écoulements et végétation[END_REF][START_REF] Favier | Passive separation control using a self-adaptive hairy coating[END_REF][START_REF] Gosselin | Drag reduction by reconfiguration of a poroelastic system[END_REF].

Under a macroscopic pressure gradient g β ,1 a fluid initially at rest in a porous medium accelerates2 until the internal viscous dissipation of the flow balances the rate of work of g β . In the steady regime, the flow reaches a state characterized by a spatially averaged velocity v β β . This velocity can be written as

v β β = vλ, (1) 
with λ the unit vector defining the mean flow direction and v the amplitude of v β β . To a given g β corresponds a unique v β β , and vice versa. We write this as a filtration law, (λ, v). A priori the nature of g β (λ, v) depends on the topology of the porous medium, the flow regime and the physical properties of the fluid [START_REF] Forchheimer | Wasserbewegung durch boden[END_REF][START_REF] Carman | Fluid flow through granular beds[END_REF][START_REF] Klinkenberg | The permeability of porous media to liquids and gases[END_REF][START_REF] Ergun | Fluid flow through packed columns[END_REF][START_REF] Brace | Permeability of granite under high pressure[END_REF][START_REF] Jackson | The permeability of fibrous porous media[END_REF][START_REF] Wong | The transition from brittle faulting to cataclastic flow in porous sandstones: mechanical deformation[END_REF].

g β = g β
In "Appendix A.1," we show that for a fluid under constant volume force s β , the macroscopic pressure gradient can be related to the gradient of the intrinsic average pressure ∇ p β β as

g β = ∇ p β β -ρ β s β , ( 2 
)
where β is the porosity of the medium. In the creeping flow regime, g β (λ, v) is Darcy's law [START_REF] Darcy | Les fontaines publiques de la ville de Dijon[END_REF], which amounts to write

∇ p β β -ρ β s β = -β μ β K -1 D • λv, (3) 
where μ β is the dynamic viscosity of the fluid. The "•" symbol in Eq. 3 refers to the usual inner product. K D (a second-order tensor) is the permeability of the porous medium. We can further define a scalar characterizing the permeability for a flow in the λ direction as

K -1 λ = ||K -1 D • λ||. ( 4 
)
Beyond the creeping flow regime, nonlinear effects at the pore scale modify the flow pattern, and the filtration law becomes non-Darcian [START_REF] Hassanizadeh | High velocity flow in porous media[END_REF][START_REF] Mei | The effect of weak inertia on flow through a porous medium[END_REF][START_REF] Firdaouss | Nonlinear corrections to Darcy's law at low Reynolds numbers[END_REF][START_REF] Ma | Physical explanations of non-Darcy effects for fluid flow in porous media[END_REF][START_REF] Rojas | Nonlinear flow in porous media[END_REF][START_REF] Skjetne | New insights on steady, nonlinear flow in porous media[END_REF][START_REF] Panfilov | Singular nature of nonlinear macroscale effects in high-rate flow through porous media[END_REF][START_REF] Zimmerman | Nonlinear regimes of fluid flow in rock fractures[END_REF][START_REF] Lasseux | On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media[END_REF]. We can extend Darcy's law as

∇ p β β -ρ β s β = -β μ β K -1 D • λ + f v. ( 5 
)
A simple way of characterizing the range of validity of Darcy's law is by considering the Forchheimer number [START_REF] Ruth | On the derivation of the Forchheimer equation by means of the averaging theorem[END_REF][START_REF] Andrade | Inertial effects on fluid flow through disordered porous media[END_REF][START_REF] Lage | Darcy's experiments and the deviation to nonlinear flow regime[END_REF][START_REF] Zeng | A criterion for non-Darcy flow in porous media[END_REF][START_REF] Muljadi | The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation[END_REF])

F λ = ||f|| K -1 λ , ( 6 
)
which is the ratio of the nonlinear to the linear part of the filtration law. Darcy's law remains valid as long as F λ 1 and the inertial transition occurs when F λ ∼ 1.

To capture the inertial transition a priori, a Reynolds number Re C is of practical interest. Let ν β be the kinematic viscosity of the fluid (μ β = ν β ρ β ). In general, Re C is expressed as a ratio of the advection time to the viscous diffusion time, in terms of v, ν β , and a length scale as

Re C = v ν β . ( 7 
)
The choice of the characteristic length scale to define such a Reynolds number is widely discussed in the literature [START_REF] Lage | Darcy's experiments and the deviation to nonlinear flow regime[END_REF][START_REF] Lasseux | On the stationary macroscopic inertial effects for one phase flow in ordered and disordered porous media[END_REF][START_REF] Venkataraman | Darcian, transitional, and turbulent flow through porous media[END_REF][START_REF] Beavers | Non-Darcy Flow Through Fibrous Porous Media[END_REF][START_REF] Mcdonald | Flow through porous media-the Ergun equation revisited[END_REF][START_REF] Philipse | Non-Darcian airflow through ceramic foams[END_REF]Li and Ma 2011a, b;[START_REF] Muljadi | The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation[END_REF]. For a given porous medium, should be easy to identify, and such that Re C past a well-defined threshold indicates the inertial transition. A simple choice for is a characteristic pore size β [START_REF] Amiri | Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media[END_REF]Li and Ma 2011a, b;[START_REF] Andrade | Percolation disorder in viscous and nonviscous flow through porous media[END_REF][START_REF] Clavier | Experimental investigation on single-phase pressure losses in nuclear debris beds: identification of flow regimes and effective diameter[END_REF][START_REF] Clavier | Experimental study of single-phase pressure drops in coarse particle beds[END_REF]. However, such a microscopic length scale may not be well defined for porous media that exhibit non-trivial or complex microstructures, such as sandstones.

If we have an explicit filtration law, we can use the Forchheimer number as a Reynolds number [START_REF] Andrade | Inertial effects on fluid flow through disordered porous media[END_REF][START_REF] Lage | Darcy's experiments and the deviation to nonlinear flow regime[END_REF][START_REF] Zeng | A criterion for non-Darcy flow in porous media[END_REF]. For example, the classical filtration law (Ergun's equation, Ergun 1952) takes into account inertia effect on the filtration law via a quadratic form. For a one-dimensional filtration process, this quadratic filtration law is a scalar relation given by

g β (λ, v) = β μ β K -1 λ (1 + bv) v. ( 8 
)
Inertia effects are small as long as the quadratic part is small against the linear part. Taking the ratio of the quadratic part to the linear part (i.e. , bv 1

), and identifying it with Re C , i.e. , bv

1 = v ν β , ( 9 
)
we obtain as

= bν β . ( 10 
)
This means that if we use this expression for the characteristic length scale in Eq. 7, Re C compares directly the relative influence of the linear and inertial contributions in the macroscopic filtration law. Unfortunately in practice, either experiments or direct numerical simulations (DNS) are needed to determine the parameter b. Moreover, Eq. 8 assumes a quadratic form, which is questionable when going from the linear to the nonlinear regime [START_REF] Mei | The effect of weak inertia on flow through a porous medium[END_REF][START_REF] Firdaouss | Nonlinear corrections to Darcy's law at low Reynolds numbers[END_REF][START_REF] Rojas | Nonlinear flow in porous media[END_REF][START_REF] Skjetne | New insights on steady, nonlinear flow in porous media[END_REF][START_REF] Clavier | Experimental investigation on single-phase pressure losses in nuclear debris beds: identification of flow regimes and effective diameter[END_REF][START_REF] Wodie | Correction non linéaire de la loi de Darcy[END_REF][START_REF] Lucas | High velocity flow through fractured and porous media: the role of flow non-periodicity[END_REF]). In Sect. 3.2.1 we propose an expression for the Forchheimer number. Yet another possibility is the use of a permeability-based Reynolds number [START_REF] Beavers | Non-Darcy Flow Through Fibrous Porous Media[END_REF][START_REF] Vafai | Boundary and inertia effects on flow and heat transfer in porous media[END_REF][START_REF] Nield | Convection in Porous Media[END_REF][START_REF] Papathanasiou | A computational evaluation of the Ergun and Forchheimer equations for fibrous porous media[END_REF][START_REF] Dukhan | Experimental flow in various porous media and reconciliation of Forchheimer and Ergun relations[END_REF][START_REF] Muljadi | The impact of porous media heterogeneity on non-Darcy flow behaviour from pore-scale simulation[END_REF]) defined as

Re k = v K λ/ β ν β . ( 11 
)
One of the main advantages of this definition is that = K λ/ β is not a pure geometrical length scale. defined as such is associated with Stokes flow in the specific structure of interest and characterizes the overall viscous dissipation in the porous medium. Therefore, = K λ/ β should be much better than a geometrical pore length scale at characterizing viscous effects for the purpose of comparing them to inertial effects, which is the point of a Reynolds number. Unfortunately, even Re k is inaccurate in predicting the inertial deviation, as will be shown later on for a variety of porous structures (Sect. 3.2.2). An obvious example of this is the case of cylindrical pores, for which the non-Darcian, steady regime simply does not exist [START_REF] Skjetne | New insights on steady, nonlinear flow in porous media[END_REF]. This is due to the fact that in cylindrical pores, the streamlines (i.e. , lines that are parallel to the v β -field) are locally orthogonal to velocity gradients ∇v β . Under such circumstances, in the momentum part of the Navier-Stokes equations

v β • ∇v β advective term = - 1 ρ β ∇ p β + ν β ∇ 2 v β + s β , ( 12 
)
the advective term vanishes identically, canceling inertia effects. In this case the Navier-Stokes equations reduce to the linear Stokes equations, until the first transition to a non-Darcian, unsteady turbulent regime, which is due to a flow instability that starts several orders of magnitude beyond the stage Re k = 1 (e.g. , [START_REF] Sharp | Transition from laminar to turbulent flow in liquid filled microtubes[END_REF].

In this paper, we use the framework of volume averaging to derive a filtration law for weakly inertial flows in periodic porous media. We carefully define the volume-averaging operator and apply it to the Navier-Stokes equations in the porous medium. We make a separation of scales assumption to derive the volume-averaged equations, which are closed by a model of the average hydrodynamic force. This requires the modeling of small scale fields and leads to a closure problem (CP) over a representative elementary volume (REV).

We further use the CP to derive the expression for the Reynolds number, Re C . We proceed by evaluating the order of magnitude of the advective term in the CP, and this allows us to correct Re k with a new parameter C λ , thus yielding Re C . C λ characterizes the likeliness of the flow in the microstructure to deviate from Darcy's law and is thus the inertial sensitivity of the microstructure. The filtration law is evaluated from direct numerical simulations (DNS) on a variety of porous structures, and it is shown that Re C is much better suited than Re k to predict the non-Darcian transition and resolves the pathological case of cylindrical pores. We finally use this new scaling to derive a generalized Forchheimer law in a highly anisotropic porous medium.

Nonlinear Effects

In this section, we propose a framework to study the effect of inertia on the filtration law of a porous medium.

Pore Scale Flow Model

We consider a rigid periodic porous medium, saturated with a Newtonian fluid. We call β the fluid phase and σ the solid phase within the domain, cf. Fig. 1. We focus on steady and incompressible flows as a response to a constant source term s β . Hence, the fluid phase is driven by the steady Navier-Stokes equations, i.e. ,

∇ • v β v β = -1 ρ β ∇ p β + ν β ∇ 2 v β + s β , (13a) ∇ • v β = 0, (13b) 
v β = 0 at A βσ , (13c) F = λ•f K -1 λ , ( 16a 
)
F ⊥ = (I -λλ) • f K -1 λ , (16b) ω = (I -λλ) • g β β μ β K -1 λ v , n 1 . ( 16c 
)
The triplet (F , F ⊥ , ω) completely determines f according to the relation

f = K -1 λ F λ + F ⊥ (cos (ω) n 1 + sin (ω) n 2 ) . ( 17 
)
The advantage of the decomposition expressed by Eq. 16 will become clear in the following.

Asymptotic Analysis

In this section, we want to check that the form of our closure problem is compatible with results from the literature [START_REF] Mei | The effect of weak inertia on flow through a porous medium[END_REF][START_REF] Firdaouss | Nonlinear corrections to Darcy's law at low Reynolds numbers[END_REF][START_REF] Wodie | Correction non linéaire de la loi de Darcy[END_REF]. The end result of our analysis here is an asymptotic generalized Forchheimer law (AGF); the developments starts with the identification of a parameter δ given by

δ = ν β v, (18) 
and with the search of an asymptotic form of Eq. 14 when δ 1. According to Eq. 64, we assume that the v * and p * fields can be approximated as

v * = v * 0 + δv * 1 + δ 2 v * 2 + O δ 3 , ( 19a 
)
p * = p * 0 + δ p * 1 + δ 2 p * 2 + O δ 3 . ( 19b 
)
This yields

f = N i≥0 f (i) δ i , with f (i) = K -1 D • v * i0 β , ( 20 
)
where v * i0 are solutions of Stokes problems (see "Appendix B"). This yields the asymptotic form of Eq. 14

g β = -β μ β K -1 D • ⎛ ⎝ λ - N i≥1 v * i0 β δ i ⎞ ⎠ v, ( 21 
)
which is our asymptotic generalized Forchheimer law. In Sect. 3, the AGF expressed in Eq. 21 is compared with data from DNS for different microstructures. Numerical and experimental evidences [START_REF] Rojas | Nonlinear flow in porous media[END_REF][START_REF] Skjetne | New insights on steady, nonlinear flow in porous media[END_REF][START_REF] Clavier | Experimental investigation on single-phase pressure losses in nuclear debris beds: identification of flow regimes and effective diameter[END_REF][START_REF] Lucas | High velocity flow through fractured and porous media: the role of flow non-periodicity[END_REF]) indicate that f (1) vanishes, leading to a first cubic correction to Darcy's law. This regime is referred to as the cubic regime, or weak inertia regime, and was studied by two-scale asymptotics [START_REF] Mei | The effect of weak inertia on flow through a porous medium[END_REF][START_REF] Firdaouss | Nonlinear corrections to Darcy's law at low Reynolds numbers[END_REF][START_REF] Wodie | Correction non linéaire de la loi de Darcy[END_REF], with theoretical results for periodic porous media. In particular, [START_REF] Firdaouss | Nonlinear corrections to Darcy's law at low Reynolds numbers[END_REF] have shown that f (1) must be zero for periodic porous media which verify the reversibility assumption

g β (-λ, v) = -g β (λ, v) + O δ 2 . ( 22 
)
For example, a square array of cylinders verifies exactly the reversibility assumption, due to symmetry properties. It has further been shown [START_REF] Mei | The effect of weak inertia on flow through a porous medium[END_REF][START_REF] Wodie | Correction non linéaire de la loi de Darcy[END_REF] that F

(1) = 0 in periodic porous media, while the orthogonal term F

(1)

⊥ is a priori nonzero. This yields a partial cubic regime in the general case, or the cubic regime in the specific case of porous media for which F ⊥ vanishes due to characteristics of the microstucture. Such media are defined as isotropic, but it is likely that a zero F ⊥ requires a disordered microstructure, or a symmetry condition. Indeed ordered porous media may be isotropic with respect to the permeability (K D = K λ I), while the F ⊥ term is nonzero (e.g., [START_REF] Koch | Moderate Reynolds number flows through periodic and random arrays of aligned cylinders[END_REF]. [START_REF] Mei | The effect of weak inertia on flow through a porous medium[END_REF], [START_REF] Firdaouss | Nonlinear corrections to Darcy's law at low Reynolds numbers[END_REF] and [START_REF] Wodie | Correction non linéaire de la loi de Darcy[END_REF], asymptotic expansions are performed on both the Reynolds number Re C , and the ratio of microscopic and macroscopic scales

l = β L v , ( 23 
)
where for technical reasons intrinsic to the asymptotic method, the value of Re C is related to the value of l . Although there are cases for which this relation is justified, there is no physical reasons for this relation in the general case, as l and Re C are a priori independent parameters. In particular, the assumption l 1 does not require Re C to be small. Even for turbulent flows where Re C 1, the length scales separation assumption holds ( l 1) in homogeneous porous media [START_REF] Jin | Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study[END_REF]. Moreover, a creeping flow may encounter strong shear, yielding Re C 1 while l ∼ 1. Our approach recovers all these theoretical results from the literature. We show that F

(1) = 0 (see "Appendix C") for any periodic porous medium. For media that satisfy the reversibility assumption, F

(1) ⊥ = 0 is required for our AGF to be consistent. In the framework of volume averaging, we have derived the closure problem before carrying out the perturbation analysis in Re C , keeping l and Re C independent. The form of our closure problem is further validated by DNS in Sect. 3.2.1.

Inertial Sensitivity Parameter

We use the closure problem (Eq. 64) to develop a dimensionless number that characterizes the Darcy/non-Darcy transition. To do so, we use Eqs. 5 and 14 and rewrite the first equation in System 64 as

v ν β v * • ∇ * v * (I) = -∇ * p * + ∇ * 2 v * + β 2 K -1 D • λ + f (II) . ( 24 
)
In the creeping flow regime, term (I) in Eq. 24 is negligible and term (II) is the only source term. As the flow rate increases, f becomes important via the increasing importance of term (I). We thus consider the ratio of the orders of magnitude of terms (I) and (II). As term (II) is of order β 2 K -1 λ at the Darcy/non-Darcy transition, we have

(I) (II) v ν β ζ (v * • ∇ * v * ) β 2 K -1 λ , ( 25 
)
where the symbol ζ defines a norm for the field v * •∇ * v * . ζ is essential in the evaluation of the order of magnitude of term (I). Any choice for ζ is acceptable, depending on the goal of the study. A choice of ζ is proposed in Sect. 3, where our goal is to find the proper Reynolds number to assess the validity of Darcy's law for a variety of porous media. We now wish to eliminate from Eq. 24 and start from the consideration that, at steady state, the total rate of work of the pressure gradient balances the total internal viscous dissipation over the REV

V β v β • -g β dV = V β μ β ∇v β : T ∇v β dV . ( 26 
)
We integrate a second time over V β and recall Eq. 50 to obtain

-v β β • g β = μ β ∇v β : T ∇v β β . ( 27 
)
Rewriting the left-hand-side with definition 5 yields

∇v β : T ∇v β β = λ • β K -1 D • λ + f λ • β K -1 D • λ, ( 28 
)
at the Darcy/non-Darcy transition. Using the change of variables of Eq. 57, we can write

2 λ • β K -1 D • λ = ∇ * v * : T ∇ * v * β . ( 29 
)
This gives an expression for , as

= ∇ * v * : T ∇ * v * β λ • β K -1 D • λ , ( 30 
)
which we use in Eq. 25

(I) (II) v ν β K λ β ζ (v * • ∇ * v * ) ∇ * v * : T ∇ * v * β λ • K -1 D • λ K -1 λ . ( 31 
)
We approximate v * by v * 0 , a zero-order approximation in terms of δ (see Eq. 19), and obtain

(I) (II) v ν β K λ β ζ v * 0 • ∇ * v * 0 ∇ * v * 0 : T ∇ * v * 0 β λ • K -1 D • λ K -1 λ . ( 32 
)
We now define Re C as

Re C = v ν β K λ β C λ , ( 33 
)
with the inertial sensitivity, C λ , defined as

C λ = ζ v * 0 • ∇ * v * 0 ∇ * v * 0 : T ∇ * v * 0 β λ • K -1 D • λ K -1 λ , ( 34 
)
such that by construction

Re C (I) (II) . ( 35 
)
The length scale therefore corresponds to

= K λ β C λ . ( 36 
)
The distribution pattern of the advective term v * 0 •∇ * v * 0 is closely related to the microstructure and the flow direction, as shown in Fig. 5, Sect. 3.2.2. The effect of inertia on Darcy's law is driven by the shape of the microstructure, and the topological parameter C λ measures the ability of inertia to affect Darcy's law. The inertial sensitivity C λ is specific to both the porous medium and the flow direction λ. We can distinguish among different cases:

-C λ 1: K λ/ β is the proper length scale to measure the effects of inertia.

-C λ 1: Re k = 1 does not capture the inertial transition, as illustrated by the limit case of cylindrical pores. In this case, C λ identically vanishes as streamlines are orthogonal to velocity gradients. Therefore, Darcy's law is correct for any Re k in the laminar regime and breaks down only when transition to unsteady flow occurs [START_REF] Skjetne | New insights on steady, nonlinear flow in porous media[END_REF].

-C λ 1: This situation is opposite to the previous one. Effects of inertia impact the macroscale Darcy's law early, while Re k 1 still holds. There are no obvious examples of geometry for this case, but it is more likely that tortuous geometries generate large values of C λ (see later Table 1). This classification resolves the issue encountered with certain porous media for which Re k 1 is not the correct order of magnitude to assess the validity of Darcy's law. The relevance of Re C is further assessed in Sect. 3.2.2 by the interpretation of numerical experiments over a variety of porous structures.

Numerical Results

We test the AGF and validate the relevance of Re C in describing the inertial transition on model and realistic porous media with various microstructures (Fig. 2). We consider -Two-dimensional arrangements of cylinders, -Two-dimensional convergent-divergent unit cells of equal throat size, -Two-and three-dimensional geometries exhibiting complex, realistic geometrical features, obtained by x-ray tomography imaging of a sandstone.

The acronyms of all studied geometries are provided in Table 1.

Method

Flow simulations are carried out with the C++ toolbox Open∇FOAM ® , which allows for the development of numerical solvers, and comes up with pre-and post-processing utilities for computational fluid dynamics (CFD). Open∇FOAM ® is released as free and open-source software, and this allows the user to customize the source code in order to implement her/his own problem. This aspect of Open∇FOAM ® is crucial, because in order to compute the coefficients of the asymptotic form of F , we need to solve Stokes problems obtained in "Appendix B" with specific source terms. We use a classical finite-volume discretization method. For each cell of the mesh, an integral form of the equations to solve is obtained by integrating the momentum-and mass-conservation law over the volume of the cell. The

Re C = v K λ/ β ν β C λ . ( 44 
)
We show that this definition of Re C is appropriate to measure the effect of microscopic inertia on the filtration law. Further, we find that a possible application of this new scaling is the derivation of a correction to Darcy's law for weakly inertial flows in highly anisotropic porous media, where the tensorial Darcy's law collapses.

Finally, our study focuses on the evolution of F , while the examination of the orthogonal component F ⊥ and of the angle ω (Eq. 16) is left for future work. Anisotropic, ordered, three-dimensional microstructures are expected to generate varying features of F ⊥ and ω with increasing Re C ; such features are the object of current research efforts.

A Derivation of the Filtration Law

In this section, we give some technical details of the derivation of the filtration law by the volume-averaging method.

A.1 Upscaling via Volume Averaging

We volume-average Eq. 13 in order to obtain a representation at the macroscopic scale. To do so, we first recall a few fundamental steps. Let ψ be a generic field, and γ β be the β-phase indicator. We define the averaging volume V (x) of characteristic length 0 , whose centroid is located in x (which can be in any of the two phases, see Fig. 1). The intrinsic average of ψ at point x is defined in a general way as

ψ β | x = R 3 m (r -x) γ β (r) ψ (r) dV (r) , ( 45 
)
where r = x + y β . This definition of the intrinsic average ψ β | x allows to choose m so that the resulting intrinsic average is suitable to the porous medium that we volume-average (Quintard and Whitaker 1994a;[START_REF] Davit | Technical notes on volume averaging in porous media I: how to choose a spatial averaging operator for periodic and quasiperiodic structures[END_REF]. m is a kernel normalized so that

R 3 m (r) γ β (r) dV (r) = 1. ( 46 
)
In the following we drop the | x subscript when there is no ambiguity regarding the point where the average is evaluated.

The volume-averaging method uses a perturbation decomposition of the fields. Each field ψ is decomposed as the sum of an average field, ψ β , and a spatial deviation, ψ, so that

ψ = ψ β + ψ, (47) 
with the underlying idea that

||∇ ψ β || ||∇ ψ||. (48) 
In Eq. 52, we neglected macroscopic advection and diffusion terms, provided separation of microscopic and macroscopic length scales of the velocity field [START_REF] Whitaker | The Forchheimer equation: a theoretical development[END_REF])

||∇ v β β || ||∇ ṽβ ||. ( 55 
)
This assumption is reasonable in homogeneous porous media, far from macroscopic boundaries. Thus, for example, the region under study should not lie in a strong shear layer, nor near a wall or a crack.

A.2 The Closure Problem for Spatial Deviations

Equation 52 is a form of the volume-averaged Navier-Stokes equations which needs additional equations (i.e. , a closure) for the surface integral term to be evaluated. To derive these equations, we first need to decompose Eq. 13 applying Eq. 47 to v β and p β . By virtue of Eq. 55, we neglect gradients of macroscopic velocities against those of the microscopic velocities in the momentum transport equation and obtain

v β β + ṽβ • ∇ ṽβ = -1 ρ β ∇ pβ + ν β ∇ 2 ṽβ - g β ρ β , (56a) 
∇ • ṽβ = 0, ( 56b 
) ṽβ = -v β β on A βσ . (56c) 
At this stage, it is common to introduce a tensorial relation between space deviations and the intrinsic average of the velocity v β β [START_REF] Whitaker | The Forchheimer equation: a theoretical development[END_REF]. This mapping is adapted to the linear, creeping flow regime, as it expresses the fact that the microscopic flow field is a linear combination of the flow in three independent directions of space. Clearly this is not adapted here due to the nonlinear term in Eq. 56. We therefore drop the linear closure relationship of [START_REF] Whitaker | The Forchheimer equation: a theoretical development[END_REF] and keep working with the deviation fields. We introduce the modified dimensionless perturbations v * and p * defined as

v * = ṽβ v + λ, p * = pβ μ β v , (57) 
with as yet undefined. Under such circumstances

∇ ṽβ = v ∇v * + ∇v v v * - ∇ v β β v , ∇ pβ = v μ β ∇ p * + p * ∇v v . ( 58 
)
We inject Eqs. 57 and 58 into Eq. 56. Under the assumption given by Eq. 55 we obtain

ν β v| x+y β v * • ∇ * v * = -∇ * p * + ∇ * 2 v * + β h * , ( 59 
)
where

h * = - β V β A βσ n βσ • -I p * + ∇ * v * d A, (60a) 
∇ * = ∇. (60b) 
The weighting function m does not appear in the surface integral, due to the spatially periodic model that we introduce later for the closure variables v * and p * (Quintard and Whitaker 1994b). Compared to the linear case, a non-local term remains in Eq. 59. As we intend to solve for v * and p * on a REV of characteristic size 0 , we linearize

v| x+y β = v 1 + y β • ∇ * v v + O 0 L v 2 . ( 61 
)
We also have that

v β β = v * v β (62a) = v v * β + v * y β β • ∇ * v v + O 0 L v 2 , ( 62b 
) hence v * β = λ -v * y β β • ∇ * v v + O 0 L v 2 . ( 63 
)
We define the REV as the unit cell of our periodic porous medium. This is consistent with the flow regimes considered. In many systems there may be transport processes with characteristic length scales much larger than the unit cell of the microstructure, as argued in, e.g. , [START_REF] Jin | Numerical investigation of the possibility of macroscopic turbulence in porous media: a direct numerical simulation study[END_REF], [START_REF] Agnaou | From steady to unsteady laminar flow in model porous structures: an investigation of the first hopf bifurcation[END_REF][START_REF] De Carvalho | Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams[END_REF]. In such cases, one cannot reduce the REV to the unit cell of the porous medium and would need to determine an actual REV size for the flow process to be represented adequately.

We add periodic conditions at the boundaries of the REV since source terms of the problem are periodic themselves. By virtue of Eq. 53, ∇ * v v terms are negligible. We therefore determine the closure variables v * , p * through the approximate system

v ν β (v * • ∇ * v * ) = -∇ * p * + ∇ * 2 v * + β h * , ( 64a 
)
∇ * • v * = 0, ( 64b 
) v * = 0 at A βσ , ( 64c 
) v * β = λ. ( 64d 
)
Here it should be clear that the surface integral in Eq. 52 is well approximated by h * v issued from Eq. 64, only if length scale assumptions stated by Eqs. 53 and 55 are acceptable. The filtration law is then given from Eq. 52 by

2 μ β g β (λ, δ) = -h * v. ( 65 
)
Depending on v, the equation above gives the macroscopic pressure drop for a steady inertial flow in the λ direction.

B The Asymptotic Generalized Forchheimer Equation

We inject the expansion Eq. 19 into Eq. 64 to derive the asymptotic generalized Forchheimer equation (AGF). Order i ≥ 0 corresponds to

S * i = -∇ * p * i + ∇ * 2 v * i + β h * i , (66a) ∇ * • v * i = 0, (66b) 
v * i = 0 at A βσ , (66c) 
with

S * 0 = 0, (67a) 
S * 1 = v * 0 • ∇ * v * 0 , (67b) 
S * i = k+ p=i-1 v * k • ∇ * v * p + v * p • ∇ * v * k , ∀i 2, (67c) 
and

h * i = - β V β A βσ n βσ • -I p * i + ∇ * v * i dA. ( 68 
)
To solve System 66 we proceed with this change of variables

v * i = v * i0 + B * 0 • h * i , ( 69a 
)
p * i = p * i0 + b * 0 • h * i , ( 69b 
) with 0 = -∇ * b * 0 + ∇ * 2 B * 0 + β I, (70a) ∇ * • B * 0 = 0, (70b) 
B * 0 = 0 at A βσ , (70c) 
and

S * i = -∇ * p * i0 + ∇ * 2 v * i0 , (71a) ∇ • v * i0 = 0, (71b) 
v * i0 = 0 at A βσ . ( 71c 
)
From Eq. 63 we have v * β = λ. Hence, the coefficients of expansion in Eq. 19 verify

v * 0 β = λ, ( 72a 
)
v * i β = 0, ∀i ≥ 1. (72b) 
Taking the average of order 0 in Eq. 69, we obtain

λ = v * 00 β + B * 0 β • h * 0 . ( 73 
)
Clearly, v * 00 and p * 00 are both zero, and Eq. 14 at order 0 reads

g β = - μ β 2 B * 0 β -1 • λv = - μ β 2 B * 0 β -1 • v β β , ( 74 
)
which is the well-known (Darcy 1856; Whitaker 1999) Darcy's law (Eq. 3). The Darcy permeability tensor, K D , can be identified as

K D = β 2 B * 0 β . ( 75 
)
Darcy's law is a zero-order approximation with regard to our perturbation analysis in δ. As the flow rate increases, inertia effects at the pore scale become increasingly important. The system goes beyond the creeping flow regime and deviates from Darcy's law. The average of Eq. 69 gives

v * i β = v * i0 β + B * 0 β • h * i , ∀i ≥ 1. ( 76 
)
Recalling Eqs. 72 and 75 we obtain

h * i = -β 2 K -1 D • v * i0 β , ∀i ≥ 1. (77) 
Hence, Eq. 14 at order N ≥ 1 is (AGF)

g β = -β μ β K -1 D • ⎛ ⎝ λ - N i≥1 v * i0 β δ i ⎞ ⎠ v. ( 78 
)

C The Cubic Regime

Eq. 78 at order one gives (K D is symmetric 3 )

1 μ β g β = -β v ⎛ ⎜ ⎝ K -1 D • λ Darcy term -v * 10 β • K -1 D δ first-order correction +O δ 2 ⎞ ⎟ ⎠ . ( 79 
)
We note that v * 0 , v * 10 , B * 0 verify a no-slip condition on A βσ and periodic boundary conditions over the REV. b * 0 verifies periodic boundary conditions over the REV. We start by contracting Eq. 70 with v

* 10 0 = -v * 10 • ∇ * b * 0 + v * 10 • ∇ * 2 B * 0 + β v * 10 . ( 80 
)
As v * 10 is divergence free, we can rewrite the first term as a divergence

v * 10 • ∇ * b * 0 = ∇ * • v * 10 b * 0 . (81) Also v * 10 • ∇ * 2 B * 0 = v * 10 j ∂ * i ∂ * i B * 0 jm (82a) = ∂ * i v * 10 j ∂ * i B * 0 jm -∂ * i v * 10 j ∂ * i B * 0 jm , (82b) 
Hence, taking the average of Eq. 80, applying Gauss theorem and using boundary conditions for v * 0 and v * 10 we obtain

β v * 10 β = T ∇ * v * 10 : ∇ * B * 0 β . ( 83 
)
We contract the order 1 of Eq. 71 with

B * 0 v * 0 • ∇ * v * 0 • B * 0 = -∇ * p * 10 • B * 0 + ∇ * 2 v * 10 • B * 0 , ( 84 
) rewrite ∇ * p * 10 • B * 0 = ∇ * • B * 0 p * 10 , (85a) ∇ * 2 v * 10 • B * 0 = ∇ * • ∇ * v * 10 • B * 0 -T ∇ * v * 10 : ∇ * B * 0 , (85b) 
and take the average of Eq. 84. Applying Gauss theorem and recalling the boundary conditions for v * 0 and v * 10 , we have

v * 0 • ∇ * v * 0 • B * 0 β = -T ∇ * v * 10 : ∇ * B * 0 β . ( 86 
)
3 One can show using Eq. 70 that K D is symmetric [see proof in [START_REF] Whitaker | The Method of Volume Averaging[END_REF]].

With Eq. 83 we obtain

β v * 10 β = -v * 0 • ∇ * v * 0 • B * 0 β . ( 87 
)
Let v d such as

v d = 2 B * 0 • K -1 D • d, (88) 
with d a unit vector along a generic direction. The component along d of the first-order correction to Darcy's law reads

β 2 f (1) • d = β 2 v * 10 β • K -1 D • d = -v * 0 • ∇ * v * 0 • v d β . ( 89 
)
Let us rewrite the v * 0

• ∇ * v * 0 • v d β term using v * 0 • ∇ * v * 0 • v d = v * 0 • ∇ * v * 0 • v d -v * 0 • ∇ * v d • v * 0 (90a) = ∇ * • v * 0 v * 0 • v d -v * 0 • ∇ * v d • v * 0 , ( 90b 
)
so that

β 2 f (1) • d = -v * 0 • ∇ * v * 0 • v d β = v * 0 • ∇ * v d • v * 0 β . ( 91 
)
This is a general equation that gives information on the component in the d direction of the first correction to Darcy's law.

C.1 Drag Component F

The direction d = λ corresponds to

β v d = v * 0 . ( 92 
)
With Eq. 91 we clearly have that

β v d = v * 0 implies v * 0 • ∇ * v * 0 • v d β = 0, (93) 
which is equivalent to F (1) = 0 due to Eq. 89, so that in a periodic porous medium

1 μ β λ • g β (λ, v) = -β v λ • K -1 D • λ + O δ 2 , ( 94) 
i.e. , the first drag inertial correction to Darcy's law of our AGF is cubic in terms of the average velocity.

C.2 Orthogonal Component F ⊥

Let λ ⊥ be a unit vector orthogonal to the flow direction λ. Unfortunately, Eq. 91 does not help to prove that F

(1) ⊥ = 0. We can, however, show that F

(1)

⊥ must be zero under specific assumptions on the microstructure of the porous medium.

Equation 91 gives the information that 2 f (1) • d is quadratic in λ, hence

f (1) (+λ) = f (1) (-λ) (95)
If we consider a porous medium that verifies the reversibility assumption (Eq. 22), as in [START_REF] Firdaouss | Nonlinear corrections to Darcy's law at low Reynolds numbers[END_REF], we have at order 1 (+λ,v) , (96) so that if our AGF equation is correct, we must have f (1) (-λ) = -f (1) (+λ) , (97) which implies that f (1) = 0, or equivalently

-β v K -1 D • (-λ) + f (1) (-λ)δ + O δ 2 g β (-λ,v) = --β v K -1 D • (+λ) + f (1) (+λ)δ + O δ 2 -g β
F (1) = F
(1)

⊥ = 0. ( 98 
)
We have already shown that our asymptotic development yields F

(1) = 0 for any periodic porous media. Hence, the new information in Eq. 98 is that F

(1)

⊥ must be zero for our AGF expression to be valid in porous media where the reversibility assumption is verified. Interestingly, Eq. 91 does not allow to conclude (to our knowledge) that F

(1) ⊥ = 0 when d = λ ⊥ a direction orthogonal to the flow direction λ, and yet, this has to be the case under the reversibility assumption.

See Sect. A.1 and Eq. 54 for a detailled derivation of g β with respect to the microscopic fields.

This initial transient regime is generally neglected in macroscopic models.
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