Evidencing Fast, Massive and Reversible H⁺-Insertion in Nanostructured TiO₂ Electrodes at Neutral pH. Where Do Protons Come From?

Yee-Seul Kim, [†] Sébastien Kriegel, [†] Kenneth D. Harris, ^{#,§} Cyrille Costentin, [†]

Benoît Limoges^{\dagger ,*} and Véronique Balland^{\dagger ,*}

[†] Laboratoire d'Electrochimie Moléculaire, UMR CNRS 7591, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Jean-Antoine de Baïf, F-75205 Paris Cedex 13, France

 $^{\#}$ NRC National Institute for Nanotechnology, Edmonton, Alberta, Canada T6G 2M9 and Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2V4.

§ Leibniz-Institute für Polymerforshung Dresden, 01069 Dresden, Germany

Email: <u>veronique.balland@univ-paris-diderot.fr</u> <u>limoges@univ-paris-diderot.fr</u>

Figure S1. (Left) CVs and (right) CVAs ($\lambda = 780$ nm) recorded at 7 different 1 µm-thick GLAD-TiO₂ electrodes (arising from 2 different GLAD deposition batches) in 0.1 M HEPES (pH 7.0) and 0.3 M KCl. Each color denotes a simultaneously recorded CV/CVA pair . Scan rate: 0.1 V·s⁻¹. $T = 25^{\circ}$ C.

Figure S2. Top: CVs recorded at 1 µm-thick GLAD-TiO₂ electrodes in aqueous solutions of 0.3 M KCl complemented with increasing concentration of HEPES buffer (pH 7.0). Buffer concentrations C_B are reported on top of the graphs, and currents are converted to electron flux density normalized to the scan rate. The ordinate is $\phi/v = i/FSv$ with units mol·V⁻¹·cm⁻². Scan rates: 0.05 V·s⁻¹ (black), 0.1·V s⁻¹ (blue), 0.2 V·s⁻¹ (purple) and 0.5 V·s⁻¹ (magenta). Bottom: CVAs ($\lambda = 780$ nm) recorded during the 0.1 V·s⁻¹ CV scans. The ordinate is in absorbance units. The abscissa for both the CVs and CVAs are potential (V) with respect to the Ag/AgCl (3 M KCl) reference electrode. $T = 25^{\circ}$ C.

Figure S3. Top: CVs recorded at 1 µm-thick GLAD-TiO₂ electrodes immersed in increasingly acidic aqueous solutions (pHs are reported above the graphs). Currents are converted to electron flux density normalized to the scan rate. The ordinate is $\phi/v = i/FSv$ with units mol·V⁻¹·cm⁻². Scan rates: 0.05 V·s⁻¹ (black), 0.1 V·s⁻¹ (blue), 0.2 V·s⁻¹ (purple) and 0.5 V·s⁻¹ (magenta). Bottom: CVAs ($\lambda = 780$ nm) recorded simultaneously to the CVs (only experiments conducted at 0.1 V·s⁻¹ are shown). The ordinate is in absorbance units. The abscissa for both the CVs and CVAs are potential (V) with respect to the Ag/AgCl (3 M KCl) reference electrode. $T = 25^{\circ}$ C.

Figure S4. Top: CVs previously presented in Figure S2 with correction to remove the capacitive contribution to the total current (i.e., by subtracting the CVs recorded in 0.3 M KCl without buffer). Bottom: CVs previously presented in Figure S3 with correction to remove the capacitive contribution to the total current (i.e., by subtracting the CVs recorded in 0.3 M KCl). Currents were all converted to electron flux density normalized to the square root of scan rate. Scan rates: 0.05 V·s⁻¹ (black), 0.1 V·s⁻¹ (blue), 0.2 V·s⁻¹ (purple) and 0.5 V·s⁻¹ (magenta). The abscissa are potential (V) with respect to the Ag/AgCl (3 M KCl) reference electrode. $T = 25^{\circ}$ C.

Figure S5. (A,B) CVs recorded at 1 µm-thick GLAD-TiO₂ electrodes immersed in aqueous solutions containing 0.3 M KCl and (A) 76 mM acidic form of HEPES (i.e. 0.1 M HEPES buffer, pH 7.0) and (B) 76 mM LiCl. Scan rates: 0.05 V·s⁻¹ (black), 0.1 V·s⁻¹ (blue), 0.2 V·s⁻¹ (purple) and 0.5 V·s⁻¹ (magenta). (C) Same as (A,B) but with 0.3 M KCl and (red) 0.66 M acidic form of HEPES (0.66 M AH in 0.86 M HEPES, pH 7.0) or (dark blue) 1 M LiCl, both recorded at a scan rate of 0.1 V·s⁻¹. (D,E) CVAs ($\lambda = 780$ nm) recorded during the corresponding CV scans in (A,B). $T = 25^{\circ}$ C.

Figure S6. CVs (black line) and DCVAs (circles) expressed in flux density and recorded at (left) neutral pH in the presence of (top) 1 mM or (bottom) 50 mM HEPES, or (right) acidic pHs. The optimized overlay of DCVAs and CVs was obtained by adjusting the ε_{780} value to (blue) 800 M⁻¹·cm⁻¹ and (magenta) 1200 M⁻¹·cm⁻¹. All experiments were conducted in the presence of 0.3 M KCl at a scan rate of 0.1 V·s⁻¹. $T = 25^{\circ}$ C.

Table S1. Features of CVs and CVAs shown in Figure 2.

рН	1.85	7	7
$[H_{3}O^{+}](mM)$	14	~0	~0
[AH] (mM)	-	0	77
$E_{onset} (V)^{a}$	-0.30	-0.60	-0.60
$E^{0'}(\mathbf{V})^{\mathbf{b}}$	-0.68	-	- 1.06
$\Delta E_p (\mathrm{mV})$	220	-	120
$\Delta A_{780}^{\text{max}}$	0.51	0.15	0.34
$\mathcal{E}_{780} (M^{-1} cm^{-1})$	1200	800	800

^a Potential that characterize the onset increase of absorbance measured at 780 nm. ^b Formal potential obtained from the average of cathodic and anodic peak potentials at the slowest scan rate.