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On the dispersion of a non-orthogonal TLM cell

Zaiqing Li1, Sandrick Le Maguer2 and Michel Ney2,*,y

1Chinese Aeronautical Radio Electronics Research Institute (CARERI), 200233 Shanghai, China
2Laboratory of Electronics and Systems for Telecommunications (LEST, CNRS), ENST Bretagne/University of Western

Brittany, CS 83818, 29238 Brest Cedex 3, France

The numerical dispersion of a non-orthogonal transmission line matrix (TLM) algorithm is for the first time
investigated. First of all, the dispersion relation is derived in the most general possible case. Then, the
validation is carried out in the analysis of a simple one-dimensional example. Results show that the theory is
in excellent agreement with the numerical simulation. Numerical results concerning various cell shape
dispersion characteristics are presented and show some relatively weak numerical dispersion even for rather
highly distorted cells. Finally, some indications concerning cell shape selection to minimize the non-
orthogonal TLM cell are proposed.
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1. INTRODUCTION

The accuracy of the transmission line matrix (TLM) modeling scheme depends on various
factors, such as mesh coarsness, time truncation and numerical dispersion. The latter is
characterized by the wave velocity error produced by the numerical model (discrete medium)

compared with the real velocity that occurs in the corresponding physical (homogenous)

medium. The dispersion error depends on various factors, such as the medium parameters, the
wave direction of propagation relatively to the mesh axis, the mesh size and the time step. As a
result, a complete dispersion analysis is a difficult task. In addition, an analytical solution for
dispersion characteristic is possible only for infinite mesh with identical cells. Therefore, only
restricted cases that fulfill these conditions can be tackled in the case of non-orthogonal cells.
However, even for limited cases, the dispersion analysis of a numerical scheme allows one to
extract useful information to minimize dispersion error, such as cell geometry, time step, etc.
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Some intense work has been carried out on the dispersion of TLM algorithm. For instance, the

well-known symmetrical condensed node (SCN) was thoroughly analyzed [1, 2].

A general dispersion relation for unloaded node (without stubs) was derived under the form of

an eigenvalue equation. Solutions were also found [3, 4] for the super SCN (SSCN) [5]. Some

subsequent work concerns extension of dispersion analysis to orthogonal SCN cell loaded with

stubs [6–17]. In particular, a dispersion relation was derived based on a field representation in

Hilbert space [15–17]. Finally, dispersion relation for non-orthogonal TLM cells proposed by Hein

[18, 19] has not been yet published in detail. This subject constitutes the objective of this paper.

2. THE DISPERSION RELATION OF A NON-ORTHOGONAL TLM

Let us consider an infinite mesh composed of identical cells. To fulfill the constraint related to

dispersion analysis, these cells need not be orthogonal, i.e. parallel to Cartesian axes, but should

have parallel tilted faces (see Figure 1). As a result, such a mesh constitutes a periodically loaded

medium of infinite extent. Now, consider an ordinary plane wave propagating in such a medium.

The TLMmechanism uses arm voltages to propagate fields in the mesh. At ðn� 1
2
ÞDt (Dt being the

time step), voltages are incident on the node. Voltages propagate in the node arms scatter and

produce reflected voltages at ðnþ 1
2
ÞDt: If an�1=2 and b

nþ1=2 are the reflected and incident node

voltage vectors, respectively, the scattering process at every node can be expressed as

b
nþ1=2 ¼ Sa

n�1=2 ð1Þ

where nþ 1=2 and n� 1=2 are discrete time indexes and S the 18� 18 TLM node scattering

matrix that is generally composed of 12 ports and six stubs. Then, there exists a relationship

between reflected voltages at nþ 1=2 and n� 1=2

b
n�1=2

T ¼ b
nþ1=2 ð2Þ

Figure 1. Non-orthogonal TLM cell.
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where

T ¼ T0I ð3Þ
and for a wave of angular frequency o, T0 ¼ e�joDt; where I is the unity matrix.

Hence, one can derive a relationship between reflected and incident voltages at the same time

index:

b
n ¼ TSa

n ð4Þ
At this stage, one can take into account the transfer relationship between neighboring cells. It

includes the discrete space shift between cells and constitutes a second relationship between

incident and reflected voltages at time index n:

a
n ¼ P

0
b
0n ¼ Pb

n ð5Þ
where P0 is the transfer matrix between neighboring cells, b0n the neighboring cell access voltage

vector and P the connection matrix that represents the transfer relation of access voltages,

including spatial shift as illustrated in Figure 2.

At time index n; neighboring cell reflected voltage b011 becomes the incident voltage a3: At the

same time, there exists a simple relationship between b011 and b11:

b011 ¼ e�jk�Drb11 ð6Þ
The above relations can be summarized as follows:

an3 ¼ b0n11 ¼ e�jk�Drbn11 ¼ P3;11b
n
11 ð7Þ

where k is the wave vector, Dr is the vector along the path shown in Figure 2 and P3;11 the P

matrix element located at the third row and 11th column. Hence, one can write

P3;11 ¼ e�jk�Dr ð8Þ
The complete determination of the matrix P will be carried out as explained above. Details will

follow later. From (4) and (5), one obtains

a
n ¼ PTSa

n ð9Þ

Figure 2. Voltage transfer between neighboring cells.
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or equivalently the eigenvalue matrix equation:

ðPTS� IÞan ¼ 0 ð10Þ

Note that according to (3), one has

PTS ¼ TPS ð11Þ

Thus, by using the definition of T; (10) becomes

ðPS� e�jz
IÞan ¼ 0 ð12Þ

where z is the phase shift defined by z ¼ oDt: Therefore, eigenvalues are obtained by finding

roots of the polynomial generated by the determinant

detðPS� e�jz
IÞ ¼ 0 ð13Þ

This constitutes the non-orthogonal TLM node dispersion relation under the assumption of

identical cells in the infinite mesh. It has the same form as for other TLM nodes except that P

and S have different components.

Now, scattering matrix S and connection matrix P remain to be determined. First of all,

geometrical node vector Bi and surface vector Ai have to be evaluated (see Figure 3). By

considering quantities illustrated in Figure 1, it can be noted that if u; v;w; y1; y2 and y3 are

known, the various angles are related in a spherical coordinate system:

cos y3 ¼ cos a1 cos a2 ð14Þ

cos y2 ¼ cos a1 cosðy1 � a2Þ ð15Þ

Figure 3. Illustration of node vector Bi and surface vector A1 [18].
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from which one can deduce

a1 ¼ arccos
cos2 y2 � 2 cos y1 cos y2 cos y3 þ cos2 y3

sin y1
ð16Þ

a2 ¼ arctan
cos y2 � 2 cos y1 cos y3

sin y1 cos y3
ð17Þ

P1 and P2 have Cartesian coordinates as follows:

u1 ¼ v cos y3

v1 ¼ v sin a1

w1 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 � u21 � v21

q

2

6

6

6

4

3

7

7

7

5

and

u2 ¼ w cos y1

v2 ¼ 0

w2 ¼ w sin y1

2

6

6

4

3

7

7

5

ð18Þ

Vectors Bi and Ai ði ¼ 1; 2; 3Þ are generally expressed by [18]:

Bi ¼
X

4

v¼1

s
v
i ; si 2 fu; v;w; g ð19Þ

A1 ¼
1

4

X

n;m

v
n � w

m ðn ¼ 1; 3; m ¼ 2; 4Þ ð20Þ

Thus, according to the geometry of Figure 1 and (18), the above vectors become

B1 ¼ 4uex; A1 ¼ u1w2ex � ðu2w1 þ u1w2Þey þ u2v1ez

B2 ¼ 4u1ex þ 4v1ey þ 4w1ez; A2 ¼ uw2ey

B3 ¼ �4u2ex þ 4w2ez; A3 ¼ �uw1ey þ uv1ez

ð21Þ

where ex; ey and ez are the Cartesian unit vectors. Hence, one completely defines the geometry of

the non-orthogonal cell by the matrices:

B ¼

4u 4u1 �4u2

0 4v1 0

0 4w1 4w2

2

6

6

4

3

7

7

5

; A ¼

u1w2 0 1

�ðu2w1 þ u1w2Þ uw2 �uw1

u2v1 1 uv1

2

6

6

4

3

7

7

5

ð22Þ

From the above matrices, the node scattering matrix S can be determined. Also, from the matrix

B expressed in (22), the connection matrix P elements can be determined

P1;12 ¼ P5;7 ¼ ejk�B2=4 ¼ ejðkxu1þkyv1þkzw1Þ; P9;2 ¼ P8;4 ¼ e�jk�B3=4 ¼ ejðkxu2�kzw2Þ

P12;1 ¼ P7;5 ¼ e�jk�B2=4 ¼ e�jðkxu1þkyv1þkzw1Þ; P3;11 ¼ P6;10 ¼ e�jk�B1=4 ¼ ejkxu

P2;9 ¼ P4;8 ¼ ejk�B3=4 ¼ ejð�kxu2þkzw2Þ; P11;3 ¼ P10;6 ¼ e�jk�B1=4 ¼ e�jkxu

ð23Þ

where k is the free space wave vector. Finally, reflected voltages on the six stubs come back to

the nodes. Hence,

P13;13 ¼ P14;14 ¼ P15;15 ¼ 1; P16;16 ¼ P17;17 ¼ P18;18 ¼ 1 ð24Þ

All other matrix elements are zero.
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As seen before, the dispersion problem leads to the eigenvalue problem (12). For orthogonal

nodes, it is possible to find analytical solutions in certain cases, such as unloaded SCN and cubic

SSCN. Other cases lead to complex expression to solve, in particular non-cubic cell and/or operation

at arbitrary time steps smaller than the maximum allowed value ðDtmaxÞ that insures stability. In the

case of non-orthogonal TLM cell, 12 lines and six stubs are involved and expressions (12) and (13)

are rather involved. Consequently, it is simpler to use a numerical procedure for solutions.

3. TYPES OF SOLUTION

Although no analytical solutions will be given, a preliminary qualitative analysis is necessary to

extract the types of solutions expected. In (13) S and P are 18� 18 matrices. Thus, the left-hand

side of (13) can be written as a 18th-order polynomial and (12) can be expressed as follows:

X

18

i¼0

Bil
18�i ¼ 0 ð25Þ

where l ¼ e�jz: Hence, there will be 18 eigenvalues li ¼ e�jzi that correspond to various possible

modes. These modes can be classified into four major categories [1, 8]:

(1) l ¼ 1 or z ¼ 0: Eigenvalues corresponding to non-propagating modes and representing

electro- and magneto-static cases.

(2) l ¼ �1 or z ¼ p: Eigenvalues corresponding to non-propagating modes and representing

non-physical solutions oscillating at frequency, f ¼ 1=ð2DtÞ:
(3) z5p=2: Eigenvalues corresponding to physical modes at low frequency.

(4) z5p=2: Eigenvalues corresponding to physical modes at high frequency.

Among the above types of solutions, dispersion analysis is concerned only by dynamic modes,

i.e. solutions of types 3 and 4. In addition, high-frequency solutions are located beyond the

TLM model validity. Consequently, one shall consider only type 3 solutions.

4. VALIDATION

In (13), matrix P elements (23) are related to the wave vector k (see Figure 4). Knowing k;f;c;
the vector components are given by

ky ¼ k cos y

kx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2y

q

sin c

kz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � k2x � k2y

q

ð26Þ

where k is the magnitude of the vector k: Now, suppose an isotropic medium with arbitrary

relative permittivity and relative permeability er and mr; respectively. Thus, k ¼ 2p=l; where l is

the medium (known) physical wavelength. Consequently, for such a medium, one can

completely determine the numerical values involved in the eigenvalue equation (13) with the

exception of zi values, which are to be found numerically.
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For comparison, one has to determine the wave propagation factor *k (which corresponds to

the phase velocity *c ¼ *c0=
ffiffiffiffiffiffiffiffi

mrer
p

) given by the TLM model. Selected solutions ðzi5p=2Þ are

related to the numerical wave propagation factor as

z ¼ oDt ¼ *kcDt ð27Þ

where c is the medium speed of light. Consequently, since the medium is known and the time

step fixed, the numerical wave propagation factor can be computed for each case (cell geometry,

medium, wave incidence and Dt) from the eigenvalues and using (27):

*k ¼ zi

cDt
¼

zi
ffiffiffiffiffiffiffiffi

mrer
p

c0Dt
ð28Þ

Note that one selects the wave vector value by taking into account the usual limit of acceptable

dispersion of the TLM Dl=l � 0:1; where Dl is the maximum size of the cell. Finally, the relative

error on the wave propagation factor is defined here by

dk0 ¼
*k� k

k
ð29Þ

It has been shown that all condensed TLM schemes have a second-order accuracy [20, 21]. As a

result, one can evaluate the relative error dk corresponding to a wavelength l from (29)

established for l0:

dk ¼ dk0
l0

l

� �2

ð30Þ

If one wishes to compare or validate the dispersion results with those obtained from TLM

simulation using the same non-orthogonal cells, the number of geometry cases to be tested is

quite limited. The reason, stated before, concerns the assumption on infinite mesh of identical

cells for dispersion analysis. Hence, a one-dimensional mesh extending to the direction of the

propagating wave to be simulated is chosen. The boundary conditions on lateral planes are

PECs perpendicular to the y-axis and PMCs to the z-axis (see Figure 5). That configuration

defines a plane wave linearly polarized along the y-axis. The free-cell geometric parameters are the

Figure 4. Wave vector components.

7



angle y1 and the cell dimensions ðu; v;wÞ: Finally, matching conditions must be applied to

terminate the computational domain. This can be easily achieved in TLM when orthogonal cells

are used. However, for the general cases considered here more complicated conditions should be

developed which is not the objective of the paper. The idea is to insert few orthogonal cells at both

ends of the mesh so that simple medium intrinsic impedance is used as termination to achieve a

perfect match. Since the velocity error is computed in the mesh zone where non-orthogonal cells

are present (see Figure 5), only some negligible effect on results is expected. Several simulations

were carried out and excellent agreement between both approaches was found.

However, some slight discrepancies occur for non-equilateral cells. For instance, Figure 6

shows theoretical results obtained from numerically solving (13) and relative error computed

from (30) for different angles of y1: Simulation results are obtained by the procedure described

above that extracts the velocity error from observation point indicated in Figure 5. One can still

observe some good agreement between both approaches. This also validates the assumption that

the insertion of few orthogonal cells to perfectly match both ends of the TLM mesh for

numerical experiments does not affect the results significantly. Also, one can already note the

excellent behavior of the non-orthogonal TLM node, since at the usual limit of TLM model

ðDl=l � 0:1Þ; the dispersion error is below 2% yet the cell is significantly distorted ðy1 ¼ 308Þ:
However, some other experiments need to be carried out to ascertain this concluding remark.

Finally, one can note that the dispersion occurs with a negative sign, which is opposite to the

behavior of the standard orthogonal SCN.

5. NUMERICAL ANALYSIS OF DISPERSION

As the numerical procedure to solve the dispersion eigenequation was validated, it will be used for

the solutions presented further. One shall always respect the empirical condition Dlmax=l ¼ 0:1 for
minimum dispersion to which a relative wave propagation error noted dk corresponds. This

dispersion limit condition will prevail unless mentioned otherwise in the simulations. Finally, note

that since the theoretical procedure is applied mentioning of the mesh and boundary is not

necessary as it implies the theoretical situation of an infinite mesh of identical cells.

5.1. Tilted cells in one direction only

To extract some trend of the dispersion, one shall first investigate the simple case of a cell with

faces parallel to the plane yOz only to be tilted. Hence, the inclination angle y1 varies from 10 to

Figure 5. One-dimensional TLM mesh for theoretical dispersion results validation.
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908 while y2 and y3 remain fixed at 908: Note that y1 is limited to a minimum value of 108: The
reason is that cell distortion below that value is practically never encountered. In addition,

y1 ¼ 08 is a singular value for dispersion and for low angle values some numerical problem may

arise. The propagation angle y is varied while the angle f is kept at 908 (wave vector in the plane

xOz). Finally, the characteristic parameters of the medium are also varied. In addition,

maximum time step is used so that the normalized time step

dt ¼ Dt=Dtmax ð31Þ

is unity, where Dtmax is the maximum time step that can be used for stable TLM operation.

Finally, the cell dimension is fixed such as u ¼ v ¼ w ¼ u0:
The first case illustrated in Figure 7 is for er ¼ mr as this condition is often used for dispersion

analysis of orthogonal cells since it simplifies dispersion equations. It was found that one single

mode solution is obtained (no degeneration). Note that for an angle y1 small (cell maximum

distortion), the error remains small of the order of 1%. The y1 ¼ 908 case corresponds to

orthogonal SCN cell and is shown for comparison. It is clearly observed that dispersion

increases as the angle y1 decreases. However, one has to mention that the maximum time step

must be decreased as well. Thus, this also contributes to increase dispersion.

The next case whose results are shown in Figure 8 is more general as er=mr: Two propagating

modes are possible and correspond to TE and TM cases, respectively [16]. One can observe that the

relative error is always negative and that the evolution in function of y1 differs from the case of

Figure 7. In addition, error can reach values as high as 3%. Note that this tendency is also observed

for orthogonal cells (curve y1 ¼ 908 in Figure 8) due to the high permittivity value. On the other

hand, the TMmode is slightly less dispersive, typically below 2% and its error behaves similar to the

case er ¼ mr illustrated in Figure 7. The objective of the previous case was to observe the influence of

high permittivity values. Simulations were carried out for the case of high permeability values. For

instance, errors (not shown here) for mr=4 have some similar behavior to the ones for high

permittivity values. However, the relative error was slightly smaller for the TE mode.

Another case, illustrated in Figure 9, is when both er and mr have high values but are different.

The trend is the same as the cases treated before, for both modes. However, the error is slightly

Figure 6. Relative error comparison between theory and numerical simulations ðu ¼ 1:5v ¼ 1:5wÞ:
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smaller for the TE mode (less than 2.5%). This can be explained by a slightly higher value of the

maximum time step, which contributes to decrease the dispersion.

From the above results, one can conclude that the dispersion is less severe than expected.

Indeed, for cell geometry severely distorted compared with orthogonal (cubic) case the wave

propagation factor relative error is below 3% at the TLM model limit ðDlmax=l ¼ 0:1Þ and

maximum time step. However, it seems that the contribution to the dispersion is rather due to

the decrease in the maximum time step compared with the orthogonal case than to the

geometrical distortion of the cells. More complex geometry is now analyzed to confirm the

above conclusion.

5.2. General geometry case with equilateral dimensions

One shall consider the case illustrated by Figure 10(a) for which all cell faces are tilted, for

er ¼ mr and arbitrary wave direction of propagation. Other parameters are the same as for the

Figure 7. TLM non-orthogonal cell propagation error. Case: er ¼ mr; y2 ¼ y3 ¼ f ¼ 908:

Figure 8. TLM non-orthogonal cell propagation error. Case: er ¼ 9; mr ¼ 1; y2 ¼ y3 ¼ f ¼ 908: (a) TE
mode and (b) TM mode.
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case treated under Section 5.1. Figure 10(a) is the orthogonal case (cubic SCN) shown for

reference. It has been shown that maximum dispersion for cubic orthogonal SCN occurs for

propagation along diagonal directions. Figure 10(b) shows the case for all faces tilted at 458: It
can be observed that the dispersion is still very well restricted to values below 2% and, hence,

confirms the excellent performance of the non-orthogonal cell. Several experiments carried out

with different geometrical values (not shown) produce comparable results.

5.3. Non-equilateral cells

Dispersion analyses for the orthogonal SCN have shown that non-parallelepipedic cells exhibit

higher velocity error compared with the cubic case. Thus, several numerical experiments have

been carried out to investigate the influence of the cell dimensions ðu; v;wÞ: Figure 11 shows two

typical situations in which only the angle y1 is modified. In Figure 11(a), the behavior is similar

to what was observed in Figure 7 except that the dispersion is larger since the relative

propagation error can reach 3% for the case y1 ¼ 108: This can be explained by the fact that the

Figure 9. TLM non-orthogonal cell propagation error. Case: er ¼ 9; mr ¼ 4; y2 ¼ y3 ¼ f ¼ 908: (a) TE
mode and (b) TM mode.

Figure 10. TLM equilateral non-orthogonal cell propagation error: (a) orthogonal case and (b) case:
er ¼ mr ¼ 1; y1 ¼ y2 ¼ y3 ¼ 458:
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time step is principally determined by the dimension v; which is smaller than for other

dimensions. Also, one notes that maximums occur for both cell diagonal directions in the

analysis plane. These two maximums get closer as y1 increases. This could be expected as fields

are always computed at the cell center faces. In Figure 11(b), the plane of analysis is maintained

but the dimension w is smaller than the others this time. On can note a different behavior with

an increase in the relative error up to 6% for y1 ¼ 108: Yet, for reasonable geometry distortion,

y15308; the error remains at the same level. This fact is still observed for arbitrary wave

propagation angle as shown in Figure 12.

The above numerical experiments lead us to conclude that non-equilaterality remains a major

factor for increasing dispersion. This has already been observed in the case of the orthogonal

SCN dispersion. This is explained by a corresponding decrease in the maximum time step. The

non-orthogonality of the cell enhances the effect but does not seem to play a major role in

dispersion increase, except the slight reduction in the maximum time step.

Figure 11. TLM non-equilateral, non-orthogonal cell propagation error: (a) case: u ¼ u0; v ¼ u0=2; w ¼
u0; er ¼ mr ¼ 1; y2 ¼ y3 ¼ f ¼ 908 and (b) case: u ¼ v ¼ u0; w ¼ u0=2; er ¼ mr ¼ 1; y2 ¼ y3 ¼ f ¼ 908:

Figure 12. TLM non-equilateral, non-orthogonal cell propagation error: case: u ¼ v ¼ u0; w ¼ u0=2;
er ¼ mr ¼ 1; y1 ¼ 608; y2 ¼ 458; y3 ¼ 708:
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5.4. Time-step effect

It was mentioned that time step has some impact on dispersion. With SCN, it is always

recommended to use the maximum time step for which dispersion is minimized. There is no

stability hazard as TLM is inherently stable even at the time step limit. However, when using

non-orthogonal equilateral cells, the maximal time step is slightly reduced. As a result, this must

be accompanied by some dispersion increase relatively to cubic SCN. Previous numerical

experiments have shown that the increase remains small if maximum time step operation is

maintained. Series of experiments were carried out to extract additional information about time

step reduction effect on dispersion for the non-orthogonal cell.

Figure 13 shows a typical result for an equilateral cell for different normalized time steps. The

cell geometry is fixed as well as the propagation direction. The effect is readily seen from Figure

13 as some substantial degradation is observed. Hopefully, dt remains close to unity, even for

greatly distorted cells as long as they are equilateral. These observations remain valid for other

numerical experiments (not shown here) involving other parameter values and for which the

maximum error value remains around 3.5%.

6. CONCLUSION

The dispersion characteristic of a non-orthogonal TLM cell was thoroughly investigated. The

derivation of the dispersion relation was presented in detail and leads to an eigenvalue problem.

Relevant solutions corresponding to propagating modes in the frequency range where TLM

model is valid were identified. The complexity of the matrix equation precludes analytical

solutions for dispersion. Instead, a numerical approach was used and validated by a numerical

experiment.

Simulation results show that the non-orthogonal TLM cell has some excellent behavior,

especially when one considers equilateral cells. In this case, even when severe geometrical

distortion is applied, the propagation relative error reaches maximum values that are about 2%

higher than the classic orthogonal SCN. Noteworthy to mention that all experiments were

Figure 13. TLM non-equilateral, non-orthogonal cell propagation error: case er ¼ mr ¼ 1; y1 ¼ 608;
y2 ¼ 708; y3 ¼ 508; f ¼ 908:
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performed at the usual limit ðDlmax=l ¼ 0:1Þ of the TLM model, where the dispersion is

maximum.

Finally, as observed for SCN (parallelepipedic case), the model accuracy degrades when non-

equal dimensions of the sides are used. It is explained by the fact that the maximum time step

must be further reduced in this case, thus contributing to TLM dispersion increase.
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