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Influence of a slow moving vehicle on traffic:

Well-posedness and approximation for a mildly nonlocal model

1 Introduction helle wonhe nd qotin developed in PH mrosopi model iming t desriing the sitution in whih slow moving lrge vehile ! us for instne ! redues the rod pity nd thus genertes moving ottlenek for the surrounding tr0 )owF heir model is given y guhy prolem for vightwillEhithmEihrds slr onservtion lw in one spe dimension with lol point onstrintF he onstrint is presried long the slow vehile trjetory (y(t), t)D the unE known y eing oupled to the unknown ρ of the onstrined v equtionF oint onstrints were introdued in IWD IU to ount for lolized in spe phenomen tht my our t exits nd whih t s ostlesF he onstrint in the model of PH depends upon the slow vehile speed ẏD where its position y veri(es the following yhi ẏ(t) = ω ρ(y(t) + , t) .

@eA eoveD ρ = ρ(x, t) ∈ [0, R] is the tr0 density nd ω : [0, R] → R + is noninresing vipshitz ontinuous funtion whih links the tr0 density to the slow vehile veloityF helle wonhe nd qotin proved n existene result for their model in PH with wveEfront trking pproh in the BV frmeworkF edjustments to the result were reently rought y vird nd ioli in PVF hespite the step forwrd mde in PID the uniqueness issue remined open for timeF sndeedD the pperne of the tre ρ(y(t) + , t) mkes it firly di0ult to get vipshitz ontinuous dependeny of the trjetory y = y(t) from the solution ρ = ρ(x, t)F xonethelessD highly nontrivil uniqueness result ws hieved y vird nd ioli in PUF o desrie the in)uene of single vehile on the tr0 )owD the uthors of PT proposed hiEyhi oupled model without onstrint on the )ux for whih they proposed in W two onvergent shemesF sn the present pperD we onsider modi(ed model where the point onstrint eomes nonlolD mking the veloity of the slow vehile depend on the men density evluted in smll viinity hed the driverF wore preiselyD insted of eD we onsider the reltion ẏ(t) = ω ¢ R ρ(x + y(t), t)µ(x) dx , @fA where µ ∈ BV(R; R + ) is weight funtion used to verge the densityF prom the mthemtil point of viewD this hoie mkes the study of the new model esierF sndeedD the uthors of SD QD R put forwrd tehniques for full wellEposedness nlysis of similr models with nonlol point onstrintsF prom the modeling point of viewD onsidering f mkes sense for severl resons outlined in etion QFSF he pper is orgnized s followsF etions P nd Q re devoted to the proof of the wellEposedness of the modelF sn etion R we introdue the numeril (nite volume sheme nd prove its onvergeneF en importnt step of the resoning is to prove BV regulrity for the pproximte solutionsF st serves oth in the existene proof nd it is entrl in the uniqueness rgumentF sn tht optiD the ppendix is essentilF sndeedD it is devoted to the proof of BV regulrity for entropy solutions to lrge lss of limited )ux modelsF vet us stress tht we highlight the interest of the BV loc disrete omptness tehnique of owers QP in the ontext of generl disontinuousE)ux prolemsF sn the numeril setion SD (rst we perform numeril simultions to vlidte our modelF hen we investigte oth qulittively nd quntittively the proximity etween our model ! in whih we onsidered f ! s δ → µ 0 + nd the model of PH in whih the uthors onsidered eF 2 Model, notion of solution and uniqueness 2.1 Model in the bus frame xote tht we (nd it onvenient to study the prolem in the us frmeD whih mens setting X = x -y(t) in the model of helle wonhe nd qotin in PHF ueeping in mind wht we sid ove out the nonlol onstrintD the prolem we onsider tkes the following formX

                   ∂ t ρ + ∂ x (F ( ẏ(t), ρ)) = 0 R × (0, T ) ρ(x, 0) = ρ 0 (x + y 0 ) x ∈ R F ( ẏ(t), ρ)| x=0 ≤ Q( ẏ(t)) t ∈ (0, T ) ẏ(t) = ω ¢ R ρ(x, t)µ(x) dx t ∈ (0, T ) y(0) = y 0 .
@PFIA eoveD ρ = ρ(x, t) denotes the tr0 densityD of whih mximum ttinle vlue is R > 0D nd

F ( ẏ(t), ρ) = f (ρ) -ẏ(t)ρ
denotes the norml )ux through the urve x = y(t)F e ssume tht the )ux funtion f : [0, R] → R is vipshitz ontinuous nd ellEshpedD whih re ommonly used ssumptions in tr0 dynmisX

f (ρ) ≥ 0, f (0) = f (R) = 0, ∃! ρ ∈ (0, R), f (ρ) 
(ρ -ρ) > 0 for FeF ρ ∈ (0, R). @PFPA sn PHD the uthors hose the funtion Q(s) = α × 1 -s 2

2
to presrie the mximl )ow llowed through ottlenek loted t x = 0F he prmeter α ∈ (0, 1) ws giving the redution rte of the rod pity due to the presene of the slow vehileF e use the s vrile to stress tht the vlue of the onstrint is funtion of the speed of the slow vehileF sn the sequel the s vrile will refer to quntities relted to the slow vehile veloityF egrding the funtion QD we n llow for more generl hoiesF pei(llyD

Q : [0, ω L ∞ ] → R +
n e ny vipshitz ontinuous funtionF st is well known ft tht in generlD the totl vrition of n entropy solution to onstrint guhy prolem my inrese @see IUD etion P for n exmpleAF roweverD this inrese n e ontrolled if the onstrint level does not reh the mximum levelF e mild ssumption on Q ! see essumption @QFUA elow ! will gurntee vilility of BV oundsD provided we suppose tht 1. e ouple (ρ, y) with ρ ∈ L ∞ (R × (0, T )) nd y ∈ W 1,∞ ((0, T )) is n dmissile wek solution to @PFIA if @iA the following regulrity is ful(lledX ρ ∈ C([0, T ]; L 1 loc (R)); @PFQA @iiA for ll test funtions ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd κ ∈ [0, R]D the following entropy inequlities re veri(ed for ll 0

ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R).
≤ τ < τ ≤ T X ¢ τ τ ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx + 2 ¢ τ τ R ẏ(t) (κ, q(t))ϕ(0, t) dt ≥ 0, @PFRA where R ẏ(t) (κ, q(t)) = F ( ẏ(t), κ) -min {F ( ẏ(t), κ), q(t)} nd q(t) = Q( ẏ(t)); @iiiA for ll test funtions ψ ∈ C ∞ ([0, T ]), ψ ≥ 0 nd some given ϕ ∈ C ∞ c (R) whih veri(es ϕ(0) = 1D the following wek onstrint inequlities re veri(ed for ll 0 ≤ τ < τ ≤ T X - ¢ τ τ ¢ R + ρ∂ t (ϕψ) + F ( ẏ(t), ρ)∂ x (ϕψ) dx dt - ¢ R + ρ(x, τ )ϕ(x)ψ(τ ) dx + ¢ R + ρ(x, τ )ϕ(x)ψ(τ ) dx ≤ ¢ τ τ q(t)ψ(t) dt ;
@PFSA @ivA the following wek yhi formultion is veri(ed for ll t ∈ [0, T ]X

y(t) = y 0 + ¢ t 0 ω ¢ R ρ(x, s)µ(x) dx ds .
@PFTA Denition 2.2. e will ll BVEregulr solution ny dmissile wek solution (ρ, y) to the rolem @PFIA whih lso veri(es ρ ∈ L ∞ ((0, T ); BV(R)).

Remark 2.1. st is more usul to formulte @PFRA with ϕ ∈ C ∞ c (R × [0, T ))D τ = 0 nd τ = T F he equivlene etween the two formultions is due to the regulrity @PFQAF Remark 2.2. es it hppensD the timeEontinuity regulrity @PFQA is tully onsequene of inE equlities @PFRAF sndeedD we will use the result IPD heorem IFP whih sttes tht if

Ω is n open suset of R nd if for ll test funtions ϕ ∈ C ∞ c (Ω × [0, T )), ϕ ≥ 0 nd κ ∈ [0, R]D ρ stis(es the following entropy inequlitiesX ¢ T 0 ¢ Ω |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ Ω |ρ 0 (x) -κ|ϕ(x, 0) dx ≥ 0, then ρ ∈ C([0, T ]; L 1 loc (Ω))F woreoverD sine ρ is ounded nd Ω\Ω hs veesgue mesure 0D ρ ∈ C([0, T ]; L 1 loc (Ω)
)F e will use this remrk severl times in the sequel of the pperD with Ω = R * F Remark 2.3. eny dmissile wek solution (ρ, y) to rolem @PFIA is lso distriutionl solution to the onservtion lw in @PFIAF hereforeD inequlities @PFSA imply the following ones for ll 0

≤ τ < τ ≤ T X ¢ τ τ ¢ R - ρ∂ t (ϕψ) + F ( ẏ(t), ρ)∂ x (ϕψ) dx dt + ¢ R - ρ(x, τ )ϕ(x)ψ(τ ) dx - ¢ R - ρ(x, τ )ϕ(x)ψ(τ ) dx ≤ ¢ τ τ q(t)ψ(t) dt ,
where ϕ nd ψ re suh s desried in he(nition PFI @iiiAF he interest of wek formultions @PFSAE@PFTA for the )ux onstrint nd for the yhi governing the slow vehile lies in their stility with respet to ρF pormultion @PFRA ! @PFTA is well suited for pssge to the limit of FeF onvergent sequenes of ext or pproximte solutionsF 2.3 Uniqueness of the BV-regular solution sn this setionD we prove stility with respet to the initil dt nd uniqueness for BVEregulr solutions to rolem @PFIAF e strt with the Lemma 2.3. If (ρ, y) is an admissible weak solution to Problem @PFIA, then ẏ ∈ W 1,∞ ((0, T )). In particular, ẏ ∈ BV([0, T ]).

Proof. henote for ll t ∈ [0, T ]D s(t) = ω ¢ R ρ(x, t)µ(x) dx . ine µ ∈ L 1 (R) ∩ L ∞ (R) nd ρ ∈ C([0, T ]; L 1 loc (R)
)D s is ontinuous on [0, T ]F fy de(nitionD y stis(es the wek yhi formultion @PFTAF gonsequentlyD for FeF t ∈ (0, T )D ẏ(t) = s(t)F e re going to prove tht s is vipshitz ontinuous on [0, T ]D whih will ensure tht ẏ ∈ W 1,∞ ((0, T ))F ine µ ∈ BV(R)D there exists sequene

(µ n ) n∈N ⊂ BV(R) ∩ C ∞ c (R) suh thtX µ n -µ L 1 -→ n→+∞ 0 nd TV(µ n ) -→ n→+∞ TV(µ). sntrodue for ll n ∈ N nd t ∈ [0, T ]D the funtion ξ n (t) = ¢ R ρ(x, t)µ n (x) dx . pix ψ ∈ C ∞ c ((0, T ))F ine ρ is distriutionl solution to the onservtion lw in @PFIAD we hve for ll n ∈ ND ¢ T 0 ξ n (t) ψ(t) dt = ¢ T 0 ¢ R ρ∂ t (ψµ n ) dx dt = - ¢ T 0 ¢ R F ( ẏ(t), ρ)∂ x (ψµ n ) dx dt = - ¢ T 0 ¢ R F ( ẏ(t), ρ)µ n (x) dx ψ(t) dt ,
whih mens tht for ll n ∈ ND ξ n is di'erentile in the wek senseD nd tht for FeF t ∈ (0, T )D

ξn (t) = ¢ R F ( ẏ(t), ρ)µ n (x) dx .
sn prtiulrD sine oth the sequenes ( µ n L 1 ) n nd (TV(µ n )) n re ounded ! sy y C > 0 ! we lso hve for ll n ∈ ND

ξ n L ∞ ≤ RC nd ξn L ∞ ≤ C( f L ∞ + ω L ∞ R). hereforeD the sequene (ξ n ) n is ounded in W 1,∞ ((0, T ))F xowD for ll t, τ ∈ [0, T ] nd n ∈ ND tringle inequlity yieldsX |s(t) -s(τ )| ≤ 2 ω L ∞ R µ n -µ L 1 + ω L ∞ ¢ R (ρ(x, t) -ρ(x, τ ))µ n (x) dx = 2 ω L ∞ R µ n -µ L 1 + ω L ∞ |ξ n (t) -ξ n (τ )| ≤ 2 ω L ∞ R µ n -µ L 1 + C ω L ∞ ( f L ∞ + ω L ∞ R) K |t -τ |.
vetting n → +∞D we get tht for ll t, τ ∈ [0, T ]D |s(t) -s(τ )| ≤ K|t -τ |D whih proves tht s is vipshitz ontinuous on [0, T ]F he proof of the sttement is ompletedF fefore stting the uniqueness resultD we mke the following dditionl ssumptionX

∀s ∈ [0, ω L ∞ ], rgmx ρ∈[0,R] F (s, ρ) > 0. @PFUA his ensures tht for ll s ∈ [0, ω L ∞ ]D the funtion F (s,
•) veri(es the ellEshped ssumptions @eFPAF por exmpleD when onsidering the )ux f (ρ) = ρ(R -ρ)D @PFUA redues to ω L ∞ < RD whih only mens tht the mximum veloity of the slow vehile is lesser thn the mximum veloity of the rsF Theorem 2.4. Suppose that f satises @PFPA and @PFUA. Fix ρ 1 0 , ρ 2 0 ∈ L 1 (R; [0, R]) ∩ BV(R) and y 1 0 , y 2 0 ∈ R. We denote by (ρ 1 , y 1 ) a BV-regular solution to Problem @PFIA corresponding to initial data (ρ 1 0 , y 1 0 ), and by (ρ 2 , y 2 ) an admissible weak solution with initial data (ρ 2 0 , y 2 0 ). Then there exist constants α, β, γ > 0 such that for a.e. t ∈ (0, T ),

ρ 1 (t) -ρ 2 (t) L 1 ≤ |y 1 0 -y 2 0 |TV(ρ 1 0 ) + ρ 1 0 -ρ 2 0 L 1 exp(αt) @PFVA and ∀t ∈ [0, T ], |y 1 (t) -y 2 (t)| ≤ |y 1 0 -y 2 0 | + (β|y 1 0 -y 2 0 | + γ ρ 1 0 -ρ 2 0 L 1 )(exp(αt) -1). @PFWA
In particular, Problem @PFIA admits at most one BV-regular solution.

Proof. ine (ρ 1 , y 1 ) is BVEregulr solution to rolem @PFIAD there exists

C ≥ 0 suh tht ∀t ∈ [0, T ], TV(ρ 1 (t)) ≤ C.
vemm PFQ ensures tht ẏ1 , ẏ2 ∈ BV([0, T ]; R + )F e n use result @eFQA to otin tht for FeF t ∈ (0, T )D

ρ 1 (t)-ρ 2 (t) L 1 ≤ |y 1 0 -y 2 0 |TV(ρ 1 0 )+ ρ 1 0 -ρ 2 0 L 1 + 2 Q L ∞ + 2R + C ¢ t 0 | ẏ1 (s)-ẏ2 (s)| ds . @PFIHA woreoverD sine for FeF t ∈ (0, T )D | ẏ1 (t) -ẏ2 (t)| ≤ ω L ∞ µ L ∞ ρ 1 (t) -ρ 2 (t) L 1 , qronwll9s lemm yields @PFVA with α = 2 Q L ∞ + 2R + C ω L ∞ µ L ∞ F hen for ll t ∈ [0, T ]D |y 1 (t) -y 2 (t)| ≤ |y 1 0 -y 2 0 | + ¢ t 0 | ẏ1 (s) -ẏ2 (s)| ds ≤ |y 1 0 -y 2 0 | + ω L ∞ µ L ∞ ¢ t 0 ρ 1 (s) -ρ 2 (s) L 1 ds ≤ |y 1 0 -y 2 0 | + (β|y 1 0 -y 2 0 | + γ ρ 1 0 -ρ 2 0 L 1 )(exp(αt) -1),
where

β = TV(ρ 1 0 ) 2 Q L ∞ + 2R + C nd γ = 1 2 Q L ∞ + 2R + C .
he uniqueness of BVEregulr solution is then lerF Remark 2.4. p to inequlity @PFIHAD our proof ws very muh following the one of PID heorem PFIF roweverD the uthors of PI fed n issue to derive vipshitz stility estimte etween the r densities nd the slow vehile veloities strting from

|ω ρ 1 (0+, t) -ω ρ 2 (0+, t) |.
por usD due to the nonlolity of our prolemD it ws strightforwrd to otin the ound

ω ¢ R ρ 1 (x, t)µ(x) dx -ω ¢ R ρ 2 (x, t)µ(x) dx ≤ ω L ∞ µ L ∞ ρ 1 (•, t) -ρ 2 (•, t) L 1 .
Remark 2.5. e noteworthy onsequene of heorem PFR is tht existene of BVEregulr solution will ensure uniqueness of n dmissile wek oneF 3 Two existence results

Time-splitting technique

sn PHD to prove existene for their prolemD the uthors took wveEfront trking pprohF e hoose here to use timeEsplitting tehniqueF he min dvntge of this tehnique is tht it relies on redyEtoEuse theoryF wore preiselyD t eh time stepD we will del with ext solutions to onservtion lw with )ux onstrintD whih hve now eome stndrdD see IUD TD ISF

pix ρ 0 ∈ L 1 (R; [0, R]) nd y 0 ∈ RF vet δ > 0 e time stepD N ∈ N suh tht T ∈ [N δ, (N + 1)δ) nd denote for ll n ∈ {0, . . . , N + 1}D t n = nδF e initilize with ∀t ∈ R, ρ 0 (t) = ρ 0 (• + y 0 ) nd ∀t ∈ [0, T ], y 0 (t) = y 0 .
pix n ∈ {1, . . . , N + 1}F pirstD we de(ne for ll t ∈ (t n-1 , t n ]D

σ n (t) = ω ¢ R ρ n-1 (x, t -δ)µ(x) dx , s n = σ n (t n ) nd q n = Q(s n ).
ine oth q n nd ρ n-1 (•, t n-1 ) re oundedD TD heorem PFII ensures the existene nd uniqueness of solution

ρ n ∈ L ∞ (R × [t n-1 , t n ]) to      ∂ t ρ + ∂ x (F (s n , ρ)) = 0 R × (t n-1 , t n ) ρ(x, t n-1 ) = ρ n-1 (x, t n-1 ) x ∈ R F (s n , ρ)| x=0 ≤ q n t ∈ (t n-1 , t n ),
in the sense tht ρ n stis(es entropyGonstrint inequlities nlogous to @PFRAE@PFSA with suitle )uxGonstrint funtion nd initil dtD see he(nition eFIF king lso into ount emrk PFPD ρ n ∈ C([t n-1 , t n ]; L 1 loc (R))F e then de(ne the following funtionsX

• ρ δ (t) = ρ 0 1 R -(t) + N +1 n=1 ρ n (t)1 (t n-1 ,t n ] (t) • σ δ (t), q δ (t), s δ (t) = σ n (t), q n , s n if t ∈ (t n-1 , t n ] • y δ (t) = y 0 + ¢ t 0 σ δ (u) du .
pirstD let us prove tht (ρ δ , y δ ) solves n pproximte version of rolem @PFIAF Proposition 3.1. The couple (ρ δ , y δ ) is an admissible weak solution to

                   ∂ t ρ δ + ∂ x (F (s δ (t), ρ δ )) = 0 R × (0, T ) ρ δ (x, 0) = ρ 0 (x + y 0 ) x ∈ R F (s δ (t), ρ δ )| x=0 ≤ q δ (t) t ∈ (0, T ) ẏδ (t) = ω ¢ R ρ δ (x, t -δ)µ(x) dx t ∈ (0, T ) y δ (0) = y 0 , @QFIA
in the sense that ρ δ ∈ C([0, T ]; L 1 loc (R)) and satises entropy/constraint inequalities analogous to @PFRA-@PFSA with ux F (s δ (•), •), constraint q δ , and initial data ρ 0 (• + y 0 ); and y δ satises, instead of @PFTA, the following weak ODE formulation:

∀t ∈ [0, T ], y δ (t) = y 0 + ¢ t 0 ω ¢ R ρ δ (x, s -δ)µ(x) dx ds . Proof. fy onstrutionD for ll n ∈ {1, . . . , N +1}, ρ n ∈ C([t n-1 , t n ]; L 1 loc (R))F gomining this with the 4stopEndErestrt4 onditions ρ n (•, t n-1 ) = ρ n-1 (•, t n-1 )D one ensures tht ρ δ ∈ C([0, T ]; L 1 loc (R))F vet t ∈ [0, T ] nd n ∈ {1, . . . , N + 1} suh tht t ∈ [t n-1 , t n )F henD y δ (t) -y 0 = n-1 k=1 ¢ t k t k-1 σ k (s) ds + ¢ t t n-1 σ n (s) ds = n-1 k=1 ¢ t k t k-1 ω    ¢ R ρ k-1 (x, s -δ) ρ δ (x,s-δ) µ(x) dx    ds + ¢ t t n-1 ω    ¢ R ρ n-1 (x, s -δ) ρ δ (x,s-δ) µ(x) dx    ds = ¢ t 0 ω ¢ R ρ δ (x, s -δ)µ(x) dx ds , @QFPA
whih proves tht ẏδ solves the yhi in @QFIA in the wek senseF pix now

ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd κ ∈ [0, R]F fy onstrution of the sequene ((ρ k , y k )) k D we hve for ll n, m ∈ {0, . . . , N + 1}D ¢ t m t n ¢ R |ρ δ -κ|∂ t ϕ + Φ s δ (t) (ρ δ , κ)∂ x ϕ dx dt = m k=n+1 ¢ t k t k-1 ¢ R |ρ k -κ|∂ t ϕ + Φ s k (ρ k , κ)∂ x ϕ dx dt ≥ m k=n+1      ¢ R |ρ k (x, t k ) -κ|ϕ(x, t k ) dx - ¢ R | ρ k (x, t k-1 ) ρ k-1 (x,t k-1 ) -κ|ϕ(x, t k-1 ) dx -2 ¢ t k t k-1 R s k (κ, q k )ϕ(0, t) dt      = ¢ R |ρ δ (x, t m ) -κ|ϕ(x, t m ) dx - ¢ R |ρ δ (x, t n ) -κ|ϕ(x, t n ) dx -2 ¢ t m t n R s δ (t) (κ, q δ (t))ϕ(0, t) dt .
st is then strightforwrd to prove tht for ll 0

≤ τ < τ ≤ T D ¢ τ τ ¢ R |ρ δ -κ|∂ t ϕ + Φ s δ (t) (ρ δ , κ)∂ x ϕ dx dt + ¢ R |ρ δ (x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ δ (x, τ ) -κ|ϕ(x, τ ) dx + 2 ¢ τ τ R s δ (t) (κ, q δ (t))ϕ(0, t) dt ≥ 0.
@QFQA roving tht ρ δ stis(es onstrint inequlities is very similr so we omit the detilsF yne hs to strt from

- ¢ τ τ ¢ R + ρ δ ∂ t (ϕψ) + F (s δ (t), ρ δ )∂ x (ϕψ) dx dt
nd mke use one gin of the onstrution of the sequene

((ρ k , y k )) k to otin - ¢ τ τ ¢ R + ρ δ ∂ t (ϕψ) + F (s δ (t), ρ δ )∂ x (ϕψ) dx dt - ¢ R + ρ δ (x, τ )ϕ(x)ψ(τ ) dx + ¢ R + ρ δ (x, τ )ϕ(x)ψ(τ ) dx ≤ ¢ τ τ q δ (t)ψ(t) dt .
@QFRA his onludes the proofF Remark 3.1. emrk tht we hve for ll δ > 0D

σ δ L ∞ ≤ ω L ∞ nd y δ L ∞ ≤ |y 0 | + T ω L ∞ .
his mens tht the sequene (y δ ) δ is ounded in W 1,∞ ((0, T ))F hen the ompt emedding of W 1,∞ ((0, T )) in C([0, T ]) yields susequene of (y δ ) δ D whih we do not relelD whih onverges uniformly on [0, T ] to some y ∈ C([0, T ])F et this pointD we propose two wys to otin omptness for the sequene (ρ δ ) δ D whih will led to two existene resultsF 3.2 The case of a nondegenerately nonlinear ux Theorem 3.2. Fix ρ 0 ∈ L 1 (R; [0; R]) and y 0 ∈ R. Suppose that f is Lipschitz continuous, satises @PFPA-@PFUA and the following nondegeneracy assumption for a.e. s ∈ (0,

ω L ∞ ), mes{ρ ∈ [0, R] | f (ρ) -s = 0} = 0. @QFSA
Then Problem @PFIA admits at least one admissible weak solution.

Proof. gondition @QFSA omined with the ovious uniform

L ∞ ound ∀δ > 0, ∀(x, t) ∈ R × [0, T ], ρ δ (x, t) ∈ [0, R],
nd the results proved y nov in QHD QI ensure the existene of susequene ! whih we do not relel ! tht onverges in

L 1 loc (R * × (0, T )) to some ρ ∈ L 1 loc (R * × (0, T ))
Y nd further extrtion yields the lmost everywhere onvergene on R×(0, T ) nd lso the ft tht ρ ∈ L ∞ (R× (0, T ); [0, R])F e now show tht the ouple (ρ, y) onstruted ove is n dmissile wek solution to @PFIA in the sense of he(nition PFIF

por ll δ > 0 nd t ∈ [0, T ]D y δ (t) -y 0 = ¢ t 0 ω ¢ R ρ δ (x, s -δ)µ(x) dx ds = ¢ t-δ -δ ω ¢ R ρ δ (x, s)µ(x) dx ds = ¢ t 0 ω ¢ R ρ δ (x, s)µ(x) dx ds + ¢ 0 -δ - ¢ t t-δ ω ¢ R ρ δ (x, s)µ(x) dx ds .
he lst term vnishes s δ → 0 sine ω is oundedF henD veesgue theorem omined with the ontinuity of ω givesD for ll t ∈ [0, T ]D

y δ (t) -→ δ→0 y 0 + ¢ t 0 ω ¢ R ρ(x, s)µ(x) dx ds .
his lst quntity is lso equl to y(t) due to the uniform onvergene of (y δ ) δ to yF his proves tht y veri(es @PFTAF xowD we im t pssing to the limit in @QFQA nd @QFRAF ith this in mindD we prove the FeF onvergene of the sequene (σ δ ) δ towrds ẏF ine µ ∈ BV(R)D there exists sequene of smooth funtions

(µ n ) n∈N ⊂ BV(R) ∩ C ∞ c (R) suh thtX µ n -µ L 1 -→ n→+∞ 0 nd TV(µ n ) -→ n→+∞ TV(µ).
sntrodue for every δ > 0 nd n ∈ ND the funtion

ξ n δ (t) = ¢ R ρ δ (x, t)µ n (x) dx .
ine for ll δ > 0D ρ δ is distriutionl solution to the onservtion lw in @QFIAD one n show ! following the proof of vemm PFQ for instne ! tht for every n

∈ ND ξ n δ ∈ W 1,∞ ((0, T ))D nd tht for FeF t ∈ (0, T )D ξn δ (t) = ¢ R F (s δ (t), ρ δ )µ n (x) dx . woreoverD sine oth the sequenes ( µ n L 1 ) n nd (TV(µ n )) n re oundedD it is ler tht (ξ n δ ) δ,n is uniformly ounded in W 1,∞ ((0, T ))D therefore so is (ω(ξ n δ )) δ,n F gonsequentlyD for ll n ∈ ND δ > 0 nd lmost every t ∈ (0, T )D tringle inequlity yieldsX σ δ (t) -ω ¢ R ρ(x, t)µ(x) dx ≤ 2 ω L ∞ R µ n -µ L 1 + δ sup n∈N ω(ξ n δ ) W 1,∞ + ω L ∞ ¢ R (ρ δ (x, t) -ρ(x, t))µ(x) dx -→ δ→0 n→+∞ 0,
whih proves tht (σ δ ) δ onverges FeF on (0, T ) to ẏF o prove the timeEontinuity regulrityD we (rst pply inequlity @QFQA with τ = 0D τ = T @whih is liit sine

ρ δ is ontinuous in timeAD ϕ ∈ C ∞ c (R * × [0, T )), ϕ ≥ 0 nd κ ∈ [0, R]X ¢ T 0 ¢ R |ρ δ -κ|∂ t ϕ + Φ σ δ (t) (ρ δ , κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0. henD we let δ → 0 to get ¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0. gonsequentlyD ρ ∈ C([0, T ]; L 1 loc (R)
)D see emrk PFPF pinllyD the FeF onvergenes of (σ δ ) δ nd (ρ δ ) δ to ẏ nd ρD respetivelyD re enough to pss to the limit in @QFQAF his ensures tht for ll

test funtions ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd κ ∈ [0, R]D the following inequlities hold for FeF 0 ≤ τ < τ ≤ T X ¢ τ τ ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx + 2 ¢ τ τ R ẏ(t) (κ, q(t))ϕ(0, t) dt ≥ 0.
yserve tht the expression in the leftEhnd side of the previous inequlity is ontinuous funtion of (τ, τ ) whih is lmost everywhere greter thn the ontinuous funtion 0F fy ontinuityD this expression is everywhere greter thn 0D whih proves tht ρ stis(es the entropy inequlities @PFRAF sing similr rgumentsD we show tht ρ stis(es the onstrint inequlities @PFSAF his proves the ouple (ρ, y) is n dmissile wek solution to rolem @PFIAD nd this onludes the proofF sn this setionD we proved n existene result for L ∞ initil dtD ut we hve no gurntee of uniqueness sine a priori we hve no informtion regrding the BV regulrity of suh solutionsF essumption @QFSA ensures the omptness for sequenes of entropy solutions to onservtion lws with )ux funtion F F roweverD it prevents us from using )ux funtions with liner prts ! whih orresponds to onstnt tr0 veloity for smll densities ! wheres suh fundmentl digrms re often used in tr0 modelingF he results of the next setion will extend to this interesting seD under the extr BV ssumption on the dtF 3.3 Well-posedness for BV data o otin omptness for (ρ δ ) δ D n lterntive to the setting of etion QFP is to derive uniform BV oundsF Theorem 3.3. Fix ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R) and y 0 ∈ R. Suppose that f satises @PFPA and @PFUA.

Suppose also that

∀s ∈ [0, ω L ∞ ] , F (s, •) ∈ C 1 ([0, R]\{ρ s }), @QFTA
where

ρ s = rgmx ρ∈[0,R] F (s, ρ). Finally assume that Q satises the condition ∃ε > 0, ∀s ∈ [0, ω L ∞ ], Q(s) ≤ mx ρ∈[0,R] F (s, ρ) -ε. @QFUA
Then Problem @PFIA admits a unique admissible weak solution, which is also BV-regular.

Proof. pix δ > 0F ell tht (ρ δ , y δ ) is n dmissile wek solution to @QFIAF sn prtiulrD ρ δ is n dmissile wek solution to the onstrined onservtion lw in @QFIAD in the sense of he(nition eFIF st is ler from the splitting onstrution tht for FeF t ∈ (0, T )D

σ δ (t) = ω ¢ R ρ δ (x, t -δ)µ(x) dx .
pollowing the steps of the proof of vemm PFQD we n show tht for ll δ > 0D σ δ ∈ BV([0, T ]; R + )F iven more thn thtD y doing so we show tht the sequene (TV(σ δ )) δ is oundedF hereforeD the sequene (TV(s δ )) δ is ounded s wellF woreoverD sine Q veri(es @QFUAD ll the hypotheses of gorollry eFU re ful(lledF gomining this with emrk eFQD we get the existene of onstnt

C ε = C ε ( ∂ s F L ∞ ) suh tht for ll t ∈ [0, T ]D TV(ρ δ (t)) ≤ TV(ρ 0 ) + 4R + C ε (TV(q δ ) + TV(s δ )) ≤ TV(ρ 0 ) + 4R + C ε (1 + Q L ∞ )TV(s δ ). @QFVA gonsequently for ll t ∈ [0, T ]D the sequene (ρ δ (t)) δ is ounded in BV(R)F e lssil nlysis rgument ! see PRD heorem eFV ! ensures the existene of ρ ∈ C([0, T ]; L 1 loc (R)) suh tht ∀t ∈ [0, T ], ρ δ (t) -→ δ→0 ρ(t) in L 1 loc (R).
ith this onvergeneD we n follow the proof of heorem QFP to show tht (ρ, y) is n dmissile wek solution to @PFIAF henD when pssing to the limit in @QFVAD the lower semiEontinuity of the BV semiEnorm ensures tht (ρ, y) is lso BVEregulrF fy emrk PFSD it ensures uniqueness nd onludes the proofF

Stability with respect to the weight function

o end this setionD we now study the stility of rolem @PFIA with respet to the weight funtion µF wore preiselyD let µ ⊂ BV(R; R + ) e sequene of weight funtions tht onverges to µ in the wek

L 1 senseX ∀g ∈ L ∞ (R), ¢ R g(x)µ (x) dx -→ →+∞ ¢ R g(x)µ(x) dx . @QFWA
vet (y 0 ) ⊂ R e sequene of rel numers tht onverges to some y 0 nd let (ρ 0 ) ⊂ L 1 (R; [0, R]) e sequene of initil dt tht onverges to ρ 0 in the strong L 1 senseF e suppose tht the )ux funtion f stis(es essumptions @PFPAE@PFUAE@QFSAF heorem QFP llows us to de(ne or ll ∈ ND the ouple (ρ , y ) s n dmissile wek solution to the prolem

                   ∂ t ρ + ∂ x F ( ẏ (t), ρ ) = 0 R × (0, T ) ρ (x, 0) = ρ 0 (x + y 0 ) x ∈ R F ( ẏ (t), ρ ) x=0 ≤ Q( ẏ (t)) t ∈ (0, T ) ẏ (t) = ω ¢ R ρ (x, t)µ (x) dx t ∈ (0, T ) y (0) = y 0 .
Remark 3.2. sing the sme rguments s in emrk QFI nd s in the proof of heorem QFPD we get tht up to the extrtion of susequeneD (y ) onverges uniformly on [0, T ] to some

y ∈ C([0, T ]) nd (ρ ) onverges FeF on R × (0, T ) to some ρ ∈ L ∞ (R × (0, T ))F
Theorem 3.4. The couple (ρ, y) constructed above is an admissible weak solution to Problem @PFIA.

Proof. he sequene (µ ) onverges in the wek L 1 sense nd is ounded in L 1 (R)Y y the hunfordEettis theoremD this sequene is equiEintegrleX

∀ε > 0, ∃α > 0, ∀A ∈ B(R), mes(A) < α =⇒ ∀ ∈ N, ¢ A µ (x) dx ≤ ε @QFIHA nd ∀ε > 0, ∃X > 0, ∀ ∈ N, ¢ |x|≥X µ (x) dx ≤ ε. @QFIIA pix t ∈ (0, T ) nd ε > 0F pix α, X > 0 given y @QFIHA nd @QFIIAF igoro' theorem yields the existene of mesurle suset E t ⊂ [-X, X] suh tht mes([-X, X]\E t ) < α nd ρ (•, t) -→ ρ(•, t) uniformly on E t . por su0iently lrge ∈ ND ¢ R ρ (x, t)µ (x) dx - ¢ R ρ(x, t)µ(x) dx ≤ ¢ |x|≥X |ρ -ρ|µ dx + ¢ Et (ρ -ρ)µ dx + ¢ [-X,X]\Et (ρ -ρ)µ dx + ¢ R ρµ dx - ¢ R ρµ dx ≤Rε + ρ -ρ L ∞ (Et) ¢ Et µ (x) dx + R ¢ [-X,X]\Et µ (x) dx + ε ≤2(R + 1)ε, whih proves tht for FeF t ∈ (0, T )D ¢ R ρ (x, t)µ (x) dx -→ →+∞ ¢ R ρ(x, t)µ(x) dx .
@QFIPA e get tht y veri(es the wek yhi formultion @PFTA y pssing to the limit in

y (t) = y 0 + ¢ t 0 ω ¢ R ρ (x, s)µ (x) dx ds .
fy de(nitionD for ll ∈ ND the ouple (ρ , y ) stis(es the nlogue of entropyGonstrint inequlities @PFRAE@PFSA with suitle )uxGonstrint funtionsF epplying these inequlities with

τ = 0D τ = T D ϕ ∈ C ∞ c (R * × [0, T )), ϕ ≥ 0 nd κ ∈ [0, R]D we get ¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ ẏ (t) (ρ , κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0.
he ontinuity of ω nd the onvergene @QFIPA ensure tht ( ẏ ) onverges FeF to ẏF his omined with the FeF onvergene of (ρ ) to ρ nd ieszEprehetEuolmogorov theorem ! ρ 0 eing strongly ompt in L 1 (R) ! is enough to show tht when letting → +∞ in the inequlity oveD we getD up to the extrtion of susequeneD tht

¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0. gonsequently ρ ∈ C([0, T ]; L 1 loc (R)
)D see emrk PFPF pinllyD the omined FeF onvergenes of ( ẏ ) nd (ρ ) to ẏ nd ρD respetivelyD gurntee tht (ρ, y) veri(es inequlities @PFRAE@PFSA for lmost every 0 ≤ τ < τ ≤ T F he sme ontinuity rgument we used in the proof heorem QFP holds here to ensure tht (ρ, y) tully stis(es the inequlities for ll 0 ≤ τ < τ ≤ T F his onludes the proof of our stility limF 3.5 Discussion he lst setion onludes the theoretil nlysis of rolem @PFIAF he nonlolity in spe of the onstrint delivers n esy proof of stility with respet to the initil dt in the BV frmeworkF elthough proof of existene using (xed point theorem ws possile @cf. RAD we hose to propose proof sed on timeEsplitting tehniqueF he stility with respet to µ is noteworthy fetureD whih shows ertin sturdiness of the modelF roweverD the se we hd in mind ! nmely µ → δ 0 + ! is not rehle with the ssumptions we used to prove the stilityD espeilly @QFWAF e will explore this singulr limit numerillyD fter hving uilt roust onvergent numeril sheme for rolem @PFIAF vet us lso underline tht unlike in PUD PV where the uthors required prtiulr form for the funtion ω to prove wellEposedness for their modelD our result holds s long s ω is vipshitz ontinuousF es evoked erlierD the nonlolity in spe of the onstrint mkes the mthemtil study of the model esierF fut in the modeling point of viewD this hoie lso mkes sense for severl resonsF pirst of llD one n think tht the veloity ẏ of the slow moving vehile ! unlike its elertion ! is rther ontinuous vlueF iven if the driver of the slow vehile suddenly pplies the rkesD the vehile will not deelerte instntneouslyF xote tht the v model llows for disontinuous verged veloity of the gentsD however while modeling the slow vehile we re onerned with n individul gent nd n model its ehvior more preiselyF woreoverD onsidering the men vlue of the tr0 density in viinity hed of the driver ould e seen t tking into ount oth the driver ntiiption nd psyhologil e'etF por exmpleD if the driver sees ! severl dozens of meters hed of himGher ! speed redution on tr0D heGshe will strt to slow downF his oservtion n e relted to the ft thtD ompred to the )uid mehnis models where the typil numer of gents is governed y the evogdro onstntD in tr0 models the numer of gents is t lest 10 20 times lessF hereforeD mild nonlolity @evlution of the downstrem tr0 )ow vi verging over hndful of preeding rsA is resonle ssumption in the mrosopi tr0 models inspired y )uid mehnisF his point of view is exploited in the model of ITF xote tht it is fesile to sustitute the si v eqution on ρ y the nonlol v introdued in IT in our nonlol model for the slow vehileF uh mildly nonlol model remins lose to the si lol model of PHF st n e studied omining the tehniques of IT nd the ones we developed in this setionF [START_REF] Andreianov | Analysis and approximation of onedimensional scalar conservation laws with general point constraints on the ux[END_REF] Numerical approximation of the model sn this setionD we im t onstruting (nite volume sheme nd t proving its onvergene towrd the BVEregulr solution to @PFIAF e will use the nottionsX

a ∨ b = max{a, b} nd a ∧ b = min{a, b}. pix ρ 0 ∈ L 1 (R; [0, R]) nd y 0 ∈ RF 4.
1 Finite volume scheme in the bus frame por (xed sptil mesh size ∆x nd time mesh size ∆tD let x j = j∆xD t n = n∆tF e de(ne the grid ells exists @in whih seD the limit is zero due to the integrility ssumptionAD the vlues ρ 0 j+1/2 = ρ 0 x j+1/2 + y 0 n e usedF he only requirements re

K j+1/2 = (x j , x j+1 )F vet N ∈ N suh tht T ∈ [t N , t N +1 )F e write R × [0, T ] ⊂ N n=0 j∈Z P n j+1/2 , P n j+1/2 = K j+1/2 × [t n , t n+1 ).
∀j ∈ Z, ρ 0 j+1/2 ∈ [0, R] nd ρ 0 ∆ = j∈Z ρ 0 j+1/2 1 K j+1/2 -→ ∆x→0 ρ 0 (• + y 0 ) in L 1 loc (R).
pix n ∈ {0, . . . , N -1}F et eh time step we (rst de(ne n pproximte veloity of the slow vehile

s n+1 nd onstrint level q n+1 X s n+1 = ω   j∈Z ρ n j+1/2 µ j+1/2 ∆x   , q n+1 = Q s n+1 . @RFIA
ith these vluesD we updte the pproximte tr0 density with the mrhing formul for ll j ∈ ZX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x F n+1 j+1 (ρ n j+1/2 , ρ n j+3/2 ) -F n+1 j (ρ n j-1/2 , ρ n j+1/2 ) , @RFPA
whereD following the reipe of TD ISD

F n+1 j (a, b) = F n+1 (a, b) if j = 0 min F n+1 (a, b), q n+1
if j = 0, @RFQA F n+1 eing monotone onsistent nd vipshitz numeril )ux ssoited to F (s n+1 , •)F e will lso use the nottion

ρ n+1 j+1/2 = H n+1 j (ρ n j-1/2 , ρ n j+1/2 , ρ n j+3/2 ), @RFRA
where H n+1 j is given y the expression in the rightEhnd side of @RFPAF e then de(ne the funtions

• ρ ∆ (x, t) = N n=0 j∈Z ρ n j+1/2 1 P n j+1/2 (x, t) • s ∆ (t), q ∆ (t) = s n+1 , q n+1 if t ∈ [t n , t n+1 ) • y ∆ (t) = y 0 + ¢ t 0 s ∆ (u) du .
vet ∆ = (∆x, ∆t)F por our onvergene nlysisD we will ssume tht ∆ → 0D with λ = ∆t/∆x verifying the gpv ondition

λ sup s∈[0, ω L ∞ ] ∂F s ∂a L ∞ + ∂F s ∂b L ∞ L ≤ 1, @RFSA
where F s = F s (a, b) is the numeril )uxD ssoited to F (s, •)D we use in @RFPAF Remark 4.2. hen onsidering the usnov )ux or the qodunov oneD @RFSA is gurnteed when

2λ( f L ∞ + ω L ∞ ) ≤ 1.

Stability and discrete entropy inequalities

Proposition 4.1 @L ∞ stilityA. The scheme @RFRA is (i) monotone: for all n ∈ {0, . . . , N -1} and j ∈ Z, H n+1 j is nondecreasing with respect to its three arguments; (ii) stable:

∀n ∈ {0, . . . , N }, ∀j ∈ Z, ρ n j+1/2 ∈ [0, R]. @RFTA Proof. (i) sn the lssil se ! j / ∈ {-1, 0} ! we simply di'erentite the vipshitz funtion H n+1 j nd mke use of oth the gpv ondition @RFSA nd the monotoniity of F n+1 F por j ∈ {-1, 0}D note tht the uthors of T pointed out @in roposition RFPA tht the modi(tion done in the numeril )ux @RFQA does not hnge the monotoniity of the shemeF (ii) he L ∞ stility is onsequene of the monotoniity nd lso of the ft tht 0 nd R re sttionry solutions of the shemeF sndeedD s in TD roposition RFP for ll n ∈ {0, . . . , N } nd

j ∈ ZD H n+1 j (0, 0, 0) = 0, H n+1 j (R, R, R) = R.
sn order to show tht the limit of (ρ ∆ ) ∆ ! under the FeF onvergene up to susequene ! is solution of the onservtion lw in @PFIAD we derive disrete entropy inequlitiesF hese inequlities lso ontin terms tht will help to pss to the limit in the onstrined formultion of the onservtion lwD s soon s the sequene (q ∆ ) ∆ of onstrints is proved onvergent s wellF Proposition 4.2 @hisrete entropy inequlitiesA. The numerical scheme @RFRA fullls the following inequalities for all n ∈ {0, . . . , N -1}, j ∈ Z and κ ∈ [0, R]:

|ρ n+1 j+1/2 -κ| -|ρ n j+1/2 -κ| ∆x + Φ n j+1 -Φ n j ∆t ≤ R s n+1 (κ, q n+1 )∆t δ j∈{-1,0} + (Φ n 0 -Φ n int ) ∆t (δ j=-1 -δ j=0 ) , @RFUA
where Φ n j and Φ n int denote the numerical uxes:

Φ n j = F n+1 (ρ n j-1/2 ∨ κ, ρ n j+1/2 ∨ κ) -F n+1 (ρ n j-1/2 ∧ κ, ρ n j+1/2 ∧ κ), Φ n int = min{F n+1 (ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ), q n+1 } -min{F n+1 (ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ), q n+1 } and R s n+1 (κ, q n+1 ) = F (s n+1 , κ) -min{F (s n+1 , κ), q n+1 }.
Proof. his result is diret onsequene of the sheme monotoniityF hen the onstrint does not enter the lultions i.e. j / ∈ {-1, 0}D the proof follows PQD vemm SFRF he key point is not only the monotoniityD ut lso the ft tht in the lssil seD ll the onstnts κ ∈ [0, R] re sttionry solutions of the shemeF his oservtion does not hold when the onstrint enters the lultionsF por exmple if j = -1D

H n+1 -1 (κ, κ, κ) = κ + λR s n+1 (κ, q n+1 ).
gonsequentlyD we hve oth

ρ n+1 -1/2 ∨ κ ≤ H n+1 -1 (ρ n -3/2 ∨ κ, ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ) nd ρ n+1 -1/2 ∧ κ ≥ H n+1 -1 (ρ n -3/2 ∧ κ, ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ) -λR s n+1 (κ, q n+1
). fy sustrting these lst two inequlitiesD we get

|ρ n+1 -1/2 -κ| = ρ n+1 -1/2 ∨ κ -ρ n+1 -1/2 ∧ κ ≤ H n+1 -1 (ρ n -3/2 ∨ κ, ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ) -H n+1 -1 (ρ n -3/2 ∧ κ, ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ) + λR s n+1 (κ, q n+1 ) = |ρ n -1/2 -κ| -λ min{F n+1 (ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ), q n+1 } -F n+1 (ρ n -1/2 ∨ κ, ρ n 1/2 ∨ κ) + λ min{F n+1 (ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ), q n+1 } -F n+1 (ρ n -1/2 ∧ κ, ρ n 1/2 ∧ κ) + λR s n+1 (κ, q n+1 ) = |ρ n -1/2 -κ| -λ Φ n 0 -Φ n -1 + λ (Φ n 0 -Φ n int ) + λR s n+1 (κ, q n+1 ),
whih is extly @RFUA in the se j = -1F he se j = 0 is similr so we omit the detils of the proof for this seF trting from @RFPA nd @RFUAD we n otin pproximte versions of @PFRA nd @PFSAF vet us introdue the funtionsX

Φ ∆ (ρ ∆ , κ) = N n=0 j∈Z Φ n j 1 P n j+1/2 ; F ∆ (s ∆ , ρ ∆ ) = N n=0 j∈Z F n+1 (ρ n j-1/2 , ρ n j+1/2 )1 P n j+1/2 . Proposition 4.3 @epproximte entropyGonstrint inequlitiesA. (i) Fix ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 and κ ∈ [0, R].
Then there exists a constant C ϕ 1 = C ϕ 1 (R, T, L), nondecreasing with respect to its arguments, such that the following inequalities hold for all 0 ≤ τ < τ ≤ T :

¢ τ τ ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ) ∂ x ϕ dx dt + ¢ R |ρ ∆ (x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ ∆ (x, τ ) -κ|ϕ(x, τ ) dx + 2 ¢ τ τ R s ∆ (t) (κ, q ∆ (t))ϕ(0, t) dt ≥ -C ϕ 1 (∆t + ∆x). @RFVA (ii) Fix ψ ∈ C ∞ ([0, T ]), ψ ≥ 0 and ϕ ∈ C ∞ c (R) such that ϕ(0) = 1.
Then there exists a constant

C ϕ,ψ 2 = C ϕ,ψ 2 (R, T, L, Q L ∞ ),
nondecreasing with respect to its arguments, such that for all 0 ≤ τ < τ ≤ T :

- ¢ τ τ ¢ R + ρ ∆ ∂ t (ϕψ) + F ∆ (s ∆ , ρ ∆ )∂ x (ϕψ) dx dt - ¢ R + ρ ∆ (x, τ )ϕ(x)ψ(τ ) dx + ¢ R + ρ ∆ (x, τ )ϕ(x)ψ(τ ) dx ≤ ¢ τ τ q ∆ (t)ψ(t) dt + C ϕ,ψ 2 (∆x + ∆t). @RFWA Proof. pix k, m ∈ N suh tht τ ∈ [t k , t k+1 ) nd τ ∈ [t m , t m+1 )F (i) he(ne for ll n ∈ N nd j ∈ ZD ϕ n j+1/2 = 1 ∆x∆t ¤ P n j+1/2
ϕ(x, t) dx dtF wultiplying the disrete entropy inequlities @RFUA y ϕ n j+1/2 D then summing over n ∈ {k, . . . , m -1} nd j ∈ ZD one otins fter reorgniztion of the sums @using in prtiulr the eelG4summtionEyEprts4 proedureA

A + B + C + D + E ≥ 0, @RFIHA with A = m-1 n=k+1 j∈Z |ρ n j+1/2 -κ| ϕ n j+1/2 -ϕ n-1 j+1/2 ∆x, B = m-1 n=k j∈Z Φ n j ϕ n j+1/2 -ϕ n j-1/2 ∆t C = j∈Z |ρ k j+1/2 -κ|ϕ k j+1/2 ∆x - j∈Z |ρ m j+1/2 -κ|ϕ m-1 j+1/2 ∆x D = m-1 n=k R s n+1 (κ, q n+1 ) ϕ n -1/2 + ϕ n 1/2 ∆t, E = m-1 n=k (Φ n 0 -Φ n int ) ϕ n -1/2 -ϕ n 1/2 ∆t.
snequlity @RFVA follows from @RFIHA with

C ϕ 1 = R T max t∈[0,T ] ∂ 2 tt ϕ(•, t) L 1 + 4 max t∈[0,T ] ∂ t ϕ(•, t) L 1 + RL T max t∈[0,T ] ∂ 2 xx ϕ(•, t) L 1 + 2 max t∈[0,T ] ∂ x ϕ(•, t) L 1 + 4 ϕ L ∞ + 2T ∂ x ϕ L ∞ , mking use of the oundsX A - ¢ τ τ ¢ R |ρ ∆ -κ|∂ t ϕ dx dt ≤ R T max t∈[0,T ] ∂ 2 tt ϕ(•, t) L 1 + 2 max t∈[0,T ] ∂ t ϕ(•, t) L 1 ∆t, B - ¢ τ τ ¢ R Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt ≤ RL T max t∈[0,T ] ∂ 2 xx ϕ(•, t) L 1 ∆x, +2 max t∈[0,T ] ∂ x ϕ(•, t) L 1 ∆t C - ¢ R |ρ ∆ (x, τ ) -κ|ϕ(x, τ ) dx + ¢ R |ρ ∆ (x, τ ) -κ|ϕ(x, τ ) dx ≤ 2R max t∈[0,T ] ∂ t ϕ(•, t) L 1 ∆t, D -2 ¢ τ τ R s ∆ (t) (κ, q ∆ (t))ϕ(0, t) dt ≤ RL (4 ϕ L ∞ ∆t + T ∂ x ϕ L ∞ ∆x) ; |E| ≤ 2RT L ∂ x ϕ L ∞ ∆x.
(ii) sn this seD the onstnt C ϕ,ψ

2 reds C ϕ,ψ 2 = R ϕ L 1 T ψ L ∞ + 4 ψ L ∞ + Q L ∞ ψ L ∞ 2 + T ϕ L ∞ + RL ψ L ∞ 2 ϕ L 1 + T ϕ L 1 + T ϕ L 1 .
pollowing the proof of @RFVAD de(ne for ll n ∈ N nd j ∈ ZD

ψ n = 1 ∆t ¢ t n+1 t n ψ(t) dt , nd ϕ j+1/2 = 1 ∆x ¢ x j+1
x j ϕ(x) dx , multiply the sheme @RFPA y ϕ j+1/2 ψ n D then tke the sum over n ∈ {k, . . . , m -1} nd j ≥ 0F ine the proof is very similr to the one of (i)D we omit the detilsF he (nl step is to otin omptness for the sequenes (ρ ∆ ) ∆ nd (y ∆ ) ∆ in order to pss to the limit in @RFVAE@RFWAF e strt with (y ∆ ) ∆ F Proposition 4.4. For all t ∈ [0, T ],

y ∆ (t) = y 0 + ¢ t 0 ω ¢ R ρ ∆ (x, u)µ(x) dx du . @RFIIA
Consequently, there exists y ∈ C([0, T ]) such that up to an extraction, (y ∆ ) ∆ converges uniformly to y on [0, T ].

Proof. por ll t ∈ [0, T ]D if t ∈ [t n , t n+1
) for some n ∈ {0, . . . , N }D then we n write

y ∆ (t) -y 0 = n-1 k=0 ¢ t k+1 t k s k+1 du + ¢ t t n s n+1 du = n-1 k=0 ¢ t k+1 t k ω   j∈Z ¢ R ρ k j+1/2 µ j+1/2 ∆x   du + ¢ t t n ω   j∈Z ¢ R ρ n j+1/2 µ j+1/2 ∆x   du = ¢ t 0 ω ¢ R ρ ∆ (x, u)µ(x) dx du .
vet us lso point out tht from @RFIAD we get tht for ll ∆ nd lmost every t ∈ (0, T )D

s ∆ (t) = ω ¢ R ρ ∆ (x, t)µ(x) dx . @RFIPA
gomining @RFIIA nd @RFIPAD we otin tht for ll ∆D

ẏ∆ L ∞ = s ∆ L ∞ ≤ ω L ∞ nd y ∆ L ∞ ≤ |y 0 | + T ω L ∞ .
he sequene (y ∆ ) ∆ is therefore ounded in W 1,∞ ((0, T ))F wking use of the ompt emedding of W 1,∞ ((0, T )) in C([0, T ])D we get the existene of y ∈ C([0, T ]) suh tht up to the extrtion of susequeneD (y ∆ ) ∆ onverges uniformly to y on [0, T ]F he presene of time dependent )ux in the onservtion lw of @PFIA omplites the otining of omptness for (ρ ∆ ) ∆ F sn prtiulrD the tehniques used in IHD II to derive lolized BV estimtes don9t pply here sine our prolem lks time trnsltion invrineF sn the present situtionD it would e possile to derive wek BV estimtes @TD PQAF e hoose di'erent optionsF imilrly to wht we did in etion QD we propose two wys to otin omptnessD whih will led to two onvergene resultsF

Compactness via one-sided Lipschitz condition technique

pirstD we hoose to dpt tehniques nd results put forwrd y owers in QPF ith this in mindD we suppose in this setion tht f ∈ C 2 ([0, R]) nd stritly onveF hereforeD

∃α > 0, ∀ρ ∈ [0, R], f (ρ) ≤ -α. @RFIQA
hough this ssumption is stronger thn the nondegenery one @QFSAD sine f is ellEshpedD these two ssumptions re similr in their spiritF e will lso ssumeD following QPD tht the numeril )ux hosen in @RFPA is either the ingquistEysher one or the qodunov oneF @RFIRA o e preiseD the hoie mde for the numeril )ux t the interfe ! i.e. when j = 0 in @RFQA ! does not ply ny roleF ht is importnt is tht wy from the interfeD one hooses either the ingquistEysher )ux or the qodunov oneF e denote for ll n ∈ {0, . . . , N + 1} nd j ∈ ZD

D n j = max ρ n j-1/2 -ρ n j+1/2 , 0 .
e will lso use the nottion Ẑ = Z\{-1, 0, 1}.

sn QPD the uthor delt with disontinuous in oth time nd spe )ux nd the spei( 4vnishing visosity4 oupling t the interfeF he disontinuity in spe ws lolized long the urve {x = 0}F rereD we del with only disontinuous in time )uxD ut we lso hve )ux onstrint long the urve {x = 0} sine we work in the us frmeF he ppliility of the tehnique of QP for our se with moving interfe nd )uxEonstrined interfe oupling relies on the ft tht one n derive ound on D n j s long s the 4interfe4 does not enter the lultions for D n j i.e. j ∈ ẐF his is wht the following lemm points out under essumptions @RFIQAE@RFIRAF por reders9 onveniene nd in order to highlight the generlity of the tehnique of owers QPD let us provide the key elements of the rgumenttion leding to omptnessF Lemma 4.5. Let n ∈ {0, . . . , N -1} and j ∈ Ẑ. Then if a = λα 4

, we have

D n+1 j ≤ max D n j-1 , D n j , D n j+1 -a max D n j-1 , D n j , D n j+1 2 @RFISA and D n+1 j ≤ 1 min{|j| -1, n + 1}a . @RFITA
Proof. (Sketched) snequlity @RFITA is n immedite onsequene of inequlity @RFISAD see QPD vemm RFQF ytining inequlity @RFISA howeverD is less immediteF vet us give some detils of the proofF pirstD note tht y introduing the funtion ψ : z → z -az 2 D inequlity @RFISA n e stted sX

D n+1 j ≤ ψ max D n j-1 , D n j , D n j+1
. @RFIUA henD one n show ! only using the monotoniity of oth the sheme nd the funtion ψ ! tht under the ssumption inequlity @RFIUA holds when (ρ n j+3/2 -ρ n j+1/2 ), (ρ n j-1/2 -ρ n j-3/2 ) ≤ 0, @RFIVA it follows tht inequlity @RFIUA holds for ll sesF end (nlly in QPD ge PQD the uthor proves tht if the )ux onsidered is either the ingquistEysher )ux or the qodunov )uxD then @RFIVA holdsF hen letting ∆ → 0D the dominted onvergene theorem ensures tht y stis(es @PFTAF epply inequlity @RFVA with

τ = 0D τ = T D ϕ ∈ C ∞ c (R * × [0, T )), ϕ ≥ 0 nd κ ∈ [0, R] to otin ¢ T 0 ¢ R |ρ ∆ -κ|∂ t ϕ + Φ ∆ (ρ ∆ , κ)∂ x ϕ dx dt + ¢ R |ρ 0 ∆ -κ|ϕ(x, 0) dx ≥ -C ϕ 1 (∆x + ∆t).
hen the FeF onvergene of (s ∆ ) ∆ to ẏ ! oming from @RFIPA ! nd the FeF onvergene of (ρ ∆ ) ∆ to ρ ensure tht when letting ∆ → 0D we get

¢ T 0 ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ 0 (x + y 0 ) -κ|ϕ(x, 0) dx ≥ 0, nd onsequently ρ ∈ C([0, T ]; L 1 loc (R)
)D see emrk PFPF xowD we pss to the limit in @RFVA nd @RFWA using the FeF onvergene of (s ∆ ) ∆ to ẏ nd of (ρ ∆ ) ∆ to ρ s well s the ontinuity of Q nd ωF gonsequentlyD for ll test funtions

ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd κ ∈ [0, R]D the following inequlities hold for lmost every 0 ≤ τ < τ ≤ T X ¢ τ τ ¢ R |ρ -κ|∂ t ϕ + Φ ẏ(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx + 2 ¢ τ τ R ẏ(t) (κ, q(t))ϕ(0, t) dt ≥ 0.
o onludeD note tht the expression in the leftEhnd side of the previous inequlity is ontinuous funtion of (τ, τ ) whih is lmost everywhere greter thn the ontinuous funtion 0F fy ontinuityD this expression is everywhere greter thn 0D whih proves tht ρ stis(es the entropy inequlities @PFRAF sing similr rgumentsD one shows tht ρ lso stis(es the onstrint inequlities @PFSAF his shows tht the ouple (ρ, y) is n dmissile wek solution to @PFIAD nd tht onludes the proof of onvergeneF e proved thn in the L ∞ frmeworkD the sheme onverges to n dmissile wek solutionD ut note tht there is no gurntee of uniqueness in this onstrutionF elso stress tht we nnot extend this result to generl onsistent monotone numeril )uxes eyond hypothesis @RFIRAF 4.4 Compactness via global BV bounds he following result is the disrete version of vemm PFQ so it is onsistent tht the proof uses the disrete nlogous rguments of the ones we used in the proof of vemm PFQF Lemma 4.9. Introduce for all ∆ > 0 the function ξ ∆ dened for all t ∈ [0, T ] by

ξ ∆ (t) = ¢ R ρ ∆ (x, t)µ(x) dx .
Then ξ ∆ has bounded variation and consequently, so does s ∆ .

Proof. ine µ ∈ BV(R)D there exists sequene of smooth funtions (µ

) ∈N ⊂ BV(R) ∩ C ∞ c (R) suh tht µ -µ L 1 -→ →+∞ 0 nd TV(µ ) -→ →+∞ TV(µ). sntrodue for ll ∈ N nd t ∈ [0, T ]D the funtion ξ ∆, (t) = ¢ R ρ ∆ (x, t)µ (x) dx nd let K > 0 suh tht ∀ ∈ N, µ L 1 , TV(µ ) ≤ K. por ll ∈ N nd t, s ∈ [0, T ]D if t ∈ [t k , t k+1 ) nd s ∈ [t m , t m+1 )D we hve |ξ ∆, (t) -ξ ∆, (s)| = ξ ∆, (t k ) -ξ ∆, (t m ) = ¢ R ρ ∆ (x, t k )µ (x) dx - ¢ R ρ ∆ (x, t m )µ (x) dx = j∈Z (ρ k j+1/2 -ρ m j+1/2 )µ j+1/2 ∆x , µ j+1/2 = 1 ∆x ¢ x j+1 x j µ (x) dx = j∈Z k-1 τ =m (ρ τ +1 j+1/2 -ρ τ j+1/2 )µ j+1/2 ∆x = k-1 τ =m j∈Z F τ +1 j (ρ τ j-1/2 , ρ τ j+1/2 ) -F τ +1 j+1 (ρ τ j+1/2 , ρ τ j+3/2 ) µ j+1/2 ∆t = k-1 τ =m j∈Z F τ +1 j+1 (ρ τ j+1/2 , ρ τ j+3/2 )(µ j+3/2 -µ j+1/2 )∆t ≤ RL k-1 τ =m TV(µ )∆t ≤ RLK(|t -s| + 2∆t). gonsequentlyD for ll ∈ ND ∆ > 0 nd t, τ ∈ [0, T ]D the tringle inequlity yieldsX |ξ ∆ (t) -ξ ∆ (τ )| ≤ 2R µ -µ L 1 + RLK(|t -τ | + 2∆t).
vetting → +∞D we get tht for ll

∆ > 0 nd t, τ ∈ [0, T ]D |ξ ∆ (t) -ξ ∆ (τ )| ≤ RLK(|t -τ | + 2∆t),
whih leds to

TV(ξ ∆ ) = N k=0 ξ ∆ (t k+1 ) -ξ ∆ (t k ) ≤ 3RLK(T + ∆t).
his proves tht ξ ∆ ∈ BV([0, T ])F ine ω is vipshitz ontinuousD s ∆ lso hs ounded vritionF Theorem 4.10. Fix ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R) and y 0 ∈ R. Suppose that f satises @PFPA-@PFUA-@QFTA and that Q satises @QFUA. Suppose also that in @RFQA, we use the Godunov ux when j = 0 and any other monotone consistent and Lipschitz numerical ux when j = 0. Then under the CFL condition @RFSA, the scheme @RFIA @RFQA converges to a BV-regular solution to Problem @PFIA.

Proof. ell the hypotheses of vemm eFR re ful(lledF gonsequentlyD there exists onstnt C ε > 0 suh tht for ll n ∈ {0, . . . , N -1}D

TV ρ ∆ (t n+1 ) ≤ TV(ρ 0 ) + 4R + C ε n k=0 q k+1 -q k + n k=0 s k+1 -s k ≤ TV(ρ 0 ) + 4R + C ε (1 + Q L ∞ ) n k=0 s k+1 -s k .
@RFPQA wking use of vemm RFWD we otin tht for ll n ∈ {0, . . . , N }D

n k=0 |s k+1 -s k | = n k=0 |s ∆ (t k+1 ) -s ∆ (t k )| ≤ ω L ∞ n k=0 |ξ ∆ (t k+1 ) -ξ ∆ (t k )| ≤ 3RLK ω L ∞ (T + ∆t).
where the onstnt K ws introdued in the proof of vemm RFWF he two lst inequlities imply tht for ll t ∈ [0, T ]D we hve

TV(ρ ∆ (t)) ≤ TV(ρ 0 ) + 4R + 3C ε (1 + Q L ∞ ) ω L ∞ RLK(T + ∆t). @RFPRA hereforeD the sequene (ρ ∆ ) ∆ is uniformly in time ounded in BV(R)F sing PPD eppendixD we get the existene of ρ ∈ C([0, T ]; L 1 loc (R)) suh tht ∀t ∈ [0, T ], ρ ∆ (t) -→ ∆→0 ρ(t) in L 1 loc (R).
pollowing the proof of heorem RFVD we show tht (ρ, y) is n dmissile wek solutionF hen pssing to the limit in @RFPRAD the lower semiEontinuity of the BV semiEnorm ensures tht (ρ, y) is lso BVEregulrF Remark 4.3. xote the omplementrity of the hypotheses mde in the ove theorem with the ones of heorem RFVF ell tht in heorem RFVD we needed the qodunov )ux only wy from the interfeF sn this setion we present some numeril tests performed with the sheme nlyzed in etion RF sn ll the simultions we tke the uniformly onve )ux f (ρ) = ρ(1 -ρ) @the mximl r veloity nd the mximl density re ssumed to e equl to oneAF pollowing the hypotheses of heorem RFIHD we hoose the qodunov )ux t the interfeD nd the usnov one wy from the interfeF e will use weight funtions of the kind

µ k (x) = 2 k 1 0; 1 2 k (x),
for one @in etion SFIA or severl @in etion SFQA vlues of k ∈ N * F 5.1 Validation of the scheme sn this setionD onsider twoElne rod on whih us trvels with speed given y the funtion

ω(ρ) =    α (β + ρ) 2 if 0 ≤ ρ ≤ 0.6 1 -ρ if 0.6 ≤ ρ ≤ 1,
where α nd β re hosen so tht ω(0) = 0.7 nd ω(0.6) = 0.4D s illustrted in pigure I @leftAF he setEup of the experiment is the followingF gonsider domin of omputtion [0, 11]D the weight funtion µ 4 nd the following dtX

ρ 0 (x) = 0.51 [0.5;1] (x), y 0 = 1.5, Q(s) = 0.75 × 1 -s 2 2 .
he ide ehind the hoie of Q is tht in verge @etween the two lnesAD the presene of the slow vehile redues y 25% the mximum tr0 )owF es we n see in pigure I @rightAD the slow vehile nerly lwys trvels t mximum veloityF st mkes sense euse even though we n see tht rs re overtking it @pigure ID right nd pigure PAD the density ξ hed of it is never su0iently importnt to mke it go slowerF pigure IX ivolution in time of the us veloity ẏ∆ nd of the sujetive density ξ ∆ D with ∆x = 0.01F pigure PX he numeril solution t di'erent (xed timesD red dshed lines orrespond to the slow vehile initil positionY for n nimted representtion of the solutionD see httpsXGGutoxFunivE toursFfrGsGfonsiqmrjndyTT Remark 5.1. he funtion ω we hose ove is not of the form s required in PUD PVF yne ginD let us stress tht the prtiulr form ω(ρ) = min {V bus ; 1 -ρ}D where V bus is the mximum us veloityD is ruil for the wellEposedness result of PUD PV to holdF sndeedD it is essentil in the nlysis of PUD PV tht the veloity of the us e onstnt @equl to V bus ) ross the nonlssil shoksF yur nonlol model is not ound to this restritionF 5.2 Convergence analysis e lso perform onvergene nlysis for this testF sn the le ID we omputed the reltive errors

E ρ,∆ = ρ ∆ -ρ ∆/2 L 1 ((0,T );L 1 (R)) nd E y,∆ = y ∆ -y ∆/2 L ∞ ,
for di'erent numer of spe ells t the (nl time T = 13F e see @pigure QA tht those rtio onverge with onvergene orders pproximtely equl to 0.76 for the r density nd pproximtely equl to 1.1 for the slow moving vehile positionF

Comparisons with experiments on the local model

xow we onfront the numeril tests performed with our model with the tests done y the uthors in IR pproximting the originl prolem of PHF e del with rod of length 1 prmetrized y the intervl [0, 1] nd hoose the weight funtion µ 3 F woreoverD

ω(ρ) = min{0.3; 1 -ρ} nd Q(s) = 0.6 × 1 -s 2 2 .
xumer of ells E ρ,∆ (×10 -2 ) E y,∆ (×10 pigure QX tes of onvergene for ρ ∆ @in lkA nd y ∆ @in greenAD with T = 13F pirstD onsider the initil dtum ρ 0 (x) = 0.4 if x < 0.5 0.5 if x > 0.5 y 0 = 0.5. @SFIA he numeril solution is omposed of two lssil shoks seprted y nonlssil disontinuityD s illustrted in pigure R @leftAF xextD we hoose ρ 0 (x) = 0.8 if x < 0.5 0.5 if x > 0.5 y 0 = 0.5. @SFPA he vlues of the initil ondition rete rreftion wve followed y nonlssil nd lssil shoksD s illustrted in pigure R @rightAF pigure RX ivolution in time of the numeril density orresponding to initil dt @SFIA @leftA nd @SFPA @rightAD with ∆x = 0.001F pinllyD still following IRD we onsider ρ 0 (x) = 0.8 if x < 0.5 0.4 if x > 0.5 y 0 = 0.4. @SFQA rere the solution is omposed of rreftion wve followed y nonlssil nd lssil shoks on the density tht re reted when the slow vehile pprohes the rreftion nd initites moving ottlenekD s illustrted in pigure SF pigure SX ivolution in time of the numeril density orresponding to initil dt @SFQAD with ∆x = 0.001F ith these three testsD we n lredy see ! in qulittive wy ! the resemlne etween the numeril pproximtions to the solutions to our model nd the numeril pproximtions of IRF yne wy to quntify their proximity is for exmple to evlute the L 1 error etween the r densities nd the L ∞ error etween the us positionsF wore preiselyD denote y (ρ ∆ , y ∆ ) the pproximtion of the BVEregulr solution to @PFIA otined with the sheme @RFIA ! @RFQAD nd denote y (ρ ∆ , y ∆ ) the ouple otined with this sme sheme ut

repling s n+1 = ω   j∈Z ρ n j+1/2 µ j+1/2 ∆x   y s n+1 = ω ρ n 1/2 .
vet us preise tht this is not the sheme the uthors of IR proposedF roweverD this sheme is onsistent with the prolem

                 ∂ t ρ + ∂ x (F ( ẏ(t), ρ)) = 0 R × (0, T ) ρ(x, 0) = ρ 0 (x + y 0 ) x ∈ R F ( ẏ(t), ρ)| x=0 ≤ Q( ẏ(t)) t ∈ (0, T ) ẏ(t) = ω (ρ(0+, t)) t ∈ (0, T ) y(0) = y 0 @SFRA
nd ehves in stle wy in the lultions we performedF hereforeD the ouple (ρ ∆ , y ∆ ) is expeted to give resonle pproximtion of the solution to @SFRAF ith this in mindD for the se @SFQA nd still with the weight funtion µ 3 D we omputed in le P the mesured errors 

E 1 ∆ = ρ ∆ -ρ ∆ L 1 ((0,T );L 1 (R)) nd E ∞ ∆ = y ∆ -y ∆ L ∞ . xumer of ells E 1 ∆ (×10 -4 ) E ∞ ∆ (×10 - 
ρ 0 (x) = 1 if x < x b 0 if x > x b .
@SFSA sndeedD for suh dtD there exists smll time intervl [0, δ] in whih ẏ(t) > v(ρ(y(t) + )) = 0D whih would suggest tht the slow vehile moves forwrd while the rs in front of it do notF his time intervl is in ft quite smll due to the nrrowness of the support of the weight funtionF he lol model does not develop suh phenomenF his qulittive rteft preludes us from giving mirosopi interprettion to the modelD whih min output is the glol in)uene of the slow vehile on the )owY howeverD let us stress tht the phenomenon eomes quntittively negligile for lrger timesF sndeedD yle%nik estimte on dey of positive wves ensures tht dt of the type @SFSA evolve into rreftion wves nd do not pper while drivingX the lssil v model preludes the formtion of rreftion wves foused t positive timeF he modi(tion of the lssil v rought y the onstrint my produe nonlssil wves t positive timesY while these wves re downwrd jumps in density like in @SFSAD they re situted preisely t the lotion of the onstrint nd not slightly ehind itD like in @SFSAF iven if we re unleD t this timeD to rigorously link our prolem @PFIA with µ → δ 0 + nd the originl prolem @SFRA of the uthors in PHD this lst experiment orroortes the onjeture tht the lol model @SFRA is the singulr limit of our model in the se ω is of the form ω(ρ) = min {V bus ; 1 -ρ}F he other interesting question is whether the lol model is well posed eyond this prtiulr hoie of ωF A On BV bounds for limited ux models e fous on the study of the following lss of modelsX

     ∂ t ρ + ∂ x (F (s(t), ρ)) = 0 R × (0, T ) ρ(x, 0) = ρ 0 (x) x ∈ R F (s(t), ρ)| x=0 ≤ q(t) t ∈ (0, T ), @eFIA
where s ∈ BV([0, T ]; [0, Σ]) for some Σ > 0 nd q ∈ BV([0, T ];

R + )F e suppose tht F ∈ C 1 ([0, Σ] × [0, R]) nd tht for ll s ∈ [0, Σ]D F (s, •) is ellEshped i.e. ∀s ∈ [0, Σ], F (s, 0) = 0, F (s, R) ≤ 0 nd ∃! ρ s ∈ (0, R), ∂ ρ F (s, ρ) (ρ s -ρ) > 0 for FeF ρ ∈ (0, R).
@eFPA his frmework overs the prtiulr se when F tkes the formX

F (s(t), ρ) = f (ρ) -s(t)ρ,
with ellEshped f : [0, R] → R + D whih our model @PFIA is sed onF his lss of models is well knownD espeilly when the )ux funtion is not time dependentD cf. IUD TF sn this ppendixD we estlish in pssing the wellEposedness of rolem @eFIAD ut our min interest lies in the BV in spe regulrity of the solutionsF wore preiselyD we im t otining ound on the totl vrition of the solutions to @eFIAD using (nite volume pproximtion whih llows for shrp ontrol of the vrition t the onstrintF xote tht the lterntive o'ered y wveEfront trking would e umersome euse of the expliit timeEdependeny in @eFIAF sn the generl seD entropy solutions to limited )ux prolems like @eFIA do not elong to L ∞ ((0, T ); BV(R))D see IF e will show tht it is the se under mild ssumption on the onstrint funtion q ! see essumption @eFVA elow ! nd provided tht 

ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R).
]; L 1 loc (R))Y @iiA for ll test funtions ϕ ∈ C ∞ c (R × R + ), ϕ ≥ 0 nd κ ∈ [0, R]D the following entropy inequlities re veri(ed for ll 0 ≤ τ < τ ≤ T X ¢ τ τ ¢ R |ρ -κ|∂ t ϕ + Φ s(t) (ρ, κ)∂ x ϕ dx dt + ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx - ¢ R |ρ(x, τ ) -κ|ϕ(x, τ ) dx + 2 ¢ τ τ R s(t) (κ, q(t))ϕ(0, t) dt ≥ 0,
where R s(t) (κ, q(t)) = F (s(t), κ) -min {F (s(t), κ), q(t)} ; @iiiA for ll test funtions ψ ∈ C ∞ ([0, T ]), ψ ≥ 0 nd some given ϕ ∈ C ∞ c (R) whih veri(es ϕ(0) = 1D the following wek onstrint inequlities re veri(ed for ll 0

≤ τ < τ ≤ T X - ¢ τ τ ¢ R + ρ∂ t (ϕψ) + F (s(t), ρ)∂ x (ϕψ) dx dt - ¢ R + ρ(x, τ )ϕ(x)ψ(τ ) dx + ¢ R + ρ(x, τ )ϕ(x)ψ(τ ) dx ≤ ¢ τ τ q(t)ψ(t) dt .
Denition A.2. en dmissile wek solution ρ will e lled BVEregulr if it veri(es ρ ∈ L ∞ ((0, T ); BV(R))F es we pointed out eforeD this notion of solution is well suited for pssge to the limit of FeF onvergent sequenes of ext or pproximte solutionsF roweverD it is not so wellEdpted to prove uniquenessF en equivlent notion of solutionD sed on expliit tretment of tres of ρ t the onstrintD ws introdued y the uthors of UF his notion of solution leds to the following stility estimteF

Theorem A.3. Fix s 1 , s 2 ∈ BV([0, T ]; [0, Σ]), ρ 1 0 , ρ 2 0 ∈ L 1 (R; [0, R]
)∩BV(R) and q 1 , q 2 ∈ BV([0, T ]; R + ). Denote by ρ 1 a BV-regular solution to @eFIA with data ρ 1 0 , q 1 , s 1 and ρ 2 an admissible weak solution to @eFIA with data ρ 2 0 , q 2 , s 2 . Suppose that the ux functions (t, ρ) → F (s 1 (t), ρ), F (s 2 (t), ρ) satisfy @eFPA. Then for a.e. t ∈ (0, T ), we have:

ρ 1 (t) -ρ 2 (t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 + 2 ¢ t 0 |q 1 (τ ) -q 2 (τ )| dτ + 2 ¢ t 0 F (s 1 (τ ), •) -F (s 2 (τ ), •) L ∞ dτ + ¢ t 0 ∂ ρ F (s 1 (τ ), •) -∂ ρ F (s 2 (τ ), •) L ∞ TV(ρ 1 (τ )) dτ . @eFQA
In particular, Problem @eFIA admits at most one BV-regular solution.

Proof. ine our interest to detils lies rther on the numeril pproximtion point of viewD we do not fully prove this sttement ut we give the essentil steps leding to this stility resultF

• Denition of solution. pirstD the uthors of U introdue suset of R 2 lled germD whih n e seen s the set of ll the possile tres of solution to @eFIAF henD they sy tht ρ is solution to @eFIA if it stis(es entropy inequlities wy from the interfe ! i.e. with ϕ ∈ C ∞ c (R * × R + ) in the entropy inequlities ! nd if the ouple onstituted of leftEside nd the rightEside tres of ρ elongs to this soElled germF • Equivalence of the two denitions. he next step is to prove tht this ltter de(nition of solution is equivlent to he(nition eFIF his prt is done using good hoies of test funtionsD see UD heorem QFIV or TD roposition PFSD heorem PFWF • First stability estimate. yne (rst shows tht if s 1 = s 2 D then for FeF t ∈ (0, T )D one hs

ρ 1 (t) -ρ 2 (t) L 1 ≤ ρ 1 0 -ρ 2 0 L 1 + 2 ¢ t 0 |q 1 (τ ) -q 2 (τ )| dτ . @eFRA
he proof strts with the lssil douling of vriles method of uruºkov PSD heorem I nd then uses the germ strutureD wht the uthors of U lled L 1 EdissipativityD see UD he(nition QFI nd TD vemm PFUF • Proof of estimate @eFQAF he proof is sed upon estimte @eFRA nd elements orrowed from VD IVF wost detils n e found in the proof of PID heorem PFIF Remark A.1. hough the de(nition of solutions with the germ expliitly involves the tres of ρD we did not disuss the existene of suh tresF e (rst wy to ensure suh existene is to del with BVEregulr solutionsF ht wyD tres do exist nd re to e understood in the sense of BV funtionsF yutside the BV frmeworkD existene of strong tres for solutions to @eFIA is ensured provided n ssumption on the fundmentl digrm like @QFSAD see PD PWF pinllyD if one does not wnt to impose suh ondition on the )uxD @whih is our se in this ppendixAD one n follow wht the uthors of U proposed @in etion PA nd onsider the 4singulr mpping tresF4

A.2 Existence of BV-regular solutions e now turn to the proof of the existene of BVEregulr solutions y the mens of (nite volume shemeF pix ρ 0 ∈ L 1 (R; [0, R])F por (xed sptil mesh size ∆x nd time mesh size ∆tD let x j = j∆xD t n = n∆tF e de(ne the grid ells

K j+1/2 = (x j , x j+1 ) nd N ∈ N * suh tht T ∈ [t N , t N +1 )F e write R × [0, T ] ⊂ N n=0 j∈Z P n j+1/2 , P n j+1/2 = K j+1/2 × [t n , t n+1 ).
e hoose to disretize the initil dt ρ 0 nd the funtions s, q with ρ 0

j+1/2 j D (s n ) n nd (q n ) n
where for ll j ∈ Z nd n ∈ {0, . . . , N }AD ρ 0 j+1/2 D s n nd q n re their men vlues on eh ell K j+1/2 nd [t n , t n+1 )F pollowing TD the mrhing formul of the sheme is the followingX for ll n ∈ {0, . . . , N -1} nd j ∈ ZX

ρ n+1 j+1/2 = ρ n j+1/2 - ∆t ∆x F n j+1 (ρ n j+1/2 , ρ n j+3/2 ) -F n j (ρ n j-1/2 , ρ n j+1/2 ) , @eFSA
where

F n j (a, b) = F n (a, b) if j = 0 min {F n (a, b), q n )} if j = 0, @eFTA
F n eing monotone onsistent nd vipshitz numeril )ux ssoited to F (s n , •)F e then de(ne

ρ ∆ (x, t) = ρ n j+1/2 if (x, t) ∈ P n j+1/2 nd s ∆ (t), q ∆ (t) = s n , q n if t ∈ [t n , t n+1 ).
vet ∆ = (∆x, ∆t)F por the onvergene nlysisD we will ssume tht ∆ → 0D with λ = ∆t/∆xD verifying the gpv ondition

λ sup s∈[0,Σ] ∂F s ∂a L ∞ + ∂F s ∂b L ∞ L ≤ 1, @eFUA
where F s = F s (a, b) is the numeril )ux ! ssoited to F (s, •) ! we use in the sheme @eFSAF prom nowD the nlysis of the sheme follows the sme pth s in etion RF sn tht orderD we prove tht the sheme @eFSAE@eFTA is L ∞ stleD stis(es disrete entropy inequlities similr to @RFUA nd pproximte entropyGonstrint inequlities similr to @RFVAE@RFWAF ynly the omptness for (ρ ∆ ) ∆ is left to otin sine the L 1 loc omptness for the sequenes (s ∆ ) ∆ nd (q ∆ ) ∆ is lerF yne wy to do so is to derive uniform BV oundsF Lemma A.4. We suppose that ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R) and that q veries the assumption ∃ε > 0, ∀t ∈ [0, T ], ∀s ∈ [0, Σ], q(t) ≤ max ρ∈[0,R] F (s, ρ) -ε := q ε (s).

@eFVA

Then there exists a constant C ε = C ε ( ∂ s F L ∞ ) nondecreasing with respect to its argument such that for all n ∈ {0, . . . , N -1}, is the nite volume approximation constructed with the scheme @eFSA-@eFTA, using the Godunov numerical ux when j = 0 in @eFTA.

Proof. pix n ∈ {0, . . . N -1}F ith this set up we n follow the proofs of IQD etion P to otin the following estimteX j∈Z |ρ n+1 j+1/2 -ρ n+1 j-1/2 | ≤ TV(ρ 0 ) + 4R + 2 n k=0 ρ s k+1 (q k+1 ) -ρ s k (q k ) -q ρ s k+1 (q k+1 ) -q

ρ s k (q k ) ,
where for ll k ∈ {0, . . . , n}D the ouple ρ s k (q k ), q ρ s k (q k ) ∈ [0, R] 2 is uniquely de(ned y the onditions F (s k , ρ s k (q k )) = F (s k , q ρ s k (q k )) = q k nd ρ s k (q k ) > q ρ s k (q k ). where for ll s ∈ [0, Σ]D Ω s (ε) = (q ρ s (q ε (s)), ρ s (q ε (s)))F fy essumption @eFVAD the ontinuous funtion (s, ρ) → |∂ ρ F (s, ρ)| is positive on the ompt suset [0, Σ]×[0, R]\Ω(ε)F reneD it ttins its miniml vlue g 0 > 0F gonsequentlyD for ll s ∈ [0, Σ]D if one denotes y I s : [0, q ρ s (q ε (s))] → [0, q ε (s)] the inresing prt of F (s, •)D this funtion rries out C 1 Edi'eomorphismF woreoverD ∀q ∈ [0, q ε (s)], (I -1 s ) (q) ≤ 1 g 0 .

henD for ll k ∈ {0, . . . , n}D q ρ s k+1 (q k+1 ) -q ρ s k (q k ) = (I -1 s k+1 )(q k+1 ) -q

ρ s k (q k ) ≤ 1 g 0 |q k+1 -q k | + (I -1 s k+1 )(q k ) -q ρ s k (q k ) = 1 g 0 |q k+1 -q k | + (I -1 s k+1 )(q k ) -(I -1 s k+1 ) • I s k+1 q ρ s k (q k ) ≤ 1 g 0 |q k+1 -q k | + q k -I s k+1 q ρ s k (q k ) = 1 g 0 |q k+1 -q k | + F s k , q ρ s k (q k ) -F s k+1 , q ρ s k (q k ) ≤ 1 g 0 |q k+1 -q k | + ∂ s F L ∞ |s k+1 -s k | ≤ 1 + ∂ s F L ∞ g 0 |q k+1 -q k | + |s k+1 -s k | .
sing the sme tehniquesD one n show tht the sme inequlity holds when onsidering ρ s k+1 (q k+1 ) -ρ s k (q k ) F hereforeD inequlity @eFWA follows with

C ε = 4 × 1 + ∂ s F L ∞ g 0 .
Remark A. Suppose that q veries Assumption @eFVA. Let ρ ∆ = ρ n j+1/2 n,j be the nite volume approximate solution constructed with the scheme @eFSA-@eFTA, using the Godunov numerical ux when j = 0 in @eFTA, and any other monotone consistent and Lipschitz numerical ux when j = 0. Then there exists ρ ∈ C([0, T ]; L 1 loc (R)) such that ∀t ∈ [0, T ], ρ ∆ (t) -→ ∆→0 ρ(t) in L 1 loc (R).

Proof. ine s nd q hve ounded vritionD inequlity @eFWA leds to n uniform in time BV ound for the sequene (ρ ∆ ) ∆ F hen the result from PPD eppendix estlish the omptness sttementF Theorem A.6. verifying @eFPA and q ∈ BV([0, T ]; R + ). Suppose that in @eFTA, we use the Godunov ux when j = 0 and any other monotone consistent and Lipschitz numerical ux when j = 0. Finally, suppose that q satises @eFVA. Then under the CFL condition @eFUA, the scheme @eFSA-@eFTA converges to an admissible weak solution ρ, to @eFIA, which is also BV-regular. More precisely, there exists a constant C ε = C ε ( ∂ s F L ∞ ) nondecreasing with respect to its argument such that ∀t ∈ [0, T ], TV(ρ(t)) ≤ TV(ρ 0 ) + 4R + C ε (TV(q) + TV(s)) . @eFIHA Proof. prom the sheme @eFSAD one n derive pproximte entropyGonstrint inequlities nloE gous to @RFVAE@RFWA of etion RF vet ρ e the limit to the (nite volume shemeD the omptness of (ρ ∆ ) ∆ oming from the lst orollryF e lredy know tht ρ ∈ C([0, T ]; L 1 loc (R))F fy pssing to the limit in the pproximte entropyGonstrint inequlities veri(ed y (ρ ∆ ) ∆ we get tht ρ stis(es the entropyGonstrint inequlities of he(nition eFIF his shows tht ρ is n dmissile wek soluE tion to rolem @eFIAF pinllyD from @eFWAD the lower semiEontinuity of the BV semiEnorm ensures tht ρ ∈ L ∞ ([0, T ]; BV(R)) nd veri(es @eFIHAF his onludes the proofF Corollary A.7. Fix ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R), s ∈ BV([0, T ]; [0, Σ]), F ∈ C 1 ([0, Σ] × [0, R]) verifying @eFPA and q ∈ BV([0, T ]; R + ). Suppose that q satises Assumption @eFVA. Then Problem @eFIA admits a unique BV-regular solution ρ. Moreover, ρ satises the bound @eFIHA.

Proof. niqueness omes from heorem eFQD the existene nd the BV ound omes from heorem eFTF Remark A.3. nder the hypotheses of gorollry eFUD if we prove the existene of n other dmisE sile wek solution ρ to @QFIA @y nother methodD splitting for instneAD then heorem eFQ ensures tht ρ = ρF

2. 2

 2 Notion of solutionhroughout the pperD we denote yΦ(a, b) = sign(a -b)(f (a) -f (b)) nd Φ ẏ(t) (a, b) = Φ(a, b) -ẏ(t)|a -b|the entropy )uxes ssoited with the uruºkov entropy ρ → |ρ -κ|D for ll κ ∈ [0, R]D see PSF pollowing PHD IUD TD ISD we give the following de(nition of solution for rolem @PFIAF Denition 2.

e

  hoose to disretize the initil dt ρ 0 (• + y 0 ) nd the weight funtion µ with ρ 0 j+1/2 j∈Z nd µ j+1/2 j∈Z where for ll j ∈ ZD ρ 0 j+1/2 nd µ j+1/2 re their men vlues on the ell K j+1/2 F Remark 4.1. ythers hoie ould e mdeD for instne in the se ρ 0 ∈ C(R) suh tht lim |x|→+∞ ρ 0 (x)

  hroughout the ppendixD for ll s ∈ [0, Σ] nd a, b ∈ [0, R]D we denote y Φ s (a, b) = sign(a -b)(F (s, a) -F (s, b)) the lssil uruºkov entropy )ux ssoited with the uruºkov entropy ρ → |ρ-κ|D for ll κ ∈ [0, R]D see PSF A.1 Equivalent denitions of solution and uniqueness vet us (rst rell the following de(nitionF Denition A.1. e ounded funtion ρ ∈ L ∞ (R × (0, T )) is n dmissile wek solution to @eFIA if @iA the following regulrity is ful(lledX ρ ∈ C([0, T

  TV(ρ ∆ (t n+1 )) ≤ TV(ρ 0 ) + 4R + C ε n k=0 |q k+1 -q k | + n k=0 |s k+1 -s k | , @eFWAwhere ρ ∆ = ρ n j+1/2 n,j

  henote y Ω(ε) the open suset Ω(ε) = s∈[0,Σ] Ω s (ε)

  2. ell we suppose tht F : [0, Σ] × [0, R] is ontinuously di'erentileD ut if we look in the detils of the proof oveD we tully need F = F (s, ρ) to e ontinuously di'erentile with respet to s nd∀s ∈ [0, Σ], F (s, •) ∈ C 1 ([0, R]\{ρ s }), ρ s = rgmx ρ∈[0,R] F (s, ρ). Corollary A.5. Fix ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R), s ∈ BV([0, T ], [0, Σ]) and q ∈ BV([0, T ], R + ).

  Fix ρ 0 ∈ L 1 (R; [0, R]) ∩ BV(R), s ∈ BV([0, T ]; [0, Σ]), F ∈ C 1 ([0, Σ] × [0, R])

  

  

  

  

  his indites the disrepny etween our nonlol nd the lol model @SFRA of PHF he ide is now to (x the numer of ells J = 40960 nd to mke the length of the weight funtion support go to zeroF sn le QD we hve omputedD for di'erent weight funtionsD the error etween the pproximtions of the two modelsF his error orrespondsD s in the ove lultionD to the residul error oserved strting from su0iently smll ∆xF Remark 5.2. he previous simultions show loseness etween our model s µ → δ 0 + nd @SFRAF vet us however point tht the nonlolity in spe for the slow vehile introdues n undesirle rteft into the modelF sn the rreftion regime one my oserve tht the lrge vehile my move it fster tht the surrounding )owF he sitution where this e'et eomes truly pereptile is when onsidering initil dt of the type

				3 )
		ITH	32.672	18.519
		QPH	14.236	7.341
		TRH	5.837	3.701
		IPVH	3.833	4.879
		PSTH	3.207	6.405
		SIPH	2.922	7.144
		IHPRH	2.776	7.501
		PHRVH	2.698	7.674
		RHWTH	2.658	7.759
	le PX wesured errors t time T = 0.7245F
	hese lultions indite tht for su0iently lrge numer of ells J ≥ 40960D
	E 1 ∆	2.7 × 10 -4 nd E ∞ ∆	7.6 × 10 -3 .
	weight funtion	E 1 ∆	E ∞ ∆
		µ 1	6.810 × 10 -3 5.489 × 10 -2
		µ 2	1.105 × 10 -3 1.972 × 10 -2
		µ 3	2.658 × 10 -4 7.759 × 10 -3
		µ 4	9.232 × 10 -5 2.913 × 10 -3
		µ 5	6.190 × 10 -5 9.110 × 10 -4
	le QX wesured errors t time T = 0.7245
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he following lemm is n immedite onsequene of inequlity @RFITAF Lemma 4.6. Fix 0 < ε < X. Let i, J ∈ N * such that ε ∈ K i+1/2 and X ∈ K J-1/2 . Then if ∆x/ε is suciently small, there exists a constant B = B R, X, 1 a , 1 ε , nondecreasing with respect to its arguments, such that for all n ≥ i -1,

such that up to the extraction of a subsequence,

i.e. n ≥ i -1F hen if we suppose tht ∆x/ε is su0iently smllD we n use vemm RFTF prom @RFIWAD we get

nd from @RFPHAD we dedue ¢ Ω(X,ε)

gomining @RFPIAE@RFPPA nd the L ∞ ound @RFTAD funtionl nlysis result @PRD heorem eFVA ensures the existene of susequene whih onverges lmost everywhere to some ρ on Ω(X, ε) × (λε, T )F fy stndrd digonl proess we n extrt further susequene @whih we do not relelA suh tht (ρ ∆ ) ∆ onverges lmost everywhere to ρ on R × (0, T )F Theorem 4.8. Fix ρ 0 ∈ L 1 (R; [0, R]) and y 0 ∈ R. Suppose that f ∈ C 2 satises Assumptions @PFPA-@PFUA-@RFIQA. Suppose also that in @RFQA, we use the Engquist-Osher ux or the Godunov one when j = 0 and any other monotone consistent and Lipschitz numerical ux when j = 0. Then under the CFL condition @RFSA, the scheme @RFIA @RFQA converges to an admissible weak solution to Problem @PFIA.

Proof. e hve shown tht ! up to the extrtion of susequene ! y ∆ onverges uniformly on