
HAL Id: hal-02391841
https://hal.science/hal-02391841v1

Submitted on 4 Mar 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Backward coverability with pruning for lossy channel
systems

Thomas Geffroy, Jérôme Leroux, Grégoire Sutre

To cite this version:
Thomas Geffroy, Jérôme Leroux, Grégoire Sutre. Backward coverability with pruning for lossy channel
systems. SPIN 2017 - 24th ACM SIGSOFT International SPIN Symposium on Model Checking of
Software, Jul 2017, Santa Barbara, United States. pp.132-141, �10.1145/3092282.3092292�. �hal-
02391841�

https://hal.science/hal-02391841v1
https://hal.archives-ouvertes.fr

Backward Coverability with Pruning for Lossy Channel Systems
Thomas Geffroy
Jérôme Leroux
Grégoire Sutre

University of Bordeaux & CNRS, LaBRI, UMR 5800
Talence, France

ABSTRACT
Driven by the concurrency revolution, the study of the coverability
problem for Petri nets has regained a lot of interest in the recent
years. A promising approach, which was presented in two papers
last year, leverages a downward-closed forward invariant to ac-
celerate the classical backward coverability analysis for Petri nets.
In this paper, we propose a generalization of this approach to the
class of well-structured transition systems (WSTSs), which contains
Petri nets. We then apply this generalized approach to lossy chan-
nel systems (LCSs), a well-known subclass of WSTSs. We propose
three downward-closed forward invariants for LCSs. One of them
counts the number of messages in each channel, and the other two
keep track of the order of messages. An experimental evaluation
demonstrates the benefits of our approach.

CCS CONCEPTS
• Theory of computation→ Verification bymodel checking;
Logic and verification; Invariants; Program verification;

KEYWORDS
Model-Checking, Well-Structured Transition Systems, Lossy Chan-
nel Systems, Coverability Problem
ACM Reference format:
Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre. 2017. Backward Cover-
ability with Pruning for Lossy Channel Systems. In Proceedings of SPIN’17,
Santa Barbara, CA, USA, July 13-14, 2017, 10 pages.
https://doi.org/10.1145/3092282.3092292

1 INTRODUCTION
Context. Lossy channel systems (LCSs) have been introduced by

Abdulla and Jonsson to verify protocols that are designed to operate
correctly even in presence of messages losses [4]. In recent years,
LCSs have regained some interest because they are closely con-
nected to weak-memory models [1, 6]. Indeed, concurrent systems
operating under the TSO memory model can be simulated by LCSs,
and vice versa [6]. Some business protocols [23] were also tested
and improved to work correctly with unreliable channels. Another
use of LCSs is to see them as over-approximations of systems with

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5077-8/17/07. . . $15.00
https://doi.org/10.1145/3092282.3092292

perfect channels. If a safety property is satisfied by a system with
unreliable communications, then the property is also satisfied by
the same system with perfect communications. The verification of
a safety property on a given LCS can often be reduced to a cover-
ability question on a (potentially larger) LCS. Coverability for LCSs
is essentially the same as control-state reachability.

Related work. The coverability problem for LCSs was shown
to be decidable in [4]. The precise computational complexity of
the problem remained open for fifteen year. It was shown to be
hyper-Ackermann-complete in [11]. This complexity could leave us
hopeless for practical implementations. However, even though the
coverability problem for Petri nets is ExpSpace-complete, tools were
recently implemented with great success in practice [7, 15, 17, 21].
We can hope to repeat this success for LCSs since they are somewhat
close to Petri nets (both are well-structured transition systems [16]).

Some tools already exist to solve the coverability problem for
LCSs. The most prominent one is TReX [5]. The tools LASH [8]
and McScM [19] are primarily designed to verify systems with
perfect channels, but they can also be used for LCSs by explicitly
permitting message losses. TReX and LASH iteratively compute
the forward reachability set using (1) a symbolic representation of
channel contents and (2) so-called acceleration techniques to speed-
up the computation. McScM is based on counterexample-guided
abstraction refinement [12] and abstract regularmodel-checking [9].
Our approach can be seen as an explicit backward search combined
with a symbolic forward abstraction.

Our contribution. We present a generic backward coverability
algorithm that relies on downward-closed forward invariants to
prune the exploration of the state space. This algorithm works not
only for LCSs but for the larger class of well-structured transition
systems. We present three invariants for LCSs that can be used by
this algorithm. The one we call state inequation ignores the order of
messages but counts the number of occurrences of each message in
each channel. The other two invariants ignore how many messages
are in the channels, but focus on their order. One is based on simple
regular expressions [2] and the other is based on quasi-orderings over
messages. The second one is as an abstraction of the first one that
provides an interesting trade-off between precision and efficiency.
We have implemented the algorithm and the three invariants. Our
experimental evaluation demonstrates the benefits of our approach.

Outline. Section 2 recalls the coverability problem for well-struc-
tured transition systems. Sections 3 and 4 present our generalized
backward coverability algorithm with pruning based on downward-
closed invariants. Section 5 recalls lossy channel systems and simple
regular expressions. Sections 6 and 7 present two invariants that
keep track of the order of messages in the channels. Section 8

https://doi.org/10.1145/3092282.3092292
https://doi.org/10.1145/3092282.3092292

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre

presents an invariant that counts the messages in the channels. Sec-
tion 9 provides our experimental evaluation. Section 10 concludes
the paper.

2 COVERABILITY FORWELL-STRUCTURED
TRANSITION SYSTEMS

The class of well-structured transition systems (WSTS) is a large
class of systems with many decidable properties [16]. In fact many
classical problems (some termination and safety properties), can
be decided with generic algorithms. The coverability problem is
such a problem. It is motivated by the formal verification of some
safety properties. In this section, we recall in three sub-sections (1)
classical results about well quasi-orders, (2) the definition of WSTS,
and (3) the coverability problem.

2.1 Well Quasi-Ordering
We first recall some properties about well quasi-orders (see [16] for
additional properties and definitions).

A quasi-ordering over a set S is a binary relation ≤ over S that
is transitive and reflexive. Given a subset X ⊆ S , we let ↑X and ↓X
denote its upward closure and downward closure, respectively. These
sets are defined as follows.

↑X = {s ∈ S | ∃x ∈ X : x ≤ s}
↓X = {s ∈ S | ∃x ∈ X : s ≤ x}

A subset U ⊆ S is called an upward-closed set when U = ↑U , and
a subset D ⊆ S is called a downward-closed set when D = ↓D. A
basis of an upward-closed set U is a set B ⊆ U such that ↑B = U .
Upward closed sets can be denoted by finite bases when ≤ is a well
quasi-order.

A well quasi-ordering (wqo) over S is a quasi-ordering ≤ over
S such that, for every infinite sequence x0, x1, . . . ⊆ S , there exist
i and j with i < j and xi ≤ x j . This implies that any wqo is well-
founded: it admits no strictly decreasing infinite sequence.

Proposition 2.1 ([16, 20]). For a quasi-ordering ≤ over a set S ,
the following propositions are equivalent
• ≤ is wqo.
• Every upward-closed set has a finite basis.
• Every infinite non-decreasing sequence U0 ⊆ U1 ⊆ · · · of
upward-closed sets eventually stabilizes: there exists k ∈ N
such thatUk = Uk+1 = Uk+2 = · · ·

Notation: For the remainder of the paper, we will simply write
x in place of {x} for singletons, when it causes no confusion. In
particular ↑x denotes {s ∈ S | x ≤ s}.

2.2 WSTS
We recall the definition of Well-Structured Transition Systems.

Definition 2.2 (Transition System). A transition system is a tuple
S = (S, sinit ,→) where S is a set of states, sinit is the initial state
and→ ⊆ S × S is the transition relation.

We note
∗
−→ the reflexive and transitive closure of→.

Definition 2.3 (Well-Structured Transition System [3, 16]). A Well-
Structured Transition System (WSTS) is a transition system S =

(S, sinit ,→) equipped with a wqo ≤ over S that is compatible with
→: for all states s1, s2, t1 with s1 → s2 and s1 ≤ t1, there exists
t2 ∈ S such that t1

∗
−→ t2 and s2 ≤ t2.

2.3 Coverability Problem
The coverability problem is a natural problem of safety verification.
Formally, a state sf inal of a WSTS S = (S, sinit ,→, ≤) is said to be

coverable if there exists a state s such that sinit
∗
−→ s and s ≥ sf inal .

The coverability problem consist in deciding if a state is coverable.
The set of coverable configurations is denoted by CovS and it is
called the coverability set.

Notice that CovS is a downward closed set and in particular its
complement is an upward closed set that admits a finite basis as any
upward closed set. It follows that if B is a finite basis of that set, the
coverability problem for a state sf inal reduces to check that sf inal
is not in ↑B, i.e. check if

∧
b ∈B b ≰ sf inal . Unfortunately, for some

natural classes of WSTSs (like the lossy channel systems introduced
in the sequel), such a finite basis B is not computable [22].

Anyway, the coverability problem can be decided thanks to a
generic algorithm. This algorithm is based on the following def-
initions of predecessor sets. Formally, the one-step predecessors
function preS and the many-step predecessors function preS are
functions from P(S) to P(S), defined for any X ⊆ S by:

preS(X) = {s ∈ S | ∃x ∈ X : s → x}

pre∗
S
(X) = {s ∈ S | ∃x ∈ X : s

∗
−→ x}

We recall from [16] that pre∗
S
(U) is an upward closed set for any

upward closed set U , and a state sf inal is coverable if, and only
if, sinit is in pre∗S(↑sf inal). The coverability problem is shown to
be decidable for WSTSs, thanks to an algorithm computing induc-
tively a basis of the upward closed set pre∗

S
(↑sf inal). In the next

section we introduce a new generic algorithm for deciding the cov-
erability problem that takes benefit of an over-approximation of
the coverability sets.

3 BACKWARD COVERABILITY ANALYSIS
WITH PRUNING

The coverability problem is a fundamental question for formal veri-
fication and there have been a lot of different methods proposed to
solve this problem efficiently. For Petri Nets, a class of WSTS, in re-
cent years, methods were proposed using structural analysis mixed
with SMT solving [7, 15], and the use of continuous coverability in
Petri Nets to accelerate the backward coverability decision [7].

Inspired by those new methods, we proposed in [17] one of the
top most efficient algorithm for deciding the coverability problem
for Petri nets. In that paper, the correctness of our approach relies
on the following two properties satisfied by Petri nets:

• strong compatibility: for all states s1 ≤ t1 such that s1 → s2,
there exists t2 ∈ S such that t1 → t2 and s2 ≤ t2.
• upward closed predecessors : for any state s the set of prede-
cessors preS(↑s) is upward-closed.

In this section we propose to generalize our approach to the full
class of WSTS. The generalization is obtained by adapting proofs in

Backward Coverability with Pruning for Lossy Channel Systems SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

such a way we do not rely anymore on those two previously given
properties.

The classical backward coverability algorithm [3, 16] for WSTS
computes a growing (meaning non-decreasing in the sequel) se-
quence U0 ⊆ U1 ⊆ · · · of upward-closed subsets of S that con-
verges to pre∗

S
(↑sf inal). In [17] we proposed a way to improve

the convergence with the help of a known over-approximation of
the coverability set. The idea is to prune Ui with the help of that
over-approximation.

Formally, an invariant for a WSTS S = (S, sinit ,→, ≤) is a
downward-closed set of S that contains the coverability set. In
Sections 6 to 8 we present efficient algorithms for computing useful
invariants.

For the remainder of this section, we consider a WSTS S =
(S, sinit ,→, ≤) with a target state sf inal and we assume that we
are given an invariant I for S = (S, sinit ,→, ≤). We introduce the
sequenceU0,U1, . . . subsets of S defined as follows:

U0 = ↑(sf inal ∩ I)
Uk+1 = ↑(preS(Uk) ∩ I) ∪Uk

Observe that eachUk is upward-closed and thatU0 ⊆ U1 ⊆ · · · .
On the contrary to the classical backward coverability approach [3,
16], Uk+1 does not consider all one-step predecessors of Uk , but
discards those that are not in I . Note that by taking I = S , which is
trivially an invariant, we obtain the same growing sequence as in
the classical backward coverability approach [3, 16].

The two following lemmas are adapted from [17]. They show
how to use this new sequence to solve the coverability problem.

Lemma 3.1. The sequence U0 ⊆ U1 ⊆ · · · is ultimately stationary.

Proof. Every infinite non-decreasing (w.r.t. ⊆) sequence of up-
ward-closed sets is ultimately stationary since ≤ is a wqo. □

Lemma 3.2. It holds that sf inal ∈ CovS if, and only if, sinit ∈⋃
k Uk .

Proof. If sf inal ∈ CovS then sinit
∗
−→ s ≥ sf inal for some

states s in S . Since sinit
∗
−→ s , there exists s0, . . . , sn ∈ S such

that sinit = sn , sn → sn−1 · · · → s0 and s0 ≥ sf inal . First
observe that si ∈ I for every i ∈ {0, . . . ,n} because I is an in-
variant for S. Moreover, as sf inal ∈ I we get U0 = ↑sf inal . We
prove, by induction on i , that si ∈ Ui for all i ∈ {0, . . . ,n}. The
basis s0 ∈ U0 follows from the facts that s0 ≥ sf inal and U0 =
↑sf inal . For the induction step, let i ∈ {0, . . . ,n − 1} and assume
that si ∈ Ui . Recall that si+1 ∈ I and si+1 → si . It follows that
si+1 ∈ (preS(Ui) ∩ I) ⊆ Ui+1. We have shown that sn ∈ Un , hence,
sinit = sn belongs to

⋃
k Uk . Now, let us assume that sinit ∈

⋃
k Uk

and let us prove that sf inal ∈ CovS . We first prove, by induction
on k , that Uk ⊆ pre∗

S
(↑sf inal). The basis follows from the ob-

servation that U0 ⊆ ↑sf inal ⊆ pre∗
S
(↑sf inal). For the induction

step, let k ∈ N and assume that Uk ⊆ pre∗
S
(↑sf inal). Recall that

Uk+1 = ↑(preS(Uk) ∩ I) ∪ Uk , hence, Uk+1 ⊆ ↑preS(Uk) ∪ Uk .
As Uk ⊆ pre∗

S
(↑sf inal), it follows that preS(Uk) ⊆ pre∗

S
(↑sf inal).

As pre∗
S
(↑sf inal) is upward closed, it follows that ↑preS(Uk) ⊆

pre∗
S
(↑sf inal). Hence Uk+1 ⊆ pre∗

S
(↑sf inal). We have thus shown

thatUk ⊆ pre∗
S
(↑sf inal) for every k ∈ N. We obtain that sinit is in

pre∗
S
(↑sf inal), therefore sf inal ∈ CovS . □

We have presented in this section a growing sequence of upward-
closed sets whose limit contains enough information to decide the
coverability problem. Our next step is to transform this sequence
into an algorithm.

4 THE ALGORITHM
Now we want to design an algorithm computing with some finite
bases the sequenceU0 ⊆ U1 ⊆ · · · of upward closed sets introduced
in the previous section. The classical sequence without the invariant
(or with invariant I = S) can be computed [16] for a WSTS S =
(S, sinit ,→, ≤) when the relation ≤ is computable, and when there
exists an effective pre-basis for this WSTS, i.e. an algorithm that
can compute for every state s , a finite basis cpreS(s) of the upward
closure of preS(↑s). It follows that the following equality holds:

↑cpreS(s) = ↑preS(↑s)

We present the backward coverability algorithm with pruning for
solving the coverability problem for any WSTS S = (S, sinit ,→, ≤)
with a computable ≤ and a computable function cpre .

Given a finite set X of S , we denote by cpreS(X) the union⋃
x ∈X cpreS(x).

Lemma 4.1. Let D be a downward-closed set of S .
For every finite subset X ⊆ S , it holds that
↑preS((↑X) ∩ D) = ↑(cpreS(X) ∩ D).

Proof. We first prove that the equality ↑((↑Y) ∩ D) = ↑(Y ∩ D)
holds for every finite set Y and for every downward closed set D.
First of all, notice that Y ∩ D ⊆ (↑Y) ∩ D ⊆ ↑((↑Y) ∩ D). It follows
that ↑(Y ∩ D) ⊆ ↑((↑Y) ∩ D). Conversely, let s ∈ ↑((↑Y) ∩ D). There
exists d ∈ (↑Y) ∩ D such that d ≤ s . As d ∈ ↑Y , there exists y ∈ Y
such thaty ≤ d . AsD is downward closed, we derive fromy ≤ d that
y ∈ D. Thus y ∈ Y ∩ D. From y ≤ d ≤ s we get s ∈ ↑y ⊆ ↑(Y ∩ D).
We have proved the other inclusion.

Now, just let Y = cpreS(X), and observe that preS(↑X) =
↑cpreS(X). □

We now have everything to propose the pruned backward cov-
erability algorithm for WSTS.

Remark 4.2. Line 10 of the algorithm can be implemented just
as the assignment B ← B ∪ P . However, in order to improve the
efficiency of the algorithm, we remove non minimal elements as
follows. An element x in a set X of states is said to be redundant if
there exists y ∈ X with y , x such that y ≤ x . Notice that in that
case ↑X = ↑Y where Y = X\{x}. Line 10 of the algorithm can be
implemented just by inductively removing redundant states one by
one. When ≤ is a partial order, this computation returns the set of
minimal elements. □

Let ℓB , ℓP ∈ N∪{∞} denote the numbers of executions of lines 5
and 8, respectively. It is understood that lP ≤ lB ≤ lP + 1, with the
convention that ∞ + 1 = ∞. Let (Bk)k<ℓB and (Pk)k<ℓP denote
the successive values at lines 5 and 8 of the variables B and P ,
respectively.

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre

ALGORITHM 1: BCwP(S, sf inal , I).

Input: A WSTS S = (S , sinit ,→, ≤) with ≤ computable and an
effective pre-basis, a target state sf inal ∈ S and a
downward-closed invariant I for S

Output: Whether there exists a state s ∈ S such that sinit
∗
−→ s

and s ≥ sf inal .
1 if sf inal ∈ I then
2 B ← {sf inal }
3 else
4 B ← ∅

5 while sinit < ↑B do
6 N ← (cpreS(B)) \ ↑B /* new predecessors */

7 P ← N ∩ I /* prune uncoverable states */

8 if P = ∅ then
9 return False

10 Let B be a finite basis of ↑(B ∪ P)

11 return True

Lemma 4.3. For every k with 0 ≤ k < ℓB , the set Bk is a finite
basis of Uk . For every k with 0 ≤ k < ℓP , the set Pk is a finite basis
of ↑(Uk+1 \Uk).

Proof. It is readily seen that Bk and Pk are finite subsets of
states for every k . We first observe that, for every k with 0 ≤ k <
ℓP ,

↑Pk = ↑((cpreS(Bk) \ ↑Bk) ∩ I) [Lines 6–7]
= ↑(cpreS(Bk) ∩ (I \ ↑Bk))
= ↑(preS(↑Bk) ∩ (I \ ↑Bk)) [Lemma 4.1]
= ↑((preS(↑Bk) ∩ I) \ ↑Bk)

Let us now prove, by induction on k , that Uk = ↑Bk for every
k with 0 ≤ k < ℓB . The basis U0 = ↑B0 follows from lines 1–5 of
BCwP and from the definition ofU0. For the induction step, let k ∈ N
with k + 1 < ℓB , and assume that Uk = ↑Bk . Line 10 entails that
↑Bk+1 = ↑Bk ∪ ↑Pk . It follows that

↑Bk+1 = ↑Bk ∪ ↑Pk
= ↑Bk ∪ ↑((preS(↑Bk) ∩ I) \ ↑Bk)
= Uk ∪ ↑((preS(Uk) ∩ I) \Uk) [Uk = ↑Bk]
= Uk ∪ ↑(preS(Uk) ∩ I)
= Uk+1

This concludes the proof thatUk = ↑Bk for everyk with 0 ≤ k < ℓB .
Moreover, coming back to the characterization of ↑Pk , we get that

↑Pk = ↑((preS(↑Bk) ∩ I) \ ↑Bk)
= ↑((preS(Uk) ∩ I) \Uk)
= ↑(Uk+1 \Uk)

for every k with 0 ≤ k < ℓP . □

Theorem 4.4. The procedure BCwP terminates on every input and
is correct.

Proof. Let us first prove termination. We need to show that any
maximal execution of BCwP(S, sf inal , I) is finite. By contradiction,
assume that ℓB = ∞. According to Lemma 3.1, there exists an
index h ∈ N such that Uh = Uh+1. We derive from Lemma 4.3
that Ph = ∅. Therefore, the execution should terminate at line 9

during the (h + 1)th iteration of the while loop. This contradicts
our assumption that ℓB = ∞.

We now turn our attention to the correctness of BCwP. As it is
finite, any maximal execution of BCwP(S, sf inal , I) either returns
False at line 9 or returns True at line 11.
• If it returns False then PℓP−1 = ∅ and it follows from
Lemma 4.3 thatUℓP ⊆ UℓP−1. It follows thatUℓP−1 =

⋃
k Uk .

Moreover, sinit < ↑BℓP−1 because the condition of thewhile
loop had to hold. It follows hat sinit <

⋃
k Uk . We derive

from Lemma 3.2 that sf inal < CovS .
• If it returns True then sinit ∈ ↑BℓB−1 and it follows from
Lemma 4.3 that sinit ∈ UℓB−1 ⊆

⋃
k Uk . We derive from

Lemma 3.2 that sf inal ∈ CovS .
This concludes the proof of the theorem. □

In the next section we focus our algorithm on lossy channel
systems.

5 LOSSY CHANNEL SYSTEMS
Lossy channel systems (LCSs) have been introduced by Abdulla and
Jonsson to verify protocols that are designed to operate correctly
even in presence of messages losses [4]. Informally, an LCS is a
finite-state automaton equipped with finitely many first-in first-out
channels that are unreliable in the sense that messages can be lost at
any time. This section recalls the definition of LCS and shows how
to verify them using the BCwP algorithm of the previous section.

5.1 Syntax and Semantics of LCSs
A lossy channel system is a tuple S = (Q,qinit ,M,d,∆) where Q
is the finite set of locations, qinit ∈ Q is the initial location, M
is the finite alphabet of messages that can be exchanged over the
channels, d is the number of channels, and ∆ ⊆ Q ×Op ×Q is the
set of transition rules, whereOp = {1, . . . ,d} × {!, ?} ×M is the set
of operations over the channels. An operation is
• either a transmission i!m of a messagem into a channel i ,
• or a reception i?m of a messagem from a channel i .

Example 5.1. Figure 1 represents the LCS with locations Q =
{q1,q2,q3,qbad }, initial location qinit = q1, messagesM = {a,b},

a single channel, and rules ∆ = {q1
1!a
−−−→ q2,q2

1!b
−−−→ q1,q2

1?a
−−−→

q3,q3
1?a
−−−→ qbad }. □

The operational semantics of an LCS S = (Q,qinit ,M,d,∆) is
given by an infinite-state transition system JSK = (S, sinit ,→)
defined as follows. The set of states is S = Q × (M∗)d . So a state
s = (q,w1, . . . ,wd) is composed of a location q and of words wi
describing the contents of the channel i . All channels are empty
initially, so the initial state is sinit = (qinit , ε, . . . , ε).

For each rule δ = (q,op,q′) in ∆, we define the binary relation
δ
−→ over S as follows: s

δ
−→ s ′ with s = (q,w1, . . . ,wd) and s ′ =

(q′,w ′1, . . . ,w
′
d) if and only if

• either op is a transmission i!m, in which case w ′i = wi ·m
andw ′j = w j for all j , i ,
• or op is a reception i?m, in which case m · w ′i = wi and
w ′j = w j for all j , i .

Backward Coverability with Pruning for Lossy Channel Systems SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

q1 q2 q3 qbad

1!b

1!a
1?a 1?a

Figure 1: Simple example of a lossy channel system.

The relations
δ
−→ capture the perfect semantics of first-in first-

out channels. To capture message losses, we also define the binary
relation →λ over S . Formally, s →λ s ′ with s = (q,w1, . . . ,wd)

and s ′ = (q′,w ′1, . . . ,w
′
d) if and only if the locations q and q′ are

the same and there exists a channel i ∈ {1, . . . ,d} such thatw ′i is
obtained fromwi by deleting one message (i.e.,wi = u ·m · v and
w ′i = u · v , for somem ∈ M and u,v ∈ M∗) and w ′j = w j for all
j , i . For example, (q2,a · b · a) →λ (q2,a · a). We also introduce,
for technical reasons, the identity relation {(s, s) | s ∈ S}, written
→ε .

Now, the binary relation→ over S is defined to be the union of

the relation→ε , of the relation→λ and of the relations
δ
−→ where

δ ranges over ∆.

Example 5.2. Consider again the LCS depicted in Figure 1. The
state (qbad , ε) is reachable from the initial state because (q1, ε) →
(q2,a) →→ (q2,aba) →λ (q2,aa) →→ (qbad , ε). But a message
loss (i.e., a→λ step) is required to do so. □

5.2 LCSs Are Well-Structured
As was already observed in [3, 16], lossy channel systems are well-
structured, and so coverability is decidable for them. The well-
structure of LCSs allows us to use the algorithm presented in Sec-
tion 4. But we need to show that the required effectivity conditions
are fulfilled. Let us start by recalling how LCSs can be framed as
well-structured transition systems.

For two words u and v in M∗, we say that u is a subword of v ,
written u ⪯ v , if u can be obtained from v by erasing some letters.
In other words, u is a (possibly non-contiguous) subsequence of v .
The relation ⪯ is obviously a partial ordering1 onM∗. Moreover, it
is wqo onM∗. This last result is due to Higman [20].

Given an LCS S = (Q,qinit ,M,d,∆), we define the relation ≤
over S = Q × (M∗)d as follows. For two states s = (q,w1, . . . ,wd)

and s ′ = (q′,w ′1, . . . ,w
′
d), let s ≤ s ′ if and only if q = q′ andwi is a

subword ofw ′i for every i ∈ {1, . . . ,d}. It is readily seen that this
relation is a partial ordering on S . The following lemma is an easy
consequence of the definitions of→λ and ≤.

Lemma 5.3. The relations ≥ and (→λ)
∗ are equal.

It follows from the previous lemma that coverability and reacha-
bility coincide for lossy channel systems (equipped with ≤). Indeed,
if there exists a state s ∈ S such that sinit

∗
−→ s ≥ sf inal then

sinit
∗
−→ s

∗
−→ sf inal hence sinit

∗
−→ sf inal . The converse always

holds by reflexivity of ≤.

Lemma 5.4 ([3, 16]). The semantics of a lossy channel system,
equipped with the partial order ≤, is a WSTS.
1Recall that a partial ordering on a set S is binary relation on S that is reflexive,
transitive and antisymmetric.

cpre!(a,abc) = abc cpre?(a, ε) = a
cpre!(a,abca) = abc cpre?(c,abb) = cabb

Figure 2: Example of cpre! and cpre?.

Proof. Since the set Q of locations is finite, equality is a wqo
on Q . Recall that ⪯ is a wqo on M∗. It follows that ≤ is a wqo on
S . It remains to prove that ≤ is compatible with the relation →.
Consider three states s , s ′ and t such that s → s ′ and s ≤ t . By
Lemma 5.3, it holds that t

∗
−→ s . Therefore, t

∗
−→ s → s ′ = t ′, which

concludes the proof that ≤ is compatible with→. □

As mentioned previously, we want to solve the coverability prob-
lem for lossy channel systems using the BCwP algorithm of Section 4.
But several effectivity conditions need to be fulfilled in order to do
so, even if we use the trivial invariant I = S .

Firstly, we observe that the partial order ≤ is computable because
there are only finitely many channels and ⪯ itself is computable.

Secondly, we need to show LCSs admit an effective pre-basis,
meaning that there exists an algorithm that, given a state s , com-
putes a finite basis of ↑preS(↑s). Toward this end, we introduce two
functions cpre! and cpre? fromM ×M∗ toM∗ defined as follows:

cpre!(m,w) =

{
w ′ ifw = w ′ ·m
w otherwise

cpre?(m,w) = m ·w

See examples in Figure 2. Now, for a state s = (q,w1, . . . ,wd)

and a rule δ = (p, i#m,q) ∈ ∆, with # ∈ {!, ?}, we let cpreδ (s) =
(p,w1, . . . ,wi−1, cpre#(m,wi),wi+1, . . .wd). It is readily seen that
cpreδ is computable. The following lemma shows that LCSs admit
an effective pre-basis.

Lemma 5.5. For every state s = (q,w1, . . . ,wd) in S , the set

{s} ∪ {cpreδ (s) | δ = (p,op,q) ∈ ∆}

is a finite basis of ↑preS(↑s).

Thirdly, line 10 of the BCwP algorithm simply amounts to the
computation of the minimal elements of B ∪ P .

We now have a way to solve the coverability problem for LCSs.
To accelerate the computation we need good invariants. The next
sections aim to provide that.

5.3 Simple Regular Expressions
The BCwP algorithm of Section 4 makes use of downward-closed
invariants in order to accelerate the classical backward coverabil-
ity analysis. Invariants are potentially infinite sets of states. So
before attempting to generate good invariants, we need a finite
representation for them. As there are only finitely many locations,
the complexity comes from channel contents. These are d-tuples
of words over the finite alphabet M of messages. A natural and
simple approach consists in using recognizable subsets of (M∗)d to
represent (potentially infinite) sets of channel contents. This is a rea-
sonable limitation since the coverability set of an LCS, which is its
most precise downward-closed invariant, is recognizable [4, 10]. By
Mezei’s theorem, recognizable subsets are finite unions of cartesian
products of regular languages over the alphabet M . Since we are

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre

interested in downward-closed invariants, we focus on downward-
closed regular languages. Such languages can be represented by
simple regular expressions [2].

Let us recall the definition of simple regular expressions. An
atom is either (ε +m) for a messagem in M or (m1 + · · · +mn)

∗

wherem1, . . . ,mn are messages in M with n ≥ 1. A product is a
finite concatenation a1 · · ·an of atoms. A simple regular expression
(SRE) is a finite sum p1 + · · · + pn of products.

The language of an SRE r is the regular language associated with
it and will be denoted by JrK. The following lemma gives us a reason
to use SREs to represent downward-closed regular languages.

Lemma 5.6 ([2]). A language L ⊆ M∗ is downward-closed if and
only if it can be represented by an SRE.

In practice, it is desirable for efficiency reasons to manipulate
SREs that do not contain redundancies. We say that a product
p = e1 · · · en is in normal form [2] if and only if for all 1 ≤ i ≤ n, we
have Jei · ei+1K ⊈ Jei+1K and Jei .ei+1K ⊈ Jei K. An SRE p1 + . . .+pn
is in normal form if all products pi are in normal forms and there
are no products pi and pj with i , j such that Jpi K ⊆ Jpj K.

Lemma 5.7 ([2]). For every SRE r , there is a unique (up to com-
mutativity of +) SRE in normal form, which is denoted by nf(r), such
that Jnf(r)K = JrK. Furthermore, nf(r) can be computed from r in
quadratic time.

We can see that there exist infinite increasing sequences of
SREs. This means that we cannot directly use SREs to compute
downward-closed invariants via Kleene iteration. Let us illustrate
this issue on the LCS of Figure 1. Applying Kleene iteration to

the loop q1
1!a
−−−→

1!b
−−−→ q1 leads to the sequence ε , (a + ε) · (b + ε),

(a+ε) · (b+ε) · (a+ε) · (b+ε), etc. There exist acceleration techniques
that can derive the effect of an arbitrary iteration of the loop [2], and
come up with (a+b)∗. But, in general, the coverability set of an LCS
cannot be computed [22] even though it is downward-closed and,
hence, recognizable. Therefore, we settle for over-approximations
of the coverability set. In the next section, we will introduce a sub-
class of SREs, that we call compact simple regular expressions, and
show how to use it to compute downward-closed invariants.

6 INVARIANT USING COMPACT SRES
Despite the assumption that messages may be lost, all messages
that remain in a channel are in the same order as the order in which
they were sent. If a system sends some messages a and then some
messages b in a channel, this channel can’t contain a word that
contains a message b after a message a. In this section, we propose
an abstraction of channel contents that focuses on this kind of
properties, and ignores the numbers of occurrences of messages.
For instance, this abstraction provides properties of the type: it’s
not possible to have a message a after a message b.

We present an invariant generation technique that uses a sub-
class of SREs, that we call compact simple regular expressions. The
idea is to abstract the contents of a channel with simple expressions
of the form (a∗ · b∗) + (a∗ · (c + d)∗).

Formally, a compact simple regular expression (CSRE) is an SRE∑
pi where every product pi is a compact product. A compact

product is of the form a1 · · ·an with every atom ai of the form

csre1 = (a∗ · b∗) + (a∗ · c∗) csre3 = ε
csre2 = ((a + b)∗) + ((c + d)∗ · e∗) csre4 = ∅

Figure 3: Examples of compact simple regular expressions.

(m1+ · · ·+mn)
∗ and such that every two atoms ai and aj with i , j

have distinct messages (i.e., Jai K ∩ Jaj K = {ε}). Some examples of
CSREs are given in Figure 3. We see that every compact product is
in normal form. However, not all CSREs are in normal forms. We
note CSREnf the set of CSREs in normal form. It is readily seen
that this set is finite. The CSREs of Figure 3 are all in normal form.

We define the binary relation ⊑ over CSRE by r1 ⊑ r2 if and
only if Jr1K ⊆ Jr2K. This relation is reflexive and transitive hence
it is a quasi-ordering. The relation ⊑ is also antisymmetric for
CSREs in normal form, therefore ⊑ is a partial order over CSREnf .
Note that ⊑ is not antisymmetric over the full class of CSREs (e.g.,
J(a + b)∗K = J(a + b)∗ + a∗K).

We will exhibit a Galois connection between (P(M∗), ⊆) and
(CSREnf , ⊑). The two following lemmas are needed to do so.

Lemma 6.1. Consider two subsets of messages A1,A2 ⊆ M . For
every languages L1 ⊆ (M \ A1)∗ and L2 ⊆ (M \ A2)∗, it holds that
(A∗1 · L1) ∩ (A

∗
2 · L2) = (A

∗ · (L1 ∩ B∗2 · L2)) ∪ (A
∗ · (L2 ∩ B∗1 · L1))

where A = A1 ∩A2, B1 = A1\A2 and B2 = A2\A1.

Proof. We only prove ⊆ since the converse inclusion is imme-
diate. Let w ∈ (A∗1 · L1) ∩ (A

∗
2 · L2). There exists u1 ∈ A

∗
1, v1 ∈ L1,

u2 ∈ A∗2 and v2 ∈ L2 such that w = u1 · v1 = u2 · v2. Assume that
the length of u1 is smaller than or equal to the length of u2. There
exists u ′2 such that u2 = u1 ·u ′2. It follows that u1 ∈ (A1∩A2)∗ = A∗.
Observe also that v1 = u ′2 · v2. Since v1 ∈ L1 ⊆ (M \A1)∗, we get
thatu ′2 ∈ (A2\A1)∗ = B∗2 , and sov1 ∈ (B

∗
2 ·L2). We have shown that

w ∈ (A∗ · (L1 ∩ B∗2 ·L2)). Symmetrically, if the length of u1 is larger
than or equal to the length of u2, thenw ∈ (A∗ · (L2 ∩ B∗1 ·L1)). □

Lemma 6.2. The set of languages that can be represented by CSREs
is closed under intersection.

Proof. We show that the intersection of the languages of two
compact products can be represented by a CSRE. The lemma then
follows by distributivity of intersection over union and by closure of
CSREs under sum. For a compact product p = a1 · · ·an , we write |p |
the number n of atoms composing p. We prove by induction on k ≥
0, that for all compacts products p1 and p2 such that |p1 | + |p2 | ≤ k ,
there exists a CSRE r such that Jp1K∩ Jp2K = JrK. For the basis step,
we have p1 = p2 = ε and Jp1K ∩ Jp2K = JεK. For the induction step,
let p1 and p2 two compact products such that |p1 | + |p2 | = k + 1.
If one them is equal to ε then Jp1K ∩ Jp2K = JεK. Otherwise, p1
and p2 may be written as the compact products p1 = A∗1 · p

′
1 and

p2 = A∗2 · p
′
2 where A1 and A2 are two subsets of M . Note that

Jp′1K ⊆ (M \ A1)∗ and Jp′2K ⊆ (M \ A2)∗. We get from Lemma 6.1
that Jp1K∩Jp2K = (A∗ · (Jp′1K ∩ JB∗2 ·p

′
2K)) ∪ (A

∗ · (Jp′2K ∩ JB∗1 ·p
′
1K))

where A, B1 and B2 are defined as in the lemma. Observe that
|p′1 | + |B

∗
2 · p

′
2 | = |p

′
2 | + |B

∗
1 · p

′
1 | = k . It follows from the induction

hypothesis that there exists two CSREs r1 and r2 such that Jr1K =
(Jp′1K ∩ JB∗2 · p

′
2K) and Jr2K = (Jp′2K ∩ JB∗1 · p

′
1K). We obtain that

Jp1K ∩ Jp2K = JA∗ · r1 + A∗ · r2K. It is routinely checked that Jr1K

Backward Coverability with Pruning for Lossy Channel Systems SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

a∗ · b∗ ∩ b∗ · a∗ = a∗ ∪ b∗ a∗ · b∗ ∩ (a + b)∗ = a∗ · b∗

Figure 4: Examples of intersections of compact products.

and Jr2K are contained in (M \A)∗. Therefore,A∗ · r1 andA∗ · r2 can
be rewritten as CSREs by distributivity of product over sum. □

See examples of the intersection of CSREs in Figure 4. Let us in-
troduce the concretisation function γ : CSREnf → P(M∗) defined
by γ = J·K. The corresponding abstraction function α : P(M∗) →
CSREnf is defined by α(L) = nf(

⋂
{r ∈ CSREnf | L ⊆ JrK}). The

function α is well-defined because CSREnf is closed by intersec-
tion and is finite. Note that α(L) is computable when L is a regular
language. We observe that (α,γ) is a Galois connection between
(P(M∗), ⊆) and (CSREnf , ⊑). In order to apply the classical frame-
work of abstract interpretation [13], it remains to show that we
can perform abstractly the operations over the channels, namely
transmissions and receptions.

For a language L ⊆ M∗, let m−1L = {w ⊆ M∗ | m · w ∈ L}.
Following the classical framework of abstract interpretation, an
abstract transmission is defined by (!m)#(r) = α(JrK ·m) and an
abstract reception is defined by (?m)#(r) = α(m−1 ·JrK). Let us show
how to compute (!m)#(r) and (?m)#(r) given a CSRE r in normal
form. We only need to consider the case where r is a compact
product since (!m)#(p1 + · · ·+pn) = nf((!m)#(p1)+ · · ·+ (!m)#(pn)),
and similarly for (?m)#.

For a compact product p = a1 · · ·an , let merдe(a1 · · ·an) de-
note the atom that contains exactly the messages that appear in
a1, . . . ,an . Formally, merдe(a1 · · ·an) is the atom A∗ where A =
{m ∈ M | m ∈ Ja1K ∪ · · · JanK}. We have for a compact product
p = a1 · · ·an and a messagem ∈ M :

(!m)#(p) =

{
a1 · · ·ak−1 ·merдe(ak · · ·an) ifm ∈ JpK
p ·m∗ otherwise

(?m)#(p) =

{
ak · · ·an ifm ∈ JpK
∅ otherwise

where, in both cases, k the unique index such thatm ∈ Jak K.
By a standard construction, we can extend the Galois connection

(α,γ) into a Galois connection between (P(S), ⊆) and the abstract
domain consisting of the set of maps from Q to CSREdnf , partially
ordered by the component-wise extension of ⊑. So we can apply
the classical framework of abstract interpretation [13] to generate
an inductive downward-closed invariant by a standard fixpoint
computation in this abstract domain. Since the setCSREnf is finite,
the fixpoint computation is guaranteed to converge. We may then
use this downward-closed invariant to accelerate the backward
coverability analysis, as is done in the BCwP algorithm of Section 4.
However, this acceleration comes at a price: the generation of the
invariant itself might be costly. We illustrate this issue in the fol-
lowing example.

Example 6.3. Consider an alphabet M containing the distinct
messages x1,y1, z1, . . . , xn,yn, zn . Let L ⊆ M∗ be the language

L = x1
∗ · (y1

∗ + z1
∗) · x2

∗ · (y2
∗ + z2

∗) · · · xn
∗ · (yn

∗ + zn
∗)

This language can be represented by a CSRE. But the minimal
CSRE r with L = JrK, is the sum of all compact products of the
form x1∗ ·m1∗ · x2∗ ·m2∗ · · · · xn∗ ·mn

∗ wheremi ∈ {yi , zi } for
all i ∈ {1, . . . ,n}. There are exponentially many such products.
Observe that r is in normal form. □

The potential exponential blow-up illustrated in Example 6.3
may limit, in practice, the usefulness of our invariant generation
technique based on CSREs. See Section 9 for experimental results.
The next section aims at solving this problem.

7 INVARIANT USING ORDERING FLOWS
In the last section, we saw how to generate downward-closed in-
variants by an abstraction of channel contents that ignores the
numbers of occurrences of messages and only cares about their
respective order. This abstraction relies on so-called compact sim-
ple regular expressions (CSREs). However, the generation of this
invariant might be costly in practice. This comes from the fact that
CSREs are, in fact, not compact enough (see Example 6.3).

We now present an invariant generation technique based on
quasi-orderings (i.e. transitive and reflexive relations) over mes-
sages, that we call message ordering flow (MOFs). The goal is still
the same: we want to keep track of which messages can be in which
order in each channel. But we want an invariant that is faster to
compute than the one based on CSREs.

LetM denote the set of messages of an LCS for which we want
to compute a downward-closed invariant. A message ordering flow
(MOF) is a pair (A,R) where A ⊆ M and R is quasi-ordering over A.
We letMOF denote the set of MOFs. We define the partial ordering
⊑ overMOF by F1 ⊑ F2 with F1 = (A1,R1) and F2 = (A2,R2) if and
only if A1 ⊆ A2 and R1 ⊆ R2.

The least upper bound of two MOFs F1 = (A1,R1) and F2 =
(A2,R2) is F1 ⊔ F2 = (A,R) where A = A1 ∪A2 and R = (R1 ∪ R2)+,
i.e., the transitive closure of R1 ∪ R2. The greatest lower bound of
F1 and F2 is F1 ⊓ F2 = (A,R) where A = A1 ∩A2 and R = R1 ∩ R2.

As in Section 6, we want to exhibit a Galois Connection between
(P(M∗), ⊆) and (MOF , ⊑). Let us start with the abstraction function
α : P(M∗) → MOF . For a wordw ∈ M∗, let α(w) = (A,R) ∈ MOF
where A = {m ∈ M | m ⪯ w} is the set of all messages occurring
inw and R = {(a,b) ∈ A×A | a = b ∨ ab ⪯ w}. Recall that ⪯ is the
sub-word partial order onM∗. For a non-empty language L ⊆ M∗,
we define α(L) to be the least upper bound of {α(w) | w ∈ L}.
The concretisation function γ : MOF → P(M∗) is defined by
γ (A,R) = {w ∈ A∗ | ∀ab ⪯ w, (a,b) ∈ R}.

It is readily seen that the concretisation of a MOF is a downward-
closed language. But the set γ (MOF) of languages that can be repre-
sented by a MOF misses an important language, namely the empty
language. So we extend the setMOF with a new element, written
⊥, whose concretisation is γ (⊥) = ∅. Conversely, the abstraction of
the empty language is α(∅) = ⊥. We also extend ⊑ in the obvious
way. For every MOF F , we have ⊥ ⊔ F = F and ⊥ ⊓ F = ⊥.

Observe that, by construction, (α,γ) is a Galois connection be-
tween (P(M∗), ⊆) and (MOF , ⊑). As in Section 6, in order to apply
the classical framework of abstract interpretation [13], it remains
to show that we can perform abstractly the operations over the
channels, namely transmissions and receptions.

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre

x1

y1

z1

x2

y2

z2

... xn

yn

zn

Figure 5: MOF for the language L of Example 6.3.

Following the classical framework of abstract interpretation,
we define (!m)# : MOF → MOF and (?m)# : MOF → MOF by
(!m)#(F) = α(γ (F) ·m) and (?m)#(F) = α(m−1 · γ (F)). Let us show
that the functions (!m)# and (?m)# are computable.
• (!m)#(⊥) = (?m)#(⊥) = ⊥.
• (!m)#(A,R) = (A′,R′)whereA′ = A∪{m} and R′ = R∪(A×
{m}) ∪ (B × B) where B = {b ∈ A | (m,b) ∈ R} is the set of
all messages that can appear afterm.
• (?m)#(A,R) = ⊥ ifm < A, otherwise (?m)#(A,R) = (A′,R′)
where A′ = {b ∈ A | (m,b) ∈ R} is the set of all messages
that can appear afterm and R′ = R ∩ (A′ ×A′).

As with CSREs, we can extend the Galois connection (α,γ) into
a Galois connection between (P(S), ⊆) and the abstract domain
consisting of the set of maps from Q to MOFd , partially ordered
by the component-wise extension of ⊑. Again, we can generate
an inductive downward-closed invariant by a standard fixpoint
computation in this abstract domain. Since the setMOF is finite, the
fixpoint computation is guaranteed to converge. We may then use
this downward-closed invariant in the BCwP algorithm of Section 4.

On the contrary to CSREs that can suffer from an exponential
blow-up, each MOF is of size at most quadratic in the cardinal of
the alphabetM of messages of the LCS under analysis.

Example 7.1. Let us revisit Example 6.3. Recall that the language
L defined there is

L = x1
∗ · (y1

∗ + z1
∗) · x2

∗ · (y2
∗ + z2

∗) · · · xn
∗ · (yn

∗ + zn
∗)

This language can be represented by the MOF F = (A,R) where
A contains exactly the messages x1,y1, z1, . . . , xn,yn, zn and R re-
spects the quasi-ordering shown in Figure 5, that is,R is the reflexive
and transitive closure of the arrows depicted in that figure. On the
contrary to the minimal CSRE representing L, which is exponential
in n, the size of F is quadratic in n. □

8 INVARIANTWITH STATE INEQUATION
The last two invariants focused on the order of messages in the chan-
nels. Neither invariant takes into account the number of messages.
We now present an invariant based on the Petri net state equation.
It is a simple invariant that just counts the number of messages
that can be in each channel. The state equation was recently used
successfully for solving Petri net coverability problems [7, 15, 17].

Inspired by the state equation for Petri nets, we associate to
an LCS and a state sf inal = (qf inal ,w1, . . . ,wd), a system of in-
equations that must be satisfiable when sf inal is coverable. This
system is defined over a vector x of free variables ranging over Z∆.
Intuitively, x(δ) denotes the number of times an execution uses the
rule δ to cover the state sf inal .

We first build a system of equations over x, called the location
constraints that takes into account the number of times an execution
enters and leaves a location. To do so, we introduce the vector ei
in ZQ defined as zero everywhere except for the index i where it is
one. We denote by LCsf inal (x) the following system of equations:

eqinit +
∑

δ=(p,op,q)∈∆

x(δ)(−ep + eq) = eqf inal (1)

Next, we build a system of inequalities over x, called the channel
constraints that counts the number of times each message m is
sent and received in each channel i . To do so, we introduce the
vector ei ,m defined as the matrix in Zd×|M | where the value is zero
everywhere except for the index i,m where it is one. Given a word
w of messages, we denote by |w |m the number of occurrences ofm
inw . We denote byCCsf inal (x) the following system of inequations
where the inequality ≥ over the matrices is defined component-
wise: ∑

δ=(p,i !m,q)∈∆

x(δ)ei ,m −
∑

δ=(p,i?m,q)∈∆

x(δ)ei ,m ≥
∑
m∈M

i ∈{1, ...,d }

|wi |m (2)

Finally, we introduce the system of equations SIsf inal (x) defined
as the conjunction LCsf inal (x) ∧CCsf inal (x). The proof of the fol-
lowing lemma is immediate by observing that if sf inal is coverable
there exists an execution from sinit to a state s ≥ sf inal . Denoting
by x(δ) the number of times the rule δ is used by this execution,
we get a vector x satisfying SIsf inal (x).

Lemma 8.1. The system SIsf inal (x) is satisfiable for every coverable
configuration sf inal .

Corollary 8.2. The set ILCS = {sf inal | ∃x SIsf inal (x)} is an
invariant.

9 EXPERIMENTAL EVALUATION
We have presented a coverability checking algorithm, namely BCwP,
that is parametrized by a downward-closed invariant. The algorithm
uses this invariant in order to accelerate the classical backward cov-
erability analysis. We have also presented three different invariant
generation techniques, respectively based on compact simple regu-
lar expressions (CSREs), on message ordering flows (MOFs) and on
the state inequation (SI). We now present our experimental results.

We want to evaluate two main effects of the invariants: the
number of states handled and the time saved or added. On one
hand, if the algorithm handles less states (computes less states with
cpre , prunes more), this leads to a gain in time. On the other hand,
an invariant can also slow down the computation in two ways:
firstly for the generation of the invariant itself and secondly for
checking membership of a given state in the invariant.

We have implemented the BCwP algorithm in the languageOCaml.
The prototype consists of a little more than three thousand lines of
code. It can be found online [18]. It only works for lossy channel
systems but, as it is modular, it can be extended to all well-structured
transition systems with decidable order and effective pre-basis. New
invariants can also be added easily. The state inequation invariant
needs the help of an SMT-solver. We chose Z3 [14]. Our experiments
were run on a machine running Ubuntu Linux 14.04, with an Intel

Backward Coverability with Pruning for Lossy Channel Systems SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA

Table 1: Time in seconds to solve coverability instances.

∅ SI CSRE MOF Best McScM
Peterson3 947.6 1.9 21.5 22.1 1.9 9.3
Peterson4 >96h 2934.4 >96h >96h 2934.4 error
pop3 157.9 0.3 >96h 0.9 0.3 0.6
BAwPC 0.4 4.3 0.0 0.0 0.0 0.1
BAwCC 1.9 11.1 0.1 0.1 0.1 0.1
BAwCC_enh 2.3 13.7 0.1 0.1 0.1 1.6
BAwPC_enh 0.7 3.5 0.0 0.0 0.0 0.2
BRP 0.2 0.1 0.3 0.3 0.1 1.2
server 0.1 1.3 0.6 0.4 0.1 5.0
server_err 0.0 0.0 0.0 0.0 0.0 0.0
ring2 0.2 0.2 0.4 0.4 0.2 2.6
tcp 0.0 0.0 0.0 0.0 0.0 0.1
tcp_err 0.0 0.1 0.0 0.0 0.0 0.0

i7-4770 CPU at 3.40GHz and 16GB of memory. The timeout for
each run was set to 96 hours.

Our prototype takes as input a system of communicating finite-
state automata, each with their own locations and rules, given in
the scm file format. We build (on-the-fly) a global LCS by taking
the cartesian product of these automata. While the CSRE and MOF
invariants are computed on this global LCS, we optimize the state in-
equation invariant to avoid an exponential blow-up in Equation (1).
Instead of applying Equation (1) to the global LCS, we create one
equation for each automaton. The two systems are equivalent but
the membership problem in the latter is easier.

The different examples come with the tool McScM [19]. We
present the results of 13 examples. The examples BAwCC, BAwPC,
BAwCC_enh and BAwPC_enh are business protocols and came
from [23]. The first two are coverable examples and the last two
are their enhanced uncoverable versions. Others examples include
two versions of the Peterson protocol, one with three peers, the
other with four, a version of the pop3 protocol, a simple server
protocol and a tcp protocol with and without an error inserted, and
finally a ring protocol. Many examples have tens of target states,
and our prototype can handle that. Even though we presented our
algorithm to solve the coverability problem for only one target
state, it is easy to extend the algorithm for a set of targets, by taking
U0 = ↑(Sf inal ∩ I) where Sf inal is the set of all target states.

Wewere unable to compare our prototype with TReX [5] because
the tool is not available anymore. So we compared withMcScM [19],
which uses the same scm format and can solve the coverability prob-
lem for LCS, even though this is not its primary goal. McScM has
four verification engines. The best engine suited to our examples was
cegar. It was able to solve 10 of 13 examples within three minutes
but crashed with Peterson4 and was not finished after two hours
for brp and BAwCC_enh. In comparison, our prototype solved all
cases with the invariant state inequation. Without invariant and
with the invariant MOF it was able to solved all examples except
two and with the invariant CSRE all except three.

Table 1 compares the time needed to solve the coverability prob-
lem without invariant, noted ∅, and with the invariants SI , CSRE
and MOF . The least time is reported in the fifth column. In the last
column, we put the time needed by McScM with the best engine

Table 2: Number of elements visited.

∅ SI CSRE MOF
Peterson3 359131 2127 67 67
Peterson4 >5113486 852630 - -
pop3 241595 813 - 17842
BAwPC 15266 15266 1587 1587
BAwCC 31693 31693 2480 2480
BAwCC_enh 38218 38218 59 59
BAwPC_enh 19193 12824 44 44
BRP 9343 470 9132 9343
server 8873 8873 7720 8873
server_err 105 1 1 1
ring2 11141 772 11141 11141
tcp 1519 37 1437 1519
tcp_err 1423 218 1290 1364

Table 3: Number of states tested and ratio of pruned states.

SI CSRE MOF
% # % # %

Peterson3 1970 72.2 67 100.0 67 100
Peterson4 745009 72.0 - - - -
pop3 324 61.8 - - 5433 35.0
BAwPC 3645 0.0 1069 81.4 1069 81.4
BAwCC 7186 0.0 1718 80.6 1718 80.6
BAwCC_enh 7671 0.0 59 100.0 59 100.0
BAwPC_enh 2834 0.4 44 100.0 44 100.0
BRP 172 27.3 2692 3.8 2650 0.0
server 2037 0.0 1910 5.3 2037 0.0
server_err 1 100.0 1 100.0 1 100.0
ring2 490 71.2 2393 0.1 2393 0.0
tcp 37 81.1 751 3.1 768 0.0
tcp_err 173 47.4 671 8.0 686 3.8

for each example. We can see that SI dramatically accelerates the
computation in the biggest examples. The same effect is also found
for the invariantMOF except for the Peterson4 protocol whereMOF
did not terminate within 96 hours.

Those numbers can be explained by the numbers of operations
that the algorithm performed. Table 2 compares the numbers of
nodes visited, i.e., the numbers of targets states added each step
with all states created by the cpre in line 6 before removing those
that are already in ↑B. Sometimes the number of visited states is
very low compared to the version without invariant. For example
for the invariants CSRE andMOF for the examples BAwCC_enh and
BAwPC_enh it is 59 and 44 compared to 38218 and 19193. It is be-
cause the invariants were able to prune all targets states. Therefore
the algorithm did not even enter the while loop.

To understand more specifically the pruning for each invariant
and each example, we provide Table 3. It shows the number of times
the algorithm tested if a state was or was not in the invariant, as
well as the percentage of times the state was outside the invariant
and hence was pruned.

We see that many times the algorithm was able to prune some
states and therefore to decrease the number of states handled. This
comes at a cost, since we need to compute a least fixpoint for the

SPIN’17, July 13-14, 2017, Santa Barbara, CA, USA Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre

Table 4: Cost in seconds to use invariants.

SI CSRE MOF
pre ∈ pre ∈ pre ∈

Peterson3 0.0 1.9 21.5 0.0 22.1 0.0
Peterson4 0.0 1895.2 >96h - >96h -
pop3 0.0 0.3 >96h - 0.1 0.0
BAwPC 0.0 3.8 0.0 0.0 0.0 0.0
BAwCC 0.0 9.3 0.1 0.0 0.1 0.0
BAwCC_enh 0.0 11.4 0.1 0.0 0.1 0.0
BAwPC_enh 0.0 3.1 0.0 0.0 0.0 0.0
BRP 0.0 0.1 0.1 0.0 0.1 0.0
server 0.0 1.2 0.6 0.0 0.3 0.0
server_err 0.0 0.0 0.0 0.0 0.0 0.0
ring2 0.0 0.2 0.2 0.0 0.2 0.0
tcp 0.0 0.0 0.0 0.0 0.0 0.0
tcp_err 0.0 0.1 0.0 0.0 0.0 0.0

invariants CSRE andMOF and to check if state is in the invariant or
not. Table 4 shows for each invariant the time spent before starting
the algorithm and the total time spent checking if a state is in
the invariant. We see that the state inequation is very fast to pre-
compute. The reason is that it just needs to write the inequation
for the SMT-solver Z3. Satisfiability checks are only accounted for
in the times to check membership in the invariant. The invariant
CSRE can take too much pre-computation time as illustrated with
Example 6.3 in Section 6. The MOF invariant was able to do the
computation in less time excepted for the Peterson protocols with
four peers. Note that, unlike Z3, the least fixpoint module was not
carefully coded with performance in mind.

The MOF and CSRE invariants have a similar pruning impact
(see Table 3), but we see thatMOF was better overall. It pruned less
in a few examples but the biggest gap was between 5.3% against 0%
for server. And in 6 examples out of 11 where they both finished
they pruned exactly the same states. Because the pre-computation
times are better for MOF , the invariant MOF is better than CSRE.

Regarding the SI invariant, we observe in Tables 3 and 4 that
it did not prune states for the models BAwCC and BAwPC but it
still cost time. Recall that the state inequation keeps track of the
numbers of messages in each channel. This means that it was not
helpful to have this information for these models.

Remark 9.1. We did not present results using combinations of
invariants, but this is of course possible. Indeed, the intersection of
downward-closed invariants is also a downward-closed invariant.
In practice, we do not compute the intersection: if we have two
invariants I1 and I2, we prune a configuration c if, and only, if c < I1
or c < I2. Our prototype is capable of using any combination of the
invariants SI , CSRE and MOF . It turns out that such combinations
are worse than single invariants for our examples. For instance,
our hardest examples (Peterson3 and Peterson4) do not benefit from
SI+MOF , because the time needed for the pre-processing of MOF is
greater than the time to solve the coverability question with SI . This
does not mean that combinations of invariants have no interest,
they could be useful for other models. □

Overall we see that, for most examples, at least one invariant
was able to accelerate the computation.

10 CONCLUSION
We have presented in this paper a backward coverability algorithm
for WSTSs, parametrized by downward-closed forward invariants.
We have introduced three new invariants for lossy channel systems.
One of these invariants counts messages and the other two keep
track of the order of messages. We have implemented a prototype
to assess the efficiency of these invariants. Our experimental eval-
uation shows an acceleration of the classical approach for two of
the three invariants. As future work, we intend to apply these tech-
niques to verify safety properties on weak-memory models because
they are closely related to LCSs [6].

REFERENCES
[1] P-A. Abdulla, M-F. Atig, A. Bouajjani, and T-P. Ngo. 2016. The Benefits of Duality

in Verifying Concurrent Programs under TSO. In CONCUR (LIPIcs), Vol. 59.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 5:1–5:15.

[2] P-A. Abdulla, A. Bouajjani, and B. Jonsson. 1998. On-the-Fly Analysis of Systems
with Unbounded, Lossy FIFO Channels. In CAV (LNCS), Vol. 1427. Springer,
305–318.

[3] P-A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. 2000. Algorithmic Analysis
of Programs with Well Quasi-ordered Domains. Information and Computation
160, 1-2 (2000), 109–127.

[4] P-A. Abdulla and B. Jonsson. 1996. Verifying Programs with Unreliable Channels.
Inf. Comput. 127, 2 (1996), 91–101.

[5] A. Annichini, A. Bouajjani, andM. Sighireanu. 2001. TReX: A Tool for Reachability
Analysis of Complex Systems. In CAV (LNCS), Vol. 2102. Springer, 368–372.

[6] M-F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. 2010. On the verifica-
tion problem for weak memory models. In POPL. ACM, 7–18.

[7] M. Blondin, A. Finkel, Ch. Haase, and S. Haddad. 2016. Approaching the Cover-
ability Problem Continuously. In TACAS (LNCS), Vol. 9636. Springer, 480–496.

[8] B. Boigelot and P. Godefroid. 1999. Symbolic Verification of Communication
Protocols with Infinite State Spaces using QDDs. Formal Methods in System
Design 14, 3 (1999), 237–255.

[9] A. Bouajjani, P. Habermehl, and T. Vojnar. 2004. Abstract RegularModel Checking.
In CAV (LNCS), Vol. 3114. Springer, 372–386.

[10] G. Cécé, A. Finkel, and S.P. Iyer. 1996. Unreliable Channels are Easier to Verify
Than Perfect Channels. Inf. Comput. 124, 1 (1996), 20–31.

[11] P. Chambart and P. Schnoebelen. 2008. The Ordinal Recursive Complexity of
Lossy Channel Systems. In LICS. IEEE Computer Society, 205–216.

[12] E-M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. 2003. Counterexample-
guided abstraction refinement for symbolic model checking. J. ACM 50, 5 (2003),
752–794.

[13] P. Cousot and R. Cousot. 1977. Abstract Interpretation: A Unified Lattice Model
for Static Analysis of Programs by Construction or Approximation of Fixpoints.
In POPL. ACM, 238–252.

[14] L. de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS (LNCS),
Vol. 4963. Springer, 337–340.

[15] J. Esparza, R. Ledesma-Garza, R. Majumdar, P.J. Meyer, and F. Niksic. 2014. An
SMT-BasedApproach to Coverability Analysis. InCAV (LNCS), Vol. 8559. Springer,
603–619.

[16] A. Finkel and P. Schnoebelen. 2001. Well-structured transition systems every-
where! Theor. Comput. Sci. 256, 1-2 (2001), 63–92.

[17] T. Geffroy, J. Leroux, and G. Sutre. 2016. Occam’s Razor Applied to the Petri Net
Coverability Problem. In RP (LNCS), Vol. 9899. Springer, 77–89.

[18] T. Geffroy, J. Leroux, and G. Sutre. 2017. coverability checker for LCS. http:
//dept-info.labri.u-bordeaux.fr/~tgeffroy/lcs/. (2017).

[19] A. Heußner, T. Le Gall, and G. Sutre. 2012. McScM: A General Framework for the
Verification of Communicating Machines. In TACAS (LNCS), Vol. 7214. Springer,
478–484.

[20] G. Higman. 1952. Ordering by Divisibility in Abstract Algebras. Proc. London
Math. Soc. s3-2, 1 (1952), 326–336.

[21] A. Kaiser, D. Kroening, and T.Wahl. 2014. AWidening Approach toMultithreaded
Program Verification. ACM 36, 4 (2014), 14:1–14:29.

[22] R. Mayr. 2003. Undecidable problems in unreliable computations. Theor. Comput.
Sci. 297, 1-3 (2003), 337–354.

[23] A.P. Ravn, J. Srba, and S. Vighio. 2011. Modelling and Verification of Web Services
Business Activity Protocol. In TACAS (LNCS), Vol. 6605. Springer, 357–371.

http://dept-info.labri.u-bordeaux.fr/~tgeffroy/lcs/
http://dept-info.labri.u-bordeaux.fr/~tgeffroy/lcs/

	Abstract
	1 Introduction
	2 Coverability for Well-Structured Transition Systems
	2.1 Well Quasi-Ordering
	2.2 WSTS
	2.3 Coverability Problem

	3 Backward Coverability Analysis with Pruning
	4 The algorithm
	5 Lossy Channel Systems
	5.1 Syntax and Semantics of LCSs
	5.2 LCSs Are Well-Structured
	5.3 Simple Regular Expressions

	6 Invariant using Compact SREs
	7 Invariant using Ordering Flows
	8 Invariant with State Inequation
	9 Experimental Evaluation
	10 Conclusion
	References

