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A GENERAL NOTION OF COHERENT SYSTEMS

ALEXANDER SCHMITT

Abstract. We look at coherent systems for decorated vector bundles and propose a notion
of semistability. In the special case of tensor powers, we will examine this notion more
closely. In particular, we will construct moduli spaces with the help of geometric invariant
theory. It is an interesting aspect that ampleness of the linearization in the geometric
invariant theory construction yields a bound on the stability parameter for coherent systems.

Introduction

Classical Brill–Noether theory studies the existence of unusually large linear systems,
called special, on smooth projective curves. For this, one has to analyze how the number
ℎ0 (𝑋, 𝐿) behaves as 𝑋 varies over the moduli space M𝑔 of smooth projective curves of
genus 𝑔 and 𝐿 varies over the Jacobian Pic𝑑 (𝑋) of line bundles of degree 𝑑 on 𝑋 , 𝑔 and
𝑑 fixed. Brill–Noether theory gives precise information on the locus of pairs (𝑋, 𝐿) for
which ℎ0 (𝑋, 𝐿) exceeds a given number 𝑠 and the locus of curves 𝑋 of genus 𝑔 that admit
a line bundle 𝐿 with ℎ0 (𝑋, 𝐿) ≥ 𝑠. In this way, it is, e.g., possible to understand linear
systems on general curves. An exposition of Brill–Noether theory in the context of modern
algebraic geometry is given in the famous text [2].

It is natural to consider analogous questions for vector bundles of higher rank, possibly re-
stricting to semistable or stable ones. To this end, Peter Newstead, the former chairman of the
international research group “VBAC — Vector Bundles on Algebraic Curves”, proposed the
Brill–Noether project (https://www.liverpool.ac.uk/∼newstead/bnt.html, see
[32] for a list of open questions in this context). Brill–Noether theory for vector bun-
dles of higher rank turned out to be substantially different from Brill–Noether theory for
line bundles. To describe the relevant loci, it is natural to consider coherent systems, i.e.,
pairs (𝐸, 𝛤) which consist of a vector bundle 𝐸 on a smooth projective curve 𝑋 and a
subspace 𝛤 ⊂ 𝐻0 (𝑋, 𝐸). The project of classifying coherent systems is an interesting
moduli problem in algebraic geometry. There is a notion of semistability for coherent sys-
tems which depends on a parameter, and, for each stability parameter, there is a projective
moduli space. This theory has been developed independently by King and Newstead [24]
and by Le Potier [27]. One may study these moduli spaces in their own right as in [7] and
[8] or in connection with moduli spaces of semistable vector bundles as in [6] or [5].

Analogs to coherent systems may be studied for any kind of decorated vector or principal
bundles. Brambila-Paz discussed the case of coherent Higgs bundles in [9]. Another
promising special case arises for symmetric powers. In that case, we can treat, e.g., linear
systems of conic or quadric bundles over curves. Moduli problems for these objects were
studied, e.g., in [17]. We will make some remarks on that problem in Section 1.3. It is also
discussed in [36], Section 5.1.
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In this note, we will define semistability for coherent systems of decorated vector bundles.
It depends on a positive rational number 𝛿. In the special case of decorated vector bundles
associated with tensor powers of the standard representation of GL𝑟 (C), we establish the
following result.

Main Theorem. For a smooth projective curve 𝑋 over the complex numbers, 𝑎, 𝑟 > 0,
𝑑 ∈ Z, 𝑊 := C𝑟 , 𝜚 : GL𝑟 (C) −→ GL(𝑊 ⊗𝑎) the 𝑎-th tensor power of the standard
representation, and

(★) 𝛿 <
1

𝑎 · (𝑎 − 1) · 𝑟𝑎−1 ,

there is a projective moduli scheme C 𝛿
𝑋/𝜚/O𝑋/𝑑/𝑠 for 𝛿-semistable coherent systems (𝐸, 𝛤),

consisting of a vector bundle 𝐸 of rank 𝑟 and degree 𝑑 on 𝑋 and a linear subspace
𝛤 ⊂ 𝐻0 (𝑋, 𝐸 ⊗𝑎) of dimension 𝑠.

The bound (★) on the stability parameter is a novel feature. We need to impose it in
order to perform the construction of moduli spaces with the help of geometric invariant
theory. In the setting of decorated vector bundles, there does not exist such a bound.
The notion of semistability simply stabilizes beyond some value 𝛿∞ (see [35], Proposition
2.3.6.5).1 In the case of parabolic vector bundles, there also exist some a priori bounds
on the parameters ([37], Troisième Partie, Définition 2). The reason in that context is that
beyond those bounds one needs to allow some coherent sheaves with torsion as well, but
the moduli spaces still exist (compare [40]). It will be interesting to investigate what the
precise meaning of the bound that we need to impose is. For example, if 𝑟 is fixed, the
tensor power 𝑎 is very large, and the dimension 𝑠 of 𝛤 is rather small, the bound is so strong
that the vector bundle underlying a semistable coherent system has to be itself semistable
(see Example 1.5.1). On the other hand, we will explain in Section 4 how the approach
𝛿 → 1/(𝑎 · (𝑎 − 1) · 𝑟𝑎−1) corresponds to the process of letting the stability parameter in
[36] tend to infinity. To conclude this introduction, let us point out that new versions of
geometric invariant theory have been developed which are based on the theory of stacks
([21], [1]) or affine Graßmannians [18]. In situations where a traditional approach via
geometric invariant theory can be carried out, these techniques will lead to the same basic
conclusions. Still, it will be interesting to try them out in the setting of general coherent
systems.

Notation. We will work on a connected smooth projective curve 𝑋 of genus 𝑔 at least two
which is defined over the field C of complex numbers, and we will fix a point 𝑥0 ∈ 𝑋 . We
write O𝑋 (𝑘) for O𝑋 (𝑘 · 𝑥0), and, given a coherent O𝑋 -module F, the symbol F(𝑘) stands
for the O𝑋 -module F ⊗

O𝑋

O𝑋 (𝑘), 𝑘 ∈ Z.

Given a scheme 𝑆 and a vector bundle 𝐴 on 𝑆, we write 𝑃(𝐴) for the projective bundle
of lines in the fibers of 𝐴, i.e., for Proj(Sym★(𝐴∨)), and P(𝐴) for Proj(Sym★(𝐴)).

For a cartesian product 𝐴×𝐵 in a category, we let 𝜋𝐴 : 𝐴×𝐵 −→ 𝐴 and 𝜋𝐵 : 𝐴×𝐵 −→ 𝐵

be the natural projections.

Acknowledgments. I would like to thank Leticia Brambila-Paz for explaining to me the
moduli problem of coherent Higgs bundles during the XII Coloquio Latinoamericano de
Álgebra in Quito, 2017. Jochen Heinloth and Peter Newstead gave me important hints to
the literature. My special thanks go to Georg Hein and Norbert Hoffmann for explaining
to me the material around Proposition 2.4.6.

1This includes the case that there are no 𝛿-semistable objects, for 𝛿 > 𝛿∞.
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Bradlow, Brambila-Paz, García-Prada, and Gothen and Brambila-Paz and Edgar I. Cas-
tañeda are carrying out independent research on the case of coherent Higgs systems. Their
results will appear in forthcoming papers.

Last but not least, I am grateful to the referees for their various corrections and sugges-
tions to improve the exposition.

1. A general version of coherent systems

As recalled in the introduction, classical coherent systems were studied, e.g., in [24] and
[27]. Bradlow, Brambila-Paz, García-Prada, and Gothen suggested a version of coherent
systems for Higgs bundles. There is a nice candidate for a notion of semistability for
these objects which generalizes the one for classical coherent systems given in [24]. We
will state it in this section. However, the natural approach via geometric invariant theory
requires some bounds on the stability parameter which we will make explicit for some
representations.

1.1. Coherent systems. Let GL𝑟 (C) be the linear algebraic group consisting of invertible
(𝑟 × 𝑟)-matrices, 𝑎 ∈ Z, 𝐻 a finite dimensional complex vector space, and 𝜚 : GL𝑟 (C) −→
GL(𝐻) a homogeneous representation of degree 𝑎 of GL𝑟 (C) on 𝐻. This means that, for
𝑡 ∈ C★, 𝜚(𝑡 · E𝑟 ) = 𝑡𝑎 · id𝐻 .

Given a vector bundle 𝐸 of rank 𝑟 on 𝑋 , we use 𝜚 to associate with it the vector
bundle 𝐸 𝜚 with typical fiber 𝐻. Finally, we fix a line bundle 𝐿 on 𝑋 . Now, a coherent
𝜚-system is a pair (𝐸, 𝛤) which consists of a vector bundle 𝐸 on 𝑋 of rank 𝑟 and a subspace
𝛤 ⊂ 𝐻0 (𝑋, 𝐸 𝜚 ⊗ 𝐿). The triple (𝐿, deg(𝐸), dimC (𝛤)) is the type of (𝐸, 𝛤).2

Remark 1.1.1. i) Let (𝐸, 𝛤) be a coherent 𝜚-system. The evaluation map gives a homo-
morphism 𝜑 : 𝛤 ⊗O𝑋 −→ 𝐸 𝜚 . The pair (𝐸, 𝜑) is a swamp for the representation 𝜚⊕ dimC (𝛤)

(see [35], p. 136).
ii) For 𝜚 = idGL𝑟 (C) and 𝐿 = O𝑋 , we obtain the coherent systems studied, e.g., in [24]

and [8].

1.2. Some numerical quantities. As for bumps (see [35], p. 116), the test objects for
semistability are weighted filtrations. Recall that, for a vector bundle 𝐹 on 𝑋 , a weighted
filtration is a pair (𝐹•, 𝛼•) in which

𝐹• : {0} ( 𝐹1 ( · · · ( 𝐹𝑙 ( 𝐹
is a filtration of 𝐹 by subbundles and

𝛼• = (𝛼1, ..., 𝛼𝑙)
is a tuple of positive rational numbers.

Now, let (𝐸, 𝛤) be a coherent 𝜚-system and (𝐸•, 𝛼•) a weighted filtration of 𝐸 . It induces
a weighted filtration (𝐵•, 𝛽•) of 𝐸 𝜚 (compare [35], p. 176, and the proof of Proposition
3.4.3, below). Here, we write

𝐵• : {0} ( 𝐵1 ( · · · ( 𝐵𝑚 ( 𝐸 𝜚 ,
set

𝑏 𝑗 := dimC (𝐻0 (𝑋, 𝐵 𝑗 ⊗ 𝐿) ∩ 𝛤), 𝑗 = 1, ..., 𝑚,
and

𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) :=
𝑚∑︁
𝑗=1

𝛽 𝑗 ·
(
rk(𝐵 𝑗 ) · dimC (𝛤) − 𝑏 𝑗 · rk(𝐸 𝜚)

)
.

2The rank of 𝐸 is encoded in the representation 𝜚.
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Remark 1.2.1. Let 0 < 𝑠 < dimC (𝐻). Via 𝜚, GL𝑟 (C) acts on 𝐻 and, so, also on
the Graßmannian Gr𝑠 (𝐻) of 𝑠-dimensional subspaces of 𝐻. Pick 𝛥 ∈ Gr𝑠 (𝐻) and let
𝜆 : C★ −→ SL𝑟 (C) be a one parameter subgroup. The one parameter subgroup 𝜆 defines
a weighted flag (𝑊•, 𝛼•) inside C𝑟 ([35], Example 1.5.1.36). It was observed by Mumford
([30], Chapter 2, Proposition 2.7, [35], Proposition 1.5.1.35) that 𝜇(𝜆, 𝛥) depends only
on (𝑊•, 𝛼•). Now, the one parameter subgroup 𝜚 ◦ 𝜆 of SL(𝐻) defines a weighted flag
(𝐻•, 𝛽•) inside 𝐻. Standard computations (e.g., [30], Chapter 4, §4, [31], Chapter 4, §6,
[35], Exercise 1.5.1.15) show that

𝜇(𝜆, 𝛥) =
𝑚∑︁
𝑗=1

𝛽 𝑗 ·
(
dimC (𝐻 𝑗 ) · dimC (𝛥) − dimC (𝐻 𝑗 ∩ 𝛥) · dimC (𝐻)

)
.

This explains to some extent the origin of 𝜇 (𝐸,𝛤) (𝐸•, 𝛼•).

As in [35], p. 139, we define

𝑀 (𝐸•, 𝛼•) :=
𝑙∑︁
𝑖=1

𝛼𝑖 ·
(
deg(𝐸) · rk(𝐸𝑖) − deg(𝐸𝑖) · 𝑟

)
.

1.3. Coherent systems of conic bundles. Let us look at the representation 𝜚 of GL𝑟 (C)
on the space Sym2 ((C𝑟 )∨). It corresponds to the action

𝜎 : GL𝑟 (C) × Sym𝑟 (C) −→ Sym𝑟 (C)
(𝑔, 𝑚) ↦−→ (𝑔−1)𝑡 · 𝑚 · 𝑔−1

of GL𝑟 (𝐶) on the vector space Sym𝑟 (C) of symmetric (𝑟 × 𝑟)-matrices. So, a coherent 𝜚-
system consists of a vector bundle 𝐸 on 𝑋 of rank 𝑟 and a subspace 𝛤 ⊂ Hom(Sym2 (𝐸), 𝐿).

To get a concrete example, let us have a look at the case 𝑟 = 2. There is the one parameter
subgroup

𝜆 : C★ −→ SL2 (C)

𝑧 ↦−→
(
𝑧−1 0
0 𝑧

)
.

Note

∀𝑚 =

(
𝑎 𝑐

𝑐 𝑏

)
∈ Sym2 (C), 𝑧 ∈ C★ : 𝜆(𝑧)−1 · 𝑚 · 𝜆(𝑧)−1 =

(
𝑧2 · 𝑎 𝑐

𝑐 𝑧−2 · 𝑑

)
.

We find the filtration

{0} (
{(

0 0
0 ★

)}
(

{(
0 ★

★ ★

)}
( Sym2 (C)

and the weights

𝛽1 = 𝛽2 =
2
3
.

Now, let 𝐸 be a vector bundle of rank two on 𝑋 and 𝑁 ( 𝐸 a line subbundle. It yields the
weighted filtration (𝐸•, 𝛼•) with

𝐸• : {0} ( 𝑁 ( 𝐸 and 𝛼• = (1).
The space 𝐻0 (𝑋, 𝐵1 ⊗ 𝐿) is the space of all symmetric forms 𝜑 : Sym2 (𝐸) −→ 𝐿 in 𝛤 for
which 𝑁 is contained in the radical, i.e., 𝜑(𝑁 · 𝐸) = 0, and 𝐻0 (𝑋, 𝐵2 ⊗ 𝐿) consists of all
symmetric forms 𝜑 : Sym2 (𝐸) −→ 𝐿 in 𝛤 for which 𝑁 is isotropic, i.e., 𝜑(𝑁 · 𝑁) = 0.
A similar discussion applies to arbitrary rank and one step filtrations. The reader may
compare this to [36], Lemma 5.2.
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1.4. Semistability. Let 𝛿 be a positive rational number. Using the quantities introduced
in Section 1.2, we say that (𝐸, 𝛤) is 𝛿-(semi)stable, if the inequality

𝑀 (𝐸•, 𝛼•) + 𝛿 · 𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) (≥)0

is satisfied, for every weighted filtration (𝐸•, 𝛼•) of 𝐸 .

Example 1.4.1. Suppose that 𝜚 = id : GL𝑟 (C) −→ GL(C𝑟 ) is the standard representation
and 𝐿 = O𝑋 . Then, a coherent 𝜚-system is a coherent system in the usual sense, i.e., a pair
(𝐸, 𝛤) consisting of a vector bundle 𝐸 on 𝑋 and a subspace 𝛤 ⊂ 𝐻0 (𝑋, 𝐸). For a weighted
filtration (𝐸•, 𝛼•) of 𝐸 , we get

𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) =
𝑙∑︁
𝑖=1

𝛼𝑖 ·
(
rk(𝐸𝑖) · dimC (𝛤) − dimC (𝐻0 (𝑋, 𝐸𝑖) ∩ 𝛤) · rk(𝐸)

)
.

Apparently, we only need to check weighted filtrations of the shape ({0} ( 𝐹 ( 𝐸, (1)).
So, for 𝛿 ∈ Q>0, the coherent system (𝐸, 𝛤) is 𝛿-(semi)stable if and only if the inequality3

deg(𝐹) + 𝛿 · dimC (𝐻0 (𝑋, 𝐹) ∩ 𝛤)
rk(𝐹) (≤) deg(𝐸) + 𝛿 · dimC (𝐻0 (𝑋, 𝐸))

rk(𝐸)

is satisfied, for every non-trivial, proper subbundle 𝐹 of 𝐸 . This is equivalent to the notion
stated in [24], Definition 2.3.2, and [27], Définition 4.2.

1.5. Semistability for small parameters. If the representation 𝜚 and the type are fixed,
the stability parameter 𝛿 is small, and (𝐸, 𝛤) is a 𝛿-semistable coherent 𝜚-system, then
the vector bundle 𝐸 itself has to be semistable. More precisely, if 𝛿 � 1, then a coherent
𝜚-system (𝐸, 𝛤) of type (𝐿, 𝑑, 𝑠) is 𝛿-(semi)stable if and only if

(a) the vector bundle 𝐸 is semistable,
(b) and, for every weighted filtration (𝐸•, 𝛼•), such that 𝑀 (𝐸•, 𝛼•) = 0, i.e., such that

𝜇(𝐸𝑖) = 𝜇(𝐸) = 𝑑/𝑟 , 𝑖 = 1, ..., 𝑙, the inequality

𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) (≥)0

holds true.

Example 1.5.1. Suppose 𝐿 = O𝑋 , 𝑎 > 0, 𝑊 = C𝑟 , and that 𝜚 : GL𝑟 (C) −→ GL(𝑊 ⊗𝑎) is
the 𝑎-th tensor power of the standard representation. In Section 3.1, we will see that, for a
𝛿-semistable coherent 𝜚-system (𝐸, 𝛤) of type (O𝑋 , 𝑑, 𝑠) and a subbundle {0} ( 𝐹 ( 𝐸 ,
one has

𝜇(𝐹) ≤ 𝜇(𝐸) + 𝛿 · 𝑎 · 𝑠.

Now, 𝜇(𝐹) − 𝜇(𝐸) ∈ Z[1/(rk(𝐹) · rk(𝐸))]. So, if

𝛿 <
1

𝑎 · (𝑟 − 1) · 𝑟 · 𝑠 ,

then 𝛿-semistability is equivalent to the conditions (a) and (b) stated above.

3The symbol “(≤)” in conjuction with “(semi)stable” means that the notions “semistable” and “stable” are
being defined and that “≤” is used in the definition of “semistable” and “<” in the definition of “stable”.
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1.6. Statement of the main result. Fix the representation 𝜚, the type (𝐿, 𝑑, 𝑠), and the
stability parameter 𝛿. For a scheme 𝑆 of finite type over C, a family of coherent 𝜚-systems
parameterized by 𝑆 is a family (𝐸𝑆 , 𝜑𝑆), consisting of a vector bundle 𝐸𝑆 of rank 𝑟 on
𝑆 × 𝑋 and a homomorphism 𝜑𝑆 : O⊕𝑠

𝑆×𝑋 −→ 𝐸𝑆, 𝜚 ⊗ 𝜋★𝑋 (𝐿), such that

𝜋𝑆★(𝜑𝑆) : O⊕𝑠
𝑆

−→ 𝜋𝑆★
(
𝐸𝑆, 𝜚 ⊗ 𝜋★𝑋 (𝐿)

)
is universally injective (see [36], p. 27). Two families (𝐸1

𝑆
, 𝜑1
𝑆
) and (𝐸2

𝑆
, 𝜑2
𝑆
) parameterized

by 𝑆 are isomorphic, if there are isomorphisms 𝜓𝑆 : 𝐸1
𝑆
−→ 𝐸2

𝑆
and 𝜆𝑆 ∈ 𝛤 (𝑆,GL𝑠 (O𝑆)),

such that
𝜑2
𝑆 =

(
𝜓𝑆, 𝜚 ⊗ id𝜋★

𝑋
(𝐿)

)
◦ 𝜑1

𝑆 ◦ 𝜋
★
𝑆 (𝜆

−1
𝑆 ).

The moduli functor 𝐶 𝛿
𝑋/𝜚/𝐿/𝑑/𝑠 : SchC −→ Sets assigns to a scheme 𝑆 of finite type over

C the set of isomorphy classes of families of 𝛿-semistable coherent 𝜚-systems of type
(𝐿, 𝑑, 𝑠) parameterized by 𝑆. It is somewhat similar to the moduli functor for decorated
vector bundles studied in [34] and [35] (compare Remark 1.1.1). As in the case of decorated
vector bundles, the existence of a coarse moduli space for this functor may be deduced from
the existence of a certain categorical quotient (see Section 3.2 and 3.3). For proving the
existence of the respective quotient, one may use geometric invariant theory. We will carry
this out for tensor powers of the standard representation. The techniques should extend to
all homogeneous representations.

Theorem 1.6.1. For 𝑎 > 0, 𝑊 := C𝑟 , and 𝜚 : GL𝑟 (C) −→ GL(𝑊 ⊗𝑎) the 𝑎-th tensor
power of the standard representation, the coarse moduli space C 𝛿

𝑋/𝜚/O𝑋/𝑑/𝑠 for the functor
𝐶 𝛿
𝑋/𝜚/O𝑋/𝑑/𝑠 exists as a projective scheme, provided that

𝛿 <
1

𝑎 · (𝑎 − 1) · 𝑟𝑎−1 .

The bound on 𝛿 grants that the line bundle in which we linearize the group action is
ample, so that the Hilbert–Mumford criterion may be applied for determining the semistable
points.

2. Preliminaries from geometric invariant theory

We will first recall some basic facts from geometric invariant theory. Afterwards, we
will discuss linearized line bundles on quot schemes in detail. This will be important to
understand the bound given in Section 1.6 (see Section 3.3.5).

2.1. Weighted flags. Let 𝜆 : C★ −→ SL𝑟 (C) be a one parameter subgroup. It is diago-
nalizable, i.e., there exist a basis 𝑣 = (𝑣1, ..., 𝑣𝑟 ) of C𝑟 and integers 𝑔1 ≤ · · · ≤ 𝑔𝑟 , such
that

(1) ∀𝑡 ∈ C★ : 𝜆(𝑡)
( 𝑟∑︁
𝑖=1

𝜅𝑖 · 𝑣𝑖
)
=

𝑟∑︁
𝑖=1

𝑡𝑔𝑖 · 𝜅𝑖 · 𝑣𝑖 .

Now, let 𝛾1 < · · · < 𝛾𝑙+1 be the distinct weights occuring in { 𝑔1, ..., 𝑔𝑟 },
𝑙𝑖 := max{ 𝑗 = 1, ..., 𝑡 | 𝑔 𝑗 = 𝛾𝑖 }, 𝑖 = 1, ..., 𝑙 + 1,

and
𝑉𝑖 := 〈 𝑣1, ..., 𝑣𝑙𝑖 〉, 𝑖 = 1, ..., 𝑙 + 1.

The flag
𝑉• : {0} =: 𝑉0 ( 𝑉1 ( · · · ( 𝑉𝑙 ( 𝑉𝑙+1 = C𝑟
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does not depend on the choice of the basis 𝑣 for which (1) holds. Setting 𝛾• := (𝛾1, ..., 𝛾𝑙+1),
we call (𝑉•, 𝛾•) the Z-weighted flag associated with 𝜆.

The 𝑖-th basic weight vector is

𝑔
(𝑖)
𝑟 :=

(
𝑖 − 𝑟, ..., 𝑖 − 𝑟︸          ︷︷          ︸

𝑖×

, 𝑖, ..., 𝑖︸︷︷︸
(𝑟−𝑖)×

)
, 𝑖 = 1, ..., 𝑟 − 1.

Since 𝜆 is a one parameter subgroup of the special linear group, the important identity

(2) (𝑔1, ..., 𝑔𝑟 ) =
𝑟−1∑︁
𝑖=1

𝑔𝑖+1 − 𝑔𝑖
𝑟

· 𝑔 (𝑖)𝑟 =

𝑙∑︁
𝑖=1

𝛾𝑖+1 − 𝛾𝑖
𝑟

· 𝑔 (𝑙𝑖)𝑟

holds true. We set 𝛼𝑖 := (𝛾𝑖+1 − 𝛾𝑖)/𝑟 , 𝑖 = 1, ..., 𝑙, 𝛼• := (𝛼1, ..., 𝛼𝑙), and call (𝑉•, 𝛼•) the
Q>0-weighted flag associated with 𝜆.

2.2. Parabolic subgroups. Let 𝐻 be a semisimple linear algebraic group. For a non-
constant one parameter subgroup 𝜆 : C★ −→ 𝐻, we define

(3) 𝑄𝐻 (𝜆) :=
{
𝑔 ∈ 𝐺 | lim

𝑧→∞
𝜆(𝑧) · 𝑔 · 𝜆(𝑧)−1 exists in 𝐻

}
.

This is a parabolic subgroup of 𝐻.4 Fix a maximal torus 𝑇 ⊂ 𝐻 and let 𝑋★(𝑇) be the
abelian group of homomorphisms from C★ to 𝑇 . We also introduce 𝑋★,Q (𝑇) := 𝑋★(𝑇) ⊗

Z
Q

and 𝑋★,R (𝑇) := 𝑋★(𝑇) ⊗
Z
R. Since, for any positive integer 𝑘 and any one parameter

subgroup 𝜆 ∈ 𝑋★(𝑇), we have𝑄𝐻 (𝑘 · 𝜆) = 𝑄𝐻 (𝜆), we may define𝑄𝐻 (ℓ), for any element
ℓ ∈ 𝑋★,Q (𝑇). We fix a Borel subgroup 𝑇 ⊂ 𝐵 ⊂ 𝐻, set

WQ (𝐵,𝑇) :=
{
ℓ ∈ 𝑋★,Q (𝑇) | 𝐵 ⊂ 𝑄𝐻 (ℓ)

}
,

and let WR (𝐵,𝑇) be the closure of WQ (𝐵,𝑇) in 𝑋★,R (𝑇). We call this, slightly abusively,
a Weyl chamber. This is a rational polyhedral cone, and the edges of WQ (𝐵,𝑇) correspond
to the maximal parabolic subgroups of𝐻 that contain 𝐵. If we let 𝐵 run through the (finitely
many) Borel subgroups containing 𝑇 , we get a decomposition

𝑋★,R (𝑇) =
⋃

𝑇 ⊂𝐵⊂𝐻
WR (𝐵,𝑇).

Example 2.2.1. i) Let 𝐻 be SL𝑁 (C), 𝑇 the torus consisting of the diagonal matrices, and
(𝑒1, ..., 𝑒𝑁 ) the standard basis. For each permutation 𝜎 ∈ S𝑁 , we get the full flag

𝑊• (𝜎) : {0} ( 〈𝑒𝜎 (1)〉 ⊆ · · · ⊂ 〈 𝑒𝜎 (1) , ..., 𝑒𝜎 (𝑁−1) 〉 ( C𝑁 .

The stabilizer 𝐵𝜎 of𝑊• (𝜎) is a Borel subgroup, and 𝜎 ↦−→ 𝐵𝜎 establishes a bijection be-
tweenS𝑁 and the set of Borel subgroups containing𝑇 . Now, 𝜆 ∈ 𝑋★(𝑇) lies inWR (𝐵𝜎 , 𝑇)
if and only if the flag 𝑊• associated with 𝜆 satisfies 𝑊𝑖 = 〈 𝑒𝜎 (1) , ..., 𝑒𝜎 (dimC (𝑊𝑖)) 〉,
𝑖 = 1, ..., 𝑙. The edges of WR (𝐵𝜎 , 𝑇) are spanned by the one parameter subgroups 𝜆𝜎 ( 𝑗),
𝑗 = 1, ..., 𝑁 − 1, where 𝜆𝜎 ( 𝑗) is the one parameter subgroup that satisfies (1) with respect
to 𝑣𝑖 = 𝑒𝜎 (𝑖) , 𝑖 = 1, ..., 𝑁 , and (𝑔1, ..., 𝑔𝑁 ) = 𝑔 ( 𝑗)𝑁 , 𝑗 = 1, ..., 𝑁 − 1.

ii) Let (𝑊 ′
•, 𝛽

′
•) and (𝑊•, 𝛽•) be two Q>0-weighted flags of C𝑁 with

𝑊 ′
• : {0} =: 𝑊 ′

0 ( 𝑊
′
1 ( · · · ( 𝑊 ′

𝑙′ ( 𝑊𝑙′+1 = C𝑁 ,

𝑊• : {0} =: 𝑊0 ( 𝑊1 ( · · · ( 𝑊𝑙 ( 𝑊𝑙+1 = C𝑁 ,

4The same definition may be used for arbitrary reductive linear algebraic groups. If 𝜆 maps to the center of
the group, then the subgroup associated with 𝜆 is the whole group.
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𝛽′• = (𝛽′1, ..., 𝛽
′
𝑙′), and 𝛽• = (𝛽1, ..., 𝛽𝑙). We write (𝑊 ′

•, 𝛽
′
•) � (𝑊•, 𝛽•) if 𝑙 ′ ≤ 𝑙 and there

is a strictly increasing map 𝜄 : { 1, ..., 𝑙 ′ } −→ { 1, ..., 𝑙 }, such that
∀𝑘 ∈ { 1, ..., 𝑙 ′ } : 𝑊 ′

𝑘 = 𝑊 𝜄 (𝑘) and 𝛽′𝑘 = 𝛽 𝜄 (𝑘) .

Note that 𝜄 is unique in this case. Now, let 𝜆′, 𝜆 ∈ WR (𝐵,𝑇) ∩ 𝑋★(𝑇). Then, there is a
unique face F of WR (𝐵,𝑇), such that 𝜆 is contained in the relative interior of F. Suppose
that 𝜆′ lies in F. Then, the Q>0-weighted flags (𝑊 ′

•, 𝛽
′
•) and (𝑊•, 𝛽•) associated with 𝜆′

and 𝜆, respectively, satisfy (𝑊 ′
•, 𝛽

′
•) � (𝑊•, 𝛽•).

iii) Let (𝑊 ′
•, 𝛽

′
•), (𝑊 ′′

• , 𝛽
′′
• ), and (𝑊•, 𝛽•) be three Q>0-weighted flags of length 𝑙 ′, 𝑙 ′′,

and 𝑙, respectively. We write
(𝑊•, 𝛽•) = (𝑊 ′

•, 𝛽
′
•) + (𝑊 ′′

• , 𝛽
′′
• ),

if
• (𝑊 ′

•, 𝛽
′
•) � (𝑊•, 𝛽•) and (𝑊 ′′

• , 𝛽
′′
• ) � (𝑊•, 𝛽•),

• { 1, ..., 𝑙 } = Im(𝜄′) ∪ Im(𝜄′′), 𝜄′ : { 1, ..., 𝑙 ′ } −→ { 1, ..., 𝑙 } and 𝜄′′ : { 1, ..., 𝑙 ′′ } −→
{ 1, ..., 𝑙 } being the respective strictly increasing maps,

• and, for 𝑘 ∈ { 1, ..., 𝑙 },

𝛽𝑘 =


𝛽′
𝑘′ , if 𝑘 = 𝜄′(𝑘 ′) and 𝑘 ∉ Im(𝜄′′)

𝛽′′
𝑘′′ , if 𝑘 = 𝜄′′(𝑘 ′′) and 𝑘 ∉ Im(𝜄′)

𝛽′
𝑘′ + 𝛽

′′
𝑘′′ , if 𝑘 = 𝜄′(𝑘 ′) = 𝜄′′(𝑘 ′′)

.

Suppose that 𝜆′, 𝜆′′, 𝜆 ∈ WR (𝐵,𝑇) ∩ 𝑋★(𝑇) and 𝜆 = 𝜆′ + 𝜆′′. Then, the Q>0-weighted
flags (𝑊 ′

•, 𝛽
′
•), (𝑊 ′′

• , 𝛽
′′
• ), and (𝑊•, 𝛽•) associated with 𝜆′, 𝜆′′, and 𝜆, respectively, satisfy

(𝑊•, 𝛽•) = (𝑊 ′
•, 𝛽

′
•) + (𝑊 ′′

• , 𝛽
′′
• ).

Now, suppose 𝐺 is another semisimple linear algebraic group, 𝜂 : 𝐺 −→ 𝐻 is a homo-
morphism, and 𝑆 ⊂ 𝐺 is a maximal torus with 𝜂(𝑆) ⊂ 𝑇 . It is clear that we may find
rational polyhedral cones V1, ...,V𝐾 ⊂ 𝑋★,R (𝑆), such that

• for each 𝑘 ∈ { 1, ..., 𝐾 }, there are a Borel subgroup 𝑆 ⊂ 𝐴 ⊂ 𝐺 and a Borel
subgroup 𝑇 ⊂ 𝐵 ⊂ 𝐻, such that V𝑘 ⊂ W(𝐴, 𝑆) and 𝜂★,R (V𝑘 ) ⊂ W(𝐵,𝑇),
𝜂★,R : 𝑋★,R (𝑆) −→ 𝑋★,R (𝑇) being the R-linear map induced by 𝜂,

• 𝑋★,R (𝑆) =
𝑁⋃
𝑘=1

V𝑘 ,

• for 𝑘, 𝑘 ′ ∈ 𝐾 , the intersection V𝑘 ∩V𝑘′ is a common face of both V𝑘 and V
′
𝑘 .

For the rest of this section, we assume that 𝐺 is SL𝑟 (C), 𝐻 is SL𝑁 (C), and that
𝜂 : SL𝑟 (C) −→ SL𝑁 (C) is induced by a homogeneous representation 𝜚 : GL𝑟 (C) −→
GL𝑁 (C). Let 𝑆 ⊂ SL𝑟 (C) be the sugroup of diagonal matrices. After applying an inner
automorphism of GL𝑁 (C), if necessary, we may assume that 𝜂(𝑆) = 𝜚(𝑆) is contained in
the torus 𝑇 ⊂ SL𝑁 (C) of diagonal matrices. Now, suppose that 𝜆′, 𝜆′′, 𝜆 ∈ 𝑋★,Q (𝑆) are
one parameter subgroups, such that 𝜆 = 𝜆′ + 𝜆′′ and there exists an index 𝑘 ∈ { 1, ..., 𝐾 }
with 𝜆′, 𝜆′′ ∈ V𝑘 . Clearly, also 𝜆 ∈ V𝑘 . Now, 𝜆′, 𝜆′′, and 𝜆 define Q>0-weighted flags
(𝑉 ′

•, 𝛼
′
•), (𝑉 ′′

• , 𝛼
′′
• ), and (𝑉•, 𝛼•), respectively, and, as pointed out in Example 2.2.1, iii),

(𝑉•, 𝛼•) = (𝑉 ′
•, 𝛼

′
•) + (𝑉 ′′

• , 𝛼
′′
• ).

Likewise, 𝜂★(𝜆′), 𝜂★(𝜆′′), and 𝜂★(𝜆) define Q>0-weighted flags (𝑊 ′
•, 𝛽

′
•), (𝑊 ′′

• , 𝛽
′′
• ), and

(𝑊•, 𝛽•). Since 𝜂★(𝜆′) + 𝜂★(𝜆′′) = 𝜂★(𝜆), and, by construction, there is a Borel subgroup
𝑇 ⊂ 𝐵 ⊂ SL𝑁 (C) with 𝜂★(𝜆′), 𝜂★(𝜆′′), 𝜂★(𝜆) ∈ W(𝐵,𝑇), we infer
(4) (𝑊•, 𝛽•) = (𝑊 ′

•, 𝛽
′
•) + (𝑊 ′′

• , 𝛽
′′
• ).
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For 𝜆 ∈ 𝑋★,Q (𝑆) with associated Q>0-weighted flag (𝑉• : {0} ( 𝑉1 ( · · · ( 𝑉𝑙 ( C𝑟 , 𝛼•),
define the type 𝑡 (𝜆) := (𝑟•, 𝛼•) by

𝑟• := (𝑟1, ..., 𝑟𝑙), 𝑟𝑖 := dimC (𝑉𝑖), 𝑖 = 1, ..., 𝑙.
Finally, let 𝜆1, ..., 𝜆𝐿 ∈ 𝑋★(𝑆) be the one parameter subgroups that occur as an indivisible
generator of an edge of a cone V𝑘 ⊂ W(𝐴, 𝑆), 𝑘 ∈ { 1, ..., 𝐾 }. We set5
(5) T(𝜚) :=

{
𝑡 (𝜆1), ..., 𝑡 (𝜆𝐿)

}
.

2.3. Actions on Graßmannians. Let 𝐻 be a complex vector space, 𝑟 its dimension,
0 < 𝑠 < 𝑟 , 𝑞 = 𝑟 − 𝑠, and Gr𝑞 (𝐻) the Graßmann variety of 𝑞-dimensional quotient
spaces of 𝐻. The special linear group SL(𝐻) is acting in a natural way on Gr𝑞 (𝐻). Fix
(𝜒 : 𝐻 −→ 𝑄) ∈ Gr𝑞 (𝐻). Suppose that 𝜆 : C★ −→ SL(𝐻) is a one parameter subgroup
and let (𝐻•, 𝜀•) be the associated Z-weighted flag. It is well-known and easy to see
(compare [30], Chapter 4, §4, [31], Chapter 4, §6, [35], Exercise 1.5.1.15) that

(6) 𝜇(𝜆, 𝜒) = −
𝑚+1∑︁
𝑗=1

𝜀 𝑗 ·
(
dimC

(
𝜒(𝐻 𝑗 )

)
− dimC

(
𝜒(𝐻 𝑗−1)

) )
.

2.4. Linearized line bundles on quot schemes. Linearized line bundles on quot schemes
for vector bundles on curves were studied by Drezet and Narasimhan [10] in characteristic
zero. They correspond to line bundles on the moduli stack of vector bundles on 𝑋 . The
Picard groups of moduli stacks for principal𝐺-bundles of fixed topological type 𝑑 ∈ 𝜋1 (𝑋),
𝐺 a reductive linear algebraic group, were determined by Biswas and Hoffmann [3], building
on a large selection of previously studied special cases.

Fix integers 𝑟 > 0, 𝑑, and 𝑛 > 0. Set 𝑝0 := 𝑑 + 𝑟 · (1 − 𝑔), 𝑝 := 𝑟 · 𝑛 + 𝑝0, and pick a
complex vector space 𝑉 of dimension 𝑝. We look at the quasi-projective quot scheme Q

that parameterizes quotients 𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸 , such that 𝐸 is a vector bundle of rank
𝑟 and degree 𝑑 and 𝐻0 (𝜅(𝑛)) : 𝑉 −→ 𝐻0 (𝑋, 𝐸 (𝑛)) is an isomorphism.6 The group GL(𝑉)
acts on Q via

𝜎 : GL(𝑉) ×Q −→ Q

(𝑔, 𝜅) ↦−→ 𝜅 ◦ (𝑔−1 ⊗ idO𝑋 (−𝑛) ).
Suppose L is a line bundle which is linearized with respect to the group action 𝜎. Since
the subgroup Z := C★ · id𝑉 ⊂ GL(𝑉) acts trivially on Q, there exists an integer 𝑤, such
that Z acts via (𝑡 · id𝑉 , ℓ) ↦−→ 𝑡𝑤 · ℓ on each fiber of L over Q. We call 𝑤 the weight of
L.

We assume that, for every semistable vector bundle 𝐸 of rank 𝑟 and degree 𝑑 on 𝑋 ,
𝐻1 (𝑋, 𝐸 (𝑛)) = {0}. This implies that every semistable vector bundle 𝐸 of rank 𝑟 and
degree 𝑑 can be written as a quotient 𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸 , such that 𝐻0 (𝜅(𝑛)) : 𝑉 −→
𝐻0 (𝑋, 𝐸 (𝑛)) is an isomorphism.

Remark 2.4.1. i) We letQss ⊂ Q be the GL(𝑉)-invariant open subset consisting of quotients
𝜅 : 𝑉 ⊗O𝑋 (−𝑛) −→ 𝐸 , such that 𝐸 is semistable. The complement of Qss has codimension
at least two ([22], proof of Corollary 3.2, p. 1311, [13], Theorem 8 (a), p. 53, compare also
[4], Lemma 2.1). So, the Picard group of GL(𝑉)-linearized line bundles on Q agrees with
the Picard group of GL(𝑉)-linearized line bundles on Qss.

5Since all pairs consisting of a maximal torus of SL𝑟 (C) and a Borel subgroup containing that maximal torus
are conjugate, this set does not depend on the choices of 𝑆 and 𝐴.

6This implies that 𝐻 1 (𝑋, 𝐸 (𝑛)) = {0}. So, by [28], Theorem 8.2.1 (ii), Q is smooth. The variety Q is
connected and has dimension 𝑝2 + 𝑟2 · (𝑔 − 1) .
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ii) Note that the stack quotient of Qss by the action of GL(𝑉) is the moduli stack
Bunss

𝑟/𝑑 (𝑋) of semistable vector bundles of rank 𝑟 and degree 𝑑 on 𝑋 . Therefore, the Picard
group of GL(𝑉)-linearized line bundles on Qss agrees with the Picard group of the stack
Bunss

𝑟/𝑑 (𝑋) ([39], Tag 06WT). As recalled in Part i), the complement of Bunss
𝑟/𝑑 (𝑋) in the

moduli stack Bun𝑟/𝑑 (𝑋) of all vector bundles of rank 𝑟 and degree 𝑑 on 𝑋 has codimension
at least two, so that we may identify the Picard groups of Bunss

𝑟/𝑑 (𝑋) and Bun𝑟/𝑑 (𝑋).
Altogether, we see that the Picard group of GL(𝑉)-linearized line bundles on Q agrees
with the Picard group of Bun𝑟/𝑑 (𝑋).

Let 𝐸B be the tautological vector bundle on the stack Bun𝑟/𝑑 (𝑋) × 𝑋 and 𝜅Q : 𝑉 ⊗
𝜋★
𝑋
(O𝑋 (−𝑛)) −→ 𝐸Q the universal quotient on Q × 𝑋 .

Remark 2.4.2. Clearly, the vector bundle 𝐸Q is the pullback of 𝐸B under the morphism
Q × 𝑋 −→ Bun𝑟/𝑑 (𝑋) × 𝑋 .

Example 2.4.3. i) Let A be a scheme and F a coherent OA×𝑋 -module which is flat over
A. Let us explain how the determinant of cohomology of F is constructed. The general
formalism has been developed in [25]. We use the construction presented in [23], Section
2.1, and [38], Section 6.1. For large 𝑘 , the direct image 𝜋A★(F ⊗ 𝜋★

𝑋
(O𝑋 (𝑘))) will be

locally free. We set

𝑃0 := 𝜋★A

(
𝜋A★

(
F ⊗ 𝜋★𝑋

(
O𝑋 (𝑘)

) ))
⊗ 𝜋★𝑋

(
O𝑋 (−𝑘)

)
.

Note that we have a surjection
𝑃0 −→ F

and that 𝜋A★(𝑃0) = 0. We let 𝑃1 be the kernel of the above surjection. By Hilbert’s syzygy
theorem and [23], Lemma 2.1.7, 𝑃1 is also locally free and satisfies 𝜋A★(𝑃1) = 0. Then,
the complex

𝑅1𝜋A★(𝑃1) −→ 𝑅1𝜋A★(𝑃0)
of locally free sheaves on A has the direct image sheaves of F as cohomology sheaves, and
this construction is compatible with base change. We define the determinant of cohomology
of F as

𝐷 (F) := det
(
𝑅1𝜋A★(𝑃0)

)
⊗ det

(
𝑅1𝜋A★(𝑃1)

)∨
.

This construction has the following properties (compare [12], Section 2, [29], Section 1):
• (Base change.) For a morphism 𝑓 : A′ −→ A and anA-flat coherentOA×𝑋 -module
F, one has

𝐷
(
( 𝑓 × id𝑋 )★(F)

)
= 𝑓★

(
𝐷 (F)

)
.

• (Short exact sequences.) Let

0 F1 F2 F3 0

be a short exact sequence of A-flat coherent OA×𝑋 -modules. Then,

𝐷 (F2) � 𝐷 (F1) ⊗ 𝐷 (F3).
• (Projection formula.) For an A-flat coherent OA×𝑋 -module F and an invertible
OA-module L,

𝐷
(
F ⊗ 𝜋★A (L)

)
� 𝐷 (F) ⊗ L⊗𝜒 .

Here, 𝜒 is the Euler characteristic of the restricted sheaf F| {𝑠}×𝑋 , 𝑠 ∈ 𝑆.
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Using this, we define the line bundle 𝐷Q on Q as the determinant of cohomology of the
universal family 𝐸Q. The techniques apply also to the universal bundle 𝐸B on Bun𝑟/𝑑 (𝑋) ×
𝑋 and lead to the line bundle 𝐷B on Bun𝑟/𝑑 (𝑋). By the functorial properties of the
determinant of cohomology, 𝐷Q is isomorphic to the pullback of 𝐷B under the morphism
Q −→ Bun𝑟/𝑑 (𝑋). The line bundle 𝐷Q is linearized with respect to the GL(𝑉)-action on
Q, and its weight is 𝑝0 = 𝑑 + 𝑟 · (1 − 𝑔). Faltings used the determinant of cohomology
in his alternative construction of the moduli spaces of vector and Higgs bundles on curves
([14], see also [20]).

ii) We may view 𝐸B |Bun𝑟/𝑑 (𝑋 )×{𝑥0 } as a vector bundle on Bun𝑟/𝑑 (𝑋). Let 𝑅B be the
determinant of this vector bundle. Similarly, we define the line bundle 𝑅Q on Q. It is
linearized with respect to the GL(𝑉)-action on Q, its weight is 𝑟 , and it is isomorphic to
the pullback of 𝑅B under the morphism Q −→ Bun𝑟/𝑑 (𝑋).

We need the natural morphism

dQ : Q −→ Pic𝑑 (𝑋)(7)
(𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸) ↦−→ det(𝐸).

It factorizes over the morphism Q −→ Bun𝑟/𝑑 (𝑋).

Proposition 2.4.4. The quotient of the Picard group of Bun𝑟/𝑑 (𝑋) by the Picard group
Pic𝑑 (𝑋) is freely generated by 𝐷B and 𝑅B.

Proof. This is contained in [3], Theorem 5.3.1, iii). �

Let’s do some computations with the linearized line bundles we have just constructed.

Lemma 2.4.5. i) For 𝑘 ∈ N, the determinant of cohomology of the vector bundle 𝐸Q (𝑘) :=
𝐸Q ⊗ 𝜋★

𝑋
(O𝑋 (𝑘)) is isomorphic to 𝐷Q ⊗ 𝑅⊗𝑘

Q
.

ii) The determinant of cohomology of 𝐸Q (𝑛) is isomorphic to the trivial line bundle
linearized by the character det : GL(𝑉) −→ C★.

Proof. i) We prove the result by induction on 𝑘 , the case 𝑘 = 0 being trivial. The short
exact sequence

{0} −−−−−−→ O𝑋 −−−−−−→ O𝑋 (1) −−−−−−→ O{𝑥0 } −−−−−−→ {0}
may be pulled back to Q × 𝑋 and tensorized by 𝐸Q (𝑘). The result is the short exact
sequence

{0} −−−−−−→ 𝐸Q (𝑘) −−−−−−→ 𝐸Q (𝑘 + 1) −−−−−−→ 𝐸Q |Q×{𝑥0 } −−−−−−→ {0}.
The determinant of cohomology of 𝐸Q |Q×{𝑥0 } is 𝑅Q. So, the claim follows from the
induction hypothesis and the formula for the determinant of cohomology of a short exact
sequence.

ii) By our general assumptions, the push forward of the quotient homomorphism 𝑉 ⊗
OQ×𝑋 −→ 𝐸Q (𝑛) is an isomorphism 𝑉 ⊗ OQ −→ 𝜋Q★(𝐸Q (𝑛)), and the higher direct
images of 𝐸Q (𝑛) are zero. So, the determinant of cohomology of 𝐸Q (𝑛) is trivial, and the
result follows from Part i). �

In constructions with geometric invariant theory, we need linearized line bundles of
weight zero in order to have any hope for finding semistable points. Let L be a GL(𝑉)-
linearized line bundle of weight 𝑤. Denote by L0 the trivial line bundle linearized by the
character det : GL(𝑉) −→ C★. It has weight 𝑝. So,

L⊗𝑝 ⊗ L⊗−𝑤
0
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is a GL(𝑉)-linearized line bundle of weight zero. In the following computations, we will
write such a line bundle in additive notation as

𝑝 ·L − 𝑤 ·L0.

Pick 𝑚 ∈ N and let D𝑚 be the determinant of cohomology of 𝐸Q (𝑚 +𝑛). By Lemma 2.4.5,
we have

𝑝 ·D𝑚 − 𝑤 ·L0

=(𝑝0 + 𝑛 · 𝑟) · (𝐷Q + (𝑚 + 𝑛) · 𝑅Q) − (𝑝0 + (𝑚 + 𝑛) · 𝑟) · (𝐷Q + 𝑛 · 𝑅Q)(8)
=𝑚 · (−𝑟 · 𝐷Q + 𝑝0 · 𝑅Q).

Set 𝑢0 := 𝑎 · 𝑟𝑎−1 · 𝑑 + 𝑟𝑎 · (1 − 𝑔) and 𝑢 := 𝑎 · 𝑟𝑎 · 𝑛 + 𝑢0. The determinant 𝑇B
of cohomology of 𝐸 ⊗𝑎

B
is a line bundle on Bun𝑟/𝑑 (𝑋). Its weight is 𝑎 · 𝑢0.7 Note that

it is the pullback of the determinant of cohomology of the tautological vector bundle on
Bun𝑟𝑎/𝑎 ·𝑟𝑎−1 ·𝑑 (𝑋) via the morphism Bun𝑟/𝑑 (𝑋) −→ Bun𝑟𝑎/𝑎 ·𝑟𝑎−1 ·𝑑 (𝑋) induced by the
representation 𝜚 : GL𝑟 (C) −→ GL(𝑊 ⊗𝑎),𝑊 := C𝑟 .

Proposition 2.4.6. Up to a possible twist by the pullback of a line bundle on Pic𝑑 (𝑋),

𝑇B = 𝑎 · 𝑟𝑎−1 · 𝐷B + 𝑦 · 𝑅B,

for an appropriate integer 𝑦.

Remark 2.4.7. Of course, 𝑦 may be computed from the weight of 𝑇B. We will not need the
explicit form of 𝑦 in the sequel.

First proof of Proposition 2.4.6. We write

𝑇B = 𝑥 · 𝐷B + 𝑦 · 𝑅B.

It follows from a result of Kumar, Narasimhan, and Ramanathan ([26], Theorem (5.4)) and
Biswas and Hoffmann ([3], Proposition 4.4.4) that 𝑥 is the Dynkin index ([3], Remark 4.3.3,
iii), [11], §2, [15], (1.6.45)) of 𝜚 | SL𝑟 (C) : SL𝑟 (C) −→ GL(𝑊 ⊗𝑎). The Dynkin index of
the standard representation SL𝑟 (C) −→ GL(𝑊) is one ([26], Lemma (5.2)), and for tensor
products of representations, the formula

Dyn(𝜏1 ⊗ 𝜏2) = dimC (𝜏2) · Dyn(𝜏1) + dimC (𝜏1) · Dyn(𝜏2)

holds true ([15], (1.6.47)). This shows that the Dynkin index of 𝜚 | SL𝑟 (C) is 𝑎 · 𝑟𝑎−1. �

Second proof of Proposition 2.4.6. Here, we will work with linearized sheaves on the quot
scheme Q. Let dQ be the determinant morphism from (7). Since we would like to
perform our computations modulo the Picard group Pic𝑑 (𝑋) and forming the determinant
in cohomology commutes with base change, we may restrict to a fiber of dQ. So, let 𝐿
be a line bundle of degree 𝑑 on 𝑋 and Q𝐿 be the quot scheme, parameterizing quotients
𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸 with det(𝐸) � 𝐿. Then, there is a line bundle 𝑁 on Q𝐿 , such that

det(𝐸Q𝐿
) � 𝜋★Q𝐿

(𝑁) ⊗ 𝜋★𝑋 (𝐿),

i.e.,

(9) 𝑐1 (𝐸Q𝐿
) = 𝑐1

(
𝜋★Q𝐿

(𝑁)
)
+ 𝑐1

(
𝜋★𝑋 (𝐿)

)
.

7The weight of the determinant of cohomology is the rank of the determinant of cohomology, 𝑢0 in this case,
multiplied by the weight of the sheaf, which is 𝑎 in the case at hand.
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The Grothendieck–Riemann–Roch theorem ([16], Theorem 15.2, [19], Appendix A, The-
orem 5.3) states that

ch
(
𝜋Q𝐿 ! (𝐸Q𝐿

)
)
= 𝜋Q𝐿★

(
ch(𝐸Q𝐿

).td(𝑇𝜋Q𝐿
)
)
.

The degree one component is the first Chern class of 𝐷Q𝐿
. Since the relative dimension of

𝜋Q𝐿
is one, we need to look at the degree two component of the class in the brackets of the

right hand side of the equation. Now, setting 𝑐 := 𝑐1 (𝜋★𝑋 (𝑇𝑋 )), we have

td(𝑇𝜋Q𝐿
) = 𝜋★𝑋

(
td(𝑋)

)
= 1 + 1

2
· 𝑐.

Up to algebraic equivalence, we have
1
2
· 𝑐 = (1 − 𝑔) ·

[
Q𝐿 × {𝑥0}

]
.

The degree two component we need to look at is

(1 − 𝑔) · 𝑐1 (𝐸Q𝐿
).
[
Q𝐿 × {𝑥0}

]
+ ch2 (𝐸Q𝐿

).

Here, we would like to point out that 𝜋★
𝑋
(𝐿).[Q𝐿 × {𝑥0}] = 0, so that

(10) 𝑐1
(
𝜋★Q𝐿

(𝑁)
)
.
[
Q𝐿 × {𝑥0}

]
= 𝑐1 (𝐸Q𝐿

).
[
Q𝐿 × {𝑥0}

]
.

Let

𝜄0 : Q𝐿 −→ Q𝐿 × 𝑋
𝜅 ↦−→ (𝜅, 𝑥0)

be the inclusion. By definition,

𝜄★0
(
det(𝐸Q𝐿

)
)
= 𝑅Q𝐿

.

So, the projection formula ([16], Proposition 2.5 (c)) yields

𝑐1 (𝐸Q𝐿
).
[
Q𝐿 × {𝑥0}

]
= 𝜄0★

(
𝑐1 (𝑅Q𝐿

)
)
.

Since 𝜋Q𝐿
◦ 𝜄0 = idQ𝐿

, we see that

(11) 𝑐1 (𝐷Q𝐿
) = (1 − 𝑔) · 𝑐1 (𝑅Q𝐿

) + 𝜋Q𝐿★

(
ch2 (𝐸Q𝐿

)
)
.

Now, in order to prove the proposition, we need to carry out the analogous computation for
𝐸 ⊗𝑎
Q𝐿

. Since
ch(𝐸 ⊗𝑎

Q𝐿
) = ch(𝐸Q𝐿

)𝑎,
we see that

𝑐1 (𝐸 ⊗𝑎
Q𝐿

) = 𝑎 · 𝑟𝑎−1 · 𝑐1 (𝐸Q𝐿
),

ch2 (𝐸 ⊗𝑎
Q𝐿

) =
(
𝑎

2

)
· 𝑟𝑎−2 · 𝑐1 (𝐸Q𝐿

)2 + 𝑎 · 𝑟𝑎−1 · ch2 (𝐸Q𝐿
).

Up to algebraic equivalence, we have

𝑐1
(
𝜋★𝑋 (𝐿)

)
= 𝑑 ·

[
Q𝐿 × {𝑥0}

]
.

Invoking (10), we compute

𝑐1 (𝐸Q𝐿
)2 = 𝑐1

(
𝜋★Q𝐿

(𝑁)
)2 + 2𝑑 · 𝑐1 (𝐸Q𝐿

).
[
Q𝐿 × {𝑥0}

]
= 𝜋★Q𝐿

(𝑐1 (𝑁)2) + 2𝑑 · 𝑐1 (𝐸Q𝐿
).
[
Q𝐿 × {𝑥0}

]
.
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Since the relative dimension of 𝜋Q𝐿
is one, the projection formula ([16], Proposition 8.3

(c)) shows that 𝜋Q𝐿★(𝜋★Q𝐿
(𝛽)) = 0, for every 𝛽 ∈ 𝐴★(Q𝐿). Using this observation, we

arrive at the formula

𝑐1 (𝑇Q𝐿
) =

(
(1 − 𝑔) · 𝑎 · 𝑟𝑎−1 + 2 · 𝑑 ·

(
𝑎

2

)
· 𝑟𝑎−2

)
· 𝑐1 (𝑅Q𝐿

) + 𝑎 · 𝑟𝑎−1 · 𝜋Q𝐿★

(
ch2 (𝐸Q𝐿

)
)
.

A comparison of this formula with (11) shows that the assertion of the proposition is
true. �

Lemma 2.4.8. Let 𝑘 ∈ N and 𝐸Q (𝑘) := 𝐸Q ⊗ 𝜋★
𝑋
(O𝑋 (𝑘)). Then, the determinant of

cohomology of 𝐸Q (𝑘)⊗𝑎 is isomorphic to 𝑇Q ⊗ 𝑅⊗(𝑎2 ·𝑟𝑎−1 ·𝑘)
Q

.

Proof. For 𝑙 ∈ Z, we set 𝐹Q (𝑙) := 𝐸 ⊗𝑎
Q

⊗ 𝜋★
𝑋
(O𝑋 (𝑙)), so that 𝐸Q (𝑘)⊗𝑎 � 𝐹Q (𝑎 · 𝑘),

𝑘 ∈ Z. We prove the claim by induction on 𝑘 . For 𝑘 = 0, there is nothing to prove. For the
inductive step, we use the short exact sequence

{0} −−−−−−→ 𝐹Q (𝑙) −−−−−−→ 𝐹Q (𝑙 + 1) −−−−−−→ (𝐸 ⊗𝑎
Q

) |Q×{𝑥0 } −−−−−−→ {0}.

It shows that the determinant of cohomology of 𝐹Q (𝑙 + 1) differs from the one of 𝐹Q (𝑙) by
the factor

det
(
(𝐸 ⊗𝑎

Q
) |Q×{𝑥0 }

)
� 𝑅⊗𝑎 ·𝑟𝑎−1

Q
.

This enables us to reduce the case 𝑘 + 1 to the case 𝑘 . �

Let L be the determinant of cohomology of 𝐸Q (𝑛)⊗𝑎. It is a GL(𝑉)-linearized line
bundle of weight 𝑤 := 𝑎2 · 𝑟𝑎 · 𝑛 + 𝑎 · 𝑢0. Using additive notation again, the line bundle
𝑝 ·L − 𝑤 ·L0 has weight zero. With Lemma 2.4.8, we compute

𝑝 ·L − 𝑤 ·L0

=(𝑟𝑛 + 𝑝0) · (𝑥𝐷Q + (𝑎2𝑟𝑎−1𝑛 + 𝑦)𝑅Q) − (𝑥𝑝0 + 𝑦𝑟 + 𝑎2𝑟𝑎𝑛) · (𝐷Q + 𝑛𝑅Q)
=
(
(𝑎2 · 𝑟𝑎−1 − 𝑥) · 𝑛 + 𝑦

)
· (𝑝0 · 𝑅Q − 𝑟 · 𝐷Q).

After plugging in the value for 𝑥 found in Lemma 2.4.8, this reads

(12) 𝑝 ·L − 𝑤 ·L0 =
(
(𝑎2 · 𝑟𝑎−1 − 𝑎 · 𝑟𝑎−1) · 𝑛 + 𝑦

)
· (𝑝0 · 𝑅Q − 𝑟 · 𝐷Q).

3. Moduli spaces

In this part, we will look at the moduli problem for coherent 𝜚-systems for the repre-
sentation 𝜚 of GL𝑟 (C) on GL(𝑊 ⊗𝑎), 𝑊 := C𝑟 , given as the 𝑎-fold tensor power of the
standard representation, for 𝑎 ≥ 2. We also assume 𝐿 = O𝑋 . This should be a key step for
understanding the moduli problems for arbitrary homogeneous representations. We will
carry out the construction with the help of geometric invariant theory. One important step
is to rewrite the quantity 𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) in such a way that the computations of [24] and
[35] may be adapted. In this context, it is also crucial to find the right linearization of the
group action. Here, we will see that the line bundle in which we will linearize the group
action will be ample only for stability parameters below some threshold (14). Throughout
this section, we fix the type (O𝑋 , 𝑑, 𝑠) and the stability parameter 𝛿.
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3.1. Boundedness. In order to check that the family of all vector bundles 𝐸 for which there
exists a subspace 𝛤 ⊂ 𝐻0 (𝑋, 𝐸 ⊗𝑎), such that (𝐸, 𝛤) is a 𝛿-semistable coherent 𝜚-system of
type (O𝑋 , 𝑑, 𝑠) is bounded, we have to find a constant 𝐶0, such that, for every 𝛿-semistable
coherent 𝜚-system (𝐸, 𝛤) of type (O𝑋 , 𝑑, 𝑠) and every subbundle {0} ( 𝐹 ( 𝐸 , the
inequality

𝜇(𝐹) ≤ 𝑟

𝑟
+ 𝐶0

is satisfied. So, assume that (𝐸, 𝛤) is a 𝛿-semistable coherent 𝜚-system of type (O𝑋 , 𝑑, 𝑠)
and {0} ( 𝐹 ( 𝐸 is a subbundle of 𝐸 . Let (𝐵• : {0} ( 𝐵1 ( · · · ( 𝐵𝑚+1 ( 𝐸

⊗𝑎, 𝛽• =

(𝛽1, ..., 𝛽𝑚+1)) be the Q>0-weighted filtration associated with the Q>0-weighted filtration
({0} ( 𝐹 ( 𝐸, (1)) of 𝐸 . As before, we let 𝜀• = (𝜀1, ..., 𝜀𝑚+1) be the vector of Z-weights.
The values for 𝜀1, ..., 𝜀𝑚+1 are

𝑎 · rk(𝐹) − 𝑏 · 𝑟, 𝑏 = 0, ..., 𝑎,

i.e.,

𝑚 = 𝑎 and 𝜀 𝑗 = 𝑎 · (rk(𝐹) − 𝑟) + ( 𝑗 − 1) · 𝑟, 𝑗 = 1, ..., 𝑎 + 1.

So,

𝛽 𝑗 =
1
𝑟𝑎−1 , 𝑗 = 1, ..., 𝑎.

Clearly,

rk(𝐵 𝑗 ) ≤ 𝑟𝑎 − 1, 𝑗 = 1, ..., 𝑎.

We conclude

𝜇 (𝐸,𝛤)
(
{0} ( 𝐹 ( 𝐸, (1)

)
≤ 𝑎 · 𝑟 · 𝑠.

By 𝛿-semistability,

𝜇(𝐹) ≤ 𝑑

𝑟
+ 𝛿 ·

𝜇 (𝐸,𝛤)
(
{0} ( 𝐹 ( 𝐸, (1)

)
rk(𝐹) · 𝑟 ≤ 𝑑

𝑟
+ 𝛿 · 𝑎 · 𝑠.

3.2. A parameter space. Suppose that we are given a bounded family B of vector bundles
on 𝑋 . We assume that 𝐸, det(𝐸) ∈ B, for every 𝛿-semistable coherent 𝜚-system (𝐸, 𝛤) of
type (O𝑋 , 𝑑, 𝑠).

We may find an index 𝑛0 ∈ N, such that, for all 𝑛 ≥ 𝑛0, the following properties are
satisfied:

• For every vector bundle 𝐸 ∈ B, the vector bundle 𝐸 (𝑛) is globally generated and
𝐻1 (𝑋, 𝐸 (𝑛)) = {0}.

• For vector bundles 𝐹1, ..., 𝐹𝑎 ∈ B, 𝐹1 (𝑛) ⊗ · · · ⊗ 𝐹𝑎 (𝑛) is globally generated,
𝐻1 (𝑋, 𝐹1 (𝑛) ⊗ · · · ⊗ 𝐹𝑎 (𝑛)) = {0}, and the natural linear map

𝐻0 (𝑋, 𝐹1 (𝑛)
)
⊗ · · · ⊗ 𝐻0 (𝑋, 𝐹𝑎 (𝑛)) −→ 𝐻0 (𝑋, 𝐹1 (𝑛) ⊗ · · · ⊗ 𝐹𝑎 (𝑛)

)
is surjective.
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• For 𝑓 ≤ 𝑟𝑎,8 a vector bundle 𝐸 ∈ B, subbundles 𝐹 𝑗
𝑖
, 𝑖 = 1, ..., 𝑎, 𝑗 = 1, ..., 𝑓 , of 𝐸

which also belong to B,

𝛴 :=
𝑓∑︁
𝑗=1

𝐹
𝑗

1 (𝑛) ⊗ · · · ⊗ 𝐹 𝑗𝑎 (𝑛)

is globally generated, 𝐻1 (𝑋, 𝛴) = {0}, and the natural linear map
𝑓⊕
𝑗=1

𝐻0 (𝑋, 𝐹 𝑗1 (𝑛) ⊗ · · · ⊗ 𝐹 𝑗𝑎 (𝑛)
)
−→ 𝐻0 (𝑋, 𝛴 )

is surjective. (The sum is taken inside 𝐸 (𝑛)⊗𝑎.)
Fix 𝑛 ≥ 𝑛0, set 𝑝 := 𝑟 (𝑛 + 1 − 𝑔) + 𝑑, 𝑝(𝑎) := 𝑟𝑎 · (𝑎 · 𝑛 + 1 − 𝑔) + 𝑎 · 𝑟𝑎−1 · 𝑑,

𝑞 := 𝑝(𝑎) − 𝑠, pick a vector space 𝑉 of dimension 𝑝, let Q be the quasi-projective quot
scheme parameterizing quotients 𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸 where 𝐸 is a vector bundle on 𝑋
of rank 𝑟 and degree 𝑑 and 𝐻0 (𝑋, 𝜅(𝑛)) : 𝑉 −→ 𝐻0 (𝑋, 𝐸 (𝑛)) is an isomorphism, and G

the Graßmannian of 𝑞-dimensional quotients of 𝑉 ⊗𝑎.
On T := Q ×G, there is the universal quotient

𝜒T : 𝑉 ⊗𝑎 ⊗ OT −→ 𝐾T,

obtained by pulling back the universal quotient 𝜒G : 𝑉 ⊗𝑎 ⊗ OG −→ 𝐾G on G via 𝜋G, and,
on T × 𝑋 , there is the universal quotient

𝜅T : 𝑉 ⊗ 𝜋★𝑋
(
O𝑋 (−𝑛)

)
−→ 𝐸T,

obtained by pulling back the universal quotient 𝜅Q : 𝑉 ⊗ 𝜋★
𝑋
(O𝑋 (−𝑛)) −→ 𝐸Q on Q × 𝑋

via 𝜋Q × id𝑋 . By the assumptions made at the beginning of this section, the sheaf

𝐻𝜚,T := 𝜋T★
((
𝐸T ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎)
is locally free of rank 𝑝(𝑎). Our assumptions also imply that the homomorphism

𝑉 ⊗𝑎 ⊗ OT −→ 𝐻𝜚,T

is surjective. Let 𝐴𝜚,T be the kernel of this homomorphism. The subscheme S′ is defined
as the locus where the homomorphism

𝐴𝜚,T −→ 𝐾T

between locally free sheaves is zero.

Remark 3.2.1. On Q, we may define the vector bundle

𝐻𝜚,Q := 𝜋Q★
((
𝐸Q ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎)
.

8Given a Z-weighted filtration ( {0} =: 𝐸0 ( 𝐸1 ( · · · ( 𝐸𝑙 ( 𝐸𝑙+1 := 𝐸, (𝛾1, ..., 𝛾𝑙+1)) of a vector
bundle 𝐸 of rank 𝑟 , the weights occuring in the induced weighted filtration (𝐵•, 𝜀•) of 𝐸⊗𝑎 are of the form
𝛾𝑖1 + · · · + 𝛾𝑖𝑎 with (𝑖1, ..., 𝑖𝑎) ∈ { 1, ..., 𝑙 + 1 }×𝑎 . So, for a weight 𝜀 ∈ Z, we set

𝐼 (𝜀) :=
{
(𝑖1, ..., 𝑖𝑎) ∈ { 1, ..., 𝑙 + 1 }×𝑎 | 𝛾𝑖1 + · · · + 𝛾𝑖𝑎 ≤ 𝜀

}
.

Then, the subbundle of weight 𝜀 in the weighted filtration (𝐵•, 𝜀•) is∑︁
(𝑖1 ,...,𝑖𝑎 )∈𝐼 (𝜀)

𝐸𝑖1 ⊗ · · · ⊗ 𝐸𝑖𝑎 ,

the sum being taken inside 𝐸⊗𝑎 . Since 𝑙 + 1 ≤ 𝑟 , the cardinality of 𝐼 (𝜀) is at most 𝑟𝑎 .
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The scheme S′ that we have just constructed is the Graßmann bundle Gr𝑞 (𝐻𝜚,Q) over Q.
Since Q is a smooth quasi-projective variety ([28], Theorem 8.2.1), we see that S′ is a
smooth quasi-projective variety, too. The above contruction shows how it is embedded into
T, and this will help us to understand the group action and its linearizations.

Let 𝑍 ⊂ 𝑋 be the subscheme defined by the sheaf O𝑋 (−𝑎 · 𝑛). On T × 𝑋 , there is the
short exact sequence

{0} −−−−−−→ 𝐸 ⊗𝑎
T

−−−−−−→
(
𝐸T ⊗ 𝜋★

𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎
−−−−−−→

−−−−−−→
(
𝐸T ⊗ 𝜋★

𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎
⊗ 𝜋★

𝑋
(O𝑍 ) −−−−−−→ {0}.

The sheaf (𝐸T ⊗ 𝜋★
𝑋
(O𝑋 (𝑛)))⊗𝑎 ⊗ 𝜋★𝑋 (O𝑍 ) is flat over T, and the sheaf

𝑄 𝜚,T := 𝜋T★
((
𝐸T ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎
⊗ 𝜋★𝑋 (O𝑍 )

)
is locally free of rank 𝑎 · 𝑛 · 𝑟𝑎. Let 𝐵𝜚,S′ be the kernel of the tautological quotient

𝐻𝜚,T |S′ −→ 𝐾T |S′

on Gr𝑞 (𝐻𝜚,Q). It is a locally free sheaf of rank 𝑠 on S′. In fact, it is the tautological
subsheaf of 𝐻𝜚,T |S′ when we interpret the Graßmann bundle Gr𝑞 (𝐻𝜚,Q) of 𝑞-dimensional
quotient vector spaces of the fibers of 𝐻𝜚,Q as the Graßmann bundle Gr𝑠 (𝐻𝜚,Q) of 𝑠-
dimensional sub vector spaces of the fibers of 𝐻𝜚,Q. Finally, we let S be the closed
subscheme of S′ where the homomorphism

𝐵𝜚,S′ −→ 𝑄 𝜚,T |S′

between locally free sheaves is zero. The universal quotients

𝜒S : 𝑉 ⊗𝑎 ⊗ OS −→ 𝐾S

and
𝜅S : 𝑉 ⊗ 𝜋★𝑋

(
O𝑋 (−𝑛)

)
−→ 𝐸S

are constructed, by restricting 𝜒T and 𝜅T to S and S × 𝑋 , respectively. Using these
families, we may interpret S as a parameter scheme for pairs (𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤)
in which (𝐸, 𝛤) is a coherent 𝜚-system of type (O𝑋 , 𝑑, 𝑠) and 𝜅 is a quotient, such that
𝐻0 (𝜅(𝑛)) : 𝑉 −→ 𝐻0 (𝐸 (𝑛)) is an isomorphism.

Remark 3.2.2. Let 𝑆 be a scheme of finite type overC and (𝐸𝑆 , 𝜑𝑆) a family of 𝛿-semistable
coherent 𝜚-systems of type (O𝑋 , 𝑑, 𝑠) parameterized by 𝑆. We have

𝜑𝑆 : O⊕𝑠
𝑆×𝑋 −→ 𝐸 ⊗𝑎

𝑆
−→

(
𝐸𝑆 ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎
.

By the definition of universally injective, the image of

𝜋𝑆★(𝜑𝑆) : O⊕𝑠
𝑆

−→ 𝜋𝑆★

((
𝐸𝑆 ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎)
is a subbundle, and we get the quotient

𝜋𝑆★

((
𝐸𝑆 ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎)
−→ 𝐾𝑆 .

Now, we may cover 𝑆 by a family (𝑆𝑖)𝑖∈𝐼 of open subschemes, such that, for each 𝑖 ∈ 𝐼, we
have a quotient

𝜅𝑆𝑖 : 𝑉 ⊗ 𝜋★𝑋
(
O𝑋 (−𝑛)

)
−→ 𝐸𝑆 |𝑆𝑖×𝑋
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for which

𝜋𝑆★

(
𝜅𝑆𝑖 ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) )
: 𝑉 ⊗ O𝑆 −→ 𝜋𝑆★

(
𝐸𝑆 |𝑆𝑖×𝑋 ⊗ 𝜋★𝑋

(
O𝑋 (𝑛)

) )
is an isomorphism. We then obtain the induced quotient

𝜒𝑆𝑖 : 𝑉 ⊗𝑎 ⊗ O𝑆𝑖 −→ 𝐾𝑆 |𝑆𝑖 .

The pair (𝜅𝑆𝑖 , 𝜒𝑆𝑖 ) defines a morphism 𝑓𝑆𝑖 : 𝑆𝑖 −→ S, such that there is an isomorphism
between 𝜅𝑆𝑖 and ( 𝑓𝑆𝑖×id𝑋 )★(𝜅S) which induces an isomorphism between 𝜒𝑆𝑖 and 𝑓★

𝑆
(𝜒S𝑖

),
𝑖 ∈ 𝐼.

3.3. The group action and the linearization. The group GL(𝑉) acts in a natural way
on S, and two points (𝜅1 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸1, 𝛤1), (𝜅2 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸2, 𝛤2) ∈ S

lie in the same GL(𝑉)-orbit if and only if the coherent 𝜚-systems (𝐸1, 𝛤1) and (𝐸2, 𝛤2)
are isomorphic (see also Remark 3.3.1, ii). Therefore, constructing the moduli space
C 𝛿
𝑋/𝜚/O𝑋/𝑑/𝑠 for coherent 𝜚-systems of type (O𝑋 , 𝑑, 𝑠) amounts to proving the existence of

the categorical quotient for the GL(𝑉)-invariant open subscheme U of S parameterizing
𝛿-semistable coherent 𝜚-systems of type (O𝑋 , 𝑑, 𝑠). This can be done with the help of
geometric invariant theory. For this, we have to find a suitable linearization of the GL(𝑉)-
action.

Remark 3.3.1. i) We introduce the GL(𝑉)-action, here, because the stack quotient [S/
GL(𝑉)] will be an open part of the moduli stack of coherent 𝜚-systems, and GL(𝑉)-
linearized line bundles on S correspond to line bundles on this part of the moduli stack,
just as for the quot scheme (Remark 2.4.1). This will be important for checking when the
line bundles in which we will linearize the group action will be ample, using the results from
Section 2.4. Since the center C★ · id𝑉 acts trivially on S, we will only need the induced
SL(𝑉)-action and the SL(𝑉)-linearizations for doing the constructions and computations
within geometric invariant theory (see Section 3.4.4).

ii) Let 𝑆 be a scheme of finite type over C and (𝐸1
𝑆
, 𝜑1
𝑆
), (𝐸2

𝑆
, 𝜑2
𝑆
) two families of

𝛿-semistable coherent 𝜚-systems of type (O𝑋 , 𝑑, 𝑠) parameterized by 𝑆. Suppose that

𝜅𝑖𝑆 : 𝑉 ⊗ 𝜋★𝑋
(
O𝑋 (−𝑛)

)
−→ 𝐸 𝑖𝑆

is a quotient for which

𝜋𝑆★

(
𝜅𝑖𝑆 ⊗ 𝜋

★
𝑋

(
O𝑋 (𝑛)

) )
: 𝑉 ⊗ O𝑆 −→ 𝜋𝑆★

(
𝐸 𝑖𝑆 ⊗ 𝜋

★
𝑋

(
O𝑋 (𝑛)

) )
is an isomorphism, 𝑖 = 1, 2. Let (𝜓𝑆 , 𝜆𝑆) be an isomorphism between (𝐸1

𝑆
, 𝜑1
𝑆
) and

(𝐸2
𝑆
, 𝜑2
𝑆
) as in Section 1.6 and 𝐾 𝑖

𝑆
the quotient bundle introduced before, 𝑖 = 1, 2. There is

an induced isomorphism 𝜂𝑆 : 𝐾1
𝑆
−→ 𝐾2

𝑆
, such that the diagram

𝜋𝑆★

((
𝐸1
𝑆
⊗ 𝜋★

𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎)
𝐾1
𝑆

𝜋𝑆★

((
𝐸2
𝑆
⊗ 𝜋★

𝑋

(
O𝑋 (𝑛)

) ) ⊗𝑎)
𝐾2
𝑆

𝜋𝑆★

(
(𝜓𝑆 ⊗id𝜋★

𝑋
(O𝑋 (𝑛) ) )⊗𝑎

)
𝜂𝑆

commutes. Next, 𝜋𝑆★(𝜅1
𝑆
), 𝜓𝑆 ⊗ id𝜋★

𝑋
(O𝑋 (𝑛)) , and 𝜋𝑆★(𝜅2

𝑆
)−1, yield

𝜇𝑆 : 𝑉 ⊗ O𝑆−→𝜋𝑆★

(
𝐸1
𝑆 ⊗ 𝜋

★
𝑋

(
O𝑋 (𝑛)

) )
−→𝜋𝑆★

(
𝐸2
𝑆 ⊗ 𝜋

★
𝑋

(
O𝑋 (𝑛)

) )
−→ 𝑉 ⊗ O𝑆 .
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The diagrams

𝑉 ⊗ 𝜋★
𝑋

(
O𝑋 (−𝑛)

)
𝐸1
𝑆

𝑉 ⊗ 𝜋★
𝑋

(
O𝑋 (−𝑛)

)
𝐸2
𝑆

𝜇𝑆 ⊗id𝜋★
𝑋

(O𝑋 (−𝑛) ) 𝜓𝑆 and
𝑉 ⊗𝑎 ⊗ O𝑆 𝐾1

𝑆

𝑉 ⊗𝑎 ⊗ O𝑆 𝐾2
𝑆

𝜇⊗𝑎
𝑆

𝜂𝑆

are now commutative. Finally, 𝜇𝑆 defines a morphism 𝐿𝑆 : 𝑆 −→ GL(𝑉), and, as in
Remark 3.2.2, the family (𝐸 𝑖

𝑆
, 𝜑𝑖
𝑆
) a morphism 𝑓 𝑖

𝑆
: 𝑆 −→ S, 𝑖 = 1, 2. The morphism 𝑓 2

𝑆

agrees now with

𝑆 GL(𝑉) ×S S.
(𝐿𝑆 , 𝑓 1

𝑆
)

3.3.1. The line bundle L1
S

. We denote by Q the closure of Q in the projective quot scheme
that parameterizes all quotients 𝜅 : 𝑉⊗O𝑋 (−𝑛) −→ F in whichF is a coherentO𝑋 -module
of rank 𝑟 and degree 𝑑. We have the universal quotient

𝜅
Q

: 𝑉 ⊗ 𝜋★𝑋
(
O𝑋 (−𝑛)

)
−→ F

Q
.

For 𝑚 ∈ N, we set 𝑁𝑚 := 𝐻0 (𝑋,O𝑋 (𝑚)). Then, we have the homomorphism

𝜒
Q,𝑚

: (𝑉 ⊗ 𝑁𝑚) ⊗ O
Q
−→ 𝜋

Q★

(
F

Q
⊗ 𝜋★𝑋

(
O𝑋 (𝑚 + 𝑛)

) )
, 𝑚 ∈ N.

If 𝑚 � 0, then the sheaf on the right hand side will be locally free of rank 𝑝𝑚 :=
𝑟 · (𝑚 + 𝑛 + 1− 𝑔) + 𝑑, 𝜒

Q,𝑚
will be surjective and induce a GL(𝑉)-equivariant embedding

of Q into the Graßmannian G of 𝑝𝑚-dimensional quotients of 𝑉 ⊗ 𝑁𝑚. Define

OQ (𝑚) := det
(
𝜋
Q★

(
F

Q
⊗ 𝜋★𝑋

(
O𝑋 (𝑚 + 𝑛)

) ))
, 𝑚 � 0.

Remark 3.3.2. In (8), we proved the formula(
O
Q
(𝑚)⊗𝑝

)
|Q =

(
𝑅
⊗𝑝0
Q

⊗ 𝐷⊗(−𝑟 )
Q

) ⊗𝑚
, 𝑚 � 0.

This shows, in particular, that 𝑅⊗𝑝0
Q

⊗ 𝐷⊗(−𝑟 )
Q

is an ample GL(𝑉)-linearized line bundle on
Q which extends to an ample GL(𝑉)-linearized line bundle on Q.

We fix a natural number 𝑚 that is sufficiently large and define L1
S

as the pullback of
O
Q
(𝑚) to S.

3.3.2. The line bundle L2
S

. The vector bundle 𝐻𝜚,S is linearized with respect to the
GL(𝑉)-action, and we define

L2
S := det(𝐻𝜚,S)∨.

Remark 3.3.3. i) By construction, 𝐻𝜚,S is the pullback of 𝐻𝜚,Q under the morphism
S −→ Q. So, L2

S
is the preimage of L2

Q
:= det(𝐻𝜚,Q)∨ under this morphism.

ii) If 𝑎 = 1, then, according to Lemma 2.4.5, L2
S

is the trivial line bundle linearized
by the character det−1. For the construction of the moduli space with geometric invariant
theory, we will only need the SL(𝑉)-action (see Section 3.4.4). This makesL2

S
disappear in

the setting of [24]. For 𝑎 > 1, we need this line bundle in order to match ℎ0 (𝑋, 𝐸 ⊗𝑎 (𝑎 · 𝑛))
and ℎ0 (𝑋, 𝐸 (𝑛))𝑎 in the formulas that we find (see Sections 3.4.6 to 3.4.8).

3.3.3. The line bundle L3
S

. The determinant of 𝐾G is an ample line bundle on G which is
linearized with respect to the GL(𝑉)-action. We let L3

S
be the pullback of det(𝐾G) under

the morphism S −→ G.
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3.3.4. The linearization. Define

(13) 𝜂 :=
𝑝 + 𝑎 · 𝑠 · 𝛿
𝑚 · 𝑟 · 𝛿

and
N𝜂 := (L1

S)
⊗𝜂 ⊗ L2

S ⊗ L3
S.

This line bundle carries a natural GL(𝑉)-linearization. We modify this linearization by a
suitable rational multiple of the determinant, so that the resulting GL(𝑉)-linearized line
bundle has weight zero.

3.3.5. The line bundle (L1
S
)⊗𝜂 ⊗ L2

S
. We use additive notation. Let 𝑤 be the weight of

𝜂 · L1
S
+ L2

S
. According to (8) and (12), we have - up to a pullback of a line bundle on

Pic𝑑 (𝑋) - the identity

𝑝 · (𝜂 ·L1
S +L2

S) − 𝑤 ·L0

=

(
𝑚 · 𝜂 −

(
𝑎 · (𝑎 − 1) · 𝑟𝑎−1) · 𝑛 − 𝑦) · (𝑝0 · 𝑅Q − 𝑟 · 𝐷Q)

=

((
1
𝛿
−

(
𝑎 · (𝑎 − 1) · 𝑟𝑎−1) ) · 𝑛 + (

𝑝0 + 𝑎 · 𝑠 · 𝛿
𝑟 · 𝛿 − 𝑦

))
· (𝑝0 · 𝑅Q − 𝑟 · 𝐷Q).

Recall from Remark 3.3.2 that 𝑝0 · 𝑅Q − 𝑟 · 𝐷Q is an ample line bundle. So, in order to
grant that (L1

S
)⊗𝜂 ⊗ L2

S
is ample for 𝑛 � 0, we need

(14) 𝛿 <
1

𝑎 · (𝑎 − 1) · 𝑟𝑎−1 .

3.4. GIT-Semistability implies semistability. The parameter space that we constructed
actually depends on the choice of a natural number 𝑛. So, we will denote the parameter
space constructed with respect to 𝑛 ∈ N by S𝑛 in this section. The scheme S𝑛 is endowed
with linearized line bundles L2

S𝑛
and L3

S𝑛
, 𝑛 ∈ N. In order to define the first linearized

line bundle, we also need to fix a natural number 𝑚. In order to emphasize this, we denote
the line bundle defined with respect to 𝑚 by L1

S𝑛
(𝑚) in the sequel, 𝑚 ∈ N. The rational

number introduced in (13) also depends on 𝑚, and will be denoted by 𝜂(𝑚), 𝑚 ∈ N. The
linearized line bundle for the GIT construction is, therefore,

N𝜂 (𝑚) =
(
L1

S𝑛
(𝑚)

) ⊗𝜂 ⊗ L2
S𝑛

⊗ L3
S𝑛
, 𝑚 � 0.

The formula in Section 3.3.5 shows that N𝜂 (𝑚) does not depend on the natural number 𝑚.
Therefore, we have a well defined notion of (semi)stability on S𝑛, 𝑛 ∈ N. The aim of this
section is to prove the following result.

Theorem 3.4.1. There are a natural number 𝑛1, such that, for each natural number 𝑛 ≥ 𝑛1
and each (semi)stable point 𝑆 = (𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤) ∈ S𝑛, the coherent 𝜚-system
(𝐸, 𝛤) is 𝛿-(semi)stable.

Given a projective scheme X, a reductive linear algebraic group 𝐺, an action 𝐺 ×X −→
X, a linearization 𝐺 ×L −→ L of this action in the line bundle L on X, a point x ∈ X,
and a one parameter subgroup 𝜆 : C★ −→ 𝐺, we let

𝜇L (𝜆, x)

be Mumford’s numerical function in the convention of [35], (1.9).
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3.4.1. Boundedness of GIT-semistable coherent systems. As 𝑛 varies, the parameter spaces
S𝑛 form an infinite family of quasi-projective schemes, and this infinite collection will not
parameterize a bounded family of vector bundles on 𝑋 . This problem disappears when we
restrict to suitable loci of semistable points inside the S𝑛, 𝑛 ∈ N. More precisely, we have
the following property.

Proposition 3.4.2. There is a constant 𝐶1, such that, for every 𝑛 ∈ N, every semistable
point 𝑆 = (𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤) ∈ S𝑛, and every subbundle {0} ( 𝐹 ⊂ 𝐸 , the
estimate

𝜇(𝐹) ≤ 𝑑

𝑟
+ 𝐶1

is satisfied.

Proof. Set

𝛼 :=
1
𝛿
− 𝑎 · (𝑎 − 1) · 𝑟𝑎−1 and 𝛽 :=

𝑝0 + 𝑎 · 𝑠 · 𝛿
𝑟 · 𝛿 − 𝑦.

Using the formulae for L1
S𝑛

from Remark 3.3.2 and 𝜂 ·L1
S𝑛

+L2
S𝑛

from Section 3.3.5, we
see that

𝑚

𝑝
·
(
𝜂 ·L1

S𝑛
+L2

S𝑛
− 𝑤 ·L0

)
= (𝛼 · 𝑛 + 𝛽) ·L1

S𝑛
(𝑚) − 𝑤′ ·L0.

Now, let 𝑆 = (𝜅 : 𝑉 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤) ∈ S𝑛 be a semistable point, 𝐹 ⊂ 𝐸 the
maximal destabilizing subbundle, and 𝑊𝐹 ⊂ 𝑉 the subspace that maps onto 𝐻0 (𝑋, 𝐹 (𝑛))
under the isomorphism 𝐻0 (𝑋, 𝜅(𝑛)) : 𝑉 −→ 𝐻0 (𝑋, 𝐸 (𝑛)). Pick a basis (𝑣1, ..., 𝑣ℎ𝐹 ) for
𝐻0 (𝑋, 𝜅(𝑛))−1 (𝑊𝐹 ), complete it to a basis 𝑣 = (𝑣1, ..., 𝑣𝑝) for 𝑉 , and let 𝜆𝐹 : C★ −→
GL(𝑉) be the one parameter subgroup that is defined with respect to the basis 𝑣 by the
weight vector 𝑔 (ℎ𝐹 )

𝑝 . We shall make use of the fact that

𝜇N𝜂 (𝑚) (𝜆𝐹 , 𝑆) ≥ 0.

With the initial observation, this becomes

(𝛼 · 𝑛 + 𝛽) · 𝜇L1
S𝑛

(𝑚) (𝜆𝐹 , 𝑆) +
𝑚

𝑝
· 𝜇L3

S𝑛

(𝜆𝐹 , 𝑆) ≥ 0.

Let us first find an estimate for 𝜇(𝜆𝐹 , 𝑆) := 𝜇L1
S𝑛

(𝑚) (𝜆𝐹 , 𝑆). For this, we denote
by ℎ𝐹 (𝑚) the dimension of the image of 𝑊𝐹 ⊗ 𝐻0 (𝑋,O𝑋 (𝑚)) under the linear map
𝑉 ⊗ 𝐻0 (𝑋,O𝑋 (𝑚)) −→ 𝐻0 (𝑋, 𝐸 (𝑚 + 𝑛)) induced by 𝐻0 (𝑋, 𝜅(𝑛)) and 𝐻0 (𝑋, 𝐸 (𝑛)) ⊗
𝐻0 (𝑋,O𝑋 (𝑚)) −→ 𝐻0 (𝑋, 𝐸 (𝑚 + 𝑛)). By (6), we have

𝜇(𝜆𝐹 , 𝑆) = (𝑝 − ℎ𝐹 ) · ℎ𝐹 (𝑚) − ℎ𝐹 ·
(
𝑝𝑚 − ℎ𝐹 (𝑚)

)
= 𝑝 · ℎ𝐹 (𝑚) − ℎ𝐹 · 𝑝𝑚.

By definition and the Le Potier–Simpson estimate ([28], Lemma 7.1.2) for the semistable
vector bundle 𝐹9

ℎ𝐹 (𝑚) ≤ ℎ0 (𝑋, 𝐹 (𝑚 + 𝑛)
)
≤ deg(𝐹) + rk(𝐹) · (𝑚 + 𝑛 + 1),

and, obviously,

−ℎ𝐹 ≤ −𝜒
(
𝑋, 𝐹 (𝑛)

)
= − deg(𝐹) + rk(𝐹) · (𝑛 + 1 − 𝑔),

so that

𝑝 ·
(
deg(𝐹) + rk(𝐹) · (𝑚 + 𝑛 + 1)

)
−

(
deg(𝐹) + rk(𝐹) · (𝑛 + 1 − 𝑔)

)
· 𝑝𝑚 ≥ 𝜇(𝜆𝐹 , 𝑆).

9For this, we need 𝜇 (𝐹 ) + 𝑚 + 𝑛 ≥ 0. We may restrict to the case 𝜇 (𝐹 ) ≥ 𝑑/𝑟 and, then, for 𝑛 ≥
−bmin{ 0, 𝑑/𝑟 }c, this assumption will be met.
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The left hand side is a linear polynomial in 𝑚 and 𝑛, and the coefficient of 𝑚 is

deg(𝐸) · rk(𝐹) − deg(𝐹) · rk(𝐸).
The coefficient of 𝑛 is 𝑟 · rk(𝐹) · 𝑔 and can be bounded from above by 𝑟 · (𝑟 − 1) · 𝑔. The
constant term is 𝑑 · rk(𝐹) · 𝑔 + 𝑟 · rk(𝐹) · 𝑔 · (1 − 𝑔) and can be bounded from above by
𝑑+ · (𝑟 − 1) · 𝑔, 𝑑+ := max{ 𝑑, 0 }.

The linearized line bundle L3
S𝑛

is induced by the Plücker embedding of G into

P

(
𝑝 (𝑎)−𝑠∧

𝑉 ⊗𝑎

)
.

For this reason,

𝜇L3
S𝑛

(𝜆𝐹 , 𝑆) ≤ (𝑝(𝑎) − 𝑠) · 𝑎 · (𝑝 − ℎ𝐹 ) ≤ (𝑝(𝑎) − 𝑠) · 𝑎 · 𝑝

and
𝑚

𝑝
· 𝜇L3

S𝑛

(𝜆𝐹 , 𝑆) ≤ 𝑟𝑎 · 𝑎2 · 𝑚 · 𝑛 + 𝑎 · (𝑟𝑎 · (1 − 𝑔) + 𝑎 · 𝑟𝑎−1 · 𝑑 − 𝑠) · 𝑚.

Altogether, we see that

(𝛼 · 𝑛 + 𝛽) ·
(
(𝑑 · rk(𝐹) − deg(𝐹) · 𝑟) · 𝑚 + 𝑟 · (𝑟 − 1) · 𝑔 · 𝑛 + 𝑑+ · (𝑟 − 1) · 𝑔

)
+ 𝑟𝑎 · 𝑎2 · 𝑚 · 𝑛 + 𝑎 · (𝑟𝑎 · (1 − 𝑔) + 𝑎 · 𝑟𝑎−1 · 𝑑 − 𝑠) · 𝑚

≥𝑚
𝑝
· 𝜇N𝜂 (𝑚) (𝜆𝐹 , 𝑆) ≥ 0.

We claim that, for 𝑛 � 0, this implies

𝛼 · (𝑑 · rk(𝐹) − deg(𝐹) · 𝑟) + 𝑟𝑎 · 𝑎2 ≥ 0,

i.e.,

𝜇max (𝐸) = 𝜇(𝐹) ≤
𝑑

𝑟
+ 𝑟𝑎−1 · 𝑎2

𝛼 · rk(𝐹) ≤ 𝑑

𝑟
+ 𝐶1, 𝐶1 :=

𝑟𝑎−1 · 𝑎2

𝛼
.

Let us assume that our claim is false. We set

𝛥 := 𝑑 · rk(𝐹) − deg(𝐹) · 𝑟,
𝐾1 := 𝑟 · (𝑟 − 1) · 𝑔 · 𝑛 + 𝑑+ · (𝑟 − 1) · 𝑔,
𝐾2 := 𝑟𝑎 · 𝑎2,

𝐾3 := 𝑎 · (𝑟𝑎 · (1 − 𝑔) + 𝑎 · 𝑟𝑎−1 · 𝑑 − 𝑠).
Note that 𝐾1, 𝐾2, and 𝐾3 depend only on 𝑎, 𝑟, 𝑑, and 𝑠. We know that

(15)
(
(𝛼 · 𝛥 + 𝐾2) · 𝑛 + (𝛽 · 𝛥 + 𝐾3)

)
· 𝑚 + 𝐾1 ≥ 0.

There is a natural number 𝐾4 which depends only on 𝑎, 𝑟 , 𝑑, 𝑠, and 𝛿, such that

𝛼 · 𝛥 + 𝐾2 ≤ − 1
𝐾4

Estimate (15) implies

(16)
(
− 𝑛

𝐾4
+ 𝛽 · 𝛥 + 𝐾3

)
· 𝑚 + 𝐾1 ≥ 0.

There is a natural number 𝑛′1, depending only on 𝑎, 𝑟, 𝑑, 𝑠, and 𝛿, such that

∀𝑛 ≥ 𝑛′1 : − 𝑛

𝐾4
+ 𝛽 · 𝛥 + 𝐾3 ≤ −2 · 𝐾1.
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Because of (16), we have
𝑚 ≤ −𝐾1

− 𝑛
𝐾4

+ 𝛽 · 𝛥 + 𝐾3
≤ 1

2
.

This is impossible, because 𝑚 is a positive rational number.
For the finitely many remaining values of 𝑛, namely, 1, ..., 𝑛′1−1, we don’t need to worry,

because, for these, 𝐸 lives in a bounded family parameterized by the quasi-projective scheme
S1 t · · · tS𝑛′1−1. This finishes the arguments. �

3.4.2. A finiteness result. Given a vector bundle 𝐸 and a weighted filtration (𝐸•, 𝛼•) of
𝐸 , 𝐸• : {0} ( 𝐸1 ( · · · ( 𝐸𝑙 ( 𝐸 , the tuple 𝑡 (𝐸•, 𝛼•) := (𝑟•, 𝛼•) with 𝑟• := (𝑟1, ..., 𝑟𝑙)
and 𝑟𝑖 := rk(𝐸𝑖), 𝑖 = 1, ..., 𝑙, is the type of (𝐸•, 𝛼•). By means of a straightforward
generalization of the definitions in Example 2.2.1, ii), iii), we define the relation “�” on
weighted filtrations of 𝐸• and “+”. Now, let (𝐸, 𝛤) be a coherent 𝜚-system and (𝐸 ′

•, 𝛼
′
•),

(𝐸 ′′
• , 𝛼

′′
• ), and (𝐸•, 𝛼•) weighted filtrations of 𝐸 , such that

(𝐸•, 𝛼•) = (𝐸 ′
•, 𝛼

′
•) + (𝐸 ′′

• , 𝛼
′′
• ).

Let (𝐵′
•, 𝛽

′
•), (𝐵′′

• , 𝛽
′′
• ), and (𝐵•, 𝛽•), respectively, be the induced weighted filtrations of

𝐸 ⊗𝑎. If also
(𝐵•, 𝛽•) = (𝐵′

•, 𝛽
′
•) + (𝐵′′

• , 𝛽
′′
• ),

then, clearly,
𝑀 (𝐸•, 𝛼•) + 𝛿 · 𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) =(17)
𝑀 (𝐸 ′

•, 𝛼
′
•) + 𝛿 · 𝜇 (𝐸,𝛤) (𝐸 ′

•, 𝛼
′
•) + 𝑀 (𝐸 ′′

• , 𝛼
′′
• ) + 𝛿 · 𝜇 (𝐸,𝛤) (𝐸 ′′

• , 𝛼
′′
• ).

We would like to use this additivity property to simplify the notion of 𝛿-semistability in a
way that is useful for theoretical considerations and probably also for concrete computations
with the semistability concept as in [35], Section 2.3.3.

Proposition 3.4.3. Let (𝐸, 𝛤) be a coherent 𝜚-system and 𝛿 ∈ Q>0. Then, (𝐸, 𝛤) is
𝛿-(semi)stable if and only if it satisfies the condition of 𝛿-(semi)stability for all weighted
filtrations (𝐸•, 𝛼•) with10

𝑡 (𝐸•, 𝛼•) ∈ T(𝜚).

Here, finiteness refers to the finiteness of the number of weight vectors 𝛼• that are needed
for testing semistability.

Proof. Let 𝑒 = (𝑒1, ..., 𝑒𝑟 ) be the standard basis of C𝑟 , 𝑆 ⊂ SL𝑟 (C) the subgroup of
diagonal matrices, and 𝑆 ⊂ 𝐴 ⊂ SL𝑟 (C) the Borel subgroup that corresponds, in the
notation of Example 2.2.1, to the identity. The 𝑎-fold tensor power (C𝑟 )⊗𝑎 has the
basis (𝑒𝑖 := 𝑒𝑖1 ⊗ · · · ⊗ 𝑒𝑖𝑎 , 𝑖 = (𝑖1, ..., 𝑖𝑎) ∈ { 1, ..., 𝑟 }×𝑎), ordered, e.g., by the lexico-
graphic ordering. We use this ordered basis to identify (C𝑟 )⊗𝑎 with C𝑁 , 𝑁 := 𝑟𝑎, let
𝜚 : GL𝑟 (C) −→ GL𝑁 (C) be the 𝑎-fold tensor power of the standard representation, and
𝜂 : SL𝑟 (C) −→ SL𝑁 (C) the induced representation. Under these circumstances, 𝜂(𝑆) is
contained in the subgroup 𝑇 ⊂ SL𝑁 (C) of diagonal matrices.

Now, let (𝐸•, 𝛼•) be a weighted filtration of 𝐸 , 𝐸• : {0} ( 𝐸1 ( · · · ( 𝐸𝑙 ( 𝐸 ,
𝛼• = (𝛼1, ..., 𝛼𝑙). Since, for ℓ ∈ Z, the semistability condition evaluated at (𝐸•, 𝛼•) is
equivalent to the semistability condition evaluated at (𝐸•, ℓ · 𝛼•), we may assume without

loss of generality that 𝛼𝑖 ∈ (1/𝑟) · Z. Let 𝑟𝑖 := rk(𝐸𝑖), 𝑖 = 1, ..., 𝑙. Then,
𝑙∑
𝑖=1
𝛼𝑖 · 𝑔 (𝑟𝑖)𝑟 is an

integral weight vector, and we define 𝜆 as the one parameter subgroup of SL𝑟 (C) defined

10Recall Definition (5).
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by this weight vector and the standard basis 𝑒. The Q>0-weighted flag (𝑊•, 𝛼•) associated
with 𝜆 features

𝑊• : {0} ⊆ 〈 𝑒1, ..., 𝑒𝑟1 〉 ( · · · ( 〈 𝑒1, ..., 𝑒𝑟𝑙 〉 ( C𝑟 ,

and 𝐴 ⊂ 𝑄SL𝑟 (C) (𝜆), i.e., 𝜆 ∈ W(𝐴, 𝑆). As described in Section 2.2, there is an index
𝑘 ∈ { 1, ..., 𝐾 } with 𝜆 ∈ V𝑘 . Suppose that 𝜆′, 𝜆′′ ∈ V𝑘 ∩ 𝑋★(𝑆) are one parameter
subgroups with 𝜆′ + 𝜆′′ = 𝜆. As noted in Example 2.2.1, iii), the Q>0-weighted flags
(𝑊 ′

•, 𝛼
′
•) and (𝑊 ′′

• , 𝛼
′′
• ) associated with𝜆′ and𝜆′′, respectively, satisfy (𝑊 ′

•, 𝛼
′
•) � (𝑊•, 𝛼•),

(𝑊 ′′
• , 𝛼

′′
• ) � (𝑊•, 𝛼•), and (𝑊 ′

•, 𝛼
′
•) + (𝑊 ′′

• , 𝛼
′′
• ) = (𝑊•, 𝛼•). We define 𝑄GL𝑟 (C) (𝜆′),

𝑄GL𝑟 (C) (𝜆′′), and 𝑄GL𝑟 (C) (𝜆) by Formula (3). These are the GL𝑟 (C)-stabilizers of the
flags𝑊 ′

•,𝑊 ′′
• , and𝑊•, respectively. We point out that

𝑄GL𝑟 (C) (𝜆) ⊂ 𝑄GL𝑟 (C) (𝜆′) ∩𝑄GL𝑟 (C) (𝜆′′).

Let P(𝐸) be the frame bundle of 𝐸 . The filtration 𝐸• of 𝐸 corresponds to a section

𝜎 : 𝑋 −→ P(𝐸)/𝑄GL𝑟 (C) (𝜆).

The induced sections

𝜎′ : 𝑋 𝜎−→ P(𝐸)/𝑄GL𝑟 (C) (𝜆) −→ P(𝐸)/𝑄GL𝑟 (C) (𝜆′),

𝜎′′ : 𝑋 𝜎−→ P(𝐸)/𝑄GL𝑟 (C) (𝜆) −→ P(𝐸)/𝑄GL𝑟 (C) (𝜆′′)

yield filtrations 𝐸 ′
• and 𝐸 ′′

• , respectively. Note that the length 𝑙 ′ of 𝐸 ′
• matches the length

of𝑊 ′
• and the rank of the 𝑖-th entry of 𝐸 ′

• the dimension of the 𝑖-th entry of𝑊 ′
•, 𝑖 = 1, ..., 𝑙 ′.

The analogous statement holds for 𝐸 ′′
• and𝑊 ′′

• . So, we get the weighted filtrations (𝐸 ′
•, 𝛼

′
•)

and (𝐸 ′′
• , 𝛼

′′
• ) of 𝐸 , and it is apparent from the construction that

(𝐸 ′
•, 𝛼

′
•) + (𝐸 ′′

• , 𝛼
′′
• ) = (𝐸•, 𝛼•).

By construction, there is a Borel subgroup 𝑇 ⊂ 𝐵 ⊂ SL𝑁 (C) with 𝜂★(V𝑘 ) ⊂ W(𝐵,𝑇).
The one parameter subgroup 𝜂★(𝜆) defines a Q>0-weighted flag (𝑉•, 𝛽•) in C𝑁 . For the
frame bundles P(𝐸) and P(𝐸 ⊗𝑎), we have an inclusion P(𝐸) ↩→ P(𝐸 ⊗𝑎), and

𝜚★(𝜎) : 𝑋 𝜎−→ P(𝐸)/𝑄GL𝑟 (C) (𝜆) −→ P(𝐸 ⊗𝑎)/𝑄GL𝑁 (C) (𝜚 ◦ 𝜆)

defines a filtration 𝐵• of 𝐸 ⊗𝑎. The length 𝑚 of 𝐵• matches the length of 𝑉• and the rank
of the 𝑖-th entry of 𝐵• the dimension of the 𝑖-th entry of 𝑉•, 𝑖 = 1, ..., 𝑚. So, we get the
weighted filtration (𝐵•, 𝛽•). This is the weighted filtration of 𝐸 ⊗𝑎 associated with (𝐸•, 𝛼•).
Likewise, (𝐸 ′

•, 𝛼
′
•) and (𝐸 ′′

• , 𝛼
′′
• ) lead to weighted filtrations (𝐵′

•, 𝛽
′
•) and (𝐵′′

• , 𝛽
′′
• ) of 𝐸 ⊗𝑎.

Since we have the commutative diagram

P(𝐸)/𝑄GL𝑟 (C) (𝜆) P(𝐸)/𝑄GL𝑟 (C) (𝜆′)

P(𝐸 ⊗𝑎)/𝑄GL𝑁 (C) (𝜚 ◦ 𝜆) P(𝐸 ⊗𝑎)/𝑄GL𝑁 (C) (𝜚 ◦ 𝜆′)

and a similar diagram for 𝜆′′, the same discussion as before shows

(𝐵•, 𝛽•) = (𝐵′
•, 𝛽

′
•) + (𝐵′′

• , 𝛽
′′
• ).

Now, let 𝜆𝑘1 , ..., 𝜆
𝑘
𝐿𝑘

be the minimal integral generators of the edges of the cone V𝑘 .
Then, there are non-negative rational numbers 𝑎1, ..., 𝑎𝐿𝑘 , such that

𝜆 = 𝑎1 · 𝜆𝑘1 + · · · + 𝑎𝐿𝑘 · 𝜆𝑘𝐿𝑘 .
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Again, we may multiply 𝜆 by a positive integer and assume that 𝑎1, ..., 𝑎𝐿𝑘 are natural
numbers. So, we get weighted filtrations (𝐵1

•, 𝛼
1
•), ..., (𝐵

𝐿𝑘
• , 𝛼

𝐿𝑘
• ) of 𝐸 ⊗𝑎 with

(𝐵•, 𝛽•) =
𝐿𝑘∑︁
𝑖=1

𝑎𝑖 · (𝐵𝑖•, 𝛽𝑖•).

Since 𝑡 (𝐵𝑖•, 𝛽𝑖•) = 𝑡 (𝜆𝑘𝑖 ) ∈ T(𝜚), 𝑖 = 1, ..., 𝐿𝑘 , this and (17) yield the claim. �

3.4.3. Bounded filtrations. Given a constant𝐶, the familyB0 (𝐶) of isomorphy classes [𝐹]
of vector bundles 𝐹 of rank 𝑟 and degree 𝑑 with 𝜇max (𝐹) ≤ (𝑑/𝑟) +𝐶 is bounded. Given a
second constant 𝐷, the family B1 (𝐶, 𝐷) of vector bundles [𝐺], such that 𝜇(𝐺) ≥ 𝑑/𝑟 −𝐷
and 𝐺 is a subbundle of a vector bundle 𝐹 with [𝐹] ∈ B0 (𝐶) is bounded, as well. Let 𝐶1
be the (positive) constant from Proposition 3.4.2.

Proposition 3.4.4. There is a constant 𝐶2, such that a coherent 𝜚-system (𝐸, 𝛤) of type
(O𝑋 , 𝑑, 𝑠) with [𝐸] ∈ B0 (𝐶1) is 𝛿-(semi)stable if and only if it satisfies the condition of
𝛿-(semi)stability for weighted filtrations (𝐸•, 𝛼•) of 𝐸 with [𝐸𝑖] ∈ B1 (𝐶1, 𝐶2), 𝑖 = 1, ..., 𝑙,
𝐸• : {0} ( 𝐸1 ( · · · ( 𝐸𝑙 ( 𝐸 .

Proof. By Proposition 3.4.3, we need to check the condition of 𝛿-(semi)stability only for
weighted filtrations (𝐸•, 𝛼•) of 𝐸 with 𝑡 (𝐸•, 𝛼•) ∈ T(𝜚). So, we pick a type 𝑡 = (𝑟•, 𝛼•) =
((𝑟1, ..., 𝑟𝑙 (𝑡) ), (𝛼1, ..., 𝛼𝑙 (𝑡) )) ∈ T(𝜚), an index 𝑖0 ∈ { 1, ..., 𝑙 (𝑡) }, and let (𝐸•, 𝛼•) be a
weighted filtration of 𝐸 of type 𝑡 with [𝐸𝑖0 ] ∉ B1 (𝐶2).

First, ∑︁
𝑖∈{ 1,...,𝑙 (𝑡) }:

𝑖≠𝑖0

𝛼𝑖 ·
(
𝑑 · rk(𝐸𝑖) − deg(𝐸𝑖) · 𝑟

)
≥

∑︁
𝑖∈{ 1,...,𝑙 (𝑡) }:

𝑖≠𝑖0

𝛼𝑖 ·
(
𝑑 · rk(𝐸𝑖) −

(
𝑑

𝑟
+ 𝐶1

)
· rk(𝐸𝑖) · 𝑟

)
= − 𝐶1 ·

∑︁
𝑖∈{ 1,...,𝑙 (𝑡) }:

𝑖≠𝑖0

𝛼𝑖 · rk(𝐸𝑖) · 𝑟.

Knowing 𝑡, we may easily define a positive constant 𝐾 ′
1 (𝑟, 𝑑, 𝐶1, 𝑡, 𝑖0), such that the latter

term can be bounded from below by−𝐾 ′
1 (𝑟, 𝑑, 𝐶1, 𝑡, 𝑖0). Since there are only finitely choices

for 𝑡 and 𝑖0, we can find a positive constant 𝐾1 (𝑟, 𝑑, 𝐶1) which depends only on 𝑟 , 𝑑, and
𝐶1 with 𝐾 ′

1 (𝑟, 𝑑, 𝐶1, 𝑡, 𝑖0) ≤ 𝐾1 (𝑟, 𝑑, 𝐶1), 𝑡 ∈ T(𝜚), 𝑖0 = 1, ..., 𝑙 (𝑡).
Next, let (𝐵•, 𝛽•) be the induced weighted filtration of 𝐸 ⊗𝑎 and 𝑚 the length of 𝐵•.

Recall that we use 𝑏 𝑗 := dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤), 𝑗 = 1, ..., 𝑚. Clearly, 𝑏 𝑗 ≤ 𝑠, 𝑗 = 1, ..., 𝑚.
So, we have

𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) =
𝑚∑︁
𝑗=1

𝛽 𝑗 ·
(
rk(𝐵 𝑗 ) · 𝑠 − 𝑏 𝑗 · 𝑎 · 𝑟

)
≥ −𝑠 ·

𝑚∑︁
𝑗=1

𝛽 𝑗 · 𝑎 · 𝑟 = −𝑠 · 𝑎 · (𝛾𝑟 − 𝛾1) = −𝑠 · 𝑎 ·
𝑙 (𝑡)∑︁
𝑖=1

𝛼𝑖 · 𝑟.
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Here,
𝑙∑
𝑖=1
𝛼𝑖 ·𝛾 (rk(𝐸𝑖))

𝑟 = (𝛾1, ..., 𝛾𝑟 ), and, so,
𝑚∑
𝑗=1
𝛽 𝑗 ·𝛾

(rk(𝐵 𝑗 ))
𝑎 ·𝑟 = (𝑎 ·𝛾1, ..., 𝑎 ·𝛾𝑟 ).11 There is

positive constant 𝐾 ′
2 (𝑠, 𝑡), such that the last expression is bounded from below by −𝐾 ′

2 (𝑠, 𝑡).
Again, there is a constant 𝐾2 (𝑟, 𝑎, 𝑠), depending only 𝜚, i.e., on 𝑟 and 𝑎, as well as on 𝑠,
with 𝐾 ′

2 (𝑠, 𝑡) ≤ 𝐾2 (𝑟, 𝑎, 𝑠), 𝑡 ∈ T(𝜚).
Finally,

𝛼𝑖0 · (𝑑 · rk(𝐸𝑖0 ) − deg(𝐸𝑖0 ) · 𝑟)

≥𝛼𝑖0 ·
(
𝑑 · rk(𝐸𝑖0 ) −

(
𝑑

𝑟
− 𝐶2

)
· rk(𝐸𝑖0 ) · 𝑟

)
=𝛼𝑖0 · rk(𝐸𝑖0 ) · 𝐶2

≥𝐶2
𝑟
.

Here, we have used that 𝛼𝑖0 ∈ (1/𝑟) · Z. Altogether, we see that

𝑀 (𝐸•, 𝛼•) + 𝛿 · 𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) ≥ −𝐾1 (𝑟, 𝑑, 𝐶1) − 𝐾2 (𝑟, 𝑎, 𝑠) +
𝛿

𝑟
· 𝐶2.

Since the set T(𝜚) depends only on 𝑟 and 𝑎 and the constants 𝐾1, 𝐾2, and 𝐾3 depend
only on 𝑎, 𝑟 , 𝑑, 𝑠, and 𝐶1 which, in turn, depends only on 𝑎, 𝑟 , and 𝛿, we see that we
can find a constant 𝐶2, depending only on 𝑎, 𝑟 , 𝑑, 𝑠, and 𝛿, such that the expression
−𝐾1 (𝑟, 𝑑, 𝐶1) − 𝐾2 (𝑟, 𝑎, 𝑠) + (𝛿/𝑟) · 𝐶2 is positive. �

3.4.4. Proof of Theorem 3.4.1. To ease notation, we will drop the indices 𝑛 and 𝑚 from
the symbols for the parameter space and its linearized line bundles again. The center
C★ · id𝑉 of GL(𝑉) acts trivially on S and the line bundle N𝜂 . For this reason, we look
from now on at the induced action of the group SL(𝑉). The subspace 𝛤 ⊂ 𝐻0 (𝑋, 𝐸 ⊗𝑎)
defines (𝑝(𝑎) − 𝑠)-dimensional quotients �̂� : 𝐻0 (𝑋, 𝐸 (𝑛)⊗𝑎) −→ 𝐾 and 𝜒 : 𝑉 ⊗𝑎 −→ 𝐾 .
We assume that the bounded family B defined at the beginning of Section 3.2 contains the
family B1 (𝐶1, 𝐶2) from Proposition 3.4.4. According to that proposition, the condition of
𝛿-(semi)stability for (𝐸, 𝛤) has to be checked only for weighted filtrations of 𝐸 , such that
the isomorphy classes of the subbundles of 𝐸 occuring in the filtration belong to B.

We pick a weighted filtration (𝐸•, 𝛼•) of 𝐸 , such that 𝐸𝑖 ∈ B, 𝑖 = 1, ..., 𝑙, and a one
parameter subgroup 𝜆 : C★ −→ GL(𝑉), such that its Q>0-weighted flag is (𝑉•, 𝛼•) with

𝐻0 (𝑋, 𝜅(𝑛)) (𝑉𝑖) = 𝐻0 (𝑋, 𝐸𝑖 (𝑛)) , 𝑖 = 1, ..., 𝑙.

We denote by (𝐸•, 𝛾•) and (𝑉•, �̃�•) the corresponding Z-weighted filtration and flag,
respectively. Let (𝐻•, �̃�•) and (𝐻•, 𝛽•) be the Z-weighted and Q>0-weighted flag, respec-
tively, associated with the one parameter subgroup given as the composition of 𝜆 and the
homomorphism GL(𝑉) −→ GL(𝑉 ⊗𝑎).

Let us start with a tuple 𝑖 = (𝑖1, ..., 𝑖𝑎) ∈ { 1, ..., 𝑙 + 1 }×𝑎 and set

𝑉𝑖 := 𝑉𝑖1 ⊗ · · · ⊗ 𝑉𝑖𝑎 and 𝐸𝑖 := 𝐸𝑖1 ⊗ · · · ⊗ 𝐸𝑖𝑎 .

Remark 3.4.5. Our assumptions imply that the quotient 𝑉 ⊗𝑎 −→ 𝐻0 (𝑋, 𝐸 (𝑛)⊗𝑎) maps 𝑉𝑖
surjectively onto 𝐻0 (𝑋, 𝐸𝑖 (𝑎 · 𝑛)).

11This just indicates that the first weight is 𝑎 · 𝛾1 and the last one 𝑎 · 𝛾𝑟 . Apparently, not all the intermediate
weights will be multiples of some 𝛾𝑖 , 𝑖 = 2, ..., 𝑟 − 1.



A GENERAL NOTION OF COHERENT SYSTEMS 27

The space 𝑉𝑖 is a subspace of the space 𝐻 (𝑖) in the flag 𝐻• that is associated with the
weight

(18) �̃�𝑖 := �̃�𝑖1 + · · · + �̃�𝑖𝑎 = 𝑎 · �̃�1 +
𝑎∑︁
𝑘=1

(�̃�𝑖𝑘 − �̃�1) = 𝑎 · �̃�1 +
𝑎∑︁
𝑘=1

(𝑖𝑘−1∑︁
𝑠=1

𝛼𝑠 · 𝑝
)
.

Define
𝐼 (𝑖) :=

{
𝜄 = (𝜄1, ..., 𝜄𝑎) ∈ { 1, ..., 𝑙 + 1 }×𝑎

�� �̃� 𝜄1 + · · · + �̃� 𝜄𝑎 ≤ �̃�𝑖
}
.

Then,
𝐻 (𝑖) =

∑︁
𝜄∈𝐼 (𝑖)

𝑉𝜄,

the sum being taken inside𝑉 ⊗𝑎. Likewise, 𝐸𝑖 is contained in the bundle 𝐵(𝑖) in the filtration
𝐵• that corresponds to the weight

(19) 𝜀𝑖 = 𝑎 · 𝛾1 +
𝑎∑︁
𝑘=1

(𝑖𝑘−1∑︁
𝑠=1

𝛼𝑠 · 𝑟
)
.

Setting
𝐽 (𝑖) :=

{
𝜄 = (𝜄1, ..., 𝜄𝑎) ∈ { 1, ..., 𝑙 + 1 }×𝑎

�� 𝛾 𝜄1 + · · · + 𝛾 𝜄𝑎 ≤ 𝜀𝑖
}
,

we get
𝐵(𝑖) =

∑︁
𝜄∈𝐽 (𝑖)

𝐵 𝜄,

the sum being taken inside 𝐸 ⊗𝑎. It is apparent from (18) and (19) that
𝐼 (𝑖) = 𝐽 (𝑖).

Remark 3.4.6. The assumptions at the beginning of this part show that the quotient𝑉 ⊗𝑎 −→
𝐻0 (𝑋, 𝐸 (𝑛)⊗𝑎) maps 𝐻 (𝑖) surjectively onto 𝐻0 (𝑋, 𝐵(𝑖) (𝑎 · 𝑛)).

Write �̃�• = (�̃�1, ..., �̃�𝜇+1) and 𝜀• = (𝜀1, ..., 𝜀𝜇+1). From the above observations, we infer
𝜇 = 𝜇, and, given 𝑗 ∈ { 1, ..., 𝜇 + 1 } and 𝑖 with �̃� 𝑗 = �̃�𝑖 , we have 𝜀 𝑗 = 𝜀𝑖 . Involving (18)
and (19), we draw the important conclusion that

(20) 𝛽 𝑗 · 𝑝𝑎 · 𝑟 = (�̃� 𝑗+1 − �̃� 𝑗 ) · 𝑟 = (𝜀 𝑗+1 − 𝜀 𝑗 ) · 𝑝 = 𝛽 𝑗 · 𝑟𝑎 · 𝑝, 𝑗 = 1, ..., 𝜇.

3.4.5. The weight on L1
S

. By (6) and our assumptions,

𝜇L1
S
(𝜆, 𝑆) = −

𝑙+1∑︁
𝑖=1

�̃�𝑖 ·
(
ℎ0 (𝑋, 𝐸𝑖 (𝑚 + 𝑛)

)
− ℎ0 (𝑋, 𝐸𝑖−1 (𝑚 + 𝑛)

) )
= −

𝑙+1∑︁
𝑖=1

�̃�𝑖 · ℎ0 (𝑋, 𝐸𝑖 (𝑚 + 𝑛)
)
+
𝑙+1∑︁
𝑖=1

�̃�𝑖 · ℎ0 (𝑋, 𝐸𝑖−1 (𝑚 + 𝑛)
)

𝐸0={0}
= −

𝑙+1∑︁
𝑖=1

�̃�𝑖 · ℎ0 (𝑋, 𝐸𝑖 (𝑚 + 𝑛)
)
+

𝑙∑︁
𝑖=1

�̃�𝑖+1 · ℎ0 (𝑋, 𝐸𝑖 (𝑚 + 𝑛)
)

𝐸𝑙+1=𝐸
=

𝑙∑︁
𝑖=1

𝛼𝑖 · 𝑝 · ℎ0 (𝑋, 𝐸𝑖 (𝑚 + 𝑛)
)
− �̃�𝑙+1 · 𝑝𝑚.

Now,

�̃�𝑙+1 =

𝑙∑︁
𝑖=1

𝛼𝑖 · ℎ0 (𝑋, 𝐸𝑖 (𝑛)) .
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Altogether

𝜇L1
S
(𝜆, 𝑆) =

𝑙∑︁
𝑖=1

𝛼𝑖 ·
(
𝑝 · ℎ0 (𝑋, 𝐸𝑖 (𝑚 + 𝑛)

)
− 𝑝𝑚 · ℎ0 (𝑋, 𝐸𝑖 (𝑛)) ) .

Since 𝑝𝑚 = 𝑟 ·𝑚+ 𝑝 and, by our assumptions, ℎ0 (𝑋, 𝐸𝑖 (𝑚+𝑛)) = rk(𝐸𝑖) ·𝑚+ℎ0 (𝑋, 𝐸𝑖 (𝑛)),
we find

𝜇L1
S
(𝜆, 𝑆) = 𝑚 ·

𝑙∑︁
𝑖=1

𝛼𝑖 ·
(
𝑝 · rk(𝐸𝑖) − 𝑟 · ℎ0 (𝑋, 𝐸𝑖 (𝑛)) )

= 𝑚 ·
𝑙∑︁
𝑖=1

𝛼𝑖 ·
(
𝑑 · rk(𝐸𝑖) − deg(𝐸𝑖) · 𝑟

)
= 𝑚 · 𝑀 (𝐸•, 𝛼•).

Finally, we note

𝜂 · 𝜇L1
S
(𝜆, 𝑆) =1

𝛿
· 𝑝
𝑟
· 𝑀 (𝐸•, 𝛼•)+(21)

+ 𝑝

𝑟
·
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝛼𝑖 · rk(𝐸𝑖) −
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝛼𝑖 · ℎ0 (𝑋, 𝐸𝑖 (𝑛)) .
3.4.6. The weight on L2

S
. The surjection 𝑉𝑎 ⊗ OS −→ 𝐻𝜌,S yields a GL(𝑉)-equivariant

morphism S −→ Gr𝑝 (𝑎) (𝑉 ⊗𝑎), Gr𝑝 (𝑎) (𝑉 ⊗𝑎) the Graßmannian of 𝑝(𝑎)-dimensional
quotients of𝑉 ⊗𝑎. The GL(𝑉)-linearized line bundleL2

S
is the pullback ofOGr𝑝 (𝑎) (𝑉 ⊗𝑎) (−1)

under this morphism. Therefore, Formula (6) may be used. Taking into account Remark
3.4.6, we find

𝜇L2
S
(𝜆, 𝑆) =

𝜇+1∑︁
𝑗=1
�̃� 𝑗 ·

(
ℎ0 (𝑋, 𝐵 𝑗 (𝑎 · 𝑛)) − ℎ0 (𝑋, 𝐵 𝑗−1 (𝑎 · 𝑛)

) )
.

3.4.7. The weight on L3
S

. Here, we can directly apply (6). Using Remark 3.4.6 again, we
see

𝜇L3
S
(𝜆, 𝑆)

= −
𝜇+1∑︁
𝑗=1
�̃� 𝑗 ·

(
dimC

(
𝜒(𝐻 𝑗 )

)
− dimC

(
𝜒(𝐻 𝑗−1)

) )
= −

𝜇+1∑︁
𝑗=1
�̃� 𝑗 ·

(
dimC

(
�̂�

(
𝐻0 (𝑋, 𝐵 𝑗 (𝑎𝑛)) )) − dimC

(
�̂�

(
𝐻0 (𝑋, 𝐵 𝑗−1 (𝑎𝑛)

) )))
= −

𝜇+1∑︁
𝑗=1
�̃� 𝑗 ·

(
ℎ0 (𝑋, 𝐵 𝑗 (𝑎 · 𝑛)) − dimC

(
𝐻0 (𝑋, 𝐵 𝑗 (𝑎 · 𝑛)) ∩ 𝛤)

− ℎ0 (𝑋, 𝐵 𝑗−1 (𝑎 · 𝑛)
)
+ dimC

(
𝐻0 (𝑋, 𝐵 𝑗−1 (𝑎 · 𝑛)

)
∩ 𝛤

) )
.
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3.4.8. The weight on L2
S
⊗L3

S
. Combining the computations of the last two sections, we

get

𝜇L2
S
⊗L3

S
(𝜆, 𝑆)

=

𝜇+1∑︁
𝑗=1
�̃� 𝑗 ·

(
dimC

(
𝐻0 (𝑋, 𝐵 𝑗 (𝑎 · 𝑛)) ∩ 𝛤)

− dimC

(
𝐻0 (𝑋, 𝐵 𝑗−1 (𝑎 · 𝑛)

)
∩ 𝛤

) )
.

By construction of S, we have

𝐻0 (𝑋, 𝐵 𝑗 (𝑎 · 𝑛)) ∩ 𝛤 = 𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤, 𝑗 = 1, ..., 𝜇 + 1.

We infer

𝜇L2
S
⊗L3

S
(𝜆, 𝑆)

=

𝜇+1∑︁
𝑗=1
�̃� 𝑗 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤) −

𝜇+1∑︁
𝑗=1
�̃� 𝑗 · dimC (𝐻0 (𝑋, 𝐵 𝑗−1) ∩ 𝛤)

𝐵0={0}
=

𝜇+1∑︁
𝑗=1
�̃� 𝑗 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤) −

𝜇∑︁
𝑗=1
�̃� 𝑗+1 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤)

=

𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝛼𝑖 · ℎ0 (𝑋, 𝐸𝑖 (𝑛)) − 𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑝𝑎 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤).

For the last equality, we have used that 𝐵𝜇+1 = 𝐸 (𝑛)⊗𝑎, so that 𝐻0 (𝑋, 𝐵𝜇+1) ∩ 𝛤 = 𝛤.
Using (20), we write

(22) 𝜇L2
S
⊗L3

S
(𝜆, 𝑆) =

𝑙∑︁
𝑖=1

𝑎 · 𝑠 ·𝛼𝑖 · ℎ0 (𝑋, 𝐸𝑖 (𝑛)) − 𝑝

𝑟
·
𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑟𝑎 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩𝛤).

3.4.9. The weight on N𝜂 . Putting (21) and (22) together, we find

𝜇N𝜂
(𝜆, 𝑆) = 𝑝

𝑟
·
(
1
𝛿
· 𝑀 (𝐸•, 𝛼•)+

+
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝛼𝑖 · rk(𝐸𝑖) −
𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑟𝑎 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤)
)
.

We multiply the right hand side by 𝛿 · 𝑟/𝑝. The result is

𝑀 (𝐸•, 𝛼•) + 𝛿 ·
( 𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝛼𝑖 · rk(𝐸𝑖) −
𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑟𝑎 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤)
)
.

Now, 𝑠 = dimC (𝛤) and

𝑙∑︁
𝑖=1

𝑎 · 𝛼𝑖 · rk(𝐸𝑖) = 𝜀𝜇+1 =

𝜇∑︁
𝑗=1

𝛽 𝑗 · rk(𝐵 𝑗 ).
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Abbreviating 𝑏 𝑗 = dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤), 𝑗 = 1, ..., 𝜇 + 1, as in Section 1.2, we see that

𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝛼𝑖 · rk(𝐸𝑖) −
𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑟𝑎 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤)

=

𝜇∑︁
𝑗=1

𝛽 𝑗 ·
(
rk(𝐵 𝑗 ) · dimC (𝛤) − 𝑏 𝑗 · 𝑟𝑎

)
=𝜇 (𝐸,𝛤) (𝐸•, 𝛼•).

Altogether, we infer that 𝜇N𝜂
(𝜆, 𝑆) (≥)0 implies

𝑀 (𝐸•, 𝛼•) + 𝛿 · 𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) (≥)0,

as desired. �

3.5. Semistability implies GIT-semistability. We now return to the more exact notation
introduced at the beginning of Section 3.4. In addition, we will write 𝑉𝑛 for the vector
space of dimension 𝑝 = 𝑑 + 𝑟 · (𝑛 + 1 − 𝑔) used in construction of S𝑛, 𝑛 ∈ N. Let us
fix 𝑛 for the moment. For a point 𝑆 = (𝜅 : 𝑉𝑛 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤) ∈ S𝑛 and a subspace
𝑊 ⊂ 𝑉𝑛, we let F𝑊 be the image of𝑊 ⊗O𝑋 (−𝑛) −→ 𝑉𝑛 ⊗O𝑋 (−𝑛)

𝜅−→ 𝐸 . The family of
torsion free sheaves F𝑊 obtained from a point 𝑆 = (𝜅 : 𝑉𝑛 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤) ∈ S𝑛 and
a subspace𝑊 ⊂ 𝑉𝑛 is bounded. This implies that there is a natural number 𝑚(𝑛), such that,
for 𝑚 ≥ 𝑚(𝑛), a point 𝑆 = (𝜅 : 𝑉𝑛 ⊗O𝑋 (−𝑛) −→ 𝐸, 𝛤) ∈ S𝑛, and a subspace𝑊 ⊂ 𝑉𝑛, the
linear map 𝑊 ⊗ 𝐻0 (𝑋,O𝑋 (𝑚)) −→ 𝐻0 (𝑋,F𝑊 (𝑚 + 𝑛)) is surjective. Set 𝐶0 := 𝛿 · 𝑎 · 𝑠.
Using the notation of Section 3.4.3, we have shown in Section 3.1 that [𝐸] ∈ B0 (𝐶0). In
Section 3.2, we have introduced a natural number 𝑛0, such that ℎ1 (𝑋, 𝐸 (𝑛)) = 0, for every
𝛿-(semi)stable coherent 𝜚-system (𝐸, 𝛤) of type (O𝑋 , 𝑑, 𝑠) and every 𝑛 ≥ 𝑛0. We have the
following converse to Theorem 3.4.1.

Theorem 3.5.1. There is a natural number 𝑛2 ≥ 𝑛0, such that, for every 𝑛 ≥ 𝑛2, every
𝛿-(semi)stable coherent 𝜚-system (𝐸, 𝛤) of type (O𝑋 , 𝑑, 𝑠), and every isomorphism 𝑉𝑛 −→
𝐻0 (𝑋, 𝐸 (𝑛)), the resulting point 𝑆 = (𝜅 : 𝑉𝑛 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤) ∈ S𝑛 is (semi)stable.

Proof. Step 1. — Let 𝐶4 be a positive real number. We look at a subspace 𝑊 ⊂ 𝑉𝑛, such
that 𝜇(F𝑊 ) ≤ (𝑑/𝑟) − 𝐶4. Note that, by the Le Potier–Simpson estimate12 ([28], Lemma
7.1.2 and bottom of Page 106)

dimC (𝑊) ≤ℎ0 (𝑋,F𝑊 (𝑛)
)

≤(rk(F𝑊 ) − 1) · 𝜇max (F𝑊 ) + 𝜇(F𝑊 ) + rk(F𝑊 ) · (𝑛 + 1)

≤ rk(F𝑊 ) ·
(
𝑑

𝑟
+ 𝑛 + 1

)
+ (rk(F𝑊 ) − 1) · 𝐶0 − 𝐶4

≤ rk(F𝑊 ) ·
(
𝑑

𝑟
+ 𝑛 − 𝐶 ′

4

)
, 𝐶 ′

4 := −𝐶0 − 1 + 1
𝑟
· 𝐶4.

12For this to work properly, we need that (𝑑/𝑟 ) − 𝐶4 + 𝑛 + 1 is non-negative. The constant 𝐶4 that we will
introduce below does not depend on 𝑛, so that (𝑑/𝑟 ) −𝐶4 + 𝑛 + 1 ≥ 0 will be true, for 𝑛 � 0.



A GENERAL NOTION OF COHERENT SYSTEMS 31

We now have

𝑝 · 𝜒
(
𝑋,F𝑊 (𝑚 + 𝑛)

)
− dimC (𝑊) · 𝑝𝑚

≥𝑝 · 𝜒
(
𝑋,F𝑊 (𝑚 + 𝑛)

)
− rk(F𝑊 ) ·

(
𝑑

𝑟
+ 𝑛 − 𝐶 ′

4

)
· 𝑝𝑚

=
(
𝑑 + 𝑟 · (𝑛 + 1 − 𝑔)

)
·
(
deg(F𝑊 ) + rk(F𝑊 ) · (𝑚 + 𝑛 + 1 − 𝑔)

)
− rk(F𝑊 ) ·

(
𝑑

𝑟
+ 𝑛 − 𝐶 ′

4

)
·
(
𝑑 + 𝑟 · (𝑚 + 𝑛 + 1 − 𝑔)

)
.

SinceF𝑊 is a quotient of the semistable vector bundle𝑊 ⊗O𝑋 (−𝑛), we have 𝜇(F𝑊 ) ≥ −𝑛,
i.e., deg(F𝑊 ) ≥ − rk(F𝑊 ) · 𝑛. So, the above polynomial is bounded from below by(

𝑑 + 𝑟 · (𝑛 + 1 − 𝑔)
)
· rk(F𝑊 ) · (𝑚 + 1 − 𝑔)

− rk(F𝑊 ) ·
(
𝑑

𝑟
+ 𝑛 − 𝐶 ′

4

)
·
(
𝑑 + 𝑟 · (𝑚 + 𝑛 + 1 − 𝑔)

)
≥
(
𝑑 + 𝑟 · (𝑛 + 1 − 𝑔)

)
· rk(F𝑊 ) · (𝑚 + 1 − 𝑔)

− rk(F𝑊 ) ·
(
𝑑

𝑟
+ 𝑛 − 𝐶 ′

4

)
·
(
𝑑 + 𝑟 · (𝑚 + 1 − 𝑔)

)
− rk(F𝑊 ) ·

(
𝑑

𝑟
− 𝐶 ′

4

)
· 𝑛 − 𝑟2 · 𝑛2.

Apart from the term −𝑟2 · 𝑛2, this is a linear polynomial in 𝑚 and 𝑛. The coefficient of 𝑚
is rk(F𝑊 ) · 𝑟 · (𝐶 ′

4 + 1 − 𝑔). We may assume that 𝐶4 is so large that 𝐶 ′
4 + 1 − 𝑔 ≥ 0. Then,

the coefficient of 𝑚 is bounded from below by

𝐶 ′
5 := 𝑟 · (𝐶 ′

4 + 1 − 𝑔).

The coefficient of 𝑛 is −2 · rk(F𝑊 ) · 𝑑 + rk(F𝑊 ) · 𝑟 ·𝐶 ′
4 ≥ −2 · 𝑟 ·max{ 0, 𝑑 } =: 𝐶 ′

6. Finally,
the constant term is

rk(F𝑊 ) · 𝑟 · (1 − 𝑔)2 − rk(F𝑊 )
𝑟

· 𝑑2 + rk(F𝑊 ) · 𝐶 ′
4 ·

(
𝑑 + 𝑟 · (1 − 𝑔)

)
≥𝑟 · (1 − 𝑔)2 − 𝑑2 + 𝑟 · min

{
0, 𝑑 + 𝑟 · (1 − 𝑔)

}
· 𝐶 ′

4 =: 𝐶 ′
7.

Finally, we look at the expression

(𝛼 · 𝑛 + 𝛽) ·
(
𝑝 · 𝜒

(
𝑋,F𝑊 (𝑚 + 𝑛)

)
− dimC (𝑊) · 𝑝𝑚

)
− 𝑚 · (𝑝(𝑎) − 𝑠) · 𝑎

≥(𝛼 · 𝐶 ′
5 − 𝑟

𝑎 · 𝑎2) · 𝑚 · 𝑛 +
(
𝛽 · 𝐶 ′

5 + 𝑎 · (𝑟
𝑎 · (1 − 𝑔) + 𝑎 · 𝑟𝑎−1 · 𝑑 − 𝑠)

)
· 𝑚(23)

+ (𝛼 · 𝐶 ′
6 − 𝑟

2) · 𝑛2 + (𝛼 · 𝐶 ′
7 + 𝛽 · 𝐶

′
6) · 𝑛 + 𝛽 · 𝐶

′
7.

We choose 𝐶4, such that, say, 𝛼 ·𝐶 ′
5 − 𝑟

𝑎 · 𝑎2 = 1. This choice depends only on 𝑎, 𝑟 , 𝑑, and
𝛿. The remaining coefficients of the polynomial then depend only on 𝑎, 𝑟, 𝑑, 𝑠, and 𝛿. So,
for 𝑛 � 0, both

𝑛

2
+ 𝛽 · 𝐶 ′

5 + 𝑎 · (𝑟
𝑎 · (1 − 𝑔) + 𝑎 · 𝑟𝑎−1 · 𝑑 − 𝑠) > 0

and
𝑛3

2
+ (𝛼 · 𝐶 ′

6 − 𝑟
2) · 𝑛2 + (𝛼 · 𝐶 ′

7 + 𝛽 · 𝐶
′
6) · 𝑛 + 𝛽 · 𝐶

′
7 > 0.

For such an 𝑛 and 𝑚 ≥ 𝑛2, the expression on the right hand side of Inequality (23) will be
positive.

Step 2. — Let us look at a one parameter subgroup 𝜆 : C★ −→ GL(𝑉𝑛). It defines a
Q>0-weighted flag (𝑊•, 𝜗•) with 𝑊• : {0} ( 𝑊1 ( · · · ( 𝑊𝑙 ( 𝑉𝑛 and 𝜗• = (𝜗1, ..., 𝜗𝑙).
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Let us write { 1, ..., 𝑙 } = 𝐼 ′ t 𝐼 ′′ with 𝐼 ′ = { 𝑖1, ..., 𝑖𝑙′ } and 𝐼 ′′ = { 𝑗1, ..., 𝑗𝑙′′ }. We now
introduce the weighted filtration (𝑊 ′

•, 𝜗
′
•) with

𝑊 ′
• : {0} ( 𝑊𝑖1 ( · · · ( 𝑊𝑖𝑙′ ( 𝑉𝑛, 𝜗′

• = (𝜗′
𝑖1
, ..., 𝜗′

𝑖𝑙′
),

and the weighted filtration (𝑊 ′′
• , 𝜗

′′
• ) with

𝑊 ′′
• : {0} ( 𝑊 𝑗1 ( · · · ( 𝑊 𝑗𝑙′′ ( 𝑉𝑛, 𝜗′′

• = (𝜗′′
𝑗1
, ..., 𝜗′′

𝑗𝑙′′
).

We choose an appropriate basis (𝑣1, ..., 𝑣𝑝) for 𝑉𝑛, such that 𝜆 is defined with respect to

that basis by the weight vector
𝑙∑
𝑖=1
𝜗𝑖 · 𝑔 (dimC (𝑊𝑖))

𝑝 . Let 𝜆′ and 𝜆′′ be the one parameter

subgroups that are defined with respect to the basis (𝑣1, ..., 𝑣𝑝) by the weight vectors
𝑙′∑
ℎ=1

𝜗𝑖ℎ · 𝑔 (dimC (𝑊𝑖ℎ
))

𝑝 and
𝑙′′∑
𝑘=1

𝜗 𝑗𝑘 · 𝑔 (dimC (𝑊𝑗𝑘
))

𝑝 , respectively. Then, 𝜆 = 𝜆′ + 𝜆′′, and the

Q>0-weighted flag of 𝜆′ and 𝜆′′ is (𝑊 ′
•, 𝜗

′
•) and (𝑊 ′′

• , 𝜗
′′
• ), respectively. Using the notation

from the proof of Proposition 3.4.2, we have, for 𝑚 ≥ 𝑚(𝑛),

𝜇 (L1
S𝑛

)⊗𝜂 (𝑚) ⊗L2
S𝑛

(𝜆, 𝑆)

=
𝑝

𝑚
· (𝛼 · 𝑛 + 𝛽) · 𝜇L1

S𝑛
(𝑚) (𝜆, 𝑆)

=
𝑝

𝑚
· (𝛼 · 𝑛 + 𝛽) ·

𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑖

(𝑚 + 𝑛)
)
− dimC (𝑊𝑖) · 𝑝𝑚

)
=
𝑝

𝑚
· (𝛼 · 𝑛 + 𝛽) ·

𝑙′∑︁
ℎ=1

𝜗𝑖ℎ ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑖ℎ

(𝑚 + 𝑛)
)
− dimC (𝑊𝑖ℎ ) · 𝑝𝑚

)
+ 𝑝

𝑚
· (𝛼 · 𝑛 + 𝛽) ·

𝑙′′∑︁
𝑘=1

𝜗 𝑗𝑘 ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑗𝑘

(𝑚 + 𝑛)
)
− dimC (𝑊 𝑗𝑘 ) · 𝑝𝑚

)
=𝜇 (L1

S𝑛
)⊗𝜂 (𝑚) ⊗L2

S𝑛

(𝜆′, 𝑆)

+ 𝑝

𝑚
· (𝛼 · 𝑛 + 𝛽) ·

𝑙′′∑︁
𝑘=1

𝜗 𝑗𝑘 ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑗𝑘

(𝑚 + 𝑛)
)
− dimC (𝑊 𝑗𝑘 ) · 𝑝𝑚

)
.

By means of the Plücker embedding, we have

𝛤 :
𝑝 (𝑎)−𝑠∧

𝑉 ⊗𝑎
𝑛 −→ C.

Since the exterior power is a direct summand of the tensor power, we get

𝛤 : 𝑉 ⊗(𝑎 · (𝑝 (𝑎)−𝑠))
𝑛 −→ C.

We use [35], Lemma 1.5.1.41, to infer

𝜇L3
S𝑛

(𝜆, 𝑆) ≥ 𝜇L3
S𝑛

(𝜆′, 𝑆) −
( 𝑙′′∑︁
𝑘=1

𝜗 𝑗𝑘

)
· (𝑝(𝑎) − 𝑠) · 𝑎 · 𝑝.
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Altogether, we see that

𝜇N𝜂 (𝑚) (𝜆, 𝑆)
≥𝜇N𝜂 (𝑚) (𝜆′, 𝑆)

+ 𝑝

𝑚
·
( 𝑙′′∑︁
𝑘=1

𝜗 𝑗𝑘 ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑗𝑘

(𝑚 + 𝑛)
)
− dimC (𝑊 𝑗𝑘 ) · 𝑝𝑚 − 𝑚 · (𝑝(𝑎) − 𝑠) · 𝑎

) )
.

Now, we choose 𝐶4 as in Step 1 and assume that 𝑛 is large enough and that 𝑚 ≥
max{ 𝑛2, 𝑚(𝑛) }. Then, we define

𝐼 ′ :=
{
𝜈 ∈ { 1, ..., 𝑙 }

�� 𝜇(F𝑊𝜈
) ≤ 𝑑

𝑟
− 𝐶4

}
and 𝐼 ′′ := { 1, ..., 𝑙 } \ 𝐼 ′.

If 𝐼 ′′ ≠ ∅, Step 1 shows
𝑙′′∑︁
𝑘=1

𝜗 𝑗𝑘 ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑗𝑘

(𝑚 + 𝑛)
)
− dimC (𝑊 𝑗𝑘 ) · 𝑝𝑚 − 𝑚 · (𝑝(𝑎) − 𝑠) · 𝑎

)
> 0,

so that
𝜇N𝜂 (𝑚) (𝜆, 𝑆) > 𝜇N𝜂 (𝑚) (𝜆′, 𝑆).

Step 3. — If (𝐸, 𝛤) is a 𝛿-semistable coherent system of type (O𝑋 , 𝑑, 𝑠), then, as
recalled at the beginning of this section, [𝐸] belongs to the bounded family B0 (𝐶0). We
choose 𝐶4 as in Step 1. We will assume that B1 (𝐶0, 𝐶4) ⊂ B and that 𝑛 is so large that the
conditions presented at the beginning of Section 3.2 are satisfied.

Remark 3.5.2. Let 𝐸 be a vector bundle of rank 𝑟 and degree 𝑑 with 𝜇max (𝐸) ≤ 𝑑/𝑟 + 𝐶0,
{0} ( F ⊂ 𝐸 a subsheaf with 𝜇(F) ≥ 𝑑/𝑟 − 𝐶4. Then, there are only finitely many
possibilities for deg(F). Moreover, 𝜇max (F) ≤ 𝑑/𝑟 + 𝐶0. Therefore, the family of all
locally freeO𝑋 -modules F, such that 𝜇(F) ≥ 𝑑/𝑟 −𝐶4 and F is isomorphic to a subsheaf
of a vector bundle 𝐸 with [𝐸] ∈ B0 (𝐶0) is bounded, too. We may assume that this family
forms part of B. In particular, we may assume that 𝐻1 (𝑋,F(𝑛)) = 0 for all these sheaves
and 𝑛 � 0.

Let us look at a one parameter subgroup 𝜆 : C★ −→ GL(𝑉𝑛) and its Q>0-weighted flag
(𝑊•, 𝜗•) with 𝑊• : {0} ( 𝑊1 ( · · · ( 𝑊𝑙 ( 𝑉𝑛 and 𝜗• = (𝜗1, ..., 𝜗𝑙). By Step 2, we may
assume that 𝜇(F𝑊𝑖

) ≥ (𝑑/𝑟) − 𝐶4, 𝑖 = 1, ..., 𝑙. Let 𝐹𝑊𝑖
⊂ 𝐸 be the subbundle generated

by F𝑊𝑖
, 𝑖 = 1, ..., 𝑙. We get the filtration

{0} ( 𝐹𝑊1 ⊆ 𝐹𝑊2 ⊆ · · · ⊆ 𝐹𝑊𝑙
⊆ 𝐸.

We remove the improper inclusions and arrive at the filtration

𝐸• : {0} ( 𝐸1 ( · · · ( 𝐸
𝑙
( 𝐸.

Let
𝜏 : { 1, ..., 𝑙 + 1 } −→ { 1, ..., 𝑙 + 1 }

be the map defined by the rule

∀𝑖 ∈ { 1, ..., 𝑙 + 1 }∀ 𝑗 ∈ { 1, ..., 𝑙 + 1 } : 𝜏(𝑖) = 𝑗 ⇐⇒ 𝐹𝑊𝑖
= 𝐸 𝑗 ,

using𝑊𝑙+1 := 𝑉𝑛 and 𝐸
𝑙+1 := 𝐸 . Also define

𝑇 ( 𝑗) :=
{
𝑖 ∈ { 1, ..., 𝑙 } | 𝜏(𝑖) = 𝑗

}
, 𝑗 = 1, ..., 𝑙 + 1.
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As before, we let (𝑣1, ..., 𝑣𝑝) be a basis of 𝑉𝑛, such that the image of 〈𝑣1, ..., 𝑣𝜒 (𝑋,𝐸 𝑗 (𝑛)) 〉
under the isomorphism 𝐻0 (𝑋, 𝜅(𝑛)) is 𝐻0 (𝑋, 𝐸 𝑗 (𝑛)), 𝑗 = 1, ..., 𝑙.13 Next, for 𝑗 = 1, ..., 𝑙,
we set

𝛼 𝑗 :=
∑︁
𝑖∈𝑇 ( 𝑗)

𝜗𝑖 .

Now, let 𝜆 be the one parameter subgroup that is defined with respect to the basis (𝑣1, ..., 𝑣𝑝)

by the weight vector
𝑙∑
𝑗=1
𝛼 𝑗 · 𝑔

(𝜒 (𝑋,𝐸 𝑗 (𝑛)))
𝑝 . The Q>0-weighted flag of 𝜆 features

𝑊• : {0} ( 𝐻0 (𝑋, 𝜅(𝑛))−1
(
𝐻0 (𝑋, 𝐸1 (𝑛)

) )
( · · · ( 𝐻0 (𝑋, 𝜅(𝑛))−1

(
𝐻0 (𝑋, 𝐸

𝑙
(𝑛)

) )
( 𝑉𝑛

and 𝛼• = (𝛼1, ..., 𝛼𝑙).

Claim. 𝜇N𝜂 (𝑚) (𝜆, 𝑆) ≥ 𝜇N𝜂 (𝑚) (𝜆, 𝑆).

With this claim, we will be done, because, for 𝜇N𝜂 (𝑚) (𝜆, 𝑆), the computation in Sec-
tion 3.4.4 can be just done backwards to deduce 𝜇N𝜂 (𝑚) (𝜆, 𝑆) (≥)0 from 𝑀 (𝐸•, 𝛼•) + 𝛿 ·
𝜇 (𝐸,𝛤) (𝐸•, 𝛼•) (≥)0.

First, we note that

𝜇L1
S
(𝜆, 𝑆) =

𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑖

(𝑚 + 𝑛)
)
− dimC (𝑊𝑖) · 𝑝𝑚

)
.

We have 𝜒(𝑋,F𝑊𝑖
(𝑚 + 𝑛)) = rk(F𝑊𝑖

) · 𝑚 + 𝜒(𝑋,F𝑊𝑖
(𝑛)), 𝑖 = 1, ..., 𝑙, so that we infer

𝜇L1
S
(𝜆, 𝑆) = 𝑚 ·

𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑝 · rk(F𝑊𝑖

) − dimC (𝑊𝑖) · 𝑟
)

+
𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑝 · 𝜒

(
𝑋,F𝑊𝑖

(𝑛)
)
− dimC (𝑊𝑖) · 𝑝

)
.

According to Remark 3.5.2, 𝜒(𝑋,F𝑊𝑖
(𝑛)) = ℎ0 (𝑋,F𝑊𝑖

(𝑛)) ≥ dimC (𝑊𝑖), 𝑖 = 1, ..., 𝑙. It
follows that

𝜇L1
S
(𝜆, 𝑆) ≥ 𝑚 ·

𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑝 · rk(F𝑊𝑖

) − dimC (𝑊𝑖) · 𝑟
)
.

This yields

𝜂(𝑚) · 𝜇L1
S
(𝜆, 𝑆) ≥ 1

𝛿
· 𝑝
𝑟
·
𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑝 · rk(F𝑊𝑖

) − dimC (𝑊𝑖) · 𝑟
)

+ 𝑝

𝑟
·
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝜗𝑖 · rk(F𝑊𝑖
) −

𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝜗𝑖 · dimC (𝑊𝑖).

For 𝑖 = 1, ..., 𝑙, rk(F𝑊𝑖
) = rk(𝐸𝜏 (𝑖) ) and dimC (𝑊𝑖) ≤ ℎ0 (𝑋,F𝑊𝑖

(𝑛)) ≤ ℎ0 (𝑋, 𝐹𝑊𝑖
(𝑛)) =

ℎ0 (𝑋, 𝐸𝜏 (𝑖) (𝑛)) = 𝜒(𝑋, 𝐸𝜏 (𝑖) (𝑛)), so that

𝑝 · rk(F𝑊𝑖
) − dimC (𝑊𝑖) · 𝑟 ≥ 𝑑 · rk(𝐸𝜏 (𝑖) ) − deg(𝐸𝜏 (𝑖) ) · 𝑟.

13Recall that we assume that B1 (𝐶0, 𝐶4) ⊂ B. This implies 𝐻 1 (𝑋, 𝐹 (𝑛)) = 0, for a vector bundle 𝐹 with
[𝐹 ] ∈ B. In particular, we have ℎ0 (𝑋, 𝐸 𝑗 (𝑛)) = 𝜒 (𝑋, 𝐸 𝑗 (𝑛)) , 𝑗 = 1, ..., 𝑙.
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So, we arrive at the estimate

𝜂(𝑚) · 𝜇L1
S
(𝜆, 𝑆) ≥ 1

𝛿
· 𝑝
𝑟
·
𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑑 · rk(𝐸𝜏 (𝑖) ) − deg(𝐸𝜏 (𝑖) ) · 𝑟

)
(24)

+ 𝑝

𝑟
·
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝜗𝑖 · rk(𝐸𝜏 (𝑖) ) −
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝜗𝑖 · dimC (𝑊𝑖).

Next, let 𝛾1 < · · · < 𝛾𝑙+1 be the distinct weights forming part of
𝑙∑
𝑖=1
𝜗𝑖 · 𝑔 (dimC (𝑊𝑖))

𝑝 . We
set

𝐺 :=
{
𝛾𝑖1 + · · · + 𝛾𝑖𝑎 | (𝑖1, ..., 𝑖𝑎) ∈ { 1, ..., 𝑙 + 1 }

}
and let

�̃�1 < · · · < �̃�𝜇+1

be the distinct elements of 𝐺. For 𝑖 = 1, ..., 𝜇 + 1, we consider

𝑈𝑖 :=
∑︁

(𝑖1 ,...,𝑖𝑎) ∈{ 1,...,𝑙+1 }×𝑎 :
𝛾𝑖1+···+𝛾𝑖𝑎 ≤𝜀𝑖

𝑊𝑖1 ⊗ · · · ⊗𝑊𝑖𝑎

and
B𝑖 :=

∑︁
(𝑖1 ,...,𝑖𝑎) ∈{ 1,...,𝑙+1 }×𝑎 :

𝛾𝑖1+···+𝛾𝑖𝑎 ≤𝜀𝑖

F𝑊𝑖1
⊗ · · · ⊗ F𝑊𝑖𝑎

.

The sum is taken within 𝑉 ⊗𝑎 and 𝐸 ⊗𝑎, respectively. Setting

𝛽𝑖 :=
�̃�𝑖+1 − �̃�𝑖
𝑝𝑎

, 𝑖 = 1, ..., 𝜇,

(𝑈•, 𝛽•) with 𝑈• : {0} ( 𝑈1 ( · · · ( 𝑈𝜇 and 𝛽• = (𝛽1, ..., 𝛽𝜇) is the Q>0-weighted flag
in 𝑉 ⊗𝑎 induced by (𝑉•, 𝜗•). In a similar fashion, we let 𝜁1 < · · · < 𝜁

𝑙+1 be the disctinct

entries of the weight vector
𝑙∑
𝑗=1
𝛼 𝑗 · 𝑔

(𝜒 (𝑋,𝐸 𝑗 (𝑛)))
𝑝 , define

𝐺 :=
{
𝜁 𝑗1 + · · · + 𝜁 𝑗𝑎 | ( 𝑗1, ..., 𝑗𝑎) ∈ { 1, ..., 𝑙 + 1 }

}
,

and
𝜀1 < · · · < 𝜀𝜇+1

as the distinct elements of 𝐺. For 𝑗 = 1, ..., 𝜇 + 1, we declare

𝐵 𝑗 :=
∑︁

( 𝑗1 ,..., 𝑗𝑎) ∈{ 1,...,𝑙+1 }×𝑎 :
𝜁 𝑗1+···+𝜁 𝑗𝑎 ≤𝜀𝑖

𝐸 𝑗1 ⊗ · · · ⊗ 𝐸 𝑗𝑎 .

Note that the filtration
𝐵• : {0} ( 𝐵1 ( · · · ( 𝐵𝜇 ( 𝐸 ⊗𝑎

is the filtration of 𝐸 ⊗𝑎 induced by the weighted filtration (𝐸•, 𝛼•) of 𝐸 .
Next, using B𝜇+1 = 𝐸 ⊗𝑎 = 𝐵𝜇+1, we introduce

𝜏′ : { 1, ..., 𝜇 + 1 } −→ { 1, ..., 𝜇 + 1 }
𝑖 ↦−→ min

{
𝑗 = 1, ..., 𝜇 + 1 |B𝑖 ⊂ 𝐵 𝑗

}
and

𝑇 ′( 𝑗) :=
{
𝑖 ∈ { 1, ..., 𝑙 } | 𝜏′(𝑖) = 𝑗

}
, 𝑗 = 1, ..., 𝜇 + 1.
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We point out that

𝛽 𝑗 :=
𝜀 𝑗+1 − 𝜀 𝑗

𝑝𝑎
=

∑︁
𝑖∈𝑇 ′ ( 𝑗)

𝛽𝑖 , 𝑗 = 1, ..., 𝜇.

For 𝑖 ∈ { 1, ..., 𝜇 + 1 }, we let 𝐻𝑖 be the image of𝑈𝑖 in 𝐻0 (𝑋,B𝑖 (𝑎 · 𝑛)). As in Sections
3.4.6 to 3.4.8, we compute

𝜇L2
S𝑛

⊗L3
S𝑛

(𝜆, 𝑆) =
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝜗𝑖 · dimC (𝑊𝑖) −
𝜇∑︁
𝑖=1

𝛽 𝑗 · 𝑝𝑎 · dimC (𝐻𝑖 ∩ 𝛤).

The last formula and (24) show that

𝜇N𝜂 (𝑚) (𝜆, 𝑆)

≥ 1
𝛿
· 𝑝
𝑟
·
𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑑 · rk(𝐸𝜏 (𝑖) ) − deg(𝐸𝜏 (𝑖) ) · 𝑟

)
+ 𝑝

𝑟
·
𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝜗𝑖 · rk(𝐸𝜏 (𝑖) ) −
𝜇∑︁
𝑖=1

𝛽 𝑗 · 𝑝𝑎 · dimC (𝐻𝑖 ∩ 𝛤).

Now,

𝑙∑︁
𝑖=1

𝜗𝑖 ·
(
𝑑 · rk(𝐸𝜏 (𝑖) ) − deg(𝐸𝜏 (𝑖) ) · 𝑟

)
=

𝑙∑︁
𝑗=1
𝛼 𝑗 ·

(
𝑑 · rk(𝐸 𝑗 ) − deg(𝐸 𝑗 ) · 𝑟

)
,

𝑙∑︁
𝑖=1

𝑎 · 𝑠 · 𝜗𝑖 · rk(𝐸𝜏 (𝑖) ) =
𝑙∑︁
𝑗=1
𝑎 · 𝑠 · 𝛼 𝑗 · rk(𝐸 𝑗 ) + 𝑎 · 𝑠 ·

∑︁
𝑖∈𝑇 (𝑙+1)

𝜗𝑖 · 𝑟,

𝜇∑︁
𝑖=1

𝛽 𝑗 · 𝑝𝑎 · dimC (𝐻𝑖 ∩ 𝛤) ≤
𝜇∑︁
𝑖=1

𝛽 𝑗 · 𝑝𝑎 · dimC

(
𝐻0 (𝑋,B𝜏′ (𝑖) (𝑎 · 𝑛)

)
∩ 𝛤

)
≤

𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑝𝑎 · dimC

(
𝐻0 (𝑋, 𝐵 𝑗 (𝑎 · 𝑛)) ∩ 𝛤)

+ 𝑠 ·
∑︁

𝑖∈𝑇 (𝜇+1)
𝑝𝑎 · 𝛽𝑖

=

𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑝𝑎 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤)

+ 𝑠 ·
∑︁

𝑖∈𝑇 (𝜇+1)
𝑝𝑎 · 𝛽𝑖 .

Finally, we verify that
𝑎 ·

∑︁
𝑖∈𝑇 (𝑙+1)

𝑝 · 𝜗𝑖 =
∑︁

𝑖∈𝑇 (𝜇+1)
𝑝𝑎 · 𝛽𝑖 .

For this, observe that, for 𝑙0 := min(𝑇 (𝑙 + 1)), there is the identity∑︁
𝑖∈𝑇 (𝑙+1)

𝑝 · 𝜗𝑖 = 𝛾𝑙+1 − 𝛾𝑙0 .
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Since 𝑎 · 𝛾𝑙0 is the weight of F⊗𝑎
𝑊𝑙0

and this subsheaf generates 𝐸 ⊗𝑎, this weight belongs to
𝑇 ′(𝜇 + 1). On the other hand,

𝐵𝜇 =

𝑎∑︁
𝑘=1

𝐸 ⊗(𝑘−1) ⊗ 𝐸
𝑙
⊗ 𝐸 ⊗(𝑎−𝑘) .

It is now straightforward to check that, for an index 𝑖 ∈ { 1, ..., 𝜇 } with �̃�𝑖 < 𝑎 · 𝛾𝑙0 , we have
B𝑖 ⊂ 𝐵𝜇, i.e., 𝜏(𝑖) ≤ 𝜇. As before, we have∑︁

𝑖∈𝑇 (𝜇+1)
𝑝𝑎 · 𝛽𝑖 = 𝑎 · 𝛾𝑙+1 − 𝑎 · 𝛾𝑙0 .

Our arguments prove that

𝜇N𝜂 (𝑚) (𝜆, 𝑆) ≥
1
𝛿
· 𝑝
𝑟
·
𝑙∑︁
𝑗=1
𝛼𝑖 ·

(
𝑑 · rk(𝐸 𝑗 ) − deg(𝐸 𝑗 ) · 𝑟

)
+ 𝑝

𝑟
·
𝑙∑︁
𝑗=1
𝑎 · 𝑠 · 𝛼 𝑗 · rk(𝐸 𝑗 ) −

𝜇∑︁
𝑗=1

𝛽 𝑗 · 𝑝𝑎 · dimC (𝐻0 (𝑋, 𝐵 𝑗 ) ∩ 𝛤)

=𝜇N𝜂 (𝑚) (𝜆, 𝑆).
This finishes the proof of the claim. �

3.6. The quotient and conclusion of the proof. For 𝑛 ∈ N, let Q𝑛 be the quasi-projective
quot scheme used in the construction of S𝑛. It is an open subscheme of a projective quot
scheme Q𝑛. We have constructed S𝑛 as a closed subscheme of T𝑛 = Q𝑛 × G𝑛. Let
S𝑛 be the closure of S𝑛 inside the projective scheme T𝑛 = Q𝑛 × G𝑛 (compare Section
3.3.1). The action of GL(𝑉𝑛) on S𝑛 is induced by an action of GL(𝑉𝑛) on T𝑛, and the
GL(𝑉𝑛)-linearized line bundle N𝜂 (𝑚) is the restriction of an ample GL(𝑉𝑛)-linearized line
bundle N𝜂 (𝑚) on T𝑛. Let T

ss
𝑛 be the set of points that are semistable with respect to

the linearization in N𝜂 (𝑚) . In Theorem 3.4.1 and 3.5.1, we have shown that, for 𝑛 � 0,
Sss
𝑛 := S𝑛 ∩ T

ss
𝑛 consists of those points (𝜅 : 𝑉𝑛 ⊗ O𝑋 (−𝑛) −→ 𝐸, 𝛤) for which (𝐸, 𝛤) is

a 𝛿-semistable coherent 𝜚-system of type (O𝑋 , 𝑑, 𝑠).

Proposition 3.6.1. For 𝑛 � 0,
Sss
𝑛 = S𝑛 ∩T

ss
𝑛 .

Proof. In view of the arguments in the proof of Proposition 3.4.2, this is a straightforward
adaptation of the proof of [35], Proposition 2.3.5.17. �

By this proposition and Mumford’s geometric invariant theory [30] (see also [31], [35],
Chapter 1), the categorical quotient Sss//GL(𝑉𝑛) = S

ss//GL(𝑉𝑛) exists as a projective
scheme. The observations in Remark 3.2.2 and 3.3.1, ii), together with Theorem 3.4.1 and
3.5.1 imply that this quotient is the moduli space C 𝛿

𝑋/𝜚/O𝑋/𝑑/𝑠 that we have been looking
for. �

4. Outlook

In [36], we discussed a different approach to solving the moduli problem for general
coherent systems. To this end, we constructed in [36], Section 4.2, a parameter scheme P

that is, in the notation of the present article, endowed with a (GL𝑠 (C) × GL(𝑉))-action.
The stack quotients [P/(GL𝑠 (C) × GL(𝑉))] and [S/GL(𝑉)] are isomorphic as stacks.
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This can be used to compare the (GL𝑠 (C) × GL(𝑉))-linearized line bundles on P to the
GL(𝑉)-linearized line bundles on S. We need to verify that the quotient P//GL𝑠 (C) in the
sense of geometric invariant theory, which is an orbit space, coincides with the parameter
scheme S from this note. Then, the (GL𝑠 (C) × GL(𝑉))-linearized line bundle LP on P

that corresponds to the GL(𝑉)-linearized line bundle LS on S, in fact, descends to LS

via the quotient map P −→ S. By [33], Section 1.3, or [35], Theorem 1.5.3.1, we know
that the points in P that are semistable with respect to the linearization in LP map onto the
points in S that are semistable with respect to the linearization in LS under the quotient
map P −→ S. In [36], we also introduced a notion of semistability for general coherent
systems which depends on a positive rational number 𝜀. Fix 𝑎, 𝑑, and 𝑠. Based on the
above observations, we expect the following picture:

• For 𝜀 ∈ Q>0, there is a number 𝛿(𝜀) ∈ Q>0, such that a coherent 𝜚-system
(𝐸, 𝛤) of type (O𝑋 , 𝑑, 𝑠) is 𝜀-semistable in the sense of [36] if and only if it is
𝛿(𝜀)-semistable in the sense of the present paper.

• As 𝜀 ranges over (0,∞), the parameter 𝛿 ranges over (0, 1/(𝑎 · (𝑎 − 1) · 𝑟𝑎−1)).
In particular, the limiting process 𝜀 → ∞ corresponds to the limiting process
𝛿 → 1/(𝑎 · (𝑎 − 1) · 𝑟𝑎−1).

The proof of this conjecture will involve subtle boundedness results for coherent 𝜚-systems
and will be considered in the future.
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