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Abstract

In this article we investigate the possible losses of regularity of the solution for hyperbolic boundary
value problems defined in the strip Rd−1 × ]0, 1[.

This question has already been widely studied in the half-space geometry in which a complete char-
acterization is almost completed (see [ST88]-[Cou02]-[Cou05] and the references in the core of the text).
In this setting it is known that several behaviours are possible, for example, a loss of a derivative on the
boundary only or a loss of a derivative on the boundary combined with one or a half loss in the interior.

So crudely speaking the question addressed here is ”can several boundaries make the situation becomes
worse ?”.

Here we focus our attention to one special case of loss (namely the elliptic degeneracy of [ST88]) and
we show that (in terms of losses of regularity) the situation is exactly the same as the one described in
the half-space, meaning that the instability does not meet the geometry. This result has to be compared
with the one of [Benc] in which the geometry has a real impact on the behaviour of the solution.

1 Introduction

The aim of this paper is to investigate the optimal loss of regularity for the following hyperbolic boundary
value problem in the strip Rd−1 × ]0, 1[:

L(∂)u := ∂tu+
∑d
j=1Aj∂ju = f (t, x′, xd) ∈ Rt × Rd−1

x′ × ]0, 1[ := Ω,

B0u|xd=0 = g0 (t, x′) ∈ Rt × Rd−1
x′ := ω,

B1u|xd=1 = g1 (t, x′) ∈ ω,
u|t≤0 = 0 (x′, xd) ∈ Rd−1

x′ × [0, 1] := Γ,

(1)

where the coefficients Aj ∈ MN×N (R), B0 ∈ Mp×N (R) and B1 ∈ M(N−p)×N (R) (we refer to Assumption
2.2 for the precise value of p).

By loss of regularity we mean that the (unique) solution u to (1) is not as regular (in terms of Sobolev
spaces) as the source terms of (1), namely f , g0 and g1. Such problems are referred as weakly well-posed
problems, in contrast with problems for which the unique solution to (1) is as regular as the data of the
system (referred as strongly well-posed problems).

Before to turn to a description of the results of this article let us recall what is known in the more classical
geometry of the half-space.

The main result in the study of the strong well-posedness of the analogous of (1) in the half-space
Rd−1 × R+ is due to Kreiss in [Kre70] where the author gives a full characterization of the boundary
conditions leading to strong well-posedness (see also [Sar65]).
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This characterization, the so-called uniform Kreiss-Lopatinskii condition, relies on the normal mode
analysis of the boundary value problem in the half-space. Without enter into technical details (we refer to
[BGS07]-[CP81] for a complete study and to Section 2 for more informations) to the time/space half-space
problem we associate its so-called resolvent frequency form (obtained after Laplace in time and Fourier in
tangential space transforms):{

d
dxd

û(xd; ζ) = A (ζ)û(xd; ζ) +A−1
d f̂(xd; ζ) xd > 0,

B0û|xd=0(ζ) = ĝ0(ζ),
(2)

where ζ stands for the frequency parameter. The behaviour of the solution to the ordinary differential
equation (2) strongly depends on the matrix A and [Kre70] is based on a very precise analysis of the
possible structures of this matrix.

There are four different kinds of frequencies depending on the generalized eigenvalues of A (ζ), namely:
elliptic, mixed, hyperbolic and glancing.

The problem (2) satisfies the uniform Kreiss-Lopatinskii condition and thus is strongly well-posed if this
condition (see Assumption 2.3 for more details) holds for all possible kinds of frequency. However it has
also been observed on many examples (see for example the ones of [BGRSZ02]) that generically boundary
conditions do not satisfy the uniform Kreiss-Lopatinskii condition.

A natural question is thus to determine what is the behaviour of the solution when the uniform Kreiss-
Lopatinskii condition degenerates ?

The first possibility is that the problem generates a Hadamard instability and thus is ill-posed. However
when the uniform Kreiss-Lopatinskii condition breaks down on one of the four kinds of frequency introduced
above we may still have existence and uniqueness of the solution up to some losses of regularity.

Historically, this question has first been studied in [ST88] (in view of its applications in elastodynamics)
in the case of a degeneracy of the uniform Kreiss-Lopatinskii condition for an elliptic frequency and a loss
of one derivative on the boundary is shown.

Then the same question has been addressed in [Cou02] and [Cou05] for a degeneracy on mixed and on
hyperbolic frequencies (in this context the main physical applications are phase transition and shock wave
stability). For a mixed (resp. hyperbolic) degeneracy a loss of a half (resp. one) derivative in the interior
appears in addition of the loss of one derivative on the boundary.

Once these estimations for the loss of regularity of the solution are stated an interesting remaining
question is the one of their sharpness. This question has been widely studied in the litterature and we refer
to [Mar10] for the elliptic case to [Ben14] for the mixed case and to [CG10] for the hyperbolic case (see also
the formal analysis of [MR83] and [Maj88]) and the sharpness of all the estimates described so far is now
established.

So that at present time, the characterization of weakly well-posed boundary value problems in the half-
space is achieved (up to the somewhat specific case of a degeneracy on a glancing frequency).

The common point of all these proofs is that they use WKB expansions (that is an approximate solution
to (1) in the asymptotic of highly oscillating source terms) to saturate the known energy estimates in order
to show their sharpness.

Concerning the strip geometry wa can show that the uniform Kreiss-Lopatinskii condition on each side
of the strip is sufficient to ensure strong well-posedness (up to pay some exponential growth of the solution
with respect to time (see [Bena] in which this growth is studied)). However, in the author’s knowledge, the
classification of the possible weakly well-posed problems in the strip has not been investigated at present
time.

In this article we restrict our attention to a degeneracy of the uniform Kreiss-Lopatinskii condition on
an elliptic frequency, while in [Benc] the degeneracy takes place on a hyperbolic frequency.

The main results of this article, namely Theorems 2.1 and 2.2, are the following:
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• Theorem 2.1 establishes the weak well-posedness of (1) when one of the boundary conditions is respon-
sible of a failure of the uniform Kreiss-Lopatinskii on an elliptic frequency1.

• Theorem 2.2 shows that the energy estimate of Theorem 2.1, with a loss of one derivative on the
boundary where the uniform Kreiss-Lopatinskii condition fails but any loss in the interior, is sharp.

Consequently in the elliptic degeneracy framework the situation in the strip geometry is not worse than
the one in the half-space geometry. This result is not surprising and it is linked to the fact that, contrary to
hyperbolic modes, elliptic modes can not propagate information/singularities for one side of the strip to the
other. However, we believe that this result is interesting for several reasons.

Firstly because it gives a class of hyperbolic boundary value problems in the strip for which the loss of
derivatives is at most one2 and in this framework one can expect to use iterative methods in order to treat
non-linear problems.

Secondly, and in the author’s opinion it is the most interesting point, because this non-amplification of
singularities has to be compared with the result obtained in [Benc]. Indeed for a degeneracy of the uniform
Kreiss-Lopatinskii condition on a hyperbolic frequency, [Benc] shows that the loss of derivatives of the solu-
tion has to be increasing with the final time of resolution of the system.

So the results of this paper combined with the one of [Benc] show that the behaviour of the solution can
be totally different from one kind of degeneracy to the other (this is not really the case for weakly well-posed
boundary value problems in the half-space for which the number of losses remain finite, no matter the time
scale is). This is an example of the wide variety of possible phenomena for hyperbolic boundary value prob-
lems with several boundaries.

This paper is organized as follows: in Section 2 we describe the main assumptions on (1) and state the
main results, namely Theorem 2.1 and Theorem 2.2. Then Section 3 gives the main steps in the proof of
Theorem 2.1 while Section 4 exposes the ones of Theorem 2.2.

2 Notations and statements

2.1 Some general notations

In the core of the text we use · . · as a short hand notation for: ”there exists C > 0 such that · ≤ C·”.
When C depends on some (relevant) parameter λ we specify it by using the notation .λ. For a, b ∈ R we
write Ja, bK := [a, b] ∩ Z.

For T > 0, we introduce:

ΩT := ]−∞, T ]× Rd−1
x′ × ]0, 1[ and ωT := ]−∞, T ]× Rd−1

x′ .

The frequency space used in this article is given by:

Ξ :=
{
ζ := (γ + iτ, η) ∈ C× Rd−1 \ γ ≥ 0

}
\ {(0, 0)} ,

and for convenience we use the notation Ξ0 := Ξ ∩ {γ = 0}.

For s ∈ R, γ > 0 and X ⊂ Rt × Rd−1
x′ × ]0, 1[ we define the following weighted (in time) Sobolev spaces

by
Hs
γ(X) :=

{
u ∈ D ′(X) \ e−γtu ∈ Hs(X)

}
,

and we set L2
γ(X) := H0

γ(X).

1All the results of the paper hold mutatis mutandis if each boundary condition is responsible of a degeneracy of the uniform
Kreiss-Lopatinskii condition on an elliptic frequency.

2It is in fact zero when the boundary conditions responsible of the failure of the uniform Kreiss-Lopatinskii condition are
homogeneous.
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2.2 Main notations and assumptions

The first assumption on the strip problem (1) is an hyperbolicity assumption for L(∂)

Assumption 2.1 [Constant hyperbolicity]There exist M ∈ J1, NK and λ1, ..., λM analytic real valued func-
tions on Rd \ {0} and finally µ1, ..., µM ≥ 1 such that

∀ξ ∈ Sd−1, det
(
τ +

d∑
j=1

ξjAj

)
=

M∏
k=1

(τ + λk(ξ))µk ,

with λ1 < · · · < λM and the eigenvalues λk(ξ) are semi-simple.

Then a simplifying assumption is to restrict the study to non-characteristic boundary conditions.

Assumption 2.2 [Non-characteristic boundary]The matrix Ad is invertible. Moreover p is the number of
strictly positive eigenvalues of Ad.

With Assumptions (2.1) and 2.2 in hand we define the resolvent matrix of (1) by:

∀ζ ∈ Ξ, A (ζ) := −A−1
d

(
(γ + iτ)I + i

d−1∑
j=1

ηjAj

)
. (3)

The result of [Her63] implies that for all ζ ∈ Ξ \ Ξ0, the stable (resp. unstable) subspace Es(ζ) (resp.
Eu(ζ)), that is the space generated by the eigenmodes associated to the generalized eigenvalues with strictly
negative (resp. positive) real part, is well-defined and of constant dimension equals to p (resp. N − p).

Moreover the results of [Kre70] and [Mét00] show that the stable subspace Es(ζ) can be extended by
continuity up to Ξ0. Of course in this extension some of the real parts may vanish. If such a situation occurs
the associated frequency are called: mixed, hyperbolic or glancing (essentially depending on the number of
eigenvalues that degenerate, we refer to [Mét00] for more details).

In this paper we are, however, interested in the case where all the eigenvalues keep a signed real part3 in
this extension process, these frequencies are referred as elliptic frequencies. With more details we give the
following definition:

Definition 2.1 (Elliptic area) Under Assumptions 2.1 and 2.2 the elliptic area E is the set of ζ ∈ Ξ0

such that there exist a neighbourhood V of ζ in Ξ and a matrix T ∈ GLN (C) regular on V such that:

∀ζ ∈ V , A (ζ) = T−1(ζ)diag(A s(ζ),A u(ζ))T (ζ),

where A s,A u ∈ Mp×p(C) are regular on V and satisfy that for all ζ ∈ V , Re(sp(A s(ζ)) ⊂ ]−∞, 0[ and
Re(sp(A u(ζ))) ⊂ ]0,+∞[.

In particular, for ζ ∈ E the decomposition

CN = Es(ζ)⊕ Eu(ζ), (4)

of [Her63] still holds and we denote by Πs(ζ) (resp. Πu(ζ)) the projection on Es(ζ) (resp. Eu(ζ)) with
respect to (4).

Our last main assumption deals with the boundary conditions B0 and B1:

Assumption 2.3 The boundary conditions B0 and B1 satisfy the following

1. The boundary condition on {xd = 1} satisfies the uniform Kreiss-Lopatinskii condition that is to say
that

∀ζ ∈ Ξ, kerB1 ∩ Eu(ζ) = {0} .
3Note that the existence of such a configuration implies that N = 2p.
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2. The boundary condition on {xd = 0} violates the uniform Kreiss-Lopatinskii condition at order one in
the elliptic area4. More precisely if we denote by Υ := {ζ ∈ Ξ \ kerB0 ∩ Es(ζ) 6= {0}} then

(a) the weak Kreiss-Lopatinskii condition is satisfied that is

∀ζ ∈ Ξ \ Ξ0, kerB0 ∩ Es(ζ) = {0} ,

and consequently Υ ⊂ Ξ0.

(b) We have Υ 6= ∅ and Υ ⊂ E .

(c) Let ζ ∈ Υ then there exist a neighbourhood V of ζ ∈ Ξ, a basis (E1, ..., Ep)(ζ) of Es(ζ) regular on
V , a matrix P = P (ζ) ∈ GLp(C) regular on V and a real valued function θ regular on V such
that

∀ζ ∈ V , B0 [E1, ..., Ep] (ζ) = P (ζ)diag(γ + iθ(ζ), 1, ..., 1).

2.3 Main results

The main results of the article are the following5:

Theorem 2.1 Under Assumptions 2.1,2.2 and 2.3 there exists γ > 0 such that for all γ ≥ γ and for all

f ∈ L2
γ(Ω), g0 ∈ H1/2

γ (ω), g1 ∈ L2
γ(ω), the strip problem (1) admits a unique solution u ∈ L2

γ(Ω) with traces

u|xd=0 ∈ H
−1/2
γ (ω) and u|xd=1 ∈ L2

γ(ω). Moreover u satisfies the energy estimate: for all γ ≥ γ we have

γ‖u‖2L2
γ(Ω) + γ‖u|xd=0‖2H−1/2

γ (ω)
+ ‖u|xd=1‖2L2

γ(ω) .
1

γ
‖f‖2L2

γ(Ω) +
1

γ
‖g0‖2H1/2

γ (ω)
+ ‖g1‖2L2

γ(ω). (5)

Remark • If the side {xd = 1} also violates the uniform Kreiss-Lopatinskii condition in the elliptic area

(see 2. of Assumption 2.3) then Theorem 2.1 still holds by assuming that g1 ∈ H1/2
γ (ω) and with the

energy estimate: for all γ ≥ γ,

‖u‖2L2
γ(Ω) + ‖u|xd=0‖2H−1/2

γ (ω)
+ ‖u|xd=1‖2H−1/2

γ (ω)
.

1

γ2

(
‖f‖2L2

γ(Ω) + ‖g0‖2H1/2
γ (ω)

+ ‖g1‖2H1/2
γ (ω)

)
. (6)

• If the boundary condition(s) on which the Kreiss-Lopatinskii condition degenerates in the elliptic area
is (are) homogeneous then a direct consequence of (5) ((6)) is that we have the energy estimate without
loss of derivative

∀γ ≥ γ, ‖u‖2L2(Ω) .
1

γ2
‖f‖2L2(Ω).

In such a situation we then have examples of hyperbolic boundary value problems in the strip without
loss of derivatives even if the uniform Kreiss-Lopatinskii condition is not satisfied.

The following theorem shows that (5) is sharp. More precisely

Theorem 2.2 Under Assumptions 2.1, 2.2 and 2.3, let s > 0, we assume that for all f ∈ L2(ΩT ), g0 ∈
Hs(ωT ), g1 ∈ L2(ωT ) the strip problem (1) admits a solution u such that

‖u‖2L2(ΩT ) .T ‖f‖
2
L2(ΩT ) + ‖g0‖2Hs(ωT ) + ‖g1‖2L2(ωT ), (7)

then necessarily s ≥ 1/2.

4The definition given here differs a little in its formulation (but is equivalent) from the one given in [[ST88] condition (LC)].
The advantage of this formulation will be made precise in Section 4.

5Theorem 2.1 and its proof can, under the suitable assumptions, probably be extended to time/space depending coefficients
matrices Aj , B0 and B1.
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3 Weak well-posedness of (1), proof of Theorem 2.1

The proof of Theorem 2.1 follows the classical proof to show the strong well-posedness of hyperbolic boundary
value problems in the half-space already used in [Kre70]. It is a three steps proof:

1. we first show an a priori energy estimate for (1).

2. Then we show the existence of a weak solution.

3. At last we conclude to the uniqueness of the constructed weak solution, by showing that it satisfies the
a priori energy estimate, thanks to a ”weak=strong” lemma.

The fact that the same sketch of proof (even if, of course it involves many technical difficulties) also operates
for weakly well-posed problems (see [ST88]-[Cou02] and [Cou05]) is quite interesting in its own and shows
the robustness of the whole method.

In Paragraph 3.1 we give a simple proof of the a priori energy estimate (that is (5)) based on localization
methods. The proof exposed here is (likely to be) the simplest possible one because we are not interested in
the minimal exponential growth in time rate in the estimates.

Then Paragraph 3.2 contains some elements of proof concerning the existence and the ”weak=strong”
lemma.

3.1 A priori energy estimate for (1)

Let u be a smooth solution to (1). We introduce two cut-off functions χ0, χ1 ∈ D(]−2, 2[ , [0, 1]) that satisfy

χ0(xd) =

{
1 if xd ∈

[
0, 1

3

]
,

0 if xd ≥ 2
3 ,

and χ1(xd) =

{
0 if xd ≤ 1

3 ,

1 if xd ∈
[

2
3 , 1
]
.

Define χ1/2 := 1− χ0 − χ1 and for all j ∈ J0, 2K, uj/2 := χj/2u.

By construction u1/2 solves the Cauchy problem for the hyperbolic operator L(∂) so that we have the
standard energy estimate: there exists γ1/2 > 0 such that for all γ ≥ γ1/2

γ‖u1/2‖2L2
γ(Ω) .

1

γ
‖L(∂)u1/2‖2L2

γ(Ω). (8)

Then u0 (resp. u1) solves the boundary value problem in the half-space Rd−1 × ]0,∞[ (resp. Rd−1 ×
]−∞, 1[) so that from [ST88] (resp. [Kre70]) we have the energy estimate: there exists γ0 > 0 (resp. γ1 > 0)
such that for all γ ≥ γ0 (resp. γ ≥ γ1):

‖u0‖2L2
γ(Ω) + ‖u0|xd=0

‖2
H
−1/2
γ (ω)

.
1

γ2

(
‖L(∂)u0‖2L2

γ(Ω) + ‖B0u0|xd=0
‖2
H

1/2
γ (ω)

)
, (9)(

resp. γ‖u1‖2L2
γ(Ω) + ‖u1|xd=1

‖2L2
γ(ω) .

1

γ
‖L(∂)u1‖2L2

γ(Ω) + ‖B1u1|xd=1
‖2L2

γ(ω)

)
. (10)

However for all j ∈ J0, 2K we have ‖L(∂)uj/2‖L2
γ(Ω) .Ad ‖f‖L2

γ(Ω) + ‖u‖L2
γ(Ω). So that from the triangle

inequality, the trace equalities u|xd=j = uj|xd=j (for j ∈ {0, 1}) combined with (8), (9) and (10) it turns out

that for all γ ≥ max(γ0, γ1/2, γ1):

γ‖u‖2L2
γ(Ω) + γ‖u|xd=0‖2H−1/2

γ (ω)
+ ‖u|xd=1‖2L2

γ(ω) .
1

γ
‖f‖2L2

γ(Ω) +
1

γ
‖g0‖H1/2

γ (ω)
+ ‖g1‖2L2

γ(ω) +
1

γ
‖u‖2L2

γ(Ω),

so that up to choose γ large enough we can absorb the term 1
γ ‖u‖

2
L2
γ(Ω) from the right hand side into the left

hand side and (5) follows for all regular solution to (1).
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3.2 Existence and uniqueness

Once the a priori energy estimate for (1) is established, the existence and the uniqueness of the solution to
(1) is proved exactly as exposed in [ST88] (in the simplified framework of constant coefficients in (1)).

A way to show the existence of a solution is to introduce a so-called dual problem of (1). More precisely
we define: 

L∗(∂)v := −
(
∂t +

∑d
j=1A

T
j ∂j

)
v = f̃ in Ω,

C0v|xd=0 = g̃0 for (t, x′) ∈ ω,
C1v|xd=1 = g̃1 for (t, x′) ∈ ω,
v|t≤0 = 0 on Γ,

(11)

where the boundary matrices are chosen in such a way that the following decompositions hold:

for ` ∈ {0, 1} , Ad = CT` N` +MT
` B`,

where M`, N`, C` ∈Mp×N (R) in order to have the Green formula (for all u, v regular enough):

〈L(∂)u, v〉 − 〈u, L∗(∂)v〉 =

1∑
`=0

(−1)`+1
(〈
N`u|xd=`, C`v|xd=`

〉
+
〈
B`u|xd=`,M`v|xd=`

〉)
, (12)

where
The end of the proof consists in showing that the dual problem (11) satisfies Assumptions 2.1, 2.2 and

2.3 in order to show that it satisfies the a priori energy estimate so that, essentially the Green formula (12)
combined with Riesz representation theorem permits to show the existence of a weak solution to (1)6.

The fact that the dual problem (11) satisfies Assumptions 2.1 and 2.2 is readable from the definition
of L∗(∂). The fact that (11) satisfies Assumption 2.3 is a consequence of the definition of the Lopatinskii
determinant for the dual problem (we refer to Theorem 4.4 of [BGS07]).

At last the ”weak=strong” lemma does not require a lot of comments because in the strip geometry there
is only one normal variable, namely xd. So that the classical regularization by a mollifier in the tangential
variables applies exactly as in the half-space geometry (see [BGS07] Section 4.5).

This ends the proof of Theorem 2.1.

4 Saturation of (5), proof of Theorem 2.2

In this section we give a proof of Theorem 2.2. The sketch of proof that we follow here relies on the
construction of a geometric optics expansion for (1) and consequently it is probably not the straighest
possible proof7.

However we believe that this sketch of proof is interesting for several reasons. The first one is that giving
an approximate solution to (1) is an interesting result in its own. The second is that the construction in
itself explains why no new loss of derivative occurs.

And finally, because the construction of the geometric optics expansions for an elliptic frequency (on
which the uniform Kreiss-Lopatinskii degenerates) is simpler than the one for a hyperbolic frequency (see
[Benc]).

6We do not expose here the precise functional or the spaces used. However they are exactly the same as the ones used in
[[ST88]-Section 1.3] up to the fact that the extra boundary condition on {xd = 1} has to be included. However this boundary
condition is harmless because it satisfies the uniform Kreiss-Lopatinskii condition so the standard duality method applies
directly.

7Indeed the fact that the estimate of [ST88] is sharp in the half-space geometry combined with finite speed of propagation
and localization arguments make the sharpness of (5) almost readable.

7



4.1 Construction of a geometric optics expansion

Let ζ := (iτ , η) ∈ Υ in all the following we consider the phase function ψ := ψ(t, x′) = τt + η · x′ and we
consider the following highly oscillating boundary value problem: for 0 < ε� 1

L(∂)uε = fε, in Ω,

B0u
ε
|xd=0 = gε0 for (t, x′) ∈ ω,

B1u
ε
|xd=1 = gε1 for (t, x′) ∈ ω,

uε|t≤0 = 0 on Γ,

(13)

where the source terms in (13) are given by:

fε(t, x) := e
i
εψ

(
fev

(
t, x;

xd
ε

)
+ fex

(
t, x;

xd − 1

ε

))
,

gε0(t, x′) := εe
i
εψg0(t, x′) and gε1(t, x′) := e

i
εψg1(t, x′).

the boundary amplitudes g0, g1 ∈ H∞(ω) vanish for negative times while the interior amplitudes fev ∈
Pev(Ω), fex ∈Pex(Ω); the profile spaces defined as follows:

Definition 4.1 (Profile space) We denote by Pev(Ω) (resp. Pex(Ω)) the set of evanescent (resp. explo-
sive) profiles.

More precisely, Pev(Ω) (resp. Pex(Ω)) is the set of functions U = U(t, x;X) ∈ H∞(Ω × R+) (resp.
H∞(Ω × R−)) vanishing on negative times and for which there exists δ > 0 such that eδXU(t, x;X) ∈
H∞(Ω× R+) (resp. H∞(Ω× R−)).

For later use we also introduce the following vectors:

Definition 4.2 Under Assumptions 2.1, 2.2 and 2.3, let ζ ∈ Υ we can define:

• a vector e := e(ζ) ∈ CN \ {0} such that kerB0 ∩ Es(ζ) = vect {e}.

• A vector b := b(ζ) ∈ Cp \ {0} such that for all v ∈ Es(ζ) we have b ·B0v = 0.

• Finally a supplementary space Ěs := Ěs(ζ) to vect{e} in Es(ζ) such that B is an isomorphism from

Ěs to b⊥.

We postulate for ansatz:

uε(t, x) ∼
∑
n≥0

εne
i
εψ

(
Uev,n

(
t, x;

xd
ε

)
+ Uex,n

(
t, x;

xd − 1

ε

))
, (14)

where for all n ≥ 0, Un,ev ∈Pev and Un,ex ∈Pex.

Injecting the ansatz (14) in the evolution equation of (13) gives (because of the definition of the profile
spaces) the cascade of equations:

L(∂X)U0,ev = 0 on Ω× R+,

L(∂X)U0,ex = 0 on Ω× R−,
L(∂X)Un+1,ev + L(∂)Un,ev = δn,0fev on Ω× R+ and ∀n ≥ 0,

L(∂X)Un+1,ex + L(∂)Un,ex = δn,0fex on Ω× R− and ∀n ≥ 0,

(15)

where δ·,· stands for the Kronecker symbol and where the operator of derivation in the fast variable L(∂X)
is given by

L(∂X) := Ad
(
∂X −A (ζ)

)
,

in which we recall that A (ζ) stands for the resolvent matrix defined in (3).
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Then plugging the ansatz (14) in the boundary conditions of (13) leads to:

∀n ≥ 0

{
B0Uev,n(t, x′, 0; 0) +B0Uex,n

(
t, x′, 0;− 1

ε

)
= δn,1g0 on ω,

B1Uev,n
(
t, x′, 1; 1

ε

)
+B1Uex,n (t, x′, 1; 0) = δn,0g1 on ω.

However by definition of the profile spaces the terms Uex,n
(
t, x′, 0;− 1

ε

)
and Uev,n

(
t, x′, 1; 1

ε

)
are O(ε∞)

so that they can be neglected in the previous boundary conditions.
Consequently in the particular setting where the frequency is elliptic we obtain a total decoupling of the

cascade of equations. It turns out that the cascades of equations to solve are:
L(∂X)U0,ev = 0 on Ω× R+,

L(∂X)Un+1,ev + L(∂)Un,ev = δn,0fev on Ω× R+ and ∀n ≥ 0,

B0Uev,n(t, x′, 0; 0) = δn,1g0 on ω and ∀n ≥ 0,

Uev,n|t≤0
= 0 on Γ and ∀n ≥ 0,

(16)

and 
L(∂X)U0,ex = 0 on Ω× R−,
L(∂X)Un+1,ex + L(∂)Un,ex = δn,0fex on Ω× R− and ∀n ≥ 0,

B1Uex,n(t, x′, 1; 0) = δn,0g1 on ω and ∀n ≥ 0,

Uex,n|t≤0
= 0 on Γ and ∀n ≥ 0.

(17)

In the following the construction of a sequence (Uex,n)n∈N satisfying (17) will not be described because
it is a slight adaptation of the works of [Mar10]-[Les07] (see also [Wil96]-[Wil00] for a construction in which
the elliptic modes are treated mode by mode, and not by a one block argument)8.

The construction of a sequence (Uev,n)n∈N satisfying (16) is based on the work of [Mar10] (up to the
little modification induced by a non-zero source term on the boundary). However, because this mode carries
the loss of regularity of the boundary value problem (1) we sketch in the following the main steps in the
construction of U0,ev.

The key ingredient in the construction of U0,ev is the following lemma (a consequence of Duhamel for-
mula)):

Lemma 4.1 [[Les07]]For X ∈ R+ and U ∈Pev define

(PevU)(t, x;X) :=eXA (ζ)Πs(ζ)U(t, x; 0)

and

(QevU)(t, x;X) :=

∫ X

0

e(X−y)A (ζ)Πs(ζ)A−1
d U(t, x; y) dy −

∫ ∞
X

e(X−y)A (ζ)Πu(ζ)A−1
d U(t, x; y) dy.

Then for all F ∈ Pev the equation L(∂X)U = F on Ω × R+ admits a solution U ∈ Pev written under
the form U = PevU + QevF .

From Lemma 4.1 we obtain the ”polarization” relation on the leading order amplitude that is U0,ev =
PevU0,ev. Consequently from the definition of Pev we deduce that to determine U0,ev it is sufficient to
determine U0,ev(t, x; 0) and that U0,ev ∈ Es(ζ).

To determine U0,ev(t, x; 0), we first determine the ”double” trace U0,ev(t, x
′, 0; 0) and then to extend this

trace to xd > 0 we consider it as a boundary layer.
The boundary condition of (17) written for n = 0 implies that U0,ev(t, x

′, 0; 0) ∈ kerB0 so that there
exists a scalar function %0 defined on ω such that U0,ev(t, x

′, 0; 0) = %0(t, x′)e and the construction of U0,ev

only requires the determination of %0.

8Moreover this construction is more or less contained (in a simpler setting) in the construction of the (Uev,n)n∈N bellow.
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In order to determine %0 we consider the amplitude of order one. Because of Lemma 4.1 applied to the
second equation of (16) (for n = 1) we have (I−Pev)U1,ev = Qev (fev − L(∂)Uev,0). Injecting this expression
in the boundary condition of (16) (for n = 1) then gives

b ·B0(PevU1,ev)|xd=X=0︸ ︷︷ ︸
=0

−b ·B0

∫ ∞
0

e−sA (ζ)Πu(ζ)A−1
d (fev − L(∂)U0,ev) (t, x′, 0; s) ds = b · g0.

Expanding the left hand side of the previous equation shows that %0 satisfies the transport equation:{(
b ·B0I0∂t +

∑d−1
j=1 b ·B0Ij∂j

)
%0 = g̃0 in ω,

%0|t≤0
= 0,

(18)

where g̃0 := b ·
(
g0 +B0

∫∞
0
e−sA (ζ)Πu(ζ)A−1

d fev ds
)

and for all j ∈ J0, d− 1K,

Ij :=

∫ ∞
0

e−sA (ζ)Πu(ζ)A−1
d Aje

sA (ζ)e ds (with the convention A0 = I) .

Reiterating the same proof as the one of [Mar10], one can show that for all j ∈ J0, d − 1K, Ij =
Πu(ζ)∂ηjΠ

s(ζ)e = ∂ηje(ζ) (with the convention η0 = τ). A direct consequence of Assumption 2.3 is that the
Ij can be expressed in terms of the (real valued) function θ. More precisely, we obtain that (18) is equivalent
to the following transport equation (with real coefficients){

b · β(ζ)
(
∂τθ(ζ)∂t +∇ηθ(ζ) · ∇x′

)
%0 = −ig̃0 in ω,

%0|t≤0
= 0,

(19)

where β(ζ) ∈ Cp the first column of P (ζ) (see Assumption 2.3) satisfies b · β(ζ) 6= 0.

A simple integration along the characteristics then determines the value of %0 and the value of the
”double” trace U0,ev(t, x

′, 0; 0). To complete the determination of U0,ev it is then sufficient to extend this
”double” trace in a single one by setting, for example,

U0,ev(t, x;X) := χ(xd)%0(t, x′)eXA (ζ)e, (20)

where χ ∈ D(]−1/2, 1/2[ ;R) satisfies χ(0) = 1.

Reiterating essentially the same kind of computations, we can easily construct the higher order am-
plitudes, namely the (Un,ev)n≥1 and the (Un,ex)n≥1 and show that the truncated ansatz (14) is a good
approximation of the exact solution uε to (13). More precisely we have the following result:

Theorem 4.1 Under Assumptions 2.1-2.2 and 2.3, there exists (Un,ev)n≥0 ∈PN
ev (resp. (Un,ex)n≥0 ∈PN

ex)
satisfying the cascade of equations (16) (resp. (17)). Moreover let uε be the exact solution to (16) and for
N0 ∈ N let

uεN0
:=

N0∑
n=0

εne
i
εψ

[
Un,ev

(
t, x;

xd
ε

)
+ Un,ex

(
t, x;

xd − 1

ε

)]
, (21)

then for all T > 0, α ∈ Nd+1 and ε ∈ ]0, 1] we have the estimate ε|α|‖uε − uεN0
‖L2(ΩT ) .α εN0+3/2.

4.2 Proof of Theorem 2.2

With Theorem 4.1 in hand, the proof of Theorem 2.2 is quite immediate.
By contradiction we assume that s = 1

2 − δ for some δ > 0. In (13) let the source terms be given by
fε ≡ 0, gε1 ≡ 0 and

gε0(t, x′) := εe
i
εψ(t,x′)κ(t, x′)b,
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where κ ∈ D(ω;R). In the following, uε stands for the exact solution to (13).

By standard interpolation it turns out gε0 is O(ε1/2+δ) in Hs(ωT ). So the energy estimate (7) implies
that uε is O(ε1/2+δ) in L2(ΩT ). Theorem 4.1 applied to N0 = 1 combined with the triangle inequality show
that uε0 (see (21)) is also O(ε1/2+δ).

Using a technical lemma from [Ben14] (more precisely Lemma 4.1) it implies that U0,ev is zero in L2(ΩT ).
This is a contradiction with the explicit formula (20) in which %0 can not be zero because it is the solution
to the transport equation (19) with interior source term g̃0 = κ|b|2 6≡ 0.
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mathématique et applications, pages 319–356. Gauthier-Villars, 1988.

11



[Mar10] A. Marcou. Rigorous weakly nonlinear geometric optics for surface waves. Asymptot. Anal.,
69(3-4):125–174, 2010.

[Mét00] G. Métivier. The block structure condition for symmetric hyperbolic systems. Bull. London
Math. Soc., 32(6):689–702, 2000.

[MR83] A. Majda and R. Rosales. A theory for spontaneous Mach stem formation in reacting shock
fronts. I. The basic perturbation analysis. SIAM J. Appl. Math., 43(6):1310–1334, 1983.

[Sar65] Leonard Sarason. On hyperbolic mixed problems. Arch. Rational Mech. Anal., 18:310–334,
1965.

[ST88] M. Sablé-Tougeron. Existence pour un problème de l’élastodynamique Neumann non linéaire
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