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Abstract Craig Interpolation is a standard method to construct and refine abstractions in
model checking. To obtain abstractions that are suitable for the verification of software pro-
grams or hardware designs, model checkers rely on theorem provers to find the right inter-
polants, or interpolants containing the right predicates, in a generally infinite lattice of inter-
polants for any given interpolation problem. We present a semantic and solver-independent
framework for systematically exploring interpolant lattices, based on the notion of inter-
polation abstraction. We discuss how interpolation abstractions can be constructed for a
variety of logics, and how they can be applied in the context of software model checking.

Keywords Craig Interpolation · Abstraction ·Model Checking

1 Introduction

Model checkers use abstractions to reduce the state space of software programs or hard-
ware designs, either to speed up the verification process, or as a way of handling infinite
state space. One of the most common methods to construct or refine abstractions is Craig
interpolation [15], a logical tool to extract concise explanations for the (bounded) unreach-
ability of error locations or states. To ensure rapid convergence, model checkers rely on
theorem provers to find suitable interpolants, or interpolants containing the right predicates,
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in a generally infinite lattice of interpolants for any given interpolation problem. In the past,
a number of techniques have been proposed to guide theorem provers towards good inter-
polants (see Sect. 2 for an overview); however, those techniques either suffer from the fact
that they require invasive changes to the theorem prover, or from the fact that they operate
on a single proof of path infeasibility, and are therefore limited in the range of interpolants
that can be produced.

We present a semantic framework for systematically exploring interpolant lattices, based
on the notion of interpolation abstraction. Our approach is solver-independent and works
by instrumenting the interpolation query, and therefore does not require any changes to the
theorem prover. Despite simple implementation, interpolation abstractions are extremely
flexible, and can incorporate domain-specific knowledge about promising interpolants, for
instance in the form of interpolant templates used by the theorem prover. The framework
can be used for a variety of logics, including arithmetic domains or programs operating on
arrays or heap, and is also applicable for quantified interpolants.

We have integrated interpolation abstraction into the model checker Eldarica [33], which
uses recursion-free Horn clauses (a generalisation of Craig interpolation) to construct ab-
stractions [26,50]. Our experiments show that interpolation abstraction can prevent diver-
gence of the model checker in cases that are often considered challenging.

On this article. This article is partly based on a paper at FMCAD 2013 [51]. Compared to
the conference paper, the article considers a more general form of interpolation abstractions,
with the result that central sections of the article were rewritten, as well as an extended
experimental evaluation. New results also include Sect. 5.2, 6, 7.3, and 9.

1.1 Introductory Example

We consider an example inspired by the program discussed in the introduction of [36]. The
example exhibits a situation that is generally considered challenging for automatic verifiers:

i = 0; x = j;

while (i<50) {i++; x++;}

if (j == 0) assert (x >= 50);

To show that the assertion holds, a predicate abstraction-based model checker would con-
struct a set of inductive invariants as Boolean combination of given predicates. If needed,
Craig interpolation is used to synthesise further predicates.

In the example, we might consider the path to the assertion in which the loop termi-
nates after one iteration. This path could lead to an assertion violation if the conjunction of
assignments and guards on the path (in SSA form) is satisfiable:

i0 � 0 ∧ x0 � j ∧ i0 < 50 ∧ i1 � i0+1 ∧ x1 � x0+1 (1)

∧ i1 ≥ 50 ∧ j � 0 ∧ x1 < 50 (2)

It is easy to see that the formula is unsatisfiable, and that the path therefore cannot cause
errors. To obtain predicates that prevent the path from being considered again in the model
checking process, Craig interpolants are computed for different partitionings of the con-
juncts; we consider the case (1)∧ (2), corresponding to the point on the path where the loop
condition is checked for the second time. An interpolant is a formula I that satisfies the im-
plications (1)→ I and (2)→ ¬I, and that only contains variables that occur in both (1) and
(2); a model checker will use I as a candidate loop invariant.



The interpolation problem (1) ∧ (2) has several solutions, including I1 = (i1 ≤ 1) and
I2 = (x1 ≥ i1 + j). What makes the example challenging is the fact that a theorem prover
is likely to compute interpolants like I1, recognising the fact that the loop cannot terminate
after only one iteration as obvious cause of infeasibility. I1 does not describe a property that
holds across loop iterations, however; after adding I1 as a predicate, a model checker would
have to consider the case that the loop terminates after two iterations, leading to a similar
formula i2 ≤ 2, and so on. Model checking will only terminate after 50 loop unwindings; in
similar situations with unbounded loops, picking interpolants like I1 will lead to divergence
(non-termination) of a model checker.

In contrast, the interpolant I2 encodes a deeper explanation for infeasibility, the depen-
dency between i and x, and takes the actual assertion to be verified into account. Since I2

represents an inductive loop invariant, adding it as predicate will lead to significantly faster
convergence of a model checker.

This article presents a methodology to systematically explore solutions of interpolation
problems, enabling a model checker to steer the theorem prover towards interpolants like I2.
This is done by modifying the query given to the theorem prover, through the application
of interpolation abstractions that capture domain knowledge about useful interpolants. To
obtain I2, we over-approximate the interpolation query (1) ∧ (2) in such a way that I1 no
longer is a valid interpolant:(

i0 � 0 ∧ x0 � j′ ∧ i0 < 50 ∧ i′1 � i0+1 ∧ x′1 � x0+1 ∧ x′1 − i′1 � x1 − i1 ∧ j′ � j
)

∧
(

x1 − i1 � x′′1 − i′′1 ∧ j � j′′ ∧ i′′1 ≥ 50 ∧ j′′ � 0 ∧ x′′1 < 50
)

The rewriting consists of two parts: (i) the variables x1, i1, j are renamed to x′1, i
′
1, j′ and

x′′1 , i
′′
1 , j′′, respectively; (ii) limited knowledge about the values of x1, i1, j is re-introduced,

by adding the grey parts of the interpolation query. Note that the formula is still unsatisfiable.
Intuitively, the theorem prover “forgets” the precise value of x1, i1, ruling out interpolants
like I1; however, the prover retains knowledge about the difference x1 − i1 (and the value of
j), which is sufficient to compute relational interpolants like I2.

The terms x1−i1 and j have the role of templates, and encode the domain knowledge that
linear relationships between variables and the loop counter are promising building blocks
for invariants (the experiments in Sect. 8 illustrate the generality of this simple kind of tem-
plate). Template-generated abstractions represent the most important class of interpolation
abstractions considered in this article (but not the only one), and are extremely flexible: it is
possible to use both template terms and template formulae, but also templates with quanti-
fiers, parameters, or infinite sets of templates.

Templates are in our approach interpreted semantically, not syntactically, and it is up
to the theorem prover to construct interpolants from templates, Boolean connectives, or
other interpreted operations. For instance, the templates x1 − i1 and i1 generate the same
interpolation abstraction as the templates x1 and i1, since the values of the terms x1 − i1, i1
uniquely determine the values of x1, i1, and vice versa. This adds to the flexibility of the
framework, among others by including the possibility of disjunctive predicates at no extra
cost.

1.2 Contributions and Organisation of the Article

– The framework of interpolant abstractions (Sect. 4);



– A catalogue of interpolation abstractions, in particular interpolation abstractions gener-
ated from template terms and template predicates (Sect. 5);

– Algebraic properties of the full space of interpolation abstractions (Sect. 6);
– Algorithms to explore lattices of interpolation abstractions, in order to compute a range

of interpolants for a given interpolation problem (Sect. 7);
– An experimental evaluation using C programs and Horn clause benchmarks (Sect. 8);
– A complete case study on the use of interpolation abstractions for constructing effective

algorithms for reachability analysis in unbounded Petri nets (Sect. 9).

2 Related Work

Syntactic restrictions of considered interpolants [36,44], for instance limiting the mag-
nitude of literal constants in interpolants, can be used to enforce convergence and com-
pleteness of model checkers. This method is theoretically appealing, and has been the main
inspiration for the work presented in this article. In practice, syntactic restrictions tend to
be difficult to implement, since they require deep modifications of an interpolating theo-
rem prover; in addition, completeness does not guarantee convergence within an acceptable
amount of time. We present an approach that is semantic and more pragmatic in nature; while
not providing any theoretic convergence guarantees, the use of domain-specific knowledge
can lead to performance advantages in practice.

It has been proposed to use term abstraction to improve the quality of interpolants [2,
57]: intuitively, the occurrence of individual symbols in an interpolant can be prevented
through renaming. Our approach is highly related to this technique, but is more general
since it enables fine-grained control over symbol occurrences in an interpolant. For instance,
in Sect. 1.1 arbitrary occurrence of the variable i1 is forbidden, but occurrence in the con-
text x1 − i1 is allowed.

The strength of interpolants can be controlled by choosing different interpolation cal-
culi [18,48], applied to the same propositional resolution proof. To the best of our knowl-
edge, there are few conclusive experiments relating interpolant strength with model check-
ing performance. In [47], slight performance improvements are reported when using weak
interpolants in the context of bounded model checking with function summaries; however,
the results are dominated by improvements achieved when optimising the size of inter-
polants, preferring smaller over bigger interpolants. In addition, the extraction of different
interpolants from the same proof is less flexible than imposing conditions already on the
level of proof construction; if a proof does not leverage the right arguments why a program
path is infeasible, it is unlikely that good interpolants can be extracted using any method.

Minimisation of proofs and interpolants through proof transformation [46,31,47] can
have a positive impact on model checking performance; however, this is mainly due to the
reduced overhead when processing smaller formulae, less due to a reduction in the number
of refinement steps needed. The same comments as in the previous paragraph apply.

Divergence of model checkers can be prevented by combining interpolation with accel-
eration, which computes precise loop summaries for restricted classes of programs [12,53,
32]. Again, our approach is more pragmatic, can incorporate domain knowledge, but is not
restricted to any particular class of programs. Our experiments show that our method is sim-
ilarly effective as acceleration for preventing divergence when verifying error-free systems
(Sect. 9). However, in contrast to acceleration, our method does not support the construction
of long counterexamples spanning many loop iterations.



Templates have been used to synthesise program invariants in various contexts, for in-
stance [21,4,55], and typically search for invariants within a rigidly defined set of constraints
(e.g., with predefined Boolean or quantifier structure). Our approach can be used similarly,
with complex building blocks for invariants specified by the user, but leaves the construction
of interpolants from templates entirely to the theorem prover.

A number of systems compute interpolants by means of constraint-based interpola-
tion, including CLP-Prover [52] and CSIsat [7]. This approach is similar in spirit to the
template methods discussed in the previous paragraph, and imposes strong restrictions on
the shape of considered interpolants. To the best of our knowledge, no attempts have been
made to exploit domain-specific knowledge to guide constraint-based interpolation tools.
Since our abstraction techniques are agnostic to the underlying interpolation engine, they
can also be used in the context of constraint-based interpolation.

A recent paper proposes the generation of beautiful interpolants [1], which are in-
terpolants with particularly simple shape and Boolean structure; empirically, interpolants
of this kind were found to be beneficial for the convergence of model checkers. Domain-
specific knowledge is not explicitly used when computing beautiful interpolants, but it is
possible to use the procedure in [1] in combination with our abstraction framework.

Our interpolation abstraction technique has some similarities with the implicit predi-
cate abstraction approach [56,14], which can be used to integrate abstraction into various
model checking algorithms, including k-induction and IC3. Both in implicit predicate ab-
straction and in our approach, logical characterisations of abstractions are generated and
handed over to a theorem prover. Implicit predicate abstraction has no direct relationship to
interpolation, however.

Petri Nets are one of the most popular formal models for the representation and the
analysis of parallel processes [19]. The reachability problem for Petri nets is central since
many computational problems (even outside the realm of parallel processes) reduce to this
problem. In 1981, Mayr [42] provided a proof of decidability of the reachability problem.
Unfortunately, nowadays no tool implements a decision procedure for these problem. In fact,
the algorithms provided by Mayr, and later by Kosaraju [37] and Lambert [38] are difficult
to implement and computationally very expensive.

Recently [39,40], the reachability problem for Petri nets was proved to be decidable
thanks to inductive invariants in the Presburger arithmetic (first-order logic over the
integers with the addition). More precisely, if a marking ȳ is not reachable from a mark-
ing x̄, there exists an inductive invariant definable in Presburger arithmetic that contains
the initial marking x̄ but not the final one ȳ. Since we can decide if a Presburger formula
denotes a forward inductive invariant, we deduce that there exist checkable certificates of
non-reachability in the Presburger arithmetic. In particular, there exists a simple algorithm
for deciding the general reachability problem based on two semi-algorithms. A first one that
tries to prove the reachability by enumerating finite sequences of actions and a second one
that tries to prove the non-reachability by enumerating Presburger formulas. Computing a
sequence of actions leading the final marking, or a Presburger formula denoting a witness
of non-reachability with efficient algorithms are two challenging problems; the application
of interpolation abstractions to the latter is discussed in Sect. 9.



3 Preliminaries

3.1 Craig Interpolation

We assume familiarity with standard classical logic, including notions like terms, formulae,
Boolean connectives, quantifiers, satisfiability, structures, models. For an overview, see, e.g.,
[27]. The main logics considered in this article are classical first-order logic with equality
(FOL) and Presburger arithmetic (PA), but our method is not restricted to FOL or PA. In the
context of SMT, the quantifier-free fragment of FOL, with equality � as the only predicate,
is usually denoted by EUF.

Given any logic, we distinguish between logical symbols, which include Boolean con-
nectives, equality �, interpreted functions, etc., and non-logical symbols, among others vari-
ables and uninterpreted functions. If s̄ = 〈s1, . . . , sn〉 is a list of non-logical symbols, we
write φ[s̄] (resp., t[s̄]) for a formula (resp., term) containing no non-logical symbols other
than s̄. We write s̄′ = 〈s′1, . . . , s

′
n〉 (and similarly s̄′′, etc.) for a list of primed symbols; φ[s̄′]

(resp., t[s̄′]) is the variant of φ[s̄] (resp., t[s̄]) in which s̄ has been replaced with s̄′.
An interpolation problem is a conjunction A[s̄A, s̄] ∧ B[s̄, s̄B] over disjoint lists s̄A, s̄, s̄B

of symbols. An interpolant is a formula I[s̄] such that A[s̄A, s̄]⇒ I[s̄] and B[s̄, s̄B]⇒ ¬I[s̄].
We say that an interpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B] is solvable if an interpolant exists;
solvability of the problem implies that A[s̄A, s̄]∧B[s̄, s̄B] is unsatisfiable. We say that a logic
has the interpolation property if also the opposite holds: whenever A[s̄A, s̄] ∧ B[s̄, s̄B] is
unsatisfiable, there is an interpolant I[s̄]. For sake of presentation, we only consider logics
with the interpolation property.1

We represent binary relations as formulae R[s̄1, s̄2] over two lists s̄1, s̄2 of symbols, and
relations over a vocabulary s̄ as R[s̄, s̄′]. The identity relation over s̄ is denoted by Id[s̄, s̄′].

With slight abuse of notation, if φ[x1, . . . , xn] is a formula containing the free vari-
ables x1, . . . , xn, and t1, . . . , tn are ground terms, then we write φ[t1, . . . , tn] for the formula
obtained by substituting t1, . . . , tn for x1, . . . , xn.

3.2 Stateless Logics

Some of the results presented in this article require an additional assumption about a logic:

Definition 1 A logic is called stateless if conjunctions A[s̄] ∧ B[t̄] of satisfiable formu-
lae A[s̄], B[t̄] over disjoint lists s̄, t̄ of non-logical symbols are satisfiable.

Intuitively, formulae in a stateless logic interact only through non-logical symbols, not via
any notion of global state, structure, etc. Many logics that are relevant in the context of ver-
ification are stateless, in particular quantifier-free FOL, PA, logics based on the theory of
arrays, etc. An example of a stateful logic is full FOL with equality. For instance, consider
the conjunction (∀x, y. x � y) ∧ (∃x, y. x 6� y) in full FOL. Although the individual con-
juncts ∀x, y. x� y and ∃x, y. x 6� y are satisfiable, their conjunction is not: the first conjunct
enforces a universe with only one element, whereas the second conjunct requires at least
two elements.

1 The concept of interpolation abstraction can in principle also be used with other logics (for instance,
the theory of arrays without quantifiers, most versions of which do not have the interpolation property), at
the cost of modifying some of the algorithms in the article. Among others, in Sect. 7 it would no longer be
possible to check existence of interpolants by just proving unsatisfiability of constructed formulae.



Other stateful logics are modal logic or separation logic; often, such logics can naturally
be made stateless by enriching their vocabulary. Statelessness is important in this article,
since we use the concept of renaming of symbols to ensure independence of formulae.

3.3 Orders and Lattices

A poset is a set D equipped with a partial ordering v. A poset 〈D,v〉 is bounded if it has a
least element ⊥ and a greatest element >. We denote the least upper bound and the greatest
lower bound of a set X ⊆ D by

⊔
X and

�
X, respectively, provided that they exist. Given

elements a, b ∈ D, we say b is a successor (resp., predecessor) of a if a v b but a , b,
and immediate successor if in addition there is no c ∈ D \ {a, b} with a v c v b (resp.,
immediate predecessor). Elements a, b ∈ D with a @ b and b @ a are incomparable. An
element a ∈ X ⊆ D is a maximal element (resp., minimal element) of X if a v b (resp.,
b v a) and b ∈ X imply a = b.

A lattice L = 〈D,v〉 is a poset 〈D,v〉 such that atb =
⊔
{a, b} and aub =

�
{a, b} exist

for all a, b ∈ D. L is a complete lattice if all non-empty subsets X ⊆ D have a least upper
bound and greatest lower bound. A complete lattice is bounded by definition. A non-empty
subset M ⊆ D forms a sub-lattice if a t b ∈ M and a u b ∈ M for all a, b ∈ M. A sub-lattice
M ⊆ D is convex if a v c v b and a, b ∈ M imply c ∈ M. A lattice is distributive if for all
a, b, c ∈ D, a u (b t c) = (a u b) t (a u c). A completely distributive lattice is a complete
lattice in which arbitrary joins (t) distribute over arbitrary meets (u).

A function f : D1 → D2, where 〈D1,v1〉 and 〈D2,v2〉 are posets, is monotonic if x v1 y
implies f (x) v2 f (y), and anti-monotonic if x v1 y implies f (y) v2 f (x).

4 Interpolation Abstractions

4.1 Basic Definitions

This section defines the concept of interpolation abstractions, and derives basic properties.
Interpolation abstractions are represented by transformations of the formulae to be interpo-
lated; in the most general formulation, this is represented via a pair of extensive functions
on formulae:

Definition 2 (Interpolation abstraction) Suppose s̄ is a list of non-logical symbols, for
some arbitrary but fixed logic. An interpolation abstraction is a pair (TA,TB) of functions
mapping formulae to formulae, with the following properties:

(i) for any formula A[s̄A, s̄], and s̄A disjoint from s̄, the result of applying TA is a new
formula A′[s̄A′ , s̄] = TA(A[s̄A, s̄]) (again with s̄A′ and s̄ disjoint) such that the implication
(∃s̄A. A[s̄A, s̄])⇒ (∃s̄A′ . A′[s̄A′ , s̄]) holds.2

(ii) similarly, for any formula B[s̄, s̄B], and B′[s̄, s̄B′ ] = TB(B[s̄, s̄B]), it is the case that
(∃s̄B. B[s̄, s̄B])⇒ (∃s̄B′ . B′[s̄, s̄B′ ]).

(iii) for any A[s̄A, s̄], B[s̄, s̄B], and disjoint lists s̄A, s̄, s̄B of symbols, the common symbols
of the formulae TA(A[s̄A, s̄]) and TB(B[s̄, s̄B]) are contained in s̄.

2 Since s̄A, s̄A′ might contain functions or predicates, depending on the considered logic, the quantifiers
can be higher order. An equivalent model-theoretic definition, avoiding the quantifiers, would be: “For every
model S of A[s̄A, s̄], there is a model S ′ of A′[s̄A′ , s̄] that agrees with S on the interpretation of s̄.”



A[s]
B[s]TA(A[s])

TB(B[s])

Fig. 1: Illustration of interpolation abstraction, assuming that only common non-logical
symbols exist. Both the concrete and abstract problem are solvable.

We call A[s̄A, s̄]∧ B[s̄, s̄B] a concrete interpolation problem, and TA(A[s̄A, s̄])∧TB(B[s̄, s̄B])
the corresponding abstract interpolation problem for the interpolation abstraction (TA,TB).

In other words, interpolation abstractions define over-approximations of the conjuncts to
be interpolated. Assuming that the concrete interpolation problem is solvable, we call the
interpolation abstraction feasible if also the abstract interpolation problem is solvable, and
infeasible otherwise.

Example 1 An illustration is given in Fig. 1. The concrete interpolation problem is solvable
since the solution sets A[s̄] and B[s̄] are disjoint, i.e., A[s̄] ∧ B[s̄] is unsatisfiable. An in-
terpolant is a formula I[s̄] that represents a superset of A[s̄], but that is disjoint with B[s̄].
By definition, the formula TA(A[s̄]) represents an over-approximation of A[s̄]; similarly for
TB(B[s̄]). This ensures the soundness of computed abstract interpolants (see Lem. 1 below).
In Fig. 1, despite over-approximation, the abstract interpolation problem is solvable, which
means that the interpolation abstraction is feasible.

While there are many ways to construct interpolation abstractions, in the scope of this
article we mainly concentrate on interpolation abstractions defined by means of relations:

Definition 3 (Relation abstraction) Suppose s̄ is a list of non-logical symbols, and s̄′ and
s̄′′ fresh copies of s̄. A relation abstraction is a pair (RA[s̄′, s̄],RB[s̄, s̄′′]) of formulae with
the property that RA[s̄, s̄] and RB[s̄, s̄] are valid (i.e., Id[s̄′, s̄] ⇒ RA[s̄′, s̄] and Id[s̄, s̄′′] ⇒
RB[s̄, s̄′′]). A relation abstraction defines an interpolation abstraction (TA,TB) by:

TA(A[s̄A, s̄]) = A[s̄A, s̄′] ∧ RA[s̄′, s̄], TB(B[s̄, s̄B]) = RB[s̄, s̄′′] ∧ B[s̄′′, s̄B] .

Thus, the relation abstraction of a concrete interpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B] is(
A[s̄A, s̄′] ∧ RA[s̄′, s̄]

)
∧

(
RB[s̄, s̄′′] ∧ B[s̄′′, s̄B]

)
.

Note that properties (i) and (ii) in Def. 2 are ensured by requiring that the relations RA[s̄′, s̄]
and RB[s̄, s̄′′] subsume the identity relation (RA[s̄, s̄] and RB[s̄, s̄] are valid).



Example 2 The interpolation abstraction applied in Sect. 1.1 is a relation abstraction. The
common symbols of the interpolation problem are s̄ = 〈x1, i1, j〉, and the relation abstraction
is defined by RA = (x′1 − i′1 � x1 − i1 ∧ j′ � j) and RB = (x1 − i1 � x′′1 − i′′1 ∧ j � j′′).

Finally, we can state a (straightforward) result about the correctness of interpolants com-
puted using interpolation abstractions:

Lemma 1 (Soundness) Every interpolant of the abstract interpolation problem is also an
interpolant of the concrete interpolation problem (but in general not vice versa).

Proof Suppose A′[s̄A′ , s̄] = TA(A[s̄A, s̄]) and B′[s̄, s̄B′ ] = TB(B[s̄, s̄B]). An abstract inter-
polant only contains symbols from s̄ (due to property (iii) of Def. 2), i.e., is of the form I[s̄].
It also satisfies A′[s̄A′ , s̄]⇒ I[s̄] and B′[s̄, s̄B′ ]⇒ ¬I[s̄], and thus ∃s̄A′ . A′[s̄A′ , s̄]⇒ I[s̄] and
∃s̄B′ . B′[s̄, s̄B′ ] ⇒ ¬I[s̄]. Thanks to properties (i) and (ii) in Def. 2, this yields the implica-
tions A[s̄A, s̄]⇒ I[s̄] and B[s̄, s̄B]⇒ ¬I[s̄]. ut

4.2 Interpolant Lattices

Interpolation abstractions can be used to guide interpolation engines, by restricting the
space Inter(A[s̄A, s̄], B[s̄, s̄B]) of interpolants satisfying an interpolation problem. Since the
set Inter(A[s̄A, s̄], B[s̄, s̄B])/≡ of interpolant classes (modulo logical equivalence) is closed
under conjunctions and disjunctions, the structure (Inter(A[s̄A, s̄], B[s̄, s̄B])/≡, ⇒) forms a
lattice. Fig. 2 shows the interpolant lattice for the example in Sect. 1.1; this lattice has a
strongest concrete interpolant I⊥ and a weakest concrete interpolant I>.3

For a feasible abstraction, the lattice
(
Inter(TA(A[s̄A, s̄′]), TB(B[s̄′′, s̄B]))/≡, ⇒

)
of

abstract interpolants is a sub-lattice of the concrete interpolant lattice. The sub-lattice is
convex, because if I1 and I3 are abstract interpolants and I2 is a concrete interpolant with
I1 ⇒ I2 ⇒ I3, then also I2 is an abstract interpolant. The choice of the function TA in
an interpolation abstraction constrains the lattice of abstract interpolants from below, the
function TB from above.

We illustrate two disjoint sub-lattices in Fig. 2: the left box is the sub-lattice for the
relation abstraction (i′1 � i1, i1 � i′′1 ), while the right box represents the relation abstraction

(x′1 − i′1 � x1 − i1 ∧ j′ � j, x1 − i1 � x′′1 − i′′1 ∧ j � j′′)

used in Sect. 1.1 to derive interpolant I2.

As the following lemma shows, there are no principal restrictions how fine-grained the
guidance enforced by an interpolation abstraction can be; however, since abstraction is a
semantic notion, we can only impose constraints up to equivalence of interpolants:

Lemma 2 (Completeness) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem with
interpolant I[s̄] in a stateless logic, such that both A[s̄A, s̄] and B[s̄, s̄B] are satisfiable (the
problem is not degenerate). Then there is a feasible interpolation abstraction, definable as
a relation abstraction in the same logic, such that every abstract interpolant is logically
equivalent to I[s̄].

3 In general, the interpolant lattice might be incomplete and not contain such elements.



x1 � j + 1 ∧ i1 � 1

j 6� 0 ∨ i1 ≤ 49 ∨ x1 ≥ 50
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i1 ≤ 1

i1 ≤ 2

i1 ≤ 49

x1 � i1 + j

x1 ≥ i1 + j

j 6� 0 ∨ x1 ≥ i1

.
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I1

I2
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Fig. 2: Parts of the interpolant lattice for the example in Sect. 1.1 (up to equivalence). The
dashed boxes represent the sub-lattices for the abstraction induced by the template terms {i1}
(left) and {x1 − i1, j} (right).

Proof Choose the relation abstraction (I[s̄′] → I[s̄], I[s̄] → I[s̄′′]). Since I[s̄] is an in-
terpolant of the abstract interpolation problem, the abstract problem is solvable. Further,
assume that I′[s̄] is an arbitrary abstract interpolant, i.e.,

A[s̄A, s̄′] ∧ (I[s̄′]→ I[s̄]) ⇒ I′[s̄] and (I[s̄]→ I[s̄′′]) ∧ B[s̄′′, s̄B] ⇒ ¬I′[s̄] .

By rewriting the left-hand sides of the entailments, we can conclude I[s̄] ⇔ I′[s̄]. We only
show one of the directions:

A[s̄A, s̄′] ∧ (I[s̄′]→ I[s̄]) ⇔ (A[s̄A, s̄′] ∧ ¬I[s̄′]) ∨ (A[s̄A, s̄′] ∧ I[s̄])

⇔ A[s̄A, s̄′] ∧ I[s̄]

From (A[s̄A, s̄′] ∧ I[s̄])⇒ I′[s̄], it follows that I[s̄]⇒ I′[s̄], since A[s̄A, s̄′] is satisfiable and
does not contain any symbols from s̄, and the considered logic is stateless. ut

5 A Catalogue of Interpolation Abstractions

This section introduces a range of practically relevant relation abstractions, mainly defined
in terms of templates as illustrated in Sect. 1.1. For any interpolation abstraction, it is inter-
esting to consider the following questions:

(i) provided the concrete interpolation problem is solvable, characterise the cases in which
also the abstract problem can be solved (how coarse the abstraction is);

(ii) provided the abstract interpolation problem is solvable, characterise the space of ab-
stract interpolants.

The first point touches the question to which degree an interpolation abstraction limits the
set of proofs that a theorem prover can find. We hypothesise (and explain in Sect. 1.1) that
it is less important to generate interpolants with a specific syntactic shape, than to force a
theorem prover to use the right argument for showing that a path in a program is safe.



We remark that interpolation abstractions can also be combined, for instance to cre-
ate abstractions that include both template terms and template predicates. In general, the
component-wise conjunction of two interpolation abstractions is again a well-formed ab-
straction, as is the disjunction. More details are given in Sect. 6.

5.1 Finite Term Interpolation Abstractions

The first family of interpolation abstractions is defined with the help of finite sets T of
template terms, and formalises the abstraction used in Sect. 1.1. Intuitively, abstract inter-
polants for a term abstraction induced by T are formulae that only use elements of T , in
combination with logical symbols, as building blocks (a precise characterisation is given
in Lem. 4 below). For the case of interpolation in EUF (quantifier-free FOL without un-
interpreted predicates), this means that abstract interpolants are Boolean combinations of
equations between T terms. In linear arithmetic, abstract interpolants may contain equations
and inequalities over linear combinations of T terms.

The relations defining a term interpolation abstraction follow the example given in
Sect. 1.1, and assert that primed and unprimed versions of T terms have the same value.
As a consequence, nothing is known about the value of unprimed terms that are not men-
tioned in T .

Definition 4 (Term interpolation abstraction) Suppose s̄ is a list of non-logical symbols,
s̄′ and s̄′′ fresh copies of s̄, and T = {t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The relation
abstraction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

ti[s̄′] � ti[s̄], RT
B[s̄, s̄′′] =

n∧
i=1

ti[s̄] � ti[s̄′′]

is called term interpolation abstraction over T .

Term abstractions are feasible if and only if a concrete interpolant exists that can be
expressed purely using T terms:

Lemma 3 (Solvability) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem, and T =

{t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The abstract interpolation problem for the ab-
straction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solvable if and only if there is a formula I[x1, . . . , xn] over

n variables x1, . . . , xn (and no further non-logical symbols) such that I[t1[s̄], . . . , tn[s̄]] is an
interpolant of A[s̄A, s̄] ∧ B[s̄, s̄B].

Proof “⇐”: I[t1[s̄], . . . , tn[s̄]] is also an abstract interpolant, which implies that the abstract
interpolation problem is solvable.

“⇒”: suppose the abstract interpolation problemA[s̄A, s̄′] ∧
n∧

i=1

ti[s̄′] � ti[s̄]

 ∧  n∧
i=1

ti[s̄] � ti[s̄′′] ∧ B[s̄′′, s̄B]

 (3)

is solvable, which means that (3) is an unsatisfiable formula. Then also the following formula
is unsatisfiable (for fresh variables x1, . . . , xn):A[s̄A, s̄′] ∧

n∧
i=1

ti[s̄′] � xi

 ∧  n∧
i=1

xi � ti[s̄′′] ∧ B[s̄′′, s̄B]

 (4)



Namely, suppose (4) is satisfied by the model S . The model can be extended to a model S ′

of (3) by interpreting the symbols s̄ with the same value as the symbols s̄′.
Given that (4) is unsatisfiable, due to the interpolation property there is an interpolant

I[x1, . . . , xn] for (4). By the substitution theorem, then also I[t1[s̄], . . . , tn[s̄]] is an interpolant
for (3). Finally, by Lem. 1, I[t1[s̄], . . . , tn[s̄]] is also an interpolant of the original interpolant
problem A[s̄A, s̄] ∧ B[s̄, s̄B]. ut

Example 3 Consider the interpolation abstraction used in Sect. 1.1, which is created by the
set T = {x1 − i1, j} of terms. The abstract interpolation problem is solvable with interpolant
x1 ≥ i1 + j, which can be represented as (x1 − i1) ≥ ( j) as a combination of the template
terms in T .

It would be tempting to assume that all interpolants generated by term interpolation
abstractions are as specified in Lem. 3, i.e., constructed only from T terms and logical sym-
bols. In fact, since our framework restricts the space of interpolants in a semantic way, only
weaker guarantees can be provided about the range of possible interpolants; this is related
to the earlier observation (Sect. 4) that interpolation can only be restricted up to logical
equivalence:

Lemma 4 (Interpolant space) Suppose the abstract interpolation problem for the rela-
tion abstraction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solvable, and the underlying logic is EUF or PA.

Then there is a strongest abstract interpolant I⊥[t1[s̄], . . . , tn[s̄]], and a weakest abstract
interpolant I>[t1[s̄], . . . , tn[s̄]], each constructed only from T terms and logical symbols. A
formula J[s̄] is an abstract interpolant iff the implications I⊥[t1[s̄], . . . , tn[s̄]] ⇒ J[s̄] ⇒
I>[t1[s̄], . . . , tn[s̄]] hold.

Proof Again consider the interpolation problem (4), and observe that there is a strongest
interpolant I⊥[x1, . . . , xn] and a weakest interpolant I>[x1, . . . , xn]. (For EUF, this is because
there are only finitely many interpolants up to equivalence; for PA, this holds due to the
quantifier elimination property).

We show that I⊥[t1[s̄], . . . , tn[s̄]] is the conjectured strongest interpolant. (The proof for
the weakest interpolant I>[t1[s̄], . . . , tn[s̄]] is symmetric.) Suppose J[s̄] is any abstract inter-
polant, which means A[s̄A, s̄′] ∧

n∧
i=1

ti[s̄′] � ti[s̄]

 ⇒ J[s̄]

and therefore alsoA[s̄A, s̄′] ∧
n∧

i=1

ti[s̄′] � xi

 ⇒  n∧
i=1

xi � ti[s̄] ⇒ J[s̄]


Since left-hand and right-hand side only share the (uninterpreted) symbols x1, . . . , xn, and
I⊥[x1, . . . , xn] is the strongest formula over those symbols implied by the left-hand side, this
entails:

I⊥[x1, . . . , xn] ⇒

 n∧
i=1

xi � ti[s̄] ⇒ J[s̄]


and therefore I⊥[t1[s̄], . . . , tn[s̄]]⇒ J[s̄]. ut

Example 4 Again, consider Sect. 1.1, and the interpolant lattice as shown in Fig. 2. The
strongest abstract interpolant for the interpolation abstraction induced by T = {x1 − i1, j} is
x1 � i1 + j, the weakest one j 6� 0 ∨ x1 ≥ i1.



5.2 Finite Inequality Interpolation Abstractions

In the case of a logic with arithmetic operators, for instance linear rational arithmetic or
Presburger arithmetic, it is possible to define interpolation abstractions on the basis of in-
equalities instead of equations, to achieve more fine-grained control over interpolants. In-
equality interpolation abstractions can specify that interpolants can only give upper bounds
(or only lower bounds) on the value of some term t, i.e., t can only occur on the left- or right-
hand side of inequalities ≤, and not as part of equations. This degree of control is useful for
model checking applications, where it is well-known that the quality of interpolants can be
improved by abstracting equations to inequalities.

Definition 5 (Inequality interpolation abstraction) Suppose s̄ is a list of non-logical sym-
bols, s̄′ and s̄′′ fresh copies of s̄, and T = {t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The
relation abstraction (R≤T

A [s̄′, s̄],R≤T
B [s̄, s̄′′]) defined by

R≤T
A [s̄′, s̄] =

n∧
i=1

ti[s̄′] ≤ ti[s̄], R≤T
B [s̄, s̄′′] =

n∧
i=1

ti[s̄] ≤ ti[s̄′′]

is called inequality interpolation abstraction over T .

Intuitively, the terms T can only occur only the right side of inequalities ≤ in inter-
polants, i.e., in the form of lower bounds. To specify upper bounds, it is possible to provide
negative terms −t ∈ T ; when including both t and −t in T , arbitrary occurrences of t in
an interpolant are possible (also within equations). This shows that inequality interpolation
abstractions strictly subsume term interpolation abstractions in the presence of arithmetic.

To characterise solvability, assume that interpolants only contain inequalities ≤ (and no
≥ or equations �), and that no inequalities occur underneath negation ¬. An occurrence of a
term is then called positive if the term (or a positive multiple of the term) is on the right-hand
side of ≤, and negative if it is on the left-hand side.

Lemma 5 (Solvability) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem in PA, and
T = {t1[s̄], . . . , tn[s̄]} a finite set of ground terms. The abstract interpolation problem for the
abstraction (R≤T

A [s̄′, s̄],R≤T
B [s̄, s̄′′]) is solvable if and only if there is a formula I[x1, . . . , xn]

over n variables x1, . . . , xn, all occurring only positively in I[x1, . . . , xn], such that the for-
mula I[t1[s̄], . . . , tn[s̄]] is an interpolant of A[s̄A, s̄] ∧ B[s̄, s̄B].

Proof “⇐”: as for Lem. 3, it can be observed that I[t1[s̄], . . . , tn[s̄]] is also an abstract inter-
polant, which implies that the abstract interpolation problem is solvable.

“⇒”: again, as for Lem. 3, we consider the modified interpolation problemA[s̄A, s̄′] ∧
n∧

i=1

ti[s̄′] ≤ xi

 ∧  n∧
i=1

xi ≤ ti[s̄′′] ∧ B[s̄′′, s̄B]


As a constructive way of showing the existence of interpolants I[x1, . . . , xn] of the desired
form, the interpolating PA sequent calculus from [10] can be used. To this end, first assume
that the conjuncts A[s̄A, s̄], B[s̄, s̄B] are normalised in such a way that no equations, no quan-
tifiers (or divisibility constraints), and no negations occur. Then, construct an interpolating
proof by strictly ordering the applied rules: (i) eliminate all Boolean operators, (ii) apply
arithmetic rules to the literals obtained from A[s̄A, s̄′], B[s̄′′, s̄B], (iii) finally, resolve with
the inequalities ti[s̄′] ≤ xi and xi ≤ ti[s̄′′] to obtain conflicts and close proof goals.

By checking the individual proof rules in [10], we can observe that the resulting inter-
polant I[x1, . . . , xn] will only contain variables x1, . . . , xn in positive positions. ut



5.3 Finite Predicate Interpolation Abstractions

In a similar way as sets of terms, also finite sets of formulae induce interpolation abstrac-
tions. Template formulae can be relevant to steer an interpolating theorem prover towards
(possibly user-specified or quantified) interpolants that might be hard to find for the prover
alone. The approach bears some similarities to the concept of predicate abstraction in model
checking [25,28], but still leaves the use of templates entirely to the theorem prover.

Definition 6 (Predicate interpolation abstraction) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an in-
terpolation problem, and Pred = {φ1[s̄], . . . , φn[s̄]} is a finite set of formulae. The relation
abstraction (RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) defined by

RPred
A [s̄′, s̄] =

n∧
i=1

(
φi[s̄′]→ φi[s̄]

)
, RPred

B [s̄, s̄′′] =

n∧
i=1

(
φi[s̄]→ φi[s̄′′]

)
is called predicate interpolation abstraction over Pred.

Intuitively, predicate interpolation abstractions restrict the solutions of an interpolation
problem to those interpolants that can be represented as a positive Boolean combination of
the predicates in Pred (i.e., by combining elements of Pred using ∧ and ∨, without nega-
tions ¬). Note that it is possible to include the negation of a predicate φ[s̄] in Pred if negative
occurrences of φ[s̄] are supposed to be allowed in an interpolant (or both φ[s̄] and ¬φ[s̄] for
both positive and negative occurrences).

Lemma 6 (Solvability) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem, and Pred
a finite set of predicates. If the underlying logic is stateless, then the abstract interpolation
problem for (RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) is solvable if and only if A[s̄A, s̄] ∧ B[s̄, s̄B] has an

interpolant I[s̄] that is a positive Boolean combination of predicates in Pred.

Proof “⇐”: via Boolean reasoning, it can be shown that the interpolant I[s̄] also is a solution
of the abstract problem

(
A[s̄A, s̄′] ∧ RPred

A [s̄′, s̄]
)
∧

(
RPred

B [s̄, s̄′′] ∧ B[s̄′′, s̄B]
)
.

“⇒”: suppose
(
A[s̄A, s̄′] ∧ RPred

A [s̄′, s̄]
)
∧

(
RPred

B [s̄, s̄′′] ∧ B[s̄′′, s̄B]
)

is unsatisfiable. As a
constructive way to show the existence of an interpolant that is a positive Boolean combi-
nation of Pred predicates, we use the propositional interpolating calculus from [11, Fig. 1].
Thanks to proof-confluency, we can start by splitting all implications from RPred

A [s̄′, s̄] and
RPred

B [s̄, s̄′′], using rules or-left, not-left. After that, all sequents containing complemen-
tary formulae φi[s̄] can be closed with the rule close-lr; this leads to positive occurrences
of φi[s̄] in the interpolant.

All other sequents have the form . . . , bA[s̄A, s̄′]cL, bB[s̄′′, s̄B]cR,BP ` AP, . . . where
AP is a set of formulae of the form bφi[s̄′]cL, and BP a set of formulae bφ j[s̄′′]cR. Since
the sequent is valid by assumption, and since the underlying logic is stateless, at least one
of A[s̄A, s̄′] ∧ ¬AP and B[s̄′′, s̄B] ∧ BP is unsatisfiable. In the first case, the sequent can be
closed with interpolant false, in the latter case with interpolant true. ut

We remark that the implication⇐ holds in all cases, whereas⇒ needs the assumption
that the logic is stateless. As a counterexample for the stateful case, consider again the
interpolation problem (∀x, y. x � y) ∧ (∃x, y. x 6� y) in full FOL. The abstract interpolation
problem is solvable even for Pred = ∅ (with interpolant ∀x, y. x�y), but no positive Boolean
combination of Pred formulae is an interpolant.

The interpolant space can be characterised as for term interpolation abstractions (Lem. 4):



Lemma 7 (Interpolant space) Suppose the abstract interpolation problem for the relation
abstraction (RPred

A [s̄′, s̄],RPred
B [s̄, s̄′′]) is solvable, and the underlying logic is stateless. Then

there is a strongest abstract interpolant I⊥[s̄], and a weakest abstract interpolant I>[s̄], each
being a positive Boolean combination of predicates in Pred. A formula J[s̄] is an abstract
interpolant iff the implications I⊥[s̄]⇒ J[s̄]⇒ I>[s̄] hold.

Proof As in the proof Lem. 4, but with Boolean variables instead of x1, . . . , xn. ut

5.4 Quantified Interpolation Abstractions

The previous sections showed how interpolation abstractions are generated by finite sets of
templates. A similar construction can be performed for infinite sets of templates, expressed
schematically with the help of variables; in the verification context, this is particularly rele-
vant if arrays or heap are encoded with the help of uninterpreted functions.

Example 5 Suppose that the binary function H represents heap contents, with heap accesses
obj. field translated to H(obj, field), and is used to state an interpolation problem:(

H(a, f ) � c ∧ H(b, g) 6� null
)
∧

(
b � c ∧ H(b, g) � null ∧ H(H(a, f ), g) � null

)
An obvious interpolant is the formula I1 =

(
H(b, g) 6� null

)
. We might want to avoid in-

terpolants with direct heap accesses H(·, g), and instead prefer the pattern H(H(·, f ), g). To
find alternative interpolants, we can use the templates {H(H(x, f ), g), a, b, c}, the first of
which contains a schematic variable x. The resulting abstraction excludes I1, but yields the
interpolant I2 =

(
b � c→ H(H(a, f ), g) 6� null

)
.

Definition 7 (Schematic term abstraction) Suppose an interpolation problem A[s̄A, s̄] ∧
B[s̄, s̄B], and a finite set T = {t1[s̄, x̄1], . . . , tn[s̄, x̄n]} of terms with free variables x̄1, . . . , x̄n.
The relation abstraction (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) defined by

RT
A[s̄′, s̄] =

n∧
i=1

∀x̄i. ti[s̄′, x̄i] � ti[s̄, x̄i], RT
B[s̄, s̄′′] =

n∧
i=1

∀x̄i. ti[s̄, x̄i] � ti[s̄′′, x̄i]

is called schematic term interpolation abstraction over T .

Note that schematic term interpolation abstractions reduce to ordinary term interpolation
abstractions (as in Def. 4) if none of the template terms contains free variables.

Quantified abstractions are clearly less interesting for logics that admit quantifier elim-
ination, such as PA, but they are relevant whenever uninterpreted functions (EUF) are in-
volved.

Lemma 8 (Solvability in EUF) Suppose A[s̄A, s̄] ∧ B[s̄, s̄B] is an interpolation problem in
EUF, T = {t1[s̄, x̄1], . . . , tn[s̄, x̄n]} a finite set of schematic terms, and f = 〈 f1, . . . , fn〉 a
vector of fresh functions with arities |x̄1|, . . . , |x̄n|, respectively. The abstract interpolation
problem for (RT

A[s̄′, s̄],RT
B[s̄, s̄′′]) is solvable if and only if there is a formula I[ f1, . . . , fn]

(without non-logical symbols other than f̄ ) such that I[t1[s̄, ·], . . . , tn[s̄, ·]] is an interpolant
of A[s̄A, s̄] ∧ B[s̄, s̄B].

The expression I[t1[s̄, ·], . . . , tn[s̄, ·]] denotes the formula obtained by replacing each oc-
currence of a function fi in I[ f1, . . . , fn] with the template ti[s̄, x̄i], substituting the arguments
of fi for the schematic variables x̄i.



Proof “⇐”: I[t1[s̄, ·], . . . , tn[s̄, ·]] is also an abstract interpolant, which implies that the ab-
stract interpolation problem is solvable.

“⇒”: observe that if the abstract interpolation problem is solvable, conjunction (5) is
unsatisfiable: (

A[s̄A, s̄′] ∧ ψA

)
∧

(
ψB ∧ B[s̄′′, s̄B]

)
(5)

where

ψA =

n∧
i=1

∀x̄i. ti[s̄′, x̄i] � fi(x̄i) ψB =

n∧
i=1

∀x̄i. fi(x̄i) � ti[s̄′′, x̄i]

An interpolant I[ f1, . . . , fn] can be computed from (5) using FOL interpolation techniques.
ut

6 The Algebra of Interpolation Abstractions

It is frequently useful to construct new interpolation abstractions from existing ones, for
instance to combine term, inequality, and predicate interpolation abstractions. Combination
is possible through several algebraic operations. For instance, given two interpolation ab-
stractions (TA,TB) and (T ′A,T

′
B), the composition (TA,TB) ◦L (T ′A,T

′
B) constructs an abstract

interpolation that composes the functions in the abstractions component-wise. New interpo-
lation abstractions can be constructed similarly through conjunction, disjunction, and other
operators. In the whole section we fix some logic, as well as a list s̄ of common symbols.

6.1 Algebraic Properties of Interpolation Abstractions in General

In order to define algebraic operations, it is first necessary to introduce notions of implication
and equivalence between interpolation abstractions:

Definition 8 (Ordering of Interpolation Abstractions) Let (TA,TB) and (T ′A,T
′
B) be two

interpolation abstractions. We say that (TA,TB) is at least as strong as (T ′A,T
′
B), written

(TA,TB)⇒ (T ′A,T
′
B), if

(i) for any two formulae A1[s̄A1 , s̄], A2[s̄A2 , s̄] with ∃s̄A1 . A1[s̄A1 , s̄] ≡ ∃s̄A2 . A2[s̄A2 , s̄] and
A′1[s̄A′1 , s̄] = TA(A1[s̄A1 , s̄]) and A′2[s̄A′2 , s̄] = T ′A(A2[s̄A2 , s̄]), it is the case that the impli-
cation ∃s̄A′1 . A

′
1[s̄A′1 , s̄]⇒ ∃s̄A′2 . A

′
2[s̄A′2 , s̄] holds;

(ii) for any two formulae B1[s̄, s̄B1 ], B2[s̄, s̄B2 ] with ∃s̄B1 . B1[s̄, s̄B1 ] ≡ ∃s̄B2 . B2[s̄, s̄B2 ] and
B′1[s̄, s̄B′1 ] = TA(B1[s̄, s̄B1 ]) and B′2[s̄, s̄B′2 ] = T ′A(B2[s̄, s̄B2 ]), it is the case that the impli-
cation ∃s̄B′1 . B

′
1[s̄, s̄B′1 ]⇒ ∃s̄B′2 . B

′
2[s̄, s̄B′2 ] holds.

We say that (TA,TB) and (T ′A,T
′
B) are equivalent, written (TA,TB) ≡ (T ′A,T

′
B), if it is the case

that (TA,TB)⇒ (T ′A,T
′
B) and (T ′A,T

′
B)⇒ (TA,TB).

Note that ≡ is not immediately an equivalence relation on interpolation abstractions,
since an interpolation abstraction is not necessarily equivalent to itself (≡ is not reflexive):
for instance, an abstraction might map equivalent, but syntactically distinct formulae to non-
equivalent formulae. We therefore focus on the set L of all self-equivalent (or extensive) in-
terpolation abstractions, for the fixed logic and symbols s̄. In particular, relation abstractions



(Def. 3) are all self-equivalent. Since ≡ is an equivalence relation on L, we can in the next
paragraphs consider the set L/≡ of equivalence classes.

We can first observe that the set L is closed under the operations conjunction ∧L, disjunc-
tion ∨L, identity IdL, and top >L, defined in the following equations. Some care is required
for the handling of local symbols: in the definition of ∧L and ∨L, fresh symbols introduced
by the functions TA,TB,T ′A,T

′
B (e.g., the s̄A′ in A′[s̄A′ , s̄] = TA(A[s̄A, s̄])) might clash and

lead to incorrect results. Such clashes can be handled by appropriate renaming, which we
assume is done implicitly.

IdL :=
(
λA. A, λB. B

)
>L := (λA. true, λB. true)

(TA,TB) ∧L (T ′A,T
′
B) :=

(
λA.TA(A) ∧ T ′A(A), λB.TB(B) ∧ T ′B(B)

)
(TA,TB) ∨L (T ′A,T

′
B) :=

(
λA.TA(A) ∨ T ′A(A), λB.TB(B) ∨ T ′B(B)

)
All operations can be extended to the equivalence classes in L/≡, since ≡ is a congruence

relation. The resulting algebra forms a bounded distributive lattice [16] where IdL is the
bottom element, >L is the top element and all elements are ordered by implication as in
Def. 8.

In addition, L is closed under composition ◦L, and has the structure of a monoid with
binary operation ◦L and IdL as the neutral element:

(TA,TB) ◦L (T ′A,T
′
B) :=

(
λA.TA(T ′A(A)), λB.TB(T ′B(B))

)
6.2 Algebraic Properties of Relation Abstractions

Similarly to the case of general interpolation abstractions, the subspace of relation abstrac-
tions (as in Def. 3) has the structure of both a lattice and a monoid. Since relation abstractions
can be complemented, the lattice of relation abstractions is even a Boolean lattice.

We denote the set of relation abstractions (RA[s̄′, s̄],RB[s̄, s̄′′]) (over fixed and disjoint
lists s̄, s̄′, s̄′′ of symbols) by LR. This set is again closed under a variety of operations:

IdR :=
(
Id[s̄′, s̄], Id[s̄, s̄′′])

>R := (true, true)

(RA,RB) ∧R (R′A,R
′
B) :=

(
RA ∧ R′A, RB ∧ R′B

)
(RA,RB) ∨R (R′A,R

′
B) :=

(
RA ∨ R′A, RB ∨ R′B

)
¬R(RA,RB) :=

(
¬RA ∨ Id[s̄′, s̄], ¬RB ∨ Id[s̄, s̄′′]

)
It can be observed that ∨R and ∨L coincide on relation abstractions; i.e., applying ∨L to
relation abstractions yields a result equivalent to ∨R. The same holds for IdR and IdL, as
well as >R and >L. In contrast, ∧R behaves differently from ∧L; in general, the result of
applying ∧L to two relation abstractions produces an interpolation abstraction that cannot
even be represented as a relation abstraction.

Relation abstractions can be ordered by implication: we write (RA,RB) ⇒ (R′A,R
′
B) if

RA ⇒ R′A and RB ⇒ R′B, and (RA,RB) ≡ (R′A,R
′
B) if (RA,RB) ⇒ (R′A,R

′
B) and (R′A,R

′
B) ⇒

(RA,RB). It can further be shown that ≡ is a congruence relation for the above operations
IdR,>R,∧R,∨R,¬R, and that the quotient LR/≡ has the structure of a Boolean lattice.



7 Exploration of Interpolants

In a typical application scenario of our interpolation abstraction framework (e.g., in a model
checker), we will not consider just a single fixed interpolation abstraction, but rather a whole
family of such abstractions. Working with multiple interpolation abstractions turns out to be
meaningful for several reasons: (i) for each interpolation problem we might want to com-
pute multiple different interpolants, which can be achieved by successively applying several
interpolation abstractions; (ii) by ranking interpolation abstractions, the quality of resulting
interpolants can be controlled. For instance, in the example in Sect. 1.1, we consider in-
terpolant I2 constructed using templates {x1 − i1, j} as “better” than interpolant I1 for the
template i1; (iii) every individual interpolation abstraction is feasible for some interpolation
problems, and infeasible for others. This necessitates the definition of a whole family of ab-
stractions, so that some feasible abstractions can be picked for every interpolation problem.

To formalise this concept of interpolant exploration, we arrange families of interpola-
tion abstractions as abstraction lattices, and present search algorithms on such lattices. As
described in Sect. 6, interpolation abstractions have algebraic properties that can be used
when defining such abstraction lattices. Abstraction lattices are equipped with a monotonic
mapping µ to interpolation abstractions (TA,TB), ordered as in Def. 8. The following para-
graphs focus on the case of finite abstraction lattices; the handling of infinite (parametric)
abstraction lattices is planned as future work.

Definition 9 (Abstraction lattice) Suppose s̄ is a list of non-logical symbols, for some ar-
bitrary but fixed logic. An abstraction lattice is a pair (〈L,vL〉, µ) consisting of a complete
lattice 〈L,vL〉 and a monotonic mapping µ from elements of 〈L,vL〉 to interpolation abstrac-
tions (TA,TB) over s̄, with the property that µ(⊥) = (IdA, IdB) is the identity abstraction (i.e.,
IdA(A) = A and IdB(B) = B for all formulae A, B).

Given an interpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B], the elements of an abstraction lattice
that map to feasible interpolation abstractions form a downward closed set; an illustration
is given in Fig. 3, where feasible elements are shaded in gray. Provided that the concrete
interpolation problem is solvable, the set of feasible elements in the lattice is non-empty,
due to the requirement that µ(⊥) = (IdA, IdB).

Particularly interesting are maximal feasible interpolation abstractions, i.e., the maximal
elements within the set of feasible interpolation abstractions. Maximal feasible abstractions
restrict interpolants in the strongest possible way, and are therefore most suitable for ex-
ploring interpolants; we refer to the set of maximal feasible elements within an abstraction
lattice as abstraction frontier.

7.1 Construction of Abstraction Lattices

When working with interpolation abstractions generated by templates, abstraction lattices
can naturally by constructed as the powerset lattice of some template base set (ordered by
the superset relation); this construction applies to term, inequality, and predicate templates.
Further, the operations introduced in Sect. 6 can be used to combine simple lattices into
more sophisticated ones; for instance, a useful construction is to form the product of two
lattices, defining the mapping µ as the pairwise conjunction, disjunction, or composition of
the individual mappings µ1, µ2.



∅

{x1 − i1}

{ j, i1}

{x1 − i1, i1, j}

{i1} { j}

{x1 − i1, i1} {x1 − i1, j}

Fig. 3: The abstraction lattice for the running example. The light gray shaded elements are
feasible, the dark gray ones maximal feasible.

Algorithm 1: Exploration algorithm
Input: Interpolation problem P = A[s̄A, s̄] ∧ B[s̄, s̄B], abstraction lattice (〈L,vL〉, µ)
Result: Set of maximal feasible interpolation abstractions
Frontier ← ∅;1
while ∃ feasible abs ∈ L, incomparable with all x ∈ Frontier do2

Frontier ← Frontier ∪ {maximise(P, abs)};3
end4
return Frontier;5

Example 6 An abstraction lattice for the example in Sect. 1.1 is (〈℘(T ),⊇〉, µ), with base
templates T = {x1 − i1, i1, j} and µ mapping each element to the abstraction in Def. 4. Note
that the bottom element of the lattice represents the full set T of templates (the weakest
abstraction), and the top element the empty set ∅ (the strongest abstraction). Also, note that
µ(T ) is the identity abstraction (IdA, IdB), since T is a basis of the vector space of linear
functions in x1, i1, j.

The lattice is presented in Fig. 3, with feasible elements in light gray. The maximal
feasible elements {i1} and {x1 − i1, j} map to interpolation abstractions with the abstract in-
terpolants I1 and I2, respectively, as illustrated in Fig 2. Smaller feasible elements (closer to
⊥) correspond to larger sub-lattices of abstract interpolants, and therefore provide weaker
guidance for a theorem prover; for instance, element { j, i1} can produce all abstract inter-
polants that {i1} generates, but can in addition lead to interpolants like I3 = ( j 6� 0∨ i1 ≤ 49).

7.2 Computation of Abstraction Frontiers

In the case of abstraction lattices that are Boolean lattices, like the one in Fig. 3, the computa-
tion of abstraction frontiers can be carried out using algorithms for the well-known problem
of computing minimal unsatisfiable subsets (e.g., [41]). Such algorithms do not immediately
carry over, however, to non-Boolean lattices, which can also be relevant abstraction lattices.
We therefore present a binary search-based algorithm to compute abstraction frontiers of
arbitrary finite abstraction lattices. In later sections, this algorithm will be extended to also
take costs into account, as a means to rank interpolation abstractions.



Algorithm 2: Maximisation algorithm maximise(P, abs)
Input: Interpolation problem P = A[s̄A, s̄] ∧ B[s̄, s̄B], feasible abstraction abs ∈ L
Result: Maximal feasible abstraction
while ∃ feasible immediate successor fs of abs do1

pick element middle such that fs vL middle vL >;2
if middle is feasible then3

abs← middle;4
else5

abs← fs;6
end7

end8
return abs;9

The search is described in Algorithms 1 and 2. Algorithm 1 describes the top-level
procedure for finding maximal elements in an abstraction lattice. The algorithm repeatedly
checks whether feasible abstractions abs ∈ L exist that are incomparable with the maximum
feasible abstractions found so far, i.e., such that no x ∈ Frontier with abs vL x or x vL abs
exists (line 2). Suitable methods for computing such incomparable elements can be defined
based on the shape of the chosen abstraction lattice; for instance, if the abstraction lattice
is a Boolean lattice, finding incomparable abstractions amounts to solving the problem of
finding minimal hitting sets for the Frontier [24] (a hitting set is a set that has elements in
common with every set in the Frontier). As long as incomparable elements can be found,
they are maximised by calling the maximise function (described in Algorithm 2), and added
to the frontier.

In Algorithm 2 we describe the procedure for finding a maximal feasible abstraction mfa
with the property that abs vL mfa. In each iteration of the maximisation loop, it is checked
whether abs has any feasible parents (line 1); if this is not the case, abs has to be maxi-
mal feasible and is returned. Otherwise, in the loop body the algorithm executes a binary
search on the set of elements in between abs and >. The algorithm depends on the ability
to efficiently compute (random) middle elements between two elements a @ b of the lat-
tice (line 2); again, this functionality can best be implemented specifically for an individual
lattice, and is not shown here.

It should be noted that checking the feasibility of an interpolation abstraction (TA,TB),
for an interpolation problem A[s̄A, s̄] ∧ B[s̄, s̄B], can be done by a simple check whether the
conjunction TA(A[s̄A, s̄]) ∧ TB(B[s̄, s̄B]) is unsatisfiable (assuming a logic with the interpo-
lation property). Repeating this check for a large number of abstractions can be optimised
with the help of incremental SMT: typically, only a small part of the formula TA(A[s̄A, s̄]) ∧
TB(B[s̄, s̄B]) will actually depend on the abstraction (TA,TB), in particular for relation ab-
stractions. Common conjuncts can therefore be factored out and handed over to an SMT
solver upfront.

Lemma 9 (Correctness of exploration algorithm) When applied to a finite abstraction
lattice, Algorithm 1 terminates and returns the set of maximal feasible elements.

Proof To see that the returned Frontier only contains maximal feasible abstractions, note
that algorithm maximise(P, abs) only returns abstractions that are feasible, and only ab-
stractions without feasible successors (i.e., maximal feasible ones). The returned Frontier
contains all maximal feasible abstractions, since any missing maximal feasible abstrac-
tions mfa < Frontier would have to be incomparable with the elements in Frontier (due
to maximality), and thus the loop condition in Algorithm 1, line 2 holds.



Algorithm 1 terminates, since the considered abstraction lattice is finite, and the set
Frontier grows by one element in every iteration of the while loop. Namely, assume that
in some iteration an abstraction maximise(P, abs) is produced that is already an element
of Frontier; in this case, abs vL maximise(P, abs) cannot have been incomparable with
Frontier. Algorithm 2 terminates since finite lattices have finite height, and abs grows strictly
in every iteration of the while loop. ut

A useful refinement of the exploration algorithm is to canonise lattice elements during
search. Elements a, b ∈ L are considered equivalent if they are mapped to (logically) equiva-
lent abstraction relations by µ. Canonisation can select a representative for every equivalence
class of lattice elements, and search be carried out only on such canonical elements.

7.3 Guiding Interpolant Exploration with Costs

Given an abstraction frontier, it is possible to compute a range of interpolants solving the
original interpolation problem. However, for large abstraction frontiers this may be neither
feasible nor necessary. It is more useful to define a measure for the quality of interpolation
abstractions, again exploiting domain-specific knowledge, and only use the best abstractions
for interpolation.

To select good maximal feasible interpolation abstractions, we define an anti-monotonic
cost function cost : L → N that maps elements of an abstraction lattice (〈L,vL〉, µ) to a
natural number, with lower values indicating that an interpolation abstraction is considered
better. The anti-monotonicity property (∀a, b ∈ L. a vL b⇒ cost(a) ≥ cost(b)) encompasses
that coarser abstractions (higher up in the lattice) have lower cost. In the case of abstractions
constructed using a powerset lattice over templates (L = ℘(T )), it is natural to assign a cost
to every element in T (cost : T → N), and to define the cost of a lattice element A ∈ L as
cost(A) =

∑
t∈A cost(t). Similarly, for product lattices the cost function can be computed as

the sum of the costs of the components.
Our abstraction lattice in Fig. 3 has two maximal feasible abstractions, {i1} and {x1−i1, j},

which result in computing the interpolants I1 and I2, respectively. We can define a cost
function that assigns a high cost to {i1} and a low cost to {x1 − i1, j}, expressing the fact that
we prefer to not talk about the loop counter i1 in absolute terms. More generally, assigning
a high cost to variables representing loop counters is a reasonable strategy for obtaining
general interpolants (a similar observation is made in [2], and implemented with the help of
“term abstraction”).

Once a cost function has been defined, the goal is to compute those abstractions from
the Frontier set that have minimal cost. Naively, this can be done by first computing the
whole Frontier set, using Algorithms 1 and 2, and then removing those elements that are too
costly; however, for realistic abstraction lattices this procedure tends to be slow. Instead, it
is possible to exploit costs already during search, eagerly pruning away those parts of the
search space that cannot contain abstractions with low cost. We describe an optimisation to
the exploration algorithms that uses costs to this effect in Algorithms 3 and 4.

Besides Frontier, in Algorithm 3 an additional set of costly abstractions (CostlyAbs) is
maintained. A costly abstraction c is one whose cost cost(c) has been identified as being
greater than the minimal cost of feasible abstractions, and that has the property that none of
its successors is feasible; as a consequence, the part of the abstraction lattice above c cannot
contain low-cost frontier elements.



Algorithm 3: Optimised Exploration Algorithm
Input: Interpolation problem P = A[s̄A, s̄] ∧ B[s̄, s̄B], abstraction lattice (〈L,vL〉, µ)
Result: Set of all maximal feasible interpolation abstractions of minimal cost
CostlyAbs← ∅;1
Frontier ← ∅;2
minCost ← ∞;3
while ∃ feasible abs ∈ L, incomparable with Frontier and CostlyAbs do4

m or c← boundedMaximise(P, abs,minCost);5
if m was returned, and cost(m) < minCost then6

CostlyAbs← CostlyAbs ∪ Frontier;7
Frontier ← {m};8
minCost ← cost(m);9

else10
Frontier ← Frontier ∪ {m} or CostlyAbs← CostlyAbs ∪ {c};11

end12
end13
return Frontier;14

Algorithm 4: Optimised maximisation algorithm boundedMaximise(P, abs,minCost)
Input: Interpolation problem P = A[s̄A, s̄] ∧ B[s̄, s̄B], feasible abstraction abs ∈ L,

minimal cost bound minCost
Result: m ∈ L s.t. abs vL m, m is maximal feasible, and cost(m) ≤ minCost or

c ∈ L s.t. abs vL c, cost(c) > minCost, and all successors of c are infeasible
upperBound ← >;1
while true do2

fs← undef;3
for all immediate successors s of abs, while fs is undefined do4

if s vL upperBound then5
if s is feasible then6

fs← s;7
else if ∃b. feasibilityBound(abs, s, b) then8

upperBound ← upperBound u b;9
if cost(upperBound) > minCost then10

return c← upperBound;11
end12
if upperBound is feasible then13

return m← upperBound;14
end15

end16
end17

end18
if fs is defined then19

pick abstraction middle such that fs vL middle vL upperBound;20
if middle is feasible then21

abs← middle;22
else23

abs← fs;24
end25

else26
if cost(abs) > minCost then27

return c← abs;28
else29

return m← abs;30
end31

end32
end33



The generalised maximisation function (boundedMaximise, Algorithm 4) returns either
a maximal feasible abstraction m of minimal cost, or it returns a costly abstraction c (which
may or may not be feasible). Feasible abstractions of minimal cost are added to the Frontier,
while costly abstractions are added to the CostlyAbs set. If a returned maximal feasible
abstraction improves upon the current cost bound (defined by the minCost variable), then the
minCost variable is updated with the new minimal cost, and all previous frontier abstractions
are moved to CostlyAbs.

Like Algorithm 2, Algorithm 4 proceeds by increasing the abstraction abs until an ab-
straction is reached whose successors are all infeasible. To this end, the for loop (line 4)
iterates over the immediate successors of abs; if a feasible successor is found, the loop is left,
while knowledge about infeasible successors is used to improve the upperBound variable.

The algorithm maintains the invariant that abs, and all of its feasible successors are
below upperBound. If it is detected that cost(upperBound) > minCost, it follows (thanks
to anti-monotonicity of cost) that no feasible abstractions with low cost can exist above
abs, and the algorithm can return immediately. In this way, the search space can be pruned
significantly.

In order to update the variable upperBound (line 8), the algorithm exploits the fact that a
feasible abstraction abs with an infeasible successor s has been found. Given the pair abs, s,
we call an element b ∈ L a feasibility bound if the following properties are satisfied:

feasibilityBound(abs, s, b) ≡


abs is feasible and s is infeasible,
abs = s u b, and
for every feasible abstraction x with abs v x

it holds that x v b .

In other words, given a feasible abstraction abs with infeasible successor s of abs, the predi-
cate feasibilityBound provides an upper bound b for every feasible successor of abs. This im-
plies that subsequent maximisation can ignore parts of the lattice that are not underneath b.

The existence of upper bounds b is determined by the considered lattice. In the special
case that the abstraction lattice is a distributive lattice (e.g., a powerset lattice), a simpler
definition of feasibility bounds can be used:

feasibilityBounddist(abs, s, b) ≡


abs is feasible and s is infeasible,
abs = s u b, and
b is a direct predecessor of > .

Since it can be observed that feasibilityBounddist(abs, s, b) implies the previous predicate
feasibilityBound(abs, s, b), for distributive lattices, the former can be used as a more effective
and sufficient condition.

Lemma 10 (Correctness of optimised exploration algorithm) When applied to a finite
abstraction lattice, Algorithm 3 terminates and returns the set of minimal cost, maximal
feasible abstractions.

Proof Note that the outer loops of the algorithms have the following loop invariants:

Invalg3 = ∀x ∈ Frontier.
(
cost(x) = minCost ∧ x is maximal feasible

)
∧ ∀x ∈ CostlyAbs.

(
cost(x) > minCost ∧ all successors of x are infeasible

)
Invalg4 = ∀x ∈ L.

(
abs vL x ∧ x is feasible ⇒ x vL upperBound

)
∧ abs is feasible



It follows directly that Frontier in Algorithm 3 can only contain maximal feasible ab-
stractions. Further, upon termination the Frontier contains all maximal feasible abstrac-
tions with minimal cost. Namely, assume that there is a maximal feasible abstraction mfa <
Frontier with cost(mfa) ≤ minCost. As in the proof of Lem. 9, it follows that mfa is in-
comparable with Frontier. Further, mfa cannot be above any element in CostlyAbs, since
successors of CostlyAbs are infeasible; mfa cannot be below any element in CostlyAbs due
to anti-monotonicity of cost. Therefore the loop condition must be satisfied, contradicting
the assumption that Algorithm 3 had terminated.

Termination of Algorithm 3 can be shown like in the proof of Lem. 9.
Partial correctness of Algorithm 4 follows from its loop invariant. Termination is guar-

anteed since finite lattices have finite height, and abs grows strictly in every iteration of the
while loop while upperBound may only decrease strictly with every iteration. Further, since
the invariant holds that abs vL upperBound Algorithm 4 terminates. ut

8 Experimental Evaluation in Model Checking

Interpolation abstraction can be applied whenever Craig interpolation is used by a model
checker to eliminate spurious counterexamples. We evaluate the effectiveness of the tech-
nique in two ways: using existing benchmarks in the form of recursive Horn clauses (Sect. 8),
representing various forms of verification tasks, and by integration into a new model checker
for the analysis of Petri net models (Sect. 9).

8.1 Sequence Interpolation Abstraction

Predicate abstraction-based model checkers usually consider more general interpolation
problems than just binary Craig interpolation: the interpolation queries might concern se-
quences of interpolants, tree interpolants, or other interpolation schemata [49]. For instance,
given an unsatisfiable conjunction A1 ∧ . . . ∧ An (in practice, often corresponding to an in-
feasible path in a program), an interpolant sequence [29,43] is a sequence I0, I1, . . . , In of
formulae such that

(i) I0 = true, In = false,
(ii) for all i ∈ {1, . . . , n}, the implication Ii−1 ∧ Ai ⇒ Ii holds, and
(iii) for all i ∈ {0, . . . , n}, the non-logical symbols in Ii occur in both A1 ∧ · · · ∧ Ai and

Ai+1 ∧ · · · ∧ An.

The framework of interpolation abstraction can be extended to such generalised forms
of interpolation. We only explain the case of interpolant sequences at this point, but other
interpolation schemata can be handled in a similar way.

Assume that s̄1, . . . , s̄n are the shared non-logical symbols in A1, . . . , An, respectively;
i.e., each s̄i is a list of the common symbols of Ai and A1 ∧ · · · ∧ Ai−1 ∧ Ai+1 ∧ · · · ∧ An.

Definition 10 (n-ary interpolation abstraction) Suppose s̄1, . . . , s̄n are lists of non-logical
symbols. An n-ary interpolation abstraction is a tuple 〈T1, . . .Tn〉 of functions mapping
formulae to formulae, with the following properties:

(i) for i ∈ {1, . . . , n} and any formula Ai[s̄i, t̄i], and t̄i disjoint from s̄i, the result of applying
Ti is a new formula A′i [s̄i, t̄′i ] = Ti(Ai[s̄i, t̄i]) such that (∃ t̄i. Ai[s̄i, t̄i])⇒ (∃ t̄′i . A

′
i [s̄i, t̄′i ]).



(ii) for i, j ∈ {1, . . . , n} with i , j, and formulae Ai[s̄i, t̄i] and A j[s̄ j, t̄ j] such that t̄i, t̄ j,
and s̄i ∪ s̄ j are pairwise disjoint, the common non-logical symbols of Ti(Ai[s̄i, t̄i]) and
T j(A j[s̄ j, t̄ j]) are contained in s̄i (and therefore also in s̄ j).

We call T1(A1) ∧ · · · ∧ Tn(An) an abstract sequence interpolation problem.

In the same way as before (Lem. 1), it can be shown that every solution of an abstract
sequence interpolation problem is also a solution of the concrete problem A1 ∧ . . . ∧ An, but
in general not vice versa.

In practice, n-ary interpolation abstractions can be derived from binary interpolation ab-
stractions, which can be applied at an arbitrary abstraction point in a sequence interpolation
problem A1 ∧ · · · ∧ Ai ∧ Ai+1 ∧ · · · ∧ An. If s̄ are the common non-logical symbols of Ai

and Ai+1, and (TA,TB) is a binary interpolation abstraction for s̄ (according to Def. 2), then
〈Id, . . . , Id,TA,TB, Id, . . . , Id〉 (with TA at position i) is an n-ary interpolation abstraction,
provided that TA,TB satisfy condition (ii) of Def. 10 (TA and TB must not introduce new
non-logical symbols that clash with existing symbols in A1, . . . , An). This means that all in-
terpolation abstractions introduced in Sect. 5 can also applied for sequence interpolation. It
is also possible to combine multiple binary interpolation abstractions, applied at different
abstractions points, into a single sequence interpolation abstraction.

The construction in the previous paragraph works for any sequence interpolation prob-
lem; however, in practice it is most meaningful for interpolation problems with the addi-
tional property that non-logical symbols are only shared between adjacent conjuncts: Ai and
A j only share symbols if |i − j| ≤ 1. This additional requirement is meaningful because the
application of an abstraction function TA or TB might otherwise not catch all occurrences
of symbols shared between the conjuncts Ai, Ai+1. Sequence interpolation problems can be
normalised to problems with shared symbols only between adjacent conjuncts by renaming
symbols and adding further equations.

8.2 Experiments with Interpolation Abstraction for Solving Horn Clauses

We have integrated our technique into the predicate abstraction-based model checker Eldar-
ica [33], which uses Horn clauses to represent different kinds of verification problems [26],
and solves recursion-free Horn constraints (over linear integer arithmetic) to synthesise new
predicates for abstraction [50]. As abstraction points, recurrent control locations represent-
ing loop heads in counterexamples are chosen, corresponding to recurrent relation symbols
of Horn clauses. We then use Algorithm 1 to search for maximal feasible interpolation ab-
stractions in the Cartesian product of the chosen abstraction lattices. With the help of cost
functions, the best maximal feasible abstractions are determined, and subsequently used to
compute abstract interpolants.

We compare four different abstractions lattices in our experiments; those lattices are
pre-computed for each loop head h in a set of Horn constraints, and are always constructed
as powerset lattices (〈℘(Th),⊇〉, µh) over some set Th of template terms or inequalities. The
templates are chosen on the basis of simple static analyses to determine dataflow in the Horn
constraints:

– ABS (1) uses finite term interpolation abstractions (Sect. 5.1), where the set Th of tem-
plates is simply chosen to be the set of all program variables (corresponding to all ar-
guments of a relation symbol in Horn constraints). A cost function costh is used to
distinguish different roles of a variable:



Eldarica Z3
Norm DI ABS (1) ABS (2) ABS (3) ABS (4)

1. NT Driver benchmarks from CPAchecker [5]
4 sat 2/45.1/45.1 2/56.8/56.8 2/71.9/71.9 2/ 108/ 108 2/ 125/ 125 2/ 113/ 113 4/ 545/ 707
6 unsat 3/ 162/ 162 3/ 418/ 301 3/ 589/ 751 2/ 200/ 200 2/ 264/ 264 3/ 378/ 394 4/ 374/ 303

2. SSH-Simplified benchmarks from CPAchecker [5]
14 sat 14/29.3/24.8 14/ 106/ 101 14/94.9/88.5 14/ 119/ 123 13/ 151/ 133 14/ 144/ 142 10/ 101/23.3

9 unsat 9/12.6/11.4 9/35.2/34.0 9/32.4/14.8 9/38.5/24.8 9/39.7/25.1 9/50.7/21.8 9/ 5.7/ 3.5
3. Locks benchmarks from CPAchecker [6]
11 sat 9/ 147/22.0 11/15.9/20.9 9/ 131/19.0 9/ 145/20.3 9/ 148/22.1 9/ 158/23.4 11/ 1.9/ 1.5

2 unsat 2/ 2.6/ 2.6 2/ 8.6/ 8.6 2/ 2.7/ 2.7 2/ 2.4/ 2.4 2/ 3.1/ 3.1 2/ 3.2/ 3.2 2/ 0.8/ 0.8
4. Benchmarks from “A Practical and Complete Approach to Predicate Refinement” [36]

2 sat 1/ 0.1/ 0.1 1/ 0.1/ 0.1 1/ 0.1/ 0.1 2/ 0.4/ 0.4 2/ 0.3/ 0.3 2/ 1.2/ 1.2 0/ –/ –
10 unsat 10/19.5/ 0.3 10/20.1/ 0.3 10/ 125/ 1.8 10/92.5/ 1.7 10/ 132/ 1.8 10/ 132/ 6.4 10/ 0.4/ 0.1
5. Numerical Recipe benchmarks from “Synthesizing Software Verifiers from Proof Rules” [26]
12 sat 9/12.6/ 1.7 9/15.6/ 1.9 11/15.7/ 2.2 12/64.7/ 4.1 11/18.0/ 4.9 11/21.9/ 4.9 11/ 9.7/ 1.7

1 unsat 0/ –/ – 1/49.8/49.8 1/22.2/22.2 1/17.2/17.2 1/29.8/29.8 1/29.7/29.7 0/ –/ –
6. Benchmarks from “Consistency analysis of decision-making programs” [13]4

29 sat 29/10.7/10.9 29/17.8/16.0 29/ 6.0/ 5.0 29/11.1/ 7.6 29/ 7.0/ 5.6 29/11.3/ 8.9 27/16.2/ 7.0
27 unsat 27/ 0.8/ 0.1 27/ 0.5/ 0.2 27/ 0.9/ 0.3 27/ 0.9/ 0.2 27/ 0.8/ 0.2 27/ 1.2/ 0.3 28/ 0.5/ 0.1
7. Benchmarks from “Dual Analysis for Proving Safety and Finding Bugs” [45]

5 sat 5/76.9/ 3.6 5/36.9/ 8.9 5/84.8/ 3.8 4/12.7/ 8.1 5/82.4/ 6.0 5/ 124/ 7.1 4/ 0.2/ 0.2
1 unsat 1/ 6.5/ 6.5 1/ 7.2/ 7.2 1/ 8.4/ 8.4 1/ 6.4/ 6.4 1/ 8.3/ 8.3 1/ 8.3/ 8.3 1/ 0.5/ 0.5

8. Benchmarks from “Algorithmic Verification of Asynchronous Programs” [23]
9 sat 9/20.8/ 0.4 9/20.2/ 0.5 9/ 8.4/ 0.5 9/ 9.4/ 0.4 9/ 9.4/ 0.6 9/ 9.0/ 0.7 9/44.8/ 0.2

11 unsat 11/ 0.8/ 0.4 11/ 1.2/ 0.4 11/ 0.8/ 0.5 11/ 0.8/ 0.4 11/ 0.9/ 0.4 11/ 0.9/ 0.5 11/ 0.3/ 0.2
9. Benchmarks from “Automatic Verification of Integer Array Programs” [9]

6 sat 5/ 0.5/ 0.3 5/ 0.4/ 0.3 6/ 0.8/ 0.7 6/ 0.6/ 0.6 6/ 0.8/ 0.7 6/ 0.8/ 0.7 6/ 0.2/ 0.2
2 unsat 2/ 0.6/ 0.6 2/ 0.6/ 0.6 2/ 0.9/ 0.9 2/ 0.7/ 0.7 2/ 0.9/ 0.9 2/ 0.9/ 0.9 2/ 0.2/ 0.2

10. Benchmarks from “Programs with Lists Are Counter Automata” [8]
2 sat 1/ 0.2/ 0.2 1/ 0.2/ 0.2 1/ 0.2/ 0.2 2/ 1.3/ 1.3 2/ 0.3/ 0.3 2/ 0.9/ 0.9 0/ –/ –
7 unsat 7/ 0.7/ 0.3 7/ 0.7/ 0.3 7/ 0.6/ 0.3 7/ 0.7/ 0.3 7/ 0.8/ 0.3 7/ 0.8/ 0.4 7/ 0.1/ 0.1

11. Benchmarks from “Inductive Invariant Generation via Abductive Inference” [17]
46 sat 31/ 9.6/ 0.1 32/ 9.3/ 0.1 41/ 8.5/ 0.1 41/ 3.1/ 0.2 42/ 2.0/ 0.2 43/36.7/ 0.2 37/27.9/ 0.0

0 unsat –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ –
12. Regression benchmarks from “Automating Regression Verification” [20]
54 sat 28/ 0.3/ 0.1 31/22.2/ 0.1 41/ 0.3/ 0.1 45/24.1/ 0.1 46/ 4.0/ 0.2 43/ 1.3/ 0.5 6/ 0.1/ 0.1
18 unsat 18/ 0.6/ 0.1 18/ 0.6/ 0.1 18/ 3.6/ 0.1 18/10.3/ 0.2 18/ 8.9/ 0.2 18/ 5.8/ 0.2 18/ 0.5/ 0.0

13. VHDL models from “Verifying Parametrised Hardware Designs Via Counter Automata” [54]
4 sat 4/ 4.8/ 3.3 4/12.3/ 5.9 4/ 4.6/ 3.5 4/ 4.5/ 2.6 4/ 4.5/ 2.9 4/ 5.7/ 5.0 4/ 6.8/ 0.2
1 unsat 1/ 321/ 321 1/ 363/ 363 1/ 389/ 389 1/ 327/ 327 1/ 397/ 397 1/ 551/ 551 1/ 108/ 108

14. Timed automata benchmarks from “Horn Clauses for Communicating Timed Systems” [34]
5 sat 5/10.4/ 1.8 5/33.3/ 1.7 5/ 9.8/ 2.9 5/ 8.5/ 4.2 5/12.8/ 3.4 5/11.0/ 3.4 5/ 8.0/ 0.8

26 unsat 26/ 0.6/ 0.3 26/ 0.6/ 0.3 26/ 1.1/ 0.6 26/ 0.7/ 0.3 26/ 1.3/ 0.6 26/ 1.3/ 0.7 26/ 0.3/ 0.2
15. Recursive Eldarica benchmarks
18 sat 14/ 0.3/ 0.1 14/ 0.2/ 0.1 14/ 0.2/ 0.1 15/ 1.8/ 0.1 14/ 0.2/ 0.1 16/ 1.1/ 0.1 8/ 0.1/ 0.0

0 unsat –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ –
16. NECLA benchmarks

3 sat 3/ 0.2/ 0.2 3/ 0.1/ 0.1 3/ 0.2/ 0.2 3/ 0.2/ 0.2 3/ 0.1/ 0.2 3/ 0.2/ 0.2 3/ 0.1/ 0.1
2 unsat 2/ 0.1/ 0.1 2/ 0.2/ 0.2 2/ 0.1/ 0.1 2/ 0.1/ 0.1 2/ 0.1/ 0.1 2/ 0.1/ 0.1 2/ 0.0/ 0.0

17. Benchmarks provided by D. Monniaux, personal communication
5 sat 2/14.1/14.1 2/33.4/33.4 4/27.2/ 2.2 5/29.4/ 2.6 5/ 9.4/ 2.6 4/14.4/ 6.0 5/79.6/ 0.2
0 unsat –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ – –/ –/ –

Total
229 sat 171/18.9/ 0.4 177/23.0/ 0.5 199/20.3/ 0.5 207/28.4/ 0.8 207/23.4/ 0.6 207/32.5/ 1.7 150/37.7/ 0.4
123 unsat 119/10.0/ 0.3 120/18.9/ 0.3 120/32.2/ 0.5 119/19.1/ 0.4 119/24.2/ 0.5 120/30.7/ 0.6 121/14.0/ 0.2

Table 1: Experiments with Horn benchmarks over linear integer arithmetic (LIA). Each en-
try in the table specifies 〈number of solved problems〉/〈average time (sec)〉/〈median time
(sec)〉. The columns correspond to standard Eldarica (Norm), Eldarica with disjunctive in-
terpolation (Norm), Eldarica with the different interpolation abstractions (ABS (1)–(4)), and
Z3. All experiments were done on an Intel Core i7 Duo 2.9 GHz with 8GB of RAM, with a
timeout of 1000 seconds.



– costh(x) = 1 if x is a variable that is not assigned to in the loop with head h;
– costh(x) = 9 if x is incremented by exactly 1 in each loop iteration (a loop counter);
– costh(x) = 4 for all other variables x.

ABS (1) closely corresponds to term abstractions as in [2,57], and makes a model
checker prefer interpolants with variables whose value does not change during execution
of loops.

– ABS (2) also uses finite term interpolation abstractions, but computes a richer set of
template terms. First a set MVarh of variables that are assigned to in a loop is computed.
Assuming this set is non-empty, and c ∈ MVarh is some modified variable, the templates
are chosen as

Th = {x | x a program variable} ∪ {x − c, x + c | x ∈ MVarh \ {c}}

with the cost function

costh(t) =


1 if t = x is a variable not modified in the loop,
6 if t = x is a variable modified in the loop,
2 if t = x − c,
7 if t = x + c.

The rationale is that templates x−c, x+c can be combined to express arbitrary difference
and octagonal properties between variables assigned in the loop (for instance, x − y =

(x − c) − (y − c)); nevertheless, the set Th only grows linearly in the overall number
of program variables. The cost function is chosen such that templates expressing linear
relationships between modified loop variables are preferred over individual variables.

– ABS (3) is an extension of ABS (2) that takes arithmetic progression of variables in the
loop into account. We first compute a stride set

S = {(x, α) | x is a variable that is incremented by α on some path through the loop}

by means of static analysis; for instance, if x is consistently incremented by 1 on some
path, and −2 on some other path, then {(x, 1), (x,−2)} ⊆ S . As a convention, if the loop
also has paths on which a variable x progresses non-arithmetically (x is modified, but
not incremented or decremented by a constant value), we assume {(x, 1), (x,−1)} ⊆ S .
We then pick some fixed variable c that is assigned to in the loop, and choose templates

Th = {x | x a program variable} ∪ {αcx − αxc | (x, αx) ∈ S , (c, αc) ∈ S , x , c}

and the cost function

costh(t) =


1 if t = x is a variable not modified in the loop,
6 if t = x is a variable modified in the loop,
2 if t = αcx − αxc.

– ABS (4) computes the same templates as ABS (3), but uses them to define finite in-
equalities interpolation abstractions (Sect. 5.2); i.e., for every template it is possible to
separately consider upper and lower bounds.
All interpolation abstractions are implemented in the Eldarica Horn solver;5 for our

experiments, we used version v1.0-rc,6 in which the abstractions can be enabled with the
4 Z3 incorrectly classified one of the benchmarks from [13] as unsat instead of sat; this error was confirmed

by the Z3 authors, and will be fixed in future versions of Z3.
5 https://github.com/uuverifiers/eldarica
6 https://github.com/uuverifiers/eldarica/releases/download/v1.0-rc/
eldarica-bin-2014-08-20.zip



Fig. 4: Scatter plots comparing runtime and number of CEGAR iterations for normal Eldar-
ica, and Eldarica with interpolation abstraction ABS (3).

Fig. 5: Scatter plot comparing Z3 runtime with Eldarica ABS (3).

options -abstract:term for ABS (1), -abstract:oct for ABS (2), -abstract:relEqs
for ABS (3), and -abstract:relIneqs for ABS (4).

The interpolation abstraction techniques were evaluated on altogether 352 publicly avail-
able benchmarks from the literature.7 As a comparison, we also applied standard Eldarica to
the benchmarks, as well as Eldarica with the disjunctive interpolation method from [50]. Fi-
nally, we compared to the Horn engine of Z3 [30] (using a beta version of Z3 4.3.2 checked
out in January 2014), which is considered state-of-the-art and widely used for verification.
The main results of our experiments are given in Table 1, and categorised according to the

7 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/



benchmark source and the status (satisfiable/unsatisfiable). In addition, Fig. 4 shows scatter
plots for standard Eldarica against ABS (3), with respect to runtime and the number of CE-
GAR iterations, and Fig. 5 gives a scatter plot comparing the runtime of ABS (3) with that
of Z3.

It can first be observed that all methods can solve almost all unsatisfiable benchmarks.
Interpolation abstraction is not beneficial for solving such benchmarks, but at the same
time only causes minor slow-down compared to standard Eldarica (e.g., Fig. 4). Z3 exhibits
the best performance on unsatisfiable benchmarks, but can altogether only solve one more
benchmark than standard Eldarica.

The differences are more significant for satisfiable benchmarks, where standard Eldarica
can solve more problems than Z3 (171 vs. 150), and Eldarica with interpolation abstraction
(in particular ABS (2)–(4)) can solve many more problems than standard Eldarica (207
vs. 171). ABS (3) is the configuration that can solve the largest number of benchmarks in
shortest average and median time, and also consistently needs fewer CEGAR iterations than
standard Eldarica (Fig. 4). However, as the scatter plots in Fig. 4 and 5 show, the runtime of
standard Eldarica, ABS (3), and Z3 are all comparable on satisfiable benchmarks. The rich-
est family of interpolation abstractions, ABS (4), overall cannot solve more problems than
ABS (3), but is significantly slower; this indicates that ABS (3) is indeed a good compro-
mise between expressiveness and performance. However, ABS (4) performs well on some
individual families of benchmarks (11 and 15).

Eldarica with disjunctive interpolation can solve more problems than standard Eldarica
(177 vs. 171), but is not as effective as interpolation abstraction. However, disjunctive inter-
polation is on average significantly faster than other Eldarica configurations on satisfiable
benchmarks in family 3.

Overall, it can be concluded that interpolation abstractions only incur a small runtime
overhead, and significantly extend the set of problems that can be solved using either inter-
polation methods or the generalised property-directed reachability algorithm of Z3.

9 A Case Study: Abstraction-based Analysis of Petri Nets

The previous sections evaluated the effectiveness of interpolation abstractions for a variety
of verification problems. The considered interpolation abstractions were rather simple and,
albeit inspired by criteria derived from software programs with numeric variables, general-
purpose in the sense that they could be applied to arbitrary problems in the form of Horn
constraints. We now give a case study on interpolation abstractions in the context of Petri
nets, where knowledge about the semantics and structure of analysed systems can be ex-
ploited to construct domain-specific and more powerful interpolation abstractions.

9.1 Preliminaries

A Petri net is a model equipped with a finite set of counters, usually called places, ranging
over the natural numbers. A configuration of a Petri net, also called a marking, is a mapping
of the places on the natural numbers. With an implicit order over the places, a marking is
simply a vector of natural numbers. Formally, a Petri net is given as a finite set of actions,
and an action a is a pair (ū, v̄) of markings denoting respectively the pre-condition ū and the
post-condition v̄ of a.
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a1
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p3

a3
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2 a1 = ( (1, 1, 0, 0, 0) , (1, 0, 1, 0, 0) )
a2 = ( (1, 0, 0, 0, 0) , (0, 0, 0, 1, 0) )
a3 = ( (0, 0, 0, 1, 0) , (1, 0, 0, 0, 1) )
a4 = ( (0, 0, 1, 1, 0) , (0, 2, 0, 1, 0) )

Fig. 6: A Petri net with places {p1, p2, p3, p4, p5} and actions {a1, a2, a3, a4}.

The semantics of an action a = (ū, v̄) is defined thanks to a binary relation
a
−→ over the

markings as follows:
x̄

a
−→ ȳ iff x̄ ≥ ū ∧ ȳ = x̄ − ū + v̄

The reachability problem takes as input a Petri net and a pair (x̄, ȳ) of markings, and decides
if there exists a sequence a1, . . . , ak of actions (an action can occur many times) such that:

x̄
a1
−→ · · ·

ak
−→ ȳ

In this case ȳ is said to be reachable from x̄, and the set of markings reachable from x̄ is
called the reachability set from x̄.

Example 7 The Petri net depicted Fig. 6 is equipped with the initial marking x̄ = (1, 1, 0, 0, 0).
From [39,40], we deduce that for every non reachable marking ȳ, there exists a Presburger
formula denoting an inductive invariant that contains the initial marking and not the marking
ȳ. This Presburger formula must depend on ȳ. In fact, if there exists a Presburger formula
denoting an inductive invariant that contains the initial marking and only reachable mark-
ings, then this formula denotes the reachability set of the Petri net. However, the Petri net
depicted in that figure is a classical example of a Petri net with a reachability set that is not
definable in Presburger arithmetic (see [35] for more details).

9.2 CEGAR for Petri Nets

The CEGAR approach (Counter Example Guided Abstract Refinement) [25,28] provides
a general framework for automatically computing inductive invariants. In this approach, a
finite set of formulas in a decidable logic, called predicates, are used to transform a con-
crete system into an abstract one. Informally, the abstract system is a finite graph; states are
labeled by Boolean combinations of predicates; actions are labeled by actions of the Petri
net in such a way the finite graph simulates the Petri net. For Petri nets, Presburger arith-
metic is a good candidate for denoting predicates. In fact, this logic is sufficient for denoting
witnesses of non-reachability as explained in related work (see Section 2).

With this approach, and the predicates {p1 = 0, p1 = 1, p4 = 0, p4 = 1}, the Petri net
depicted Fig. 6 is abstracted away into the finite graph depicted in Fig. 7.
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Fig. 7: An abstraction of a Petri net.

This graph provides a simple way for proving that a marking is not reachable from
the initial marking x̄ = (1, 1, 0, 0, 0). In fact, the formula obtained as the disjunction of all
the formulas labeling states denotes an inductive invariant. Hence, a marking that does not
satisfies the following formula is not reachable:

(p1 = 1 ∧ p4 = 0) ∨ (p1 = 0 ∧ p4 = 1)

Conversely, if a marking ȳ satisfies this formula, we cannot conclude that ȳ is reachable.
However, in this case there exists a path from the initial state to a state labeled by a formula
satisfied by ȳ. Such a path can be automatically computed with classical graph exploration
algorithms. This path is labeled by a sequence of actions a1, . . . ak and one can simply check
if the following property holds:

x̄
a1
−→ · · ·

ak
−→ ȳ

In the positive case, we deduce that ȳ is reachable. In the negative case, it means that the ab-
straction is too coarse. In order to improve the preciseness of the abstraction, new predicates
must be computed. These predicates are obtained by observing that the following formula
is unsatisfiable where φ j[s̄ j−1, s̄ j] is the formula s̄ j−1 ≥ ū j ∧ s̄ j + ū j = s̄ j−1 + v̄ j encoding the
semantics of the action a j = (ū j, v̄ j):

(s̄0 = x̄ ∧ φ1[s̄0, s̄1] ∧ . . . ∧ φ j[s̄ j−1, s̄ j])

∧(φ j+1[s̄ j, s̄ j+1] ∧ . . . ∧ φk[s̄k−1, s̄k] ∧ s̄k = ȳ)

Since the formula is unsatisfiable, an interpolant I j[s̄ j] for the previous interpolation problem
can be computed. This interpolant is then added to the set of predicates, and we restart the
analysis of the Petri net with the new set of predicates.

The convergence of the CEGAR approach relies on the quality of the computed pred-
icates. Unfortunately, a computation of interpolants as previously explained provides low
quality predicates for Petri nets. The problem comes from the fact that if the previously
given formula is unsatisfiable, there exists a very simple explanation of this property that
only relies on the particular value of a components of s̄ j. In practice, the predicates com-
puted this way are only Boolean combinations of formulas of the form pn = c where c is
some natural number. The CEGAR loop will diverge on some simple Petri nets as shown in
Example 8.

Example 8 The Petri net depicted Fig. 8 is initialized with the zero marking (0, 0). The
reachability set is the set of markings satisfying p1 = p2. The only inductive invariant that
contains the initial marking and is a Boolean combination of formulas p1 = c or p2 = c is
the formula true. In particular for this Petri net, the classical CEGAR approach as presented
in this section will diverge for proving that (1, 0) is not reachable.
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Fig. 8: Another Petri net.

9.3 Interpolation Abstraction for Generating Predicates

We apply the CEGAR loop exploration as previously presented, but interpolants are com-
puted from sequences of actions a1, . . . , ak only after application of interpolation abstraction.
This serves the purpose of improving the quality of predicates generated by interpolation,
so that divergence of CEGAR can be avoided in many (though not all) cases. Our approach
to compute interpolation abstractions is based on different heuristics combining linear al-
gebra and acceleration techniques [22]. In the sequel, we present three different kinds of
interpolation abstractions.

Global-orthogonal-space heuristic (ABS (1)).
The computation of place invariants is a classical way for efficiently computing invariants of
Petri nets. Place invariants are obtained by observing that if a vector t̄ is orthogonal to v̄ − ū
for every action a = (ū, v̄) of the Petri net, then t̄ is orthogonal to ȳ − x̄ for every marking ȳ
reachable from x̄. That means the dot product of t̄ with any reachable marking is a constant.
Our first heuristic is based on the observation that orthogonal vectors t are suitable templates
to be used in combination with term or inequality interpolation abstractions (Sect. 5.1 and
5.2). We first compute a basis of the vector space ortogonal to all vectors v̄ j − ū j where
a j = (ū j, v̄ j). This basis is then completed as an orthogonal basis B of the whole vector
space generated by the markings. Such a computation is performed with Gauss elimination
in polynomial time.

We then define an abstraction lattice using the powerset lattice for B (Def. 9), with each
node in the lattice mapping to an inequality interpolation abstraction for some subset of B.
The abstraction lattice is equipped with a cost function (as in Sect. 7.3) that maps orthogonal
vectors t̄ to a small cost, and all other basis vectors to a large cost. As a result, the search
procedures from Sect. 7 are able to systematically search for interpolation abstractions, and
consequently interpolants, that are defined using orthogonal vectors; such interpolants are
likely invariant under all or many actions of a Petri net.

Acceleration of individual recurring actions (ABS (2)).
Acceleration techniques compute reachability sets thanks to the exact effect of iterating some
sequences of actions. For instance, let us consider an action a = (ū, v̄), and observe that for

every natural number n ≥ 1, we have x̄
an

−→ ȳ if and only if x̄ ≥ ū, ȳ ≥ v̄, and ȳ+n.ū = x̄+n.v̄.
Our second heuristic is based on acceleration. Basically, rather than computing interpolants
directly from a sequence of actions a1, . . . , ak, we compute interpolants I j[s j] using the
following formula, where φacc

j [s̄ j−1, n j, s̄ j] is the formula s̄ j−1 ≥ ū j ∧ s̄ j ≥ v̄ j ∧ s̄ j + n j.ū j =

s̄ j−1 + n j.v̄ j encoding the effect of iterating n j times the action a j = (ū j, v̄ j).

(s̄0 = x̄ ∧ φacc
1 [s̄0, n1, s̄1] ∧ . . . ∧ φacc

j [s̄ j−1, n j, s̄ j])

∧(φacc
j+1[s̄ j, n j+1, s̄ j+1] ∧ . . . ∧ φacc

k [s̄k−1, nk, s̄k] ∧ s̄k = ȳ)



Note that ∃n j ≥ 1. φacc
j [s̄ j−1, n j, s̄ j] is an over-approximation of φ j[s̄ j−1, s̄ j], and can in fact

be mapped to an inequality interpolation abstraction by means of quantifier elimination.
As before, costs can be used to steer interpolant exploration towards interpolants that are
invariant under recurrence of the accelerated action.

Detection of increasing sequences (ABS (3)).
In our last heuristics, we abstract away the sequence a1, . . . , ak of actions as a multiset. This
abstraction basically extracts the Parikh image by counting the number of times an action
occurs. Informally, thanks to linear algebra methods, sub-multisets of actions are computed
in such a way that the effect of these actions is a non-negative vector. More formally, we
consider for each action a = (ūa, v̄a) a natural number na in such a way that the following
vector v̄ satisfies v̄ ≥ 0̄:

v̄ =
∑
a∈A

na(v̄a − ūa)

The computation of vectors v̄ satisfying v̄ ≥ 0̄ is motivated by the framework of acceleration
as previously mentioned. In fact, an action a = (ū, v̄) with a non-negative effect v̄ − ū can be
iterated an arbitrary number of times; the same can be the case for non-negative vectors v̄
combining the effect of several actions.

Example 9 The considered vectors v̄ may not correspond to any sequence of actions that is
iterable from any reachable marking. For instance, let us consider the Petri net depicted in
Fig. 6. The abstraction of this Petri net depicted in Fig. 7 shows that the sequence a1a4 cannot
be iterated (the actions a2 and a3 must be taken between a1 and a4). However, the effect of
a1a4 is equal to (0, 1, 0, 0, 0) which is a non-negative vector, and logically the pair a1a4 of
actions has a similar effect as an ordinary loop.

Once a non-negative vector v̄ has been extracted from a1, . . . , ak, a lattice of inequality
interpolation abstractions is derived by computing a basis B′ of the vector space orthogonal
to v̄, and a basis B = B′ ∪ {v̄} of the complete space. The vectors in B are then used as
templates, with a cost function assigning large cost to v̄, and small cost to the vectors in B′.

9.4 Experiments

In order to evaluate the efficacy of the different interpolation abstractions, we implemented
a Petri net checker on the basis of the model checker Eldarica (Sect. 8.2) and integrated the
three forms of abstraction defined in the previous section. Experiments were done using a
set of (bounded and unbounded) Petri net benchmarks taken from the literature.8

The results are given in Table 2, in terms of runtime and the required number of CE-
GAR iterations. As can be seen, Eldarica without interpolation abstraction performs poorly
on Petri nets, and times out in many cases. The three interpolation abstractions show com-
plementary performance, and each of our benchmarks could be solved using at least one of
the heuristics. A combination of the interpolation abstractions (ABS-all) is also able to solve
all benchmarks, although not always with the best runtime.

Finally, we compared to the acceleration-based model checker Fast [3]. Fast checks
reachability queries by first computing a closed-form representation of the complete reach-
ability set, and therefore has the same runtime for reachable as for unreachable cases. Fast
is able to solve all bounded Petri nets in very short time, but times out for a number of the
unbounded ones. In particular, Fast fails for the “Exponential” example, which is similar to
Fig. 6 and has a reachability set that cannot be defined in Presburger arithmetic.

8 Benchmarks and implementation on http://www.philipp.ruemmer.org/eldarica-p.shtml



Benchmark Eldarica ABS (1) ABS (2) ABS (3) ABS-all Fast
N sec N sec N sec N sec N sec sec

Bounded Petri nets
Basic ME U 3 1.3 3 1.55 3 1.3 3 1.3 3 1.7 <1
IFIP U 12 2.3 2 1.7 12 4.3 10 4.6 2 1.8 <1
L6000 U * * 17 16.5 8 4.7 * * 3 4.0 <1
Long 1 U * * 1 1.2 7 7.1 * * 1 1.2 <1
Long 2 U * * 1 1.4 10 11.1 13 15.4 1 1.4 <1
Long 3 U * * * * 10 11.5 8 8.2 11 19.2 <1
Long 4 U * * 1 2.8 9 11.2 103 79.6 1 3.0 <1
Manufacturing 3 U * * 323 802 441 2635 675 1946 354 1588 2.4
Manufacturing 9 R * * 232 801 264 632 560 3053 295 1515 10.8
Unbounded Petri nets
Alternating bit prot. R 64 14.8 16 10.5 44 17.5 35 15.2 16 14.7 4.5
FMS R 25 20.5 23 28.4 25 27.3 17 24.7 23 32.4 98.4
” U 18 9.8 2 7.0 13 17.6 18 10.7 2 6.7 37.4

FinkelKM R 16 5.8 15 8.9 16 11.6 17 11.6 15 22.7 5.7
” U 14 5.7 3 2.4 6 6.5 7 3.4 3 2.5 5.7

Finkel Counterex. R 12 2.3 10 3.5 12 2.3 12 2.6 10 3.6 <1
Kanban R 28 33.3 19 35.8 29 70.0 22 41.5 25 67.3 *
” U * * 1 3.9 * * * * 1 3.8 *

Mesh 2x2 R 75 52.3 64 82.9 60 56.6 68 102 65 105 97
” U 186 170 18 33.7 * * * * 18 37.8 97

Multipool U 56 423 1 5.4 * * * * 1 5.0 *
Pingpong U 3 1.4 2 1.5 2 1.4 2 1.3 2 1.5 <1
PNCSA Cover R 32 15.0 17 16.5 32 14.5 26 16.4 17 17.7 *
Exponential U * * 8 3.9 8 3.4 6 5.1 5 5.2 *
Language inclusion U * * * * 5 3.7 2 1.7 6 9.0 <1

Table 2: Comparison of tools for checking reachability in bounded and unbounded Petri
nets, on benchmarks taken from the literature. Eldarica is the standard CEGAR engine of
the Eldarica model checker [33]. ABS (1) is the global-orthogonal-space heuristic, ABS (2)
accelerates individual actions, ABS (3) detects increasing sequences, ABS-all combines all
abstraction methods. Fast is the acceleration-based model checker [3]. For each benchmark,
“U” denotes that the considered configuration is unreachable, while “R” represents reach-
able configurations. Items with “*” indicate a timeout (set to 1 hour). Experiments with
Eldarica were done on an Intel Core i5 2-core machine with 3.2GHz; Fast was run on an
Intel Core i7 2-core machine with 1.7GHz.

10 Conclusion

We have presented a semantic solver-independent framework for guiding theorem provers
towards high-quality interpolants. Our method is simple to implement, but can improve
the performance of model checkers significantly. The framework makes it easy to augment
interpolation procedures with domain-specific techniques to construct useful invariants, and
we therefore expect it to be helpful in many domains where standard unguided interpolation
methods struggle to generate good solutions.

Various directions of future work are planned, among others: (i) we want to explore fur-
ther forms of interpolation abstractions, in particular for computing quantified interpolants
and for handling infinite abstraction lattices; (ii) it is planned to gather more experiences
with interpolation abstraction for programs with arrays and heap, which are notoriously dif-
ficult for standard interpolation methods; (iii) since our approach is clearly related to the
theory of abstract interpretation, we plan to investigate whether further methods from ab-
stract interpretation can be carried over to our framework.
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