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Abstract
The study of turbulence in complex fluids is of great interest in many environmental and industrial applications, in which the 
interactions between liquid phase rheology, turbulence, and other phenomena such as mixing or heat and mass transfer have 
to be understood. Oscillating grid stirred tanks have been used for many purposes in research involving turbulence. However, 
the mechanisms of turbulence production by the oscillating grid itself have never been studied, and oscillating grid turbulence 
(OGT) remained undescribed in non-Newtonian, shear-thinning, dilute polymer solutions until recently (Lacassagne et al., 
in Phys Fluids 31(8):083,102, 2019). The aim of this paper is to study the influence of the shear-thinning property of dilute 
polymer solutions (DPS), such as xanthan gum (XG), on mean flow, oscillatory flows, and turbulence around an oscillating 
grid. Liquid phase velocity is measured by particle image velocimetry (PIV) in a vertical plane above the central grid bar. 
Mean, oscillatory and turbulent components of the velocity fields are deduced by triple Hussain–Reynolds decomposition 
based on grid phase-resolved measurements. Outside of the grid swept region, the amplitude of oscillatory fluctuations 
quickly become negligible compared to that of turbulent fluctuations, and the triple and classical Reynolds decomposition 
become equivalent. Oscillatory jets and wakes behind the grid and their interactions are visualized. Turbulent (Reynolds) 
and oscillatory stresses are used to evidence a modification of oscillatory flow and turbulence intensity repartition in and 
around the grid swept region. Energy transfer terms between mean, oscillatory and turbulent flows are estimated and used 
to describe turbulence production in the grid swept region. Energy is injected by the grid into the oscillatory component. In 
water, it is transferred to turbulence mostly inside the grid swept region. In DPS, oscillatory flow persists outside of the grid 
swept zone. Energy is transferred not only to turbulence , in the grid swept region, and far from the tank’s walls, but also to 
the mean flow, leading to an enhancement of the latter. Mean flow production and enhancement mechanisms are explain-
able by oscillatory jet variable symmetry and intensity, and by time- and space-variable viscosity. Backward transfer from 
turbulence to oscillatory flow is also evidenced in DPS. Finally, using phased root mean square (rms) values of turbulent 
velocity fluctuations, it is shown that in water, the decay of turbulence intensity behind an oscillating grid can be related to 
the decay of fixed grid turbulence for specific grid positions, a result no longer valid in DPS.
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Graphic abstract

1  Introduction

A multitude of environmental phenomenon and industrial 
processes involve turbulent flows of complex liquid phases 
such as suspensions (Cuthbertson et al. 2018), multiphase 
media (Alméras et al. 2015), or liquids with complex rhe-
ology. The study of turbulence, already quite complex in 
itself, becomes even more challenging when it is done 
in such fluids. In particular, complex rheology liquids, 
known as non-Newtonian, are present in many industrial 
and environmental applications involving turbulent flows, 
for example in fermentation broths (Gabelle et al. 2013; 
Petříček et al. 2017). The complete understanding of com-
plex real life situations requires fundamental description 
and characterization of turbulence properties in such flu-
ids, and thus adequate experimental or numerical simpli-
fied cases of study. One of them is that of a rigid grid 
oscillating in a liquid initially at rest, called oscillating 
grid turbulence (OGT) (Hopfinger and Toly 1976; Thomp-
son and Turner 1975).

Oscillating grid stirred tanks have been used for many 
purposes in research on turbulence. Among them is the 
study of interactions between turbulence and solid imper-
meable boundaries (McCorquodale and Munro 2017, 
2018a), turbulence and gas–liquid mass transfer at a free 

surface (Brumley and Jirka 1987; Chiapponi et al. 2012; 
Herlina 2005; McKenna and McGillis 2004b), in stratified 
media (Hopfinger and Toly 1976; Thompson and Turner 
1975; Verso et al. 2017; Xuequan and Hopfinger 1986), or 
study the behavior of bubbles, cells, fibres and aggregates 
suspended in a turbulent liquid phase (Mahamod et al. 
2017; Nagami and Saito 2013; Rastello et al. 2017; San 
et al. 2017). Apart from fundamental turbulence studies, 
oscillating grids are used as flotation cells (Cuthbertson 
et al. 2018; Massey et al. 2012; Safari et al. 2017) in tanks 
with various shapes (tubular, prismatic, etc.) and with 
various number of grids.

Such devices are said to generate quasi-homogeneous and 
isotropic turbulence in horizontal planes (parallel to the grid, 
when it oscillates vertically), and to yield theoretically no 
mean flow, which is a major advantage compared to fixed 
grid setups in channels. The absence of a strong mean shear 
avoids some destruction of complex fluids’ components 
(fibres, polymer chains, cells) that is sometimes observed 
in fixed grid turbulence (Vonlanthen and Monkewitz 2013). 
The fact that turbulent eddies are theoretically not advected 
by a strong mean flow makes them more easily observable 
and traceable by optical techniques such as particle image 
velocimetry (PIV) and planar laser-induced fluorescence 
(PLIF): seeding particles or tagged fluorescent molecules 
stay for longer times in the region of interest.



Experiments in Fluids           (2020) 61:15 	

1 3

Page 3 of 24     15 

However, the mechanisms of turbulence production by 
the oscillating grid itself have never been studied. It is com-
monly said that turbulence arises from the interaction of 
jets and wakes (Thompson and Turner 1975) behind grid 
holes and bars, but the exact interactions of these jets and 
wake, and the way they merge to generate homogeneous tur-
bulence remained unobserved, even in water, until recently 
(McCorquodale and Munro 2018b).

Regarding oscillating grid turbulence in non-Newtonian 
liquids, only a few studies can be found in the literature 
(Liberzon et al. 2009; Wang et al. 2015, 2016), focused on 
purely elastic fluids, and none of them seems to tackle the 
effects of variable viscosity on either the mechanisms of tur-
bulence generation, or the mean flow and turbulence proper-
ties mapping in the whole tank. This has only been described 
in a recent study by Lacassagne et al. (2019).

Studies of periodic and turbulent flows in non-Newtonian 
polymer solutions yet suggest that the presence of a minute 
amount of polymer in the liquid phase, conferring it either 
shear-thinning and/or viscoelastic properties, may signifi-
cantly alter the energy distribution and exchanges between 
mean flow structures, oscillatory fluctuations and turbulence 
in the flow (Gabelle et al. 2013, 2017; Cocconi et al. 2017).

The aim of this paper is to study the influence of a shear-
thinning behavior on mean flow, oscillatory flows, and tur-
bulence around an oscillating grid. This study is meant to 
bring additional information on both oscillating grid turbu-
lence generation mechanisms, and on the fundamental effect 
of polymer induced shear-thinning property on oscillatory 
flows and turbulence.

The shear-thinning properties is given to an initially 
Newtonian fluid, water, by addition of a minute amount of 
polymer (xanthan gum, XG). Fluid velocity measurements 
are achieved using PIV in and around the region of the 
grid oscillations (grid swept zone). A triple decomposition 
methodology (Hussain and Reynolds 1970), already used 
in industrial impeller-stirred tank studies (Escudié and Liné 
2003), is applied to reconstruct mean flows, oscillatory/peri-
odic fluid motion, and turbulent velocity fluctuations. Oscil-
lating grid flow in water is compared to a single polymer 
concentration case at the upper limit of the dilute regime.

The rest of present paper is organised in four sections. 
In the background section, the basis of oscillating grid tur-
bulence in water is presented, the influence of polymer on 
turbulence in general and on grid turbulence (mostly for 
fixed grids) is described, and finally the triple decomposition 
method is introduced. In Sect. 3, the properties of polymer 
solutions used in this study are introduced and the oscillat-
ing grid setup is described. PIV measurements and image 
and data processing stages are also detailed. Section 4 first 
focuses on the decomposition of the velocity fields in mean, 
oscillatory and turbulent components, and on turbulent and 
periodic fluctuation properties. Energy transfers between 

flow components are then discussed, and further details on 
mean flow and turbulence generation are provided. Previ-
ous results are evidenced again by a viscosity estimation 
approach. In the conclusion, the mechanisms of flow genera-
tion by the oscillating grid in water are summarized, and the 
observed effects of polymer addition on the flow are listed.

2 � Background

2.1 � Oscillating grid turbulence in water

The principle of oscillating grid turbulence (OGT) is to 
produce turbulence in a fluid initially at rest by making a 
grid oscillate, usually vertically, at a frequency f and with an 
amplitude or stroke 2S. It is commonly said that the jets and 
wakes behind the grid’s holes and bars interact to generate 
turbulence (Herlina 2005; Hopfinger and Toly 1976; Thomp-
son and Turner 1975; Voropayev and Fernando 1996), which 
then diffuses away from the grid. It is of great interest for 
turbulence study since it theoretically creates almost no 
mean flow and, therefore, allows to study the effects of tur-
bulence alone, which is not the case for fixed grid systems. 
OGT is also supposed to yield a quasi-homogeneous and 
isotropic turbulence in horizontal planes when measured far 
enough from the grid’s top position.

The first oscillating grid apparatus was designed by Rouse 
and Dodu (1955) to study turbulent diffusivity across a den-
sity stratification layer located above the grid and consisted 
in a square mesh grid in a cylindrical tank. Later, Bouvard 
and Dumas (1967) performed hot-fibre velocity measure-
ments of grid generated turbulence in water, using a perfo-
rated plate as an oscillating grid. A full characterization of 
OGT in prismatic tanks came with the pioneer works of 
Thompson and Turner (1975) and Hopfinger and Toly 
(1976). Thompson and Turner (1975) studied several types 
of grids with different mesh sizes M and different bar shapes, 
and showed that the best homogeneity and intensity of tur-
bulence was achieved with square section bars and a solidity 
parameter � =

d

M

(
2 −

d

M

)
 lower than 0.4, d being the width 

of grid bars. Hopfinger and Toly (1976) added that the walls 
of the tank should be planes of symmetry for the grid, to 
minimize the recirculation effects in the tank. For the same 
reason, the grid’s average position should be at least 2.5 ×M 
above the bottom of the tank (Xuequan and Hopfinger 1986). 
Horizontal homogeneity of turbulence is reached when the 
distance from the grid’s mean position is greater than an 
empirically determined value Zh expressed in numbers of 
mesh parameter, with 2M < Zh < 4M depending on the 
study. Since the ultimate interest is to achieve turbulence 
homogeneity, many studies of OGT use this Zh parameter as 
a critical minimal distance at which the grid has to be placed 
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from the item one wants to study the interaction with turbu-
lence. Only recently, McCorquodale and Munro (2018b) 
evidenced the spatial homogenization of turbulence from the 
grid’s swept zone to the Zh region. Once the far-grid, homo-
geneity region is reached, turbulence properties can be 
described by various evolution laws, first derived by Thomp-
son and Turner (1975) and Hopfinger and Toly (1976) and 
later completed by other studies (Mcdougall 1979; Nokes 
1988; Shy et al. 1997; Silva and Fernando 1994; Wan Mohtar 
2016). These turbulence decay relationships are well 
described for water, but not in shear-thinning polymer cases. 
This yet will not be discussed in the present paper, as it is 
the subject of another work that has been published sepa-
rately (Lacassagne et al. 2019). It is worth noting that OGT 
has almost never been simulated numerically. Only the 
recent work by Zhang et al. (2017) presents a Lattice Boltz-
mann simulation of OGT and numerically visualizes the 
interactions between jets and wakes behind the grid bars and 
holes leading to turbulence generation.

At first, the concept of OGT generating no mean flow 
but only isotropic and homogeneous turbulence was rather 
well believed. Yet with the development of PIV techniques 
allowing further investigations of the flow inside OGT tanks, 
it became clear that mean flow exist even when matching 
the requirements detailed above. McKenna and McGillis 
(2004b) studied the mean flows in an oscillating grid tank 
using PIV and showed that persistent mean flow cells always 
existed, with relative high kinetic energy level as compared 
to the turbulent kinetic energy. Moreover, these mean flows 
seem to be poorly reproducible and strongly dependent on 
initial conditions (Herlina 2005). It is, therefore, really hard 
to predict the mean flow that could occur in the oscillating 
tank during a specific measurement, and this is one of the 
main limitations of OGT systems.

A method for reducing mean flows in OGT is to use 
an inner box placed inside the stirred tank to separate the 
wall-induced vortices from the rest of the flow (Dickinson 
and Long 1983; Hopfinger and Toly 1976; McCorquodale 
and Munro 2018b). The complementary work previously 
referred to (Lacassagne et al. 2019) also suggests that the 
mean flow may be enhanced by the presence of polymer in 
the dilute entanglement regime. Investigations of flow prop-
erties in the grid region may allow to explain the origin of 
this mean flow both in water and in shear-thinning polymer 
solutions.

2.2 � Turbulence and grid turbulence in polymer 
solutions

The influence of non-Newtonian behavior on grid turbulence 
has been mainly studied for fixed grid configuration and vis-
coelastic fluids (Barnard and Sellin 1969; van Doorn et al. 
1999; Fabula 1966; Friehe and Schwarz 1970; Greated 1969; 

McComb et al. 1977). Recently, Vonlanthen and Monke-
witz (2013) used PIV measurements to look at turbulent 
spectra and scales in grid turbulence of dilute viscoelastic 
polymer solutions and evidence elastic modifications of tur-
bulence. In their experiments, they found that both the shape 
of the energy spectrum and the elastic scale evolved with 
time, which they explained by the destruction of polymer 
chains by the strong shears in the vicinity of the grid. This 
shows one of the limits of fixed grid devices for the study 
of turbulence in polymer solutions: reaching high levels of 
turbulence requires high flow rate which causes important 
degradation of the polymer throughout the measurements. 
Moreover, turbulent velocity fluctuations are even smaller 
when compared to mean flow velocities than for the water 
case. One may thus prefer using OGT rather than fixed grid.

The first study of OGT in viscoelastic dilute polymer 
solutions (PEO) was made by Liberzon et al. (2009), who 
observed the propagation velocity of the boundary between 
turbulent and non-turbulent regions in the tank, at the first 
instants after the onset of the grid’s oscillations. They found 
that the turbulent/non-turbulent interface moved globally 
faster in dilute polymer solution than in water. Wang et al. 
(2015) and Wang et al. (2016) later used a two oscillating 
grid system to study the viscoelastic effects of surfactants 
and dilute polymers on coherent structures. Using proper 
orthogonal decomposition (POD), they show that the addi-
tion of polymer tends to decrease the small-scale effects of 
turbulence, and that this decrease can not only be attrib-
uted to the overall viscosity increase, since it is not associ-
ated with a decrease of the turbulent kinetic energy (TKE). 
Hence, the non-Newtonian property of the flow seems to 
strongly modify the spectrum behavior of the turbulent 
structures. They show promising results for the use of this 
method to analyze OGT flow properties in complex fluids 
such as DPS.

2.3 � Triple decomposition of turbulence in periodic 
flows

In some cases, a flow may display a periodic behavior due 
to external forcing or waves. Blade motion in stirred tanks 
(Escudié and Liné 2003), periodic vortex shedding at rigid 
boundaries in free surface flows (Mignot et al. 2016), or 
pulsating flow in blood vessels induced by periodic heart-
beats (Holdsworth et al. 1999) are good examples of flows 
in which an oscillatory/organised/periodic effect is present. 
Oscillating grid turbulence used in this work is another one. 
In such flows, the time average of the oscillatory component 
of the flow is nil. Hence, when using classical Reynolds 
decomposition to describe them, periodic fluctuations are 
included considered together with while they are not strictly 
speaking turbulent fluctuations.
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To be able to distinguish turbulence from organised motion, 
Hussain and Reynolds (1970) proposed a triple decomposition 
of the velocity field, that will be called triple decomposition 
hereinafter. The total instantaneous velocity field is this time 
written as the sum of the average velocity U , the periodic fluc-
tuation u∗ and the turbulent fluctuation u′:

Pressure decomposes the same way, with u∗ = 0 , u� = 0 , 
p∗ = 0 , p� = 0 , u∗u� = 0 and p∗p� = 0 . Turbulent, mean 
and oscillatory kinetic energies can be defined, respectively, 
as k� = 1

2
u�
i
u�
i
= , K =

1

2
UiUi and k∗ = 1

2
u∗
i
u∗
i
 . Hussain and 

Reynolds (1970) derived the following governing equations 
for, respectively, k′ , k∗ and K:

where (1) is the accumulation term, (2) is advection by the 
mean flow,(3) (6) and (7) are diffusion terms, term (8) dis-
sipation, and terms (4) and (5) are exchanges with mean and 
oscillatory components. ⟨a⟩� is the phase-averaged quantity 
of a (see Sect. 3.4).
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where term (1) is the accumulation term, term (2) is advec-
tion by the mean flow, terms (3) and (6) are diffusion, term 
(7) is dissipation, and terms (4) and (5) are exchanges with 
mean and turbulent components.
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turbulent kinetic energy production comes from the organ-
ized motion ( Tot ). To fully understand turbulence in oscilla-
tory flows, the knowledge of these transfer terms is required. 
It is worth noting that all of the above equations reduce to 
the ones obtained using the classical Reynolds decomposi-
tion when u∗ << u� , i.e., in case of negligible oscillatory 
flow influence.

3 � Materials and methods

3.1 � Polymer solutions

Shear-thinning properties are conferred to the liquid by addi-
tion of a minute amount of a polymer, xanthan gum (XG), 
to distilled water. Here XG produced by Kelco under the 
commercial name Keltrol CG-T is used. Its average molar 
mass is Mw = 3.4 × 106 g mol−1 and its polydispersity equal 
to 1.12 (Rodd et al. 2000). XG is chosen for its high resist-
ance to strong shears and extreme temperature and pH con-
ditions (Garcia-Ochoa et al. 2000). Such features are use-
ful when using it nearby a rigid oscillating grid. XG yields 
optically clear non-Newtonian solutions once dissolved in 
aqueous media. This allows the use of optical methods for 
liquid phase velocity measurements. This polymer is com-
monly utilized as a flow additive for non-Newtonian fluid 
mechanics experiments, but also in the food, process, and 
oil and gas industries (Katzbauer 1998). Its rheology and its 
properties have been widely studied in the literature (Cuve-
lier and Launay 1986; Wyatt and Liberatore 2009; Wyatt 
et al. 2011). Depending on the polymer concentration CXG , 

one may distinguish between three entanglement regimes: 
dilute, semi-dilute, and concentrated (Cuvelier and Launay 
1986; Wyatt and Liberatore 2009). In the last two cases, the 
flow behavior is defined by fluid–polymer but most impor-
tantly polymer–polymer mechanical or electrical interac-
tions. In this work the focus is made on the dilute regime, 
for which polymer molecules only interact with the flow 
and not between each other. It concerns the CXG ≤ 100 ppm 
concentration range (Wyatt and Liberatore 2009). Here the 
working concentration is CXG = 100 ppm (Fig. 1). This last 
concentration is chosen so that the solution is still in the 
dilute regime for entanglement, with the strongest possi-
ble concentration effects within that regime. One then talks 
about a dilute polymer solution (DPS). The shear-thinning 
behavior of aqueous XG DPS can be modelled by a Car-
reau–Yasuda (CY) equation

With �0 = 32.8 mPa s and �inf = 1.1 mPa s the zero shear 
rate and infinite shear rate Newtonian plateau, tCY = 1.58 s 
a characteristic timescale of the polymer, (n − 1) = −0.5 
the shear-thinning power law exponent, and a = 2 a param-
eter for the transition between power law and Newtonian 
behaviors (all values given for CXG = 100 ppm) . The evolu-
tion of viscosity with the nominal shear rate is shown on 
Fig. 2. Vertical lines indicates estimate of (1) the typical 
shear rates caused by the grid (full line, based on its fre-
quency), and (2) the maximum shear rates caused by mean, 
oscillatory and turbulent motions (based on data shown in 
Fig. 7). Viscoelasticity is checked to be negligible for such 

(8)
𝜇 − 𝜇∞

𝜇0 − 𝜇∞

=
(
1 +

(
tCY𝛾̇

)a) n−1

a .

Fig. 1   Sketch of the oscillating grid and PIV setup
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a XG concentration. Steady shear rheological measurements 
performed before and after experiments allow to check that 
polymer chains are not destroyed by grid oscillations, or 
at least that destruction does not affect the shear-thinning 
property (see Lacassagne (2018), Fig. 3.10).

3.2 � Oscillating grid setup

Turbulence is generated in a transparent prismatic tank of 
L2 inner cross section with L = 277 mm . The fluid height is 
set at H = 450 mm and the distance between the surface and 
the average grid position is 250 mm. The vertical axis, ori-
ented upwards, is noted Z, and X and Y are the axis defined 
by the grid bar (see Fig. 1). The origin of the reference frame 
is placed at the grid average position ( Z = 0 ) at the cross-
ing between the two central bars. In this study, only polymer 
concentration is varied and all oscillation parameters are kept 
constant. The grid bars are d = 7 mm thick and the mesh 
parameter is M = 35 mm . The frequency is fixed at 1 Hz and 
the amplitude at 2S = 5 cm , This allows to define a grid-based 
Reynolds number using the definition of Janzen et al. (2010), 
but based on the zero shear rate viscosity �0:

The density � of the fluid is assumed equal to that of water, 
because of the very small mass of polymer added. Here one 
gets Reg = 2500 for water and Reg = 76 for the polymer 

(9)Reg =
�f (2S)2

�0

.

case. To quantify the ratio between the polymer relaxation 
timescale and the grid forcing timescale the grid-based Deb-
orah number De is defined as

with T the period of oscillations. Here De = 1.58.

3.3 � PIV measurements

Liquid phase velocity measurements in the tank are achieved 
by particle image velocimetry (PIV). The experimental setup 
is sketched in Fig. 1. The region of interest (ROI) is a verti-
cal rectangle, in a plane normal to the central bar of the 
oscillating grid. Its width is close to that of the tank, and it is 
vertically centred around the grid swept zone. The cameras 
used is a double frame LaVision SCMOS sensors of 2560 
by 2160 pixels, equipped with a 50 mm focal macro lens. 
A pulsed Quantel Nd:YAG laser emitting at � = 532 nm 
is used to illuminate 50 μm diameter polyamide particles. 
Double-frame PIV at an acquisition frequency facq of 10 Hz 
is performed. The time interval between laser pulses is 
�t = 4 ms . Vector fields are computed with DaVis 8 soft-
ware using a multipass processing: a first pass with 48 by 
48 pixels and 2 following passes with 24 by 24 pixels round 
Gaussian weighted interrogation windows, at a maximum 
of 50% overlapping. Spurious vectors are removed from PIV 
fields by applying a threshold of 1.2 on the peak ratio, and 
replaced using median filtering.

The final spatial resolution achieved is 3.4 mm. The 
smallest Kolmogorov length scale and Taylor micro-scales 
of turbulence are supposed to be found in the water case, for 
which the viscosity is always the lowest. The Kolmogorov 
and Taylor length scales are evaluated to be, respectively, 
of about 0.47 mm and 3.17 mm for water. For 100 ppm 
XG solutions, using a constant viscosity equal to �∞ , they 
increase to 0.23 mm and 3.25 mm, and up to 6.45 mm and 
18.17 mm when using �0 as the scale viscosity. The 3.4 mm 
spatial resolution is thus quite coarse and would unfortu-
nately not allow to evidence energy variations at large wave 
numbers characteristic of viscoelastic turbulence. We shall 
thus discuss only the inertial and large scale effects.

Measurements performed here are planar (2D PIV) and 
give access to only two components of the velocity field. As 
a consequence, it is not possible to compute all the terms of 
the governing equations introduced in Sect. 2.3, but only a 
part of the terms involving the components and their gradi-
ents along X (i and/or j equal to x) and Z (i and/or j equal 
to z). In what follows, analysis of the velocity fields is car-
ried out as if the flow was two dimensional, assuming that 
velocities and gradients along the y direction are nil. This is 
a strong and reductive hypothesis. To perform a complete 

(10)De =
tCY

T
= tCYf ,

Fig. 2   Viscosity data points (circles) and Carreau–Yasuda fit-
ting (line) for the 100 ppm XG solution. The horizontal dashed line 
denotes the viscosity of water. The vertical full line is the nominal 
shear rate corresponding to the grid frequency. Vertical dashed, dot-
ted, and mixed lines show, respectively, the order of magnitude of the 
maximum mean, oscillatory, and turbulent velocity gradients. They 
thus indicate the range of viscosity variations induced by all three 
types of flow
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analysis of the production, dissipation, and transfer terms of 
turbulence of the governing equations in the whole volume 
of interest, full three-dimensional three-component velocity 
data would be required.

3.4 � Grid detection and phase‑resolved statistics

3.4.1 � Grid masking and tracking

As measurements are focused around the swept zone, the 
oscillating grid is visible on the recorded images (Fig. 3a), 
which is an asset for grid tracking but problematic for the 
velocity field calculation. The grid has, therefore, to be first 
removed from images for velocity calculation and then iso-
lated for the grid tracking step. Grid masking is achieved 
using DaVis software from LaVision. At first, an horizontal 
median filter is applied on every recorded image (Fig. 3b). 
These images are then binarized using an arbitrary threshold 
based on the image gray level values such that the pixel cor-
responding to the grid are set to zero and the rest of the image 
to one (Fig. 3c). Each mask image is then applied to the cor-
responding image when calculating the velocity field. One 
effect that cannot be easily corrected with this procedure is the 
shaded area visible on the left part of Fig. 3a under the grid. 
Here the PIV laser sheet was directed so that it always met 
the grid from the top, and the shaded region was always under 
the grid. In doing so, the region above the grid is always well 
lighted, and measurements can always be considered reliable 
there. The shaded particle region is represented by a gray zone 
on each PIV-deduced fields at specific grid positions in the 
following figures, to recall that this region is prone to errors.

Grid tracking is performed by a Matlab custom script. 
It also starts by an horizontal median filtering step to 
smooth particles off the image. Gray level intensity is then 
horizontally averaged on the whole image width, and the 

peaks of width-averaged intensity gradients are used to 
detect grid boundaries (Fig. 4). Finally, the grid position 
is defined at equal distance from the two peaks. Once the 
grid tracking step is made, every pair of PIV frames and 
the corresponding vector field can be associated with a 
grid position. The grid direction (going up or going down) 
for each instantaneous fields can be found using the differ-
ence in detected grid position on frames 1 and 2.

3.4.2 � Conditional averaging and triple decomposition

As mentioned in Sect.  2.3, a triple decomposition of 
the velocity field into mean, oscillatory, and turbulent 

Fig. 3   Grid masking procedure. a Recorded image showing both the grid and PIV particles, b particles smoothed out by applying an horizontal 
median filter, c mask obtained using an arbitrary intensity threshold. The laser sheet comes from the right, as sketched in Fig. 1

Fig. 4   Grid tracking procedure: the red curve is the vertical gradient 
of horizontally averaged intensity IX . The two red dots correspond to 
the maximum gradient peak detected. It is checked that the distance 
between the two peaks is equal to the grid thickness d (orange). The 
white line shows the detected grid position
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components is a useful tool to study the dynamics of flows 
which exhibit a periodic pulsation or sustained by a peri-
odic forcing. Escudié and Liné (2003) detailed a method to 
extract mean, oscillatory and turbulent component of the 
flow from statistical analysis of non-time-resolved 2D-PIV 
measurements synchronized on blade motion. The main idea 
was to perform different sets of PIV measurements corre-
sponding each to a different but known position of the blade 
(or here the grid), the synchronization between blade/grid 
position and measurement being enforced by an outside 
detection system. Here the method used to achieve phase-
resolved measurements is not based on an external trigger 
but rather on image processing of a collection of randomly 
sampled instantaneous fields. The main principle of statisti-
cal estimation of the triple decomposition component still 
stays the same, and is detailed in what follows.

Sampling of the grid stroke A conditional averaging 
of velocity fields is performed based on the grid position 
previously detected. To that end, the total measured ampli-
tude is sampled into Np parts of constant size �S such that 
2S = Np × �S . Based on its measured grid position, each 
instantaneous field is then associated to the slice it lies 
into, and is thus affected to a closest matching sample grid 
position. Phase averaging is performed by averaging all the 
velocity fields stored at a given sampling grid position, (i.e., 
in a given slice). Ultimately, the typical period of oscillation 
is described using 2 × Np − 1 point in time ( Np for the grid 
going up, same for the grid going down, minus the starting 
point). Np is chosen as the best compromise between high 
period sampling and convergence of each position’s veloc-
ity statistics. Indeed, if Np is too large, each slice may not 
include enough instantaneous field to achieve statistical con-
vergence (see the next paragraph). On the other hand, if Np 
is too low, one may not be able to describe accurately oscil-
latory velocity fields around the grid, and results can not be 
considered phase-resolved. The results presented hereinafter 
are for Np = 12 . This induces every slice to always store at 
least 250 instantaneous data fields, which has proven to be 
sufficient for phase-averaged velocity fields calculation (see 
Fig. 5 and following paragraphs).

Flow statistics Knowing the phase-averaged velocity 
fields, it is then possible to perform a triple decompo-
sition of the velocity field as proposed by Hussain and 
Reynolds (1970) and explained in Sect. 2.3. It is worth 
noting that triple decomposition has never been applied to 
the study of oscillating grid turbulence despite its obvious 
oscillatory behavior.

Here for a velocity component i, the mean velocity field 
is taken as the ensemble average of all velocity fields:

(11)Ui =
1

N

N∑
p=1

U
p

i
,

where N is the total number of instantaneous velocity fields. 
Phase-averaged velocity for a given grid position k is defined 
as

With Nk the number of instantaneous fields Up at grid posi-
tion k ( Up=k ) in the phase.

The oscillatory component at this same grid position is 
the phase-averaged velocity from which the mean compo-
nent is removed:

(12)⟨Ui⟩k� =
1

Nk

Nk�
p=1

U
p

i
,

Fig. 5   Example of graph of convergence of statistical quantities 
(water). s is the size of sample used for statistical analysis. a Con-
vergence of the phase-averaged velocity values, spatially averaged 
over the whole ROI. b Statistical convergence of the same quantity 
at a given probing location (X,Z) of the ROI (here X = 0, Z/S = 2). c 
Convergence of the phase rms velocities, averaged over the ROI. Full 
lines are for horizontal velocity components and dashed lines for ver-
tical velocity components. Examples are provided for three grid posi-
tions (k = 1 for a, k = 15 for b and k = 23 for c) but similar results are 
achieved for all 2Np − 1 = 23 possible grid sampling positions with 
all three (a–c) indicators and for both fluids. [.]ROI denotes a spatial 
average over the full ROI
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The turbulent fluctuation accounting for the grid position 
k is thus:

The phase root mean square (rms) velocity can then be 
defined as the root mean square of turbulent fluctuations at 
position k:

It can be used to estimate the intensity of turbulence at posi-
tion k, and will be later referred to as “phased rms” Finally, 
the non-phase-averaged rms of oscillatory and turbulent 
velocity fluctuations are defined, respectively, as

and

They quantify for a given Eulerian probing point the inten-
sity of respectively oscillatory and turbulent fluctuations at 
a fixed location in the flow.

Statistical convergence and data weight/size For all 
quantities, it has to be checked that statistical convergence 
is reached. The number of independent instantaneous fields 
used for average or rms computation on the whole set of data 
(N) or at the k position ( Nk ) should be large enough for the 
computed quantity to be independent of it. This is verified 
by computing the sliding statistics using larger and larger N 
until the chosen indicator for statistical convergence reaches 
a constant value.1 For non-time-resolved PIV measurements 
of turbulent flows, it is commonly said that a few hundreds 
of independent fields are sufficient to reach convergence of 
averaged quantities, and about 1000 is required for second-
order statistical quantities (rms, for example). This criterion 
is yet arbitrary, so statistical convergence has been checked 
for our measurements. Our phase-resolved measurement 
provide uncorrelated fields for phase rms computation since 

(13)u∗k
i

=
1

Nk

Nk∑
p=1

(U
p

i
− Ui).

(14)u
�k
i
= Ui − Ui − u∗k

i
.
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two fields recorded at the same grid position are separated 
by a minimum amount of time of 1 s corresponding to at 
least one grid period. To perform phase-averaged statistical 
analysis, a minimum of a few hundreds of images is needed 
for each grid sample position. The typical total number of 
images recorded here to fulfil this requirement is thus around 
10,000, with a number of images per grid position Nk laying 
between 250 and 500. Here Nk is a consequence of the true 
grid frequency, the acquisition frequency of the PIV system, 
the lag between these two frequencies and the accuracy of 
the grid detection procedure.

Statistical convergence is checked at all grid sample posi-
tions. To that end, the average and rms values are plotted as 
a function of the sample size N or Nk for all velocity compo-
nents (along X and Z), at several random locations in the ROI 
or spatially averaged over the whole ROI. An example of a 
convergence graph is shown in Fig. 5. Globally, all indica-
tors are found to converge in all ROIs and planes.

4 � Results and discussion

4.1 � Flow visualization

4.1.1 � Instantaneous velocity fields and flow decomposition

An example of instantaneous velocity field for each fluid is 
pictured in Fig. 6 for a bottom grid position. In this figure 
as for all following fields, the Z dimension is scaled by 
the stroke S, and the X dimension by the semi width of the 
tank L / 2. In both cases, the wake of the grid is evidenced 
by a series of counter rotating vortices behind each grid 
bars. DPS visually exhibits stronger but larger vortices 
than water. Using the grid detection procedure presented 
in Sect. 3.4.1, each instantaneous field is associated to 
a specific grid position. The mean velocity field is com-
puted by averaging all instantaneous velocity fields, and 
phase-averaged velocity fields by averaging all instantane-
ous velocity fields at the same grid position, as explained 
in Sect. 3.4.2. The oscillatory component is deduced by 
removing the mean velocity field from phase-averaged 
velocity field at each grid position, and fluctuating velocity 
fields are derived by subtraction of mean and oscillatory 
fields to each instantaneous field.

Figure 7 gathers, for the two studied fluids, their mean 
velocity field, a phase-averaged and oscillatory velocity 
field at a given grid position (bottom position), and the 
fluctuating velocity field corresponding to instantaneous 
fields that are shown in Fig. 6. The background color rep-
resents the vorticity of each velocity field, respectively 
� , ⟨�⟩� , �∗ and �′ for the average, phase-averaged, 
oscillatory and fluctuating vorticity. The averaged fields 
show two side vortex above the grid swept zone. They 

1  A more rigorous approach could be lead via an ensemble prob-
ability estimation method (Simoëns 1992), in which the amount of 
independent field needed to achieve statistical convergence is pre-
determined by the analysis of the expected shape of concentration 
fluctuations PDF.
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seem stronger in DPS than in water, and accompanied, 
in DPS only, by an enhanced up-going motion above the 
swept zone centred around X = 0 . This specific mean flow 
enhancement is described in Lacassagne et al. (2019). 
Phase average velocity field exhibit more clearly the grid 
bar wakes, together with the side vortices. The oscillatory 
component mostly displays the wakes since it is the result 
of the subtractions between phase-averaged measurement 
and mean flow. A new interesting difference between water 
and DPS appears when comparing the oscillatory com-
ponents at the low grid position: DPS fields display two 
symmetric pairs of vorticity patches at the edges of the 
ROI above the grid swept zone, which are not visible for 
water. Finally, the fluctuating velocity fields allow to see 
the turbulent structures produced behind the grid. Eddies 
are created close to the grid and interact so that turbulence 
diffuses towards the bulk.

4.1.2 � Typical period of oscillations

The typical period of oscillations can be described by con-
sidering the phase-averaged velocity field ⟨U⟩� (and its 
associated vorticity), to which we subtract the mean flow 
U (and its vorticity). Figure 8 displays a typical period of 
oscillations for the resulting oscillatory flow illustrated by 
the oscillatory component of the vorticity field. Five suc-
cessive grid positions k = p are sketched (a snapshot has 
already been presented in Fig. 7 for the lower grid position). 

The instantaneous relative grid altitude Zg corresponding 
to each snapshot is shown on the sinusoidal plot. Positions 
are numbered from p = 1 to p = 5 . Trailing vortices behind 
grid bars are evidenced again, and their growth and decay 
can be visualized as a function of the grid position. In DPS, 
a periodic vortex shedding is observed on both sides of the 
ROI, specifically in the region where the two mean vortices 
are formed. The shed vortex are those previously evidenced 
on Fig. 7 third line.

4.2 � Turbulence, oscillatory motion, and mean flow 
analysis

4.2.1 � Reynolds and oscillatory stresses

To quantify the relative intensity of oscillatory versus turbu-
lent fluctuations in both fluids, the root mean square (rms) 
over the whole set of instantaneous fields of oscillatory and 
turbulent fluctuations (regardless of the grid position), 
defined at Eqs. (16) and (17), respectively, are represented 
in Fig. 9. The Reynolds and “oscillatory” stresses u′

i
u′
j
 and 

u∗
i
u∗
j
 are shown in Figs. 10 and 11, respectively. In these 

figures, the grid is sketched at its mean position ( Z = 0 mm ). 
The shaded area is not represented since these fields are 
statistical quantities involving several grid positions. The 
stresses for which i = j are referred to as “normal” stresses, 
and the other ones as “tangential” stresses.

Fig. 6   Example of close grid instantaneous velocity and vorticity 
fields in water (left) and dilute polymer solution (DPS) (right). The 
color bar represents the out-of-plane vorticity of U. The gray area 
under the grid represents the area of the ROI for which the laser sheet 

was shaded by the grid and were measurements could be inaccurate. 
For figure’s clarity, only one every two vector in both dimensions is 
plotted
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Fig. 7   Ensemble average 
(first line), phase average for 
a given grid position (second 
line), oscillating component 
for a given grid position (third 
line) and turbulent fluctuating 
component example at the same 
grid position (fourth line) for 
velocity and vorticity fields, in 
water (left column) and DPS 
(right column)
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All turbulent fluctuations are logically much higher in the 
swept region of the grid around Z = 0 . They also exist at a 
lower level outside of the stroke region in both water and 
DPS (non zero RMS of turbulent fluctuations). The RMS 
of the oscillatory component is strong in the grid swept 
region, as also suggested by the snapshots of typical oscil-
lation period shown in Figs. 7 and 8, but quickly vanishes 
when moving away from the grid. In DPS, the RMS of oscil-
latory motion is slightly increased outside of the grid region 
compared to water. Figure 9 thus shows that the amplitude 
of oscillatory component of the flow is mostly significant 
in the swept region of the grid, and quickly becomes neg-
ligible compared to turbulence outside of this region. The 
effect of DPS seems to be an enhancement of the oscilla-
tory fluctuations intensity and a modification of their spatial 
distribution.

Similar conclusions can be drawn from Figs. 10 and 11: 
Reynolds stresses and oscillatory stresses are high in the 
swept region for both water and DPS. They decrease when 
moving away from this region, and oscillatory stresses 
rapidly become nil. The presence of polymer tends to 
increase the spatial decay of Reynolds stresses, but slightly 
decrease that of oscillatory stresses, especially for the nor-
mal horizontal ones. Stress fields yet allow to make a few 
more observations. First, both the Reynolds and oscillating 
stresses seem to be increased at Z = 0 mm in DPS compared 
to water. Second, the intensity of normal Reynolds stress in 
DPS is enhanced at the centre of the ROI whereas that of 
oscillatory stress is larger on the sides of the ROI. Finally, 
the two side vortices evidenced from the mean flow study are 
found to correspond to two patches of tangential Reynolds 

stress with a significant magnitude, and that for both water 
and DPS, as visualized on Fig. 10 second row.

4.2.2 � Energy transfers

The transfer terms have been defined in Sect. 2.3, Eqs. (5), 
(6) and (7). The Tmt (mean to turbulence), Tmo (mean to 
oscillatory) and Tot (oscillatory to turbulence) fields for 
water and DPS are shown in Fig. 12. Noticing the scales of 
each color bar, one sees that of magnitude, ||Tmt

|| < ||Tmo
|| , ||Tmt

|| < ||Tot
|| , and ||Tmo

|| ≈ ||Tot
|| . In water it appears that 

||Tmo
|| < ||Tot

|| , but in the polymer case ||Tmo
|| > ||Tot

||.
From the topology of these fields, several observations 

can be made:

•	 The variations of transfer terms are larger in DPS than 
in water. Since transfer terms are a product of stress and 
spatial gradient, the origin of these variations may come 
from both of these parameters. Reynolds and oscillatory 
stresses spatial variations are more important in DPS 
than in water (see Figs. 10, 11). Mean and oscillatory 
flows are enhanced by the presence of polymer (as shown 
in Fig. 7), and their gradients are sharper.

•	 All the transfers mostly occur within the grid swept 
region. The only small but noticeable exception is 
observed for Tmt fields in DPS, just above the grid’s top 
position, where two weak mean to turbulence transfer 
regions are observed on both sides of the ROI (evidenced 
by dashed circles on Fig. 12, first line of sub-figures). 
They correspond to the mean flow vortices observed pre-

Fig. 8   Oscillating vorticity �∗ field in (1/s) at different grid posi-
tions in the close grid region for water and DPS. The sampling of the 
grid period is sketched alongside the figure, on the Zg∕S versus t / T, 

where Zg is the distance from the grid to its mean position, and t the 
time over a grid period T 
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viously. This is the blueprint of a secondary turbulence 
production region, the strength of which is enhanced 
by the presence of polymer. It was also evidenced by 
the enhancement of u′

x
u′
z
 Reynolds stresses in the same 

region in Fig. 10.
•	 Tmo seems stronger in the DPS than in the water case, 

as illustrated by the second row of the figure. This 

underlines the increased importance of the oscillatory 
field in DPS. In particular, two highly negative Tmo 
patches appear on the top part of the swept zones at the 
sides of the ROI (hence near the walls). Negative Tmo 
means that energy is transferred from the oscillatory 
motion to the mean flow. The location of this patches 
corresponds quite well to that of enhanced mean flow 

Fig. 9   RMS of oscillatory (lines 
1 and 2) and turbulent (lines 
3 and 4) velocity fluctuations 
along the horizontal (lines 1 and 
3) and vertical (lines 2 and 4) 
directions, in water and DPS. 
Velocities are expressed in 
m/s and displayed in log scale. 
Isovalue lines are drawn in 
white full lines at log values of 
− 3, − 2.5, − 2, − 1.5 and − 1 
on each sub-figure
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structures observed in Fig. 7 first line. Energy transfer 
terms thus bring the additional information that this 
mean flow enhancement comes from the mean flow 
production by oscillatory flow at the walls.

•	 In water, Tot mostly occurs in vertical regions aligned 
with the grid bars, and the transfer term is always posi-
tive, so that oscillatory motion seems to always transfer 
energy to turbulence and not the other way around. In 
DPS, the pattern of the Tot field is more elaborated and 
both positive and negative regions exist, which means 
that energy transfer is a two-way process. This is con-

sistent with the two-way flow-polymer interaction pro-
cess evidenced by Nguyen et al. (2016) in viscoelastic 
turbulence.

Figure 13 summarizes Figs. 10, 11 and 12 in terms of ver-
tical profiles of Reynolds and oscillatory stresses and trans-
fer terms. All curves have been obtained by width averaging 
the corresponding fields over the − 50 < X < 50 mm range. 
Only the values for Z > 0 are shown.

These curves confirm and complete the earlier observa-
tions. Oscillatory and Reynolds stresses are maximum in 

Fig. 10   Reynolds stresses in 
water and DPS. Isovalue lines 
are plotted in full or dashed-
dotted lines and their values 
are indicated by arrows on the 
figure
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the core of the grid swept region, close to Z = 0 . Oscillatory 
stresses decay much faster than the Reynolds stresses with 
increasing Z, and are negligible compared to the Reynolds 
stresses outside of the swept region, by at least a factor 10. 
For a given fluid and a given type of fluctuations, the vertical 
stress is always larger than the horizontal one. This is obvi-
ously because of the vertical grid displacement. This effect 
is all the more important for the oscillatory stresses which 
are directly due to this grid motion. The presence of polymer 
slightly increases the Reynolds stress value at the origin, but 
also the decay rate of the stresses with Z. In other words, 

DPS tends to concentrate the effects of turbulence in the 
swept region. As for the effect of polymer on the oscillatory 
component, it was previously observed that DPS solutions 
showed enhanced oscillatory structures outside of the swept 
region on the sides of the ROI. However, this effect was 
found to be related to tangential stresses and not to normal 
ones, hence it is not visible on the u∗

i
u∗
i
 fields and on their 

vertical profiles.
As for energy transfers, the vertical variations of transfer 

terms is increased in DPS as compared to water in the swept 
region. This is supposedly due to both the enhancement of 

Fig. 11   Oscillatory stresses 
fields induced by the periodic 
velocity fluctuations in water 
and DPS. Isovalue lines are 
plotted in full or dashed-dotted 
lines and their values are indi-
cated by arrows on the figure
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oscillatory and Reynolds stresses and to the spatial gradients 
of mean and oscillatory velocities. Such results suggest that 
gradient-based models could be good candidates at closure 
relationships for the estimation of these transfer terms. In the 
core of the swept region, all width-averaged transfer terms 
are positive for water and DPS: energy is transferred from 
the mean and oscillatory flows to turbulence. At the edge 
of the grid swept zone, Tmo and Tmt profiles become nega-
tive suggesting a feeding of the mean flow, that is further 
enhanced in DPS.

An important conclusion of the present work is thus that, 
outside of the grid swept zone, oscillatory, grid correlated, 
fluctuations quickly vanish in front of random turbulent ones 
with increasing Z/S. Despite its enhancement upon poly-
mer addition previously mentioned, the oscillatory motion’s 
intensity (quantified by the rms of oscillatory fluctuations, 
Fig. 9, or by oscillatory stresses, Fig. 11) is one to several 
orders of magnitude lower than turbulence intensity. This 
legitimates the use of the classical Reynolds decomposition 
outside the grid swept zone when working in a fixed, tank-
attached reference frame (as done in Lacassagne et al. (2019) 

Fig. 12   Triple decomposi-
tion transfer terms Tmt (mean 
to turbulent), Tmo (mean to 
oscillatory or periodic) and 
Tot (oscillatory to turbulent) 
in water and DPS. Transfer 
terms are expressed in m2s−3 . 
Isovalue lines are plotted in full 
or dashed-dotted lines and their 
values are indicated by arrows 
on the figure
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since the oscillatory fluctuations can be assumed negligible 
there. However, it must be kept in mind that any study pre-
senting turbulence properties inside the swept zone from a 
classical Reynolds decomposition implicitly includes oscil-
latory motion into either mean flow or turbulent fluctuations.

4.2.3 � About mean flow generation

One of the key questions regarding OGT is the existence of 
mean flows, often an unwanted feature of the device. Its ori-
gin is most of the time attributed to misalignment or default 
in symmetry between the grid and the tank (McKenna and 
McGillis 2004a). McCorquodale and Munro (2018b) based 
on the older work by Drayton (1993) advance a possible 
source for the establishment of mean flow in the tank. They 
state that mean flow is induced in OGT when there is a sig-
nificant difference in the relative strength of the jets pro-
duced by the oscillating grid in different regions of the tank, 
and suggested the Coanda effect (applied on jets closest 
to the tank’s wall) to be the dominant mechanism for this. 

Indeed as argued by Drayton (1993), jets close to the wall 
are necessarily non symmetric fashion, their growth being 
inhibited in the wall-normal direction. Compared to central 
jets, they should spread at higher grid distances in the wall-
tangential, grid-normal direction, and consequently be less 
likely to merge with their neighbours. They are thus more 
likely to reach the outside of the grid swept zone and to give 
rise to a persistent flow on the sides of the tanks, resulting in 
the mean recirculation structures observed in several studies 
(Drayton 1993; Lacassagne et al. 2019; McCorquodale and 
Munro 2018b; McKenna and McGillis 2004a).

The previous description applies quite well in the pre-
sent case, for both water and DPS: Fig. 6, 7 and 8 show 
that the side jets at |2X∕L| > 0.4 are significantly non sym-
metrical compared to central jets. This is correlated to per-
sistent mean flow structures on the sides of the ROI at simi-
lar |2X∕L| values (Fig. 7, first line). Moreover, Fig. 9, lines 
3 and 4, shows that higher turbulent velocity rms values 
are reached in the trails of grid bars at the centre of the 
ROI, compared to grid bars closer to the wall. The relative 

Fig. 13   Vertical profiles (width-averaged over the ROI) of a Reynolds normal stresses, b oscillatory normal stresses, c transfer terms, for water 
and DPS
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variation of jet strengths (in addition to the asymmetry) is 
thus also confirmed.

One striking results is that the addition of polymer seems 
to enhance the intensity of the mean flow. As previously 
mentioned, side vorticities seem stronger in DPS than in 
water, and accompanied in DPS only by an enhanced 
up-going motion above the swept zone. Looking back at 
Figs. 6, 7, 8 and 9, one sees that all the features characteristic 
of mean flow production as described by McCorquodale and 
Munro (2018b) and Drayton (1993) are even more obvious 
and enhanced in DPS compared to water. Asymmetry of the 
side jets is enhanced, and jets at the centre of the tank have 
even higher intensities with respect to the side ones when 
considering rms fields (Fig. 9).

The description of the mechanisms of mean flow produc-
tion by Drayton (1993) thus seems to hold in water and DPS 
since an enhancement of jet asymmetry and intensity varia-
tions leads to a stronger mean flow. This yet does not explain 
why asymmetry and relative intensity variation is enhanced 
in DPS. We infer that in DPS, the Coanda effect should also 
be accompanied by shear-thinning variable viscosity actions. 
Indeed, jets close to the walls are in a region for which the 
fluid is submitted to a sustained high shear rate. The imposed 
velocity gradient is strong since the grid forces a periodic 
velocity, the velocity at the wall is nil and the variations 
between the two boundary constrained velocities happen 
within the very small gap between the grid and the wall 
(typically 1 mm here between the edge of a grid bar and the 
wall). Since the shear rate is high, viscosity should be low 
in this region. However when moving away from the walls, 
the imposed periodic shear rate is decreased and viscosity 
thus increases. The consequence is that side jets are inher-
ently coupled with an horizontal viscosity gradient, increas-
ing their asymmetry and the non horizontally homogeneous 
repartition of intensities in the jets. Such a behavior would 
thus tend to enhance mean flows as described by Drayton 
(1993) and McCorquodale and Munro (2018b).

Additional information can be brought to this mechanism 
by the present data, regarding the distance from the grid 
at which mean flow enhancement occurs. Indeed, Fig. 13 
shows the profiles of width-averaged energy transfer terms 
Tmo , Tmt and Tot . Considering that the energy inputs, by 
the grid, are made towards the oscillatory component, mean 
flow production should thus be a consequence of energy 
transfers from oscillatory motion to mean flow, evidenced by 
negative Tmo values. This is achieved in the 0.5 < Z∕S < 1 
region, i.e., inside but at the outer part of the grid swept zone 
in both water and DPS. In the DPS case, the Tmo reaches 
more negative values, confirming and enhanced mean flow 
production. Moreover, one notices that in the water case, the 
Tot term is always positive, and significantly higher that in 
the DPS case. This means that in water, most of the energy 
input at the oscillatory level is used to generate turbulence, 

and only a smaller part of it creates mean flow: ||Tot∕Tmo
|| is 

typically equal to 1.5 at Z∕S = 0.75 . In DPS, a more signifi-
cant part of the oscillatory energy is transferred to the mean 
flow: ||Tot∕Tmo

|| falls to 0.03 at the same altitude.2

4.3 � Phase turbulence

Another way to describe the periodicity of turbulence prop-
erty is to compute rms values of velocity fluctuations not on 
the full set of data, but for each specific grid position. Such 
so-called phase rms 

⟨
u′
z

⟩k

�,rms
 are defined at Eq.  15. An 

example of phase rms field for water for a given grid position 
is given in Fig. 14a, the log-scaled color bar representing the 
magnitude of 

⟨
u�
z

⟩k=p=1

�,rms
 in m/s. One can clearly evidence the 

wake of the grid by high turbulent intensity patches. We 
should stress that the following analysis is not performed in 
the global Eulerian frame of the tank, for which oscillatory 
flow has already been considered through non-phased rms 
of oscillatory fluctuations, or oscillatory stress fields. This 
time, we are looking at oscillatory flow in a grid-attached 
Eulerian frame: the oscillatory aspect of the flow is intrinsi-
cally accounted for by defining turbulence based on the grid 
position.

It is interesting to notice that the higher turbulent intensity 
regions are found to correspond to grid holes. Previously, it 
was observed that normal Reynolds stresses (Fig. 10) and 
non-phased rms fields (Fig. 9) where maximal above grid 
bars. Tangential Reynolds stresses were themselves maximal 
above grid holes. Here we understand that for a given grid 
position, turbulence is high where the wakes of grid bars 
meet, i.e., in the jets behind the holes. In this region, both 
vertical and horizontal fluctuations are found since structures 
are the result of a lateral collision of structures, advected by 
the oscillatory trailing vortices shown in Fig. 8. This thus 
explains the mapping of tangential Reynolds stresses. Verti-
cal Reynolds stresses, as for rms of u′

z
 , are maximal in the 

region where turbulence production is the result of vertical 
sweeping by bars only.

In the rest of this paragraph, five different sampling grid 
positions are considered (already used in Fig. 8 for the visu-
alization of a typical vorticity phase). They are represented 
on a grid period in time and space in Fig. 14b). Position 1 
correspond to a grid accelerating downwards, position 2 to 
a grid still going downwards, but decelerating. Position 3 is 
the extreme low position at Z = −S , where the velocity is nil 
and the acceleration maximal and oriented upwards. Posi-
tions 4 and 5 are for the grid going upwards and respectively 
accelerating and decelerating. For each grid sampling 

2  The consequence of this enhancement in terms of mean flow prop-
erties is described in Lacassagne et  al. (2019), for various polymer 
concentrations.
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position k = p , phase rms fields are averaged over the hori-
zontal dimension X. The width-averaged profiles of 

⟨
u�
z

⟩k=p

�,rms
 

are plotted versus the instantaneous distance from the grid 
Z − Zg normalized by S in Fig. 14c (water) and d (DPS).

For almost all grid positions and for the two fluids con-
sidered (except p = 2 and p = 3 in DPS as discussed later), 
rms profiles roughly follow power law decay trends such that ⟨
u�
z

⟩p

�,rms
∼ (Z − Zg)

n . All curves are included inside an 
envelope defined by n = −2 and n = −1 trends. The n = −1 
value happens to be the usual exponents of the decay law for 
oscillating grid turbulence evidenced by Hopfinger and Toly 
(1976) when plotting non phased rms profiles of 

⟨
u′
z

⟩
rms

 as 
a function of the dimensional Z. We see that here, once 
phased to the grid motion, the decay profiles of each grid 
positions has a n value lower than − 1, but higher than 
− 2.

In water, one could probably expect that when phasing 
turbulence with the grid position, the decay exponents char-
acteristic of fixed grid turbulence could be retrieved for well 
chosen grid positions. Indeed, one can consider an Eulerian 
description on the flow in a reference frame attached to the 
grid and no longer to the tank. When the grid is going down 
(respectively up), the configuration for each grid position 
that of a fixed grid with flow passing through in the +Z 
(respectively, −Z direction), with a relative fluid velocity 
equal to the grid’s velocity. For fixed grids, Comte-Bellot 
and Corrsin (1966) and many more recent works (listed in 
Hearst (2015) evidenced decay exponents for the turbulent 
kinetic energy in the [− 1.4, − 1] range. For the streamwise 

velocity fluctuations considered here, this should yield decay 
exponents in the [− 1.2, − 1] range. Here curves for posi-
tion p = 1 and p = 2 in Fig. 14c correspond to the situation 
analog to that of a fluid flowing upwards through a fixed grid, 
and should be comparable to fixed grid scaling laws. They 
are fitted by expressions of type 

⟨
u�
z

⟩
rms

= a ×
(
Z − Zg

)n . 
Values of n obtained for p = 1 and p = 2 are, respectively, 
equal to − 1.2 and − 1, with a better fitting for p = 1.

This phase analysis suggests that original mechanisms of 
turbulence generation by the oscillating grid are in fact quite 
comparable to those behind a fixed grid in a mean flow, at 
least as a first approximation: a grid moving in a fluid quite 
logically generated turbulence in a similar fashion that when 
a fluid moves across a fixed grid. Yet the fundamental dif-
ference between the two setups is that turbulent structures 
generated at previous grid positions are still present in the 
flow at following grid positions and may interact with the 
newly generated structures. This is one of the possible rea-
son why the fitting for the p = 2 position is less efficient, 
and why the decay exponent varies between − 1.2 and − 1. 
Indeed, for p = 1 most of the Z − Zg > 0 region lays outside 
of the grid swept zone, while for p = 2 , low Z − Zg values 
are found inside this grid swept zone, when pre-existing 
turbulent structures interact with the p = 2 jets and wakes.

All of the above is valid for water. When considering DPS 
(Fig. 14d), the first observation is that profiles no longer fol-
low single exponent power law trends, at least in the vicinity 
of the grid. For p = 1 and p = 5 , a two-slope trend is vis-
ible with a change of slope at (Z − Zg)∕S ≃ 0.5 . For p = 2 
and p = 3 , a peak of 

⟨
u′
z

⟩
rms

 is observed at the same scaled 

Fig. 14   Phase rms of velocity 
fluctuations. a Phase rms field 
for the vertical velocity fluctua-
tion 

⟨
u�
z

⟩k=p

�,rms
 at sketch position 

index p = 1 , in log color scale. 
b Sketch of the sampled grid 
positions numbered 1–5. c, d 
Profiles of phase rms plotted as 
a function of the instantaneous 
grid distance normalized by 
the grid stroke Z − Zg)∕S for 
respectively water and DPS, 
at the five sampled positions 
sketched on sub-figure b. The 
dashed black line and dashed-
dotte gray line illustrate, respec-
tively (Z − Zg)

−1 and (Z − Zg)
−2 

trends. Dashed color lines on 
sub-figure c are least square fit-
tings of p = 1 and p = 2 curves 
by power laws. The grayed 
region represents half the width 
of the grid bar along (Z − Zg)∕S
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distance. This shift in decay rate concerns top grid positions, 
and evidences a boundary between high turbulent intensity, 
near-grid region and the rest of the flow above the swept 
zone that for grid positions. The second behavior, namely 
the rms peak, is characteristic of a turbulent patch shedding 
by the grid: at bottom grid positions ( p = 2, 3 ) and with a 
grid going down, previously generated turbulent structures 
are advected away from the grid by the hole jets. Since the 
grid is slowing down ( p = 2 ) or even stopping ( p = 3 ), tur-
bulence generation is less efficient and up-going turbulent 
patches break away from the near-grid region. This is no 
longer observed for ( p = 4 ) since the grid is going up and 
catches back on the shed turbulent patches. We thus see 
again an enhanced importance of flow periodicity in term 
of turbulence generation for the DPS case.

It is worth mentioning that this phase rms study can be 
another way of describing the periodicity of the flow induced 
by the grid. It is here addressed not in terms of periodic flow 
structures produced, but as a periodic behavior of turbulent 
properties. Figure 14 shows that if this periodicity of turbu-
lence is significant in the swept zone (see sub-figure a as an 
illustration), it reduces when moving away from the grid, 
as evidenced by the asymptotic collapse of all curves for 
(Z − Zg)∕S > 3 . This seems to indicate that outside of the 
grid swept zone, turbulent properties are also not periodic. 
However, clearer evidence could be brought by performing 
time resolved measurement of turbulence generated by the 
grid and studying the temporal periodicity of correlation 
functions of turbulent correlations to themselves (or turbu-
lent timescales)in the Eulerian tank-attached frame.

4.4 � Viscosity estimation and statistics

A fast approach for studying polymer influence on the ori-
gins of OGT is an estimation of the local viscosity field and 
its statistics. The main idea is to derive local shear rate fields 
from instantaneous, phase-averaged or time-averaged veloc-
ity fields. Local shear rate values are then used to estimate an 
apparent viscosity through the constitutive equation of the 
polymer, here a CY law for the rheological behavior derived 
in Sect. 3.1 (Eq.  8, Fig. 2).

This method is limited because the velocity data is only 
2D and lacks the third velocity component. Shear rate values 
can thus only roughly approach the real local shear rate, and 
no precise quantitative study can be performed. However, 
the method allows to qualitatively estimate the viscosity 
variations in a plane of measurement.

In practice, the apparent instantaneous shear rate is com-
puted as

(18)𝛾̇app =

√(
𝜕Ux

𝜕z

)2

+

(
𝜕Uz

𝜕x

)2

,

and the instantaneous apparent viscosity as

with fCY the Carreau–Yasuda function defined in Eq. (8), 
and using fitting parameters obtained in Sect. 3.1. Statistics 
for viscosity are then obtained by ensemble averaging over 
the whole set of field for �app , or grid position by grid posi-
tion for �∗

app
 exactly like what is done for the velocity field.

Figure 15 shows the fields of ensemble average viscosity 
�app , ensemble rms of turbulent viscosity fluctuations ⟨
�′
app

⟩
rms

 and fields of maximum and minimum viscosity 
values over time �app,max and �app,min . All values are scaled 
by the �0 maximum viscosity.

Estimating the uncertainty on instantaneous viscosity 
field is quite arduous since one would need to know the 
uncertainty on instantaneous velocity fields and instanta-
neous local shear rates. However, another approach can be 
used to evaluate the error associated to this viscosity esti-
mation process. From statistical convergence analysis (see 
Fig. 5), we estimate the uncertainty on velocity statistics 
convergence to be at worst of 5 % . Uncertainty propagation 
on velocity gradient and shear rates can be performed to 
quantify the resulting relative uncertainty on apparent shear 
rate, which may be up to 30% . From this value, the CY law 
(Eq. 8, Fig. 2) can finally be used to assess uncertainty on 
calculated apparent viscosity at each shear rate value. This 
last uncertainty is maximal when the slope of the curve in 
Fig. 2 is the steepest, i.e., at the lowest effective flow index 
(as defined in Cagney and Balabani (2019)). This is here the 
case for shear rates around 4 s−1 . At this worst case shear 
rate, the relative uncertainty of apparent viscosity is found 
to be 14%.

The first sub-figure of Fig. 15 shows that average viscos-
ity is minimal close to Z = 0 inside the swept grid region. 
It then increases when moving away from Z = 0 until it 
reaches its zero shear rate plateau value at Z∕S > 3 . The 
maximum of rms velocity fluctuations is found just above 
the grid’s top and bottom positions, around X = 0 . Here 
the viscosity varies from a value close to its zero shear rate 
plateau when the grid is on the other side of its stroke, to a 
much lower value when the grid departs from this position 
and releases high shearing eddies. Vertical trails of high 
viscosity rms are also observed in regions associated to 
grid holes. Since this plot represents the rms of turbulent 
viscosity fluctuations, it means that these trails are not 
due to oscillatory motion, but rather to strong fluctuations 
of the shear rate fields because of turbulent structures in 
those regions. The central high viscosity fluctuation path 
in the X = 0 mm, Z∕S = 1.5 region confirms the existence 
of preferential paths for turbulence. Turbulent fluctuations 
are more likely to be found at the centre of the ROI above 
the swept zone. The minimum viscosity fields shows that 

(19)𝜇app = fCY(𝛾̇app)
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viscosity is always higher than the infinite shear rate vis-
cosity, which means that during the experiments, no shear 
rate (mean, oscillatory or turbulent) is high enough for the 
fluid to behave like a low viscosity Newtonian fluid, even 
locally. Finally, the maximum viscosity field shows that 
almost everywhere in the fluid, the maximum viscosity 
value may be reached at a time, i.e., that almost every-
where in the fluid, at some time, the shear rate is almost 
nil. The only locations where this is not the case are just 
above the grid swept region. Here lower maximum viscos-
ity patches are found which correspond to the shape and 
location of the mean flow vortices.

5 � Conclusion

In this last section, the main conclusions are summarized, 
first the key features of the flow around a grid oscillating 
in water are described. The effects of polymer addition are 
summarized in a second paragraph. Finally the generaliza-
tion of the present results and perspectives for future works 
are discussed.

5.1 � OGT in water

The grid periodic motions create oscillatory vortices behind 
the grid bars. At the walls (on both sides of the ROI), these 
periodic, non symmetric vortices feed the large mean flow 
eddies. Oscillatory component is strong within the grid 
swept region, but quickly vanishes when moving away from 
the grid’s action. This suggests that a classical Reynolds 
decomposition can equally be used to describe turbulence 
properties in the bulk flow. Turbulence is created mostly by 
oscillatory flows in the swept region. It is highly anisotropic, 
with a much higher intensity along the vertical direction, 
as imposed by the grid motion. When turbulent intensity is 
computed in phase with the grid position, its decay law with 
the distance to the grid can be compared to fixed-grid cor-
relations for well chosen grid positions. The global mecha-
nisms of turbulence and mean flow production by the oscil-
lating grid is the following: the grid introduces turbulence 
in the oscillatory fields, which transfers energy to the mean 
flow and to turbulence.

Fig. 15   Local statistics of apparent viscosity: average (a), rms of 
turbulent fluctuations (b), minimum (c) and maximum (d). The zero 
shear rate viscosity in 100 ppm XG solutions is 32.78 mPa s and the 

infinite shear rate viscosity is 1.05 mPa s. Isovalue lines are repre-
sented by full lines on each sub-figures, with values indicated nearby
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5.2 � Effects of polymer addition

Polymer addition has several effects on the flow structure 
and energy exchanges around the grid. The first one is an 
enhancement of the oscillatory flow on the sides of the ROI 
near the walls. This leads to a periodic vortex shedding 
that feeds the mean recirculation and increase its intensity, 
thus possibly explaining the mean flow enhancement. The 
second effects is a modification of the spatial distribution 
of turbulence. Reynolds stress and turbulence intensity are 
increased in the core of the swept region close to Z = 0 , and 
decrease quicker with increasing Z magnitude. Turbulence is 
enhanced at the centre of the ROI (far from the walls), both 
in the swept region and far from the grid. Finally, the trans-
fer from oscillatory to turbulent fluctuations seems more 
complex in DPS than in water, and suggests that oscilla-
tory motion may locally both give and take energy from 
turbulence, which was not the case for water. Another visu-
alization of the same phenomenon was made possible by 
an estimation of viscosity from PIV measurements and its 
statistical analysis.

5.3 � Perspectives

It is worth reminding that a limitation of the previous analy-
sis is the fact measurements are planar and do not account 
for the highly three-dimensional behavior of turbulence. 
Results may be different when considering for example a 
plane of measurement not coincident with a grid bar, but 
with a set of grid holes, (i.e., translated of M / 2 in the Y 
direction, see Fig. 1). With similar 2D PIV measurements 
in additional planes, and under a specific set of symmetry 
hypothesis, it would be possible to estimate kinetic energy 
budgets along Z directions at specific X and Y values, and 
go further in the modelling of transfer terms and turbulence 
production. However, three-dimensional three-component 
measurements of the velocity fields would ultimately be 
required to measure the total energy transfer terms, or the 
actual local viscosity mappings. Being now confirmed that 
the spatial heterogeneity of oscillatory flow is a possible 
cause of mean flow generation, and that this heterogeneity is 
induced by spatial confinements effects, further study of the 
influence of this confinement (e.g., through the M/L ratio) 
on the flow would be of great interest.

Open Access  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.
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